
Energy Efficient Real-time Task Scheduling on

CPU-GPU Hybrid Clusters

Xinxin Mei∗, Xiaowen Chu∗†, Hai Liu‡, Yiu-Wing Leung∗, Zongpeng Li§¶

∗Department of Computer Science, Hong Kong Baptist University, Hong Kong
†HKBU Institute of Research and Continuing Education, Shenzhen, China
‡Department of Computing, Hang Seng Management College, Hong Kong

§Department of Computer Science, University of Calgary, Canada
¶State Key Laboratory of Software Engineering, Wuhan University, China

Email: {xxmei, chxw, ywleung}@comp.hkbu.edu.hk, hliu@hsmc.edu.hk, zongpeng@ucalgary.ca

Abstract—Conserving the energy consumption of large data
centers is of critical significance, where a few percent in con-
sumption reduction translates into millions-dollar savings. This
work studies energy conservation on emerging CPU-GPU hybrid
clusters through dynamic voltage and frequency scaling (DVFS).
We aim at minimizing the total energy consumption of processing
a sequence of real-time tasks under deadline constraints. We
compute the appropriate voltage/frequency setting for each task
through mathematical optimization, and assign multiple tasks to
the cluster with heuristic scheduling algorithms. In performance
evaluation driven by real-world power measurement traces, our
scheduling algorithm shows comparable energy savings to the
theoretical upper bound. With a GPU scaling interval where
analytically at most 38% of energy can be saved, we record 30-
36% of energy savings. Our results are applicable to energy man-
agement on modern heterogeneous clusters. In particular, our
model stresses the nonlinear relationship between task execution
time and processor speed for GPU-accelerated applications, for
more accurately capturing real-world GPU energy consumption.

I. INTRODUCTION

Energy consumption is now a major subject of study in

ICT [1][2][3]. The cost to power modern data centers during

their lifetime surpasses that to manufacture them. E.g., the

GPU-accelerated DeepMind computing center, best known for

defeating professional human players in the strategy board

game of Go, was acquired for about 600 million dollars,

while its annual electricity bill is pegged at 150 million [3][4].

Even saving a few percentage of the energy consumed in such

computing centers can bring tremendous financial gains.

Graphical processing units (GPUs) have become prevalent

accelerators in modern data centers and supercomputers, due to

their high computational power. Typically, a CPU can offload

its computing tasks to an associated GPU to shorten the

running time. In the TOP-500 supercomputer list [5] as of

June, 2016, 94 are equipped with accelerators, and 69 out of

them are equipped with GPUs. GPUs are also more energy

efficient than traditional multi-core CPUs [6]. In the Green-

500 List that ranks supercomputers by performance per Watt,

6 out of the top 10 most energy-efficient supercomputers are

accelerated with GPUs [7].

Though the hybrid CPU-GPU clusters can achieve higher

energy efficiency, their energy consumption is still very high.

E.g., a single DGX-1 server from Nvidia consumes up to

3,200 Watts, 75% of which come from its 8 GPUs. To

power a large-scale cluster remains a major item of expense

for data centers, and energy efficiency of GPU-accelerated

clusters is an important direction of research due to the

complicated relationship between the runtime performance and

power consumption [8][9]. Despite the growing need of energy

conservation on GPU-accelerated hybrid clusters, GPU energy

management techniques only start to witness developments.

Two commonly used techniques for saving energy in data

centers are dynamic voltage and frequency scaling (DVFS)

and dynamic resource sleep (DRS). DVFS refers to the capa-

bility of adjusting the voltage and frequency of a processor

dynamically, while DRS puts idle servers into deep sleep

states (or simply turning them off) to conserve energy [2][10].

However, simply transplanting CPU DVFS strategies onto

GPU platforms could be ineffective [11][12], mainly due to

the following two reasons. First, most existing works on CPU

DVFS only consider scaling the CPU voltage or frequency

alone, while existing works have shown that the GPU core

voltage, GPU core frequency, and GPU memory frequency are

the major factors that affect the dynamic GPU power [13][14].

Second, the execution time on a CPU is typically inversely

proportional to the processor frequency, which is not always

true on a GPU [15]. Many GPU-accelerated applications are

memory-bounded and their performance are not only related

to GPU processor frequency, but also GPU memory frequency.

Hence the tradeoff between the application execution time

and its average power consumption on GPUS becomes more

complicated.

This work studies energy conservation on CPU-GPU clus-

ters by applying GPU-specific DVFS and DRS. Our major

objective is to minimize the total energy consumption of

executing a sequence of real-time tasks (such as deep learning

training tasks, big data analytics, weather prediction, etc.),

while guaranteeing the task deadlines. This requires both

appropriate GPU voltage/frequency configuration and task

scheduling. Such problem is of practical significance in the

resource management of data centers [16]. To tackle the energy

minimization problem, we need to accurately understand the

GPU performance model and power model. Towards this end,



we consider three scaling variables that have significant impact

on task execution time and power consumption: GPU core

voltage, GPU core frequency, and GPU memory frequency.

We first introduce our GPU power model and performance

model, which capture the nonlinear relationship between task

execution time and the GPU core/memory frequency. We then

apply optimization techniques to compute the optimal voltage

and frequency setting in terms of minimizing the energy

consumption for a single task with and without deadline

constraints. Finally, we design an effective heuristic scheduling

algorithm to pack multiple tasks to the cluster following the

principle of DRS. One challenge in this scheduling problem is

to achieve a good balance between dynamic energy consump-

tion (which prefers low voltage/frequency and long execution

time) and static energy consumption (which prefers high

voltage/frequency and low execution time). Since the optimal

DVFS settings obtained in our first step do not consider static

energy, we introduce another variable named readjustment

factor to allow a non-optimal voltage/frequency setting for

better task packing and hence less static energy consumption.

Our major contributions in this work can be summarized as

follows.

1) To the best of our knowledge, this work presents the

first analytical GPU-specific DVFS model, and the op-

timization solution for a single task’s DVFS;

2) We design a novel scheduling algorithm with the fol-

lowing features: (i) it exploits GPU DVFS to conserve

energy consumption without violating task deadlines; (ii)

it effectively packs a set of tasks on a number of servers

to reduce static energy consumption; (iii) it intelligently

adjusts the DVFS setting for better energy savings.

3) We conduct real GPU experiments on a set of benchmark

applications to understand how much energy can be

saved by GPU DVFS. We then design simulations based

on our experimental data to evaluate the effectiveness of

our scheduling algorithm. Our simulation results show

that as much as 36% of the energy consumption can be

saved.

The rest of the paper is organized as follows. Section

II overviews related work. Section III describes our GPU

power and performance models, and formulates the energy

optimization problem. Section IV presents our optimization

techniques and scheduling algorithm. Section V presents sim-

ulation results. Finally, we conclude the paper in Section VI.

II. RELATED WORK

A rich body of theoretical studies model processor power

consumption with a single variable, the processor speed, which

can be controlled by varying the processor’s voltage and

frequency. Yao et al. studied task scheduling on a single

processor. They proved that for the offline problem, the

optimal speed during task processing is a constant [17]. Aydin

et al. and Albers et al. proved that the offline multiprocessor

scheduling problem to minimize energy consumption while

meeting the task deadline is NP-hard [18][19]. Aydin et al. also

proved that when the workload is evenly distributed among the

multiple processors, energy can be minimized [18]. Hong et

al. proved that for a multiprocessor system, there is no online

optimal scheduler [20]. Irani et al. studied speed scaling along

with DRS analytically [21]. They found that the algorithms

with DRS perform similarly to those without DRS.

Gharaibeh et al. verified that a CPU-GPU hybrid cluster

can achieve better performance and energy efficiency than a

typical CPU cluster, for extremely large real-world graphic

applications [6]. Liu et al. integrated CPU DVFS and GPU

task migration on a heterogeneous cluster [22]. In their model,

a task can be divided into a CPU-subtask and a GPU-subtask,

and the execution of the two subtasks is asynchronous. The

CPU voltage is scaled for better CPU-GPU load-balance. Liu

et al. studied power-efficient online scheduling algorithms on

CPU-GPU heterogeneous clusters [23]. In their model, the task

is allowed to execute on either one CPU processor or one GPU

processor. They examined earliest-deadline-first (EDF) and

first-fit (FF) heuristic scheduling algorithms. They conducted

experiments on a CPU-GPU platform, but because of the

difficulty to measure GPU power consumption of different

voltage/frequency states, they calculated the data instead.

Our work differs from existing ones in both power and

performance models. The above literature all assumed that

the processor execution speed is linearly proportional to the

processor voltage/frequency (despite the findings in [24]), and

the energy consumption is monotonically increasing in the

scaling interval. Following these assumptions, the appropriate

voltage or frequency level is determined by the processor

workload [25]. In contrast, our energy function can be non-

monotonic in the voltage/frequency scaling interval, and the

optimal voltage/frequency is more related to task properties

than processor workload. Furthermore, most existing work

ignore the impact of scaling the memory frequency on power

consumption and job execution time. We explicitly consider

GPU memory frequency as one major factor in reducing the

overall energy consumption.

III. SYSTEM MODELING AND PROBLEM FORMULATION

A. System Modeling

1) GPU DVFS Power and Performance Modeling: We

start by presenting the GPU power and performance models

that consider DVFS. We model the GPU runtime power as

a function of the core/memory voltage/frequency (P). A

typical GPU card includes a many-core GPU module and

an associated GPU memory module, and the voltage and

frequency of GPU cores and GPU memory are independent

and can be controlled separately. Eq. (1) shows the runtime

power function, where PG0 is the summation of the power

consumption unrelated to the GPU voltage/frequency scaling;

V Gc, fGc, fGm denote the GPU core voltage, GPU core

frequency, and GPU memory frequency respectively. γ and

cG are constant coefficients that depend on the hardware

and the application characteristics, indicating the sensitivity

to memory frequency scaling and the core voltage/frequency

scaling respectively [26]. In this work, the parameters in



Fig. 1. Our studied CPU-GPU cluster with m servers.

the power modeling of an application are derived from its

measured average runtime power consumption.

P(V Gc, fGc, fGm) = PG0+γfGm+cG(V Gc)2fGc (1)

Performance modeling of GPU DVFS is rather complex

[24][27]. E.g., some recent work relies on machine learning

and advanced statistical models [28]. In this work, we seek a

first-order mathematical model with concise form to simplify

the subsequent analysis of task scheduling. We formulate the

performance function (T ) of a GPU-accelerated application as

shown in Eq. (2) [13], where D represents the component that

is sensitive to GPU frequency scaling, and t0 represents the

other component in task execution time. δ is a constant factor

that indicates the sensitivity of this application to GPU core

frequency scaling. We can always adjust the value of D and

δ to model the sensitivity to GPU memory frequency scaling

as 1− δ.

T (V Gc, fGm, fGm) = D(
δ

fGc
+

1− δ

fGm
) + t0 (2)

It is notable that fGc and V Gc are correlated. For a

fixed V Gc, the maximum allowed core frequency (fGc
max) is

determined by V Gc. We use fGc
max = g1(V

Gc) to denote this

relationship, which has been shown to be sublinear in [29].

With the above GPU DVFS power and performance model,

the GPU energy (EG) consumed to process one task is the

product of the runtime power and the execution time.

2) CPU-GPU Cluster Modeling: Fig. 1 shows the model

of CPU-GPU cluster considered in this work. In the cluster,

there are m servers, each with multiple pairs of CPU-GPU.

In this work, we assume that the cluster has only one type

of CPU/GPU, but different servers may have different number

of pairs of CPU-GPU. We also assume that each task can be

assigned to only one CPU-GPU pair, and one CPU-GPU pair

can only execute one task at a moment.

A CPU-GPU pair can be in one of three states: runtime (or

busy), idle, and off. A runtime CPU-GPU pair consumes both

dynamic and static power; an idle CPU-GPU pair consumes

only relatively low static power; and a turned-off CPU-GPU

pair consumes no power. A CPU-GPU pair can be turned off

by shutting down the server, which can only happen if there is

no job assigned to any of its CPU-GPU pair. However, there

is considerable energy cost from the turning on/off operations.

We use ∆ to denote the average energy overhead to turn on/off

TABLE I
SUMMARY OF IMPORTANT NOTATIONS

Symbol Description

J The whole task set.

Ji The i-th task in the task set.

ai The arrival time of Ji. ai is a unit number.

di The required deadline of Ji. We assume d ≥ t⋆ + ai.
γi, P

0
i

Parameters related to the runtime power of Ji.
Di, t

0
i , δi Parameters related to the performance of Ji.

P ⋆
i

The default runtime power of Ji on one CPU-GPU pair.

t⋆i The default execution time of Ji on one CPU-GPU pair.

Sj The j-th server.

lj The number of CPU-GPU pairs on Sj .

∆ The energy overhead of turning on a CPU-GPU pair.

ρ The threshold for turning off a server.

κi The time when the cluster begins executing Ji.
µi The time when the cluster finishes executing Ji.
T The time slot. T is a unit number.

J(T ) The task set arrives at T , which has n(T ) tasks.

n(T ) The number of tasks in J(T ).
M(T ) The number of occupied servers at T . M(T ) < m.

NOFF The number of offline tasks. NOFF = n(0).
NON The number of online tasks. NON =

∑

T 6=0 n(T ).

a single CPU-GPU pair. If any CPU-GPU pair is busy, the

other CPU-GPU pairs on the same server without workload

have to remain in the idle state.

Since the power consumption of a single CPU core is much

less than that of a GPU, it is simplified as a constant in our

model, i.e., we include the average CPU runtime power into

PG0 in Eq. (1) for each GPU-CPU pair. Naturally the CPU

will be kept active if the associated GPU is active, which

means that the GPU and CPU share the same execution time

to process a task. Under these conditions, the runtime energy

consumption (EJ ) of a CPU-GPU pair to process one single

task can be reformulated as Eq. (3).

EJ = (PG0 + γfGm + cG(V Gc)2fGc)×

(D(
δ

fGc
+

1− δ

fGm
) + t0) (3)

B. Problem Formulation

We formulate our online task scheduling problem consider-

ing GPU DVFS as follows. For ease of reference, the major

mathematical notations are summarized in Table I.

Our CPU-GPU energy optimization problem arises from the

following system setting:

1) A CPU-GPU hybrid cluster that consists of m servers,

S = {S1, S2, ..., Sm}, and the j-th server Sj , has lj
CPU-GPU pairs;

2) A task set of n independent and non-preemptive tasks

J = {J1, J2, ..., Jn} arriving over time, where the i-th
task Ji is represented by a tuple Ji : {ai, di,Pi,Ti},

where ai denotes the arrival time and di denotes the task

deadline.

Our objective is to minimize the total energy, Etotal, while

satisfying the task deadline constraints:

min . Etotal

s.t. µi ≤ di, ∀i. (4)



where µi denotes the time that job Ji finishes.

For every Ji in the task set, we need to compute its GPU

voltage/frequency configuration as {V Gc
i , fGc

i , fGm
i }, and its

mapping {κi, φ(Ji)} where κi denotes the time the cluster

begins to execute Ji according to the scheduling algorithm,

and φ(Ji) denotes the assignment of Ji. φ(Ji) = SJi

kj = 1

indicates that Ji is mapped onto the k-th CPU-GPU pair on

the j-th server.

The total energy consumption, Etotal, can be decomposed

into three parts: Erun, Eidle and Eoverhead, as Eq. (5)

shows. Erun denotes the energy consumption to process all

the tasks, i.e., Erun =
∑n

i=1 EJi
=

∑n
i=1 PJi

(µi − κi).
Eidle denotes the idle system energy. It equals the summation

of the idle energy of all the CPU-GPU pairs, Eidle =
P idle

∑m
j=1

∑lj
k=1 ηkj , where ηkj is the total idle period of

the k-th CPU-GPU pair on the j-th server. Eoverhead denotes

the overhead to turn on/off the servers. Eoverhead = ω∆,

where ω is the total number of the turn-on behaviours in the

cluster (counted based on the unit of a CPU-GPU pair). Erun

is closely related to the GPU voltage/frequency setting while

the others are more relevant to the scheduling algorithm.

Etotal = Erun + Eidle + Eoverhead

=

n
∑

i=1

PJi
(µi − κi) + P idle

m
∑

j=1

lj
∑

k=1

ηkj + ω∆ (5)

Empirically, when a dynamic turning off mechanism is

involved, Erun should be the majority of Etotal. We elaborate

in the next section that for a single task, there exists an optimal

solution in the DVFS scaling interval to minimize Erun.

IV. DVFS ENERGY MINIMIZATION FOR CPU-GPU

HYBRID CLUSTERS

A. Solution for a Single Task

As a first step, we consider the following sub-problem:

for a single task, given its power and performance models,

what is the optimal voltage/frequency setting that minimizes

the runtime energy regardless of its deadline?

Eq. (6) shows the mathematical formulation of the problem.

Notice that V Gc and fGc are correlated variables, and fGc is

upper bounded by a function of V Gc, denoted by g1(V
Gc).

argminEJ =argmin{(PG0 + γfGm + cG(V Gc)2fGc)

× (D(
δ

fGc
+

1− δ

fGm
) + t0)}

s.t. V Gc
min ≤ V Gc ≤ V Gc

max, fGm
min ≤ fGm ≤ fGm

max,

fGc
min ≤ fGc ≤ g1(V

Gc) (6)

As the memory frequency fGm is independent of V Gc

and fGc, we can analyze core scaling and memory frequency

scaling separately. We first consider GPU core voltage and

frequency scaling. Given a fixed memory frequency fGm
o , the

solution to Eq. (6) satisfies Theorem 1.

∂ ∂

Fig. 2. When memory frequency is fixed, the minimum energy depend-
s on the core voltage only. The data are obtained with P = 100 +

50fGm + 150V Gc2fGc; t = 25(0.5/fGc + 0.5/fGm) + 5; g1(V Gc) =
√

(V Gc − 0.5)/2 + 0.5 and fGm
o = fGm

max = 1.2. Note that although we
use a specific function for demonstration, the finding holds for other general
functions of our GPU DVFS modeling scheme.

Theorem 1. With a fixed memory frequency, the runtime

energy of a task is minimum when the GPU core frequency

is maximum corresponding to the GPU core voltage, i.e.,

EJmin(f
Gm
o ) = argmin

V Gc

EJ(V
Gc, g1(V

Gc), fGm
o ).

Theorem 1 transforms a two-variable optimization problem

into a single-variable optimization problem. It implies that

when we scale the GPU core alone to conserve energy, we

only need to find an appropriate core voltage and set the core

frequency to the largest allowed value.

Proof. We obtain the first-order partial derivatives as: ∂EJ

∂V Gc =
2V GccGfGc(t0 + Dδ + D(1 − δ)/fGm

o ) and ∂EJ

∂fGc =

cGV Gc2(t0 +D(1− δ)/fGm
o )−Dδ(P 0 + γfGm

o )/fGc2. Be-

cause ∂EJ

∂V Gc > 0, EJ cannot attain its minimum on the interior

of the domain, and EJ is a monotonically increasing function

of V Gc. The minimum is on the boundary of g1(V
Gc). fGc

can be eliminated such that finding the minimum of EJ is

only related to V Gc.

We also give a graphical proof of Theorem 1. In Fig. 2, we

plot the contour curves of EJ , g1(V
Gc) and ∂EJ/∂f

Gc = 0
together. As the figure shows, the optimal solution is along

the red curve of g1(V
Gc), where g1(V

Gc) is tangent to the

contour curve of EJ = EJmin.

We then consider GPU memory frequency scaling alone.

If the core voltage and frequency settings are fixed as

V Gc
o and fGc

o , we can easily compute the optimal mem-

ory frequency by setting dEJ/df
Gc = 0. We denote

fGm
ξ =

√

(P 0 + cV Gc
o

2
fGc
o )D(1− δ)/(γ(t0 +Dδ/fGc

o )),

that the optimal memory frequency equals: i)fGm
min (fGm

ξ <

fGm
min ); ii)fGm

ξ (fGm
min<f

Gm
ξ <fGm

max); iii)fGm
max (fGm

ξ >fGm
max).

Based on the above analysis, the original three-variable

problem is transformed into a two-variable optimization prob-

lem. Reducing the problem dimension is vital to speeding up

the computation.



We now move on to the problem with task deadline consid-

ered: what is the optimal voltage/frequency setting for a task

without violating the given deadline?

We denote the previous optimal solution of Eq. (6) as

{ ˆfGc, ˆfGm, ˆV Gc}. We refer to the execution time obtained

by substituting { ˆfGc, ˆfGm, ˆV Gc} into Eq. (2) as the optimal

execution time (t̂), and the one without GPU DVFS as the

default execution time. The optimal execution time is possibly

longer than the default execution time (t⋆).

Definition 1 (Task priority). We define the task priority

according to its optimal execution time. If d − a < t̂, the

task is deadline-prior; otherwise the task is energy-prior.

Apparently, if a task is deadline-prior, we cannot simply

apply the original solution of Eq. (6) because scaling down

the frequency too much may violate the deadline constraint.

For a deadline-prior task, we may need to scale up the

voltage/frequency compared to the original optimal setting.

The updated voltage/frequency setting for a deadline-prior

task makes the updated execution time (t̂′) equal to its allowed

time period, i.e., t̂′ = d − a. We prove that the optimal

solution of Eq. (6) is on the boundary of the domain. In-

tuitively, for a deadline-prior task, the additional constraint

fGm ≥ D(1−δ)

d−t0− Dδ

fGc

shrinks the domain. The updated solution

{ ˆfGc
′

, ˆfGm
′

, ˆV Gc
′

, t̂′} is defined by both fGc = Dδ

d−t0−
D(1−δ)

fGm

and fGc = g1(V
Gc). So for the deadline-prior task, EJmin =

argmin
fGm

EJ(V
Gc
o , fGc

o , fGm), where t(fGc
o , fGm) = d − a

and fGc
o = g1(V

Gc
o ). This is a single-variable optimization

problem and can be solved quickly.

B. Solution for Multiple Tasks

If we apply the derived optimal solution for each deadline-

prior and energy-prior task in the task set, we obtain a fixed

computed task length t̂/t̂′, and a minimized Erun. In this

section, we consider the problem: given the optimal computed

task length of each task, how to schedule a number of tasks

on the CPU-GPU cluster? In the following, we propose

our solution, the EDL readjustment algorithm, as shown in

Algorithms 1 & 2.

As a typical strategy to handle online job scheduling, we

divide time into equal time slots, and schedule newly arrived

tasks in a time slot as a batch. The duration of a time slot

should be significantly shorter than the average job execution

time. The system is initiated with a set of offline tasks, which

arrive at time slot T = 0; and the online tasks arrive at different

time slots T 6= 0. The set of tasks arriving at time slot T is

denoted by J(T ). At the beginning of each time slot, we sort

the newly arrived tasks in deadline-increasing order and assign

them sequentially. This is referred to as earliest-deadline-first

(EDF) scheduling, which is proved to be optimal in terms of

feasibility [30].

The task mapping follows a simple principle that always

tries to assign the task with the derived optimal task length to

the CPU-GPU pair with the lightest workload. The objective is

mainly minimizing Erun. We define another parameter, θ, to

strike a better balance between the two conflicting objectives:

minimizing Erun and minimizing Eidle.

Definition 2 (Task deferral threshold). Given t̂i as the optimal

execution time with minimized runtime energy of Ji, instead

of fixing the task execution time as t̂i, we allow it to vary in

the interval of [θt̂i, t̂i], 0 < θ ≤ 1 by readjusting the frequency

setting, in order to further reduce the total energy.

θ describes how much we can sacrifice the runtime energy

for a shorter make-span and less occupied servers. It apllies

proper voltage/frequency readjustments during the process of

task scheduling. When a θ-readjustment is applied, we allow

the non-optimal voltage/frequency setting for the energy-prior

task in order to make usage of the currently alive servers

with idle CPU-GPU pair(s). This behaviour transfers a number

of energy-prior tasks into deadline-prior tasks. By default,

θ = 1 and no readjustment is allowed. By varying the value

of θ, we actually control the maximum allowed portion of

such transformation we can make in a task set. Because θ is

designed to further reduce the idle energy, intuitively θ < 1
is effective only when l > 1 and the idle energy is non-

negligible.

Algorithm 1 Online EDL scheduling framework

Input: J, S, θ.
Output: M(t), the corresponding runtime power state of the M(t)

occupied servers, {fGc
i , V Gc

i , fGm
i , κi, µi} and the mapping of

Ji,∀i.

1: Execute Algorithm 2 (the EDL θ-readjustment algorithm) at T =
0;

2: for all T > 0 do
3: Process the tasks leaving at current time slot;
4: Turn off the idle servers when appropriate;
5: if there are arriving tasks then
6: Assign the tasks to the server according to Algorithm 2,

and turn on the servers if needed;
7: end if
8: end for

Algorithm 1 shows the framework of our online scheduling

algorithm. At T = 0, we process the initial set of tasks. Line

1 would output M(0) occupied servers, and the task mapping

solution for all the initial tasks.

Our online scheduling has three major components: pro-

cessing leaving tasks, turning off the servers, and assigning

the newly arrived tasks. We describe these components below.

Processing leaving tasks. At each time slot, we identify the

set of tasks with ⌈µi⌉ = T . We set the corresponding CPU-

GPU pairs to idle during the time period of (µi, T ). If a CPU-

GPU pair still has tasks to process, we assign the next task to

it at time slot T .

Turning off the servers. After processing the departured

tasks, we dynamically turn off the servers using the DRS

technique. We do not turn off the server immediately when

there is no task to execute on it on the next time slot. Instead,

we turn it off after all the CPU-GPU pairs on this server

have been idle for at least a period of ρ. This strategy avoids



frequent turn-on energy overhead in the case of job arrivals in

the near future, at the price of slightly increased idle energy

consumption.

Algorithm 2 The EDL θ-readjustment upon task arrival

Input: T , M ′(T ), J(T ), n(T ), θ, l.
Output: the voltage/frequency setting and the mapping of J(T ),

M(T ).

// M ′(T ): the number of occupied servers after turning off
the servers in the previous part

1: for all tasks in J(T ) do
2: Find the optimal voltage/frequency setting with out missing

the deadline for each task;
3: {J1, ..., Jr, ..., Jn(T )} ←− sort the tasks according to the

computed optimal length in EDF order;
4: end for

5: for r = 1 to n(T ) do
6: µSPT ←− min{µ1, ..., µM′(T )∗l};
7: // Find the CPU-GPU pair, SSPT , with the shortest

processing time
8: if dr −max(T, µSPT ) ≥ t̂r then
9: Assign Jr to SSPT ;

10: else
11: tθ ←− max{θt̂r, trmin};
12: // trmin: the minimum execution time of Jr

13: if dr −max(T, µSPT ) ≥ tθ then

14: { ˆV Gc
i

′

, ˆfGc
i

′

, ˆfGm
i

′

} ←− t̂i
′
=dr −max(T, µSPT );

// θ-DVFS is allowed for Jr , reconfigure Jr

15: Assign Jr to SSPT ;
16: else
17: Assign Jr to a new CPU-GPU pair;
18: Set the other CPU-GPU pairs on this server to idle;
19: M ′(T )←−M ′(T ) + 1;
20: end if
21: end if
22: end for
23: M(T )←−M ′(T );

Assigning the newly arrived tasks. Algorithm 2 shows our

assignment strategy for task set J(T ). We divide the solution

into two phases. In the first phase (lines 1-4), we compute the

optimal voltage/frequency setting that minimizes the runtime

energy for each task. With this setting, we obtain a fixed task

length of each task. Then in the second phase (lines 5-23),

we pack the tasks to servers according to the obtained task

lengths and the task deadlines. We always try to assign a

task to the CPU-GPU pair with the lightest workload (lines

6-9). Note that in line 6 we need to find the larger value of

µSPT and T , in the case that the CPU-GPU pair has been

idle. If the task cannot fit into the selected pair, we check if a

voltage/frequency readjustment is possible by setting its task

length equal to the remaining time before the deadline (line

14). In line 18, if the task cannot fit into any active CPU-GPU

pairs even with the readjustment, we assign it to a new CPU-

GPU pair. We turn on the server containing this CPU-GPU

pair and set its other CPU-GPU pairs to idle state.

The complexity of this algorithm is n(log n+Φ+m), where

Φ denotes the complexity of solving the optimization problem

in the previous section.

Algorithm 3 The bin-packing scheduling algorithm

Input: J, S.
Output: M(t), the voltage/frequency setting and the mapping of J.

1: for all offline tasks do
2: {J1, ..., Jr, ..., JNOFF } ←− sort the offline tasks in earliest-

deadline-first order;
3: for r = 1 to NOFF do
4: Compute the optimal { ˆfGc

r , ˆfGm
r , ˆV Gc

r , t̂r} for Jr , and the
optimal task utilization ûr;

5: Assign Jr to the CPU-GPU pairs according to the worst-fit
heuristic, where the utilization of a CPU-GPU pair is no
larger than 1 [30];

6: end for
7: end for

8: for all T > 0 do
9: Processing the tasks leaving at current time slot;

10: Turn off the idle servers when appropriate;
11: if J(T ) 6= ∅ then
12: Sort J(T ) in EDF order;
13: for r = 1 to n(T ) do

14: Compute the optimal { ˆfGc
r , ˆfGm

r , ˆV Gc
r , t̂r} for Jr;

15: Assign Jr to the CPU-GPU pairs according to the first-
fit heuristic, following the criteria in [23], and turn on
the servers when needed;

16: end for
17: end if
18: end for

V. PERFORMANCE EVALUATION

In order to assess the effectiveness of GPU DVFS and our

scheduling algorithm on energy conservation, we first conduct

real experiments by a commercial power meter to measure the

real power consumption and record the execution time for a

set of benchmark applications under different DVFS settings

on an Nvidia Fermi GPU [29][14]. We then conduct simula-

tions based on the gathered data sets. We also compare our

EDL algorithm to a classical bin-packing heuristic algorithm

described in Algorithm 3, which is developed in [23]. We

modify their algorithm to fit our system model.

A. Simulation Configuration

1) The GPU Scaling Interval: Literally the range of s-

calable GPU voltage and frequency varies among different

GPU products. Without lose of generality, we compute the

normalized values of fGc, V Gc and fGm based on the factory

default values, instead of the absolute values.

In our experiments, we measure the GPU core scaling with

9 data samples. For each fixed V Gc, we gradually scale up fGc

until the GPU board becomes unstable to get the corresponding

fGc
max. We fit the fGc

max = g1(V
Gc) relationship according

to the measurement data as g1(x) =
√

(x− 0.5)/2 + 0.5.

On our real GPU platform, the scaling interval is: V Gc ∈
[0.85, 1.05], fGc ∈ [0.85, g1(V

Gc)], fGc ∈ [0.5, 1.1]. Howev-

er, in the simulation we define a wider analytically scaling

interval to be: fGm ∈ [0.5, 1.2], V Gc ∈ [0.5, 1.2], and

fGc(V Gc) ∈ [0.5, g1(V
Gc)] where fGc

max ≈ 1.09. The GPU

voltage/frequency in the interval is continuously adjustable. In

this analytical interval, the power consumption P is strictly

convex.



2) Cluster Configuration: On our real CPU-GPU platform,

it has P idle = 85 Watts, and (V Gc, fGc, fGm) = (1, 1, 1)
indicating the corresponding GPU configuration of (1.05 V,

995 MHz, 2100 MHz). We use the data for each simulated

CPU-GPU pair.

We choose ρ =
⌊

∆/P idle
⌋

, which is derived from the

case that the task arriving at the next time slot would occupy

the same server and each server has a single CPU-GPU pair

(P idleρ ≤ ∆). We set ∆ = 200 Watts and P idle = 85 Watts

to have ρ = 2. Note that there might be other substitutions for

ρ which provides better energy conserving performance, but

since this paper focuses on DVFS technique, we stay with a

simple strategy in the setting of ρ.

In addition, we assume there are at maximum 2048 CPU-

GPU pairs, and every 1/2/4/8/16 CPU-GPU pairs are grouped

into a server, i.e.,
∑m

j=1 lj = 2048, lj = 1/2/4/8/16.

3) Task Set Generator: We measure the average runtime

power and the execution time with 9 V Gc/fGc samples and 5

fGm samples, of 9 GPU benchmark applications. We fit the

task power and performance parameters (P and T ) based on

the measurement data. Our simulated task set is a mixture of

these 9 benchmark tasks, that each time we randomly pick out

one task from the task set. We generate the task utilization of

a single task according to the uniform distribution in (0, 1),
thus the expected average task utilization, ūi = 0.5. We use the

default execution time and the task utilization to derive the task

deadline, i.e., di = ai + t⋆i /ui. We quantize the workload of

the task set by the task set utilization (UJ), which is defined as

the summation of the task utilizations over the product of the

number of processors and the expected average task utilization,

i.e., UJ =
∑n

i=1 ui

ūi

∑
m
j=1 lj

. We assign the initial offline task set

utilization and the online task set utilization as UJOFF and

UJON separately, which contain NOFF and NON tasks. In

this work, UJOFF = 0.4 and UJON = 1.6.

We simulate the task arrival in one day and choose the

basic time unit as one minute, i.e., T ∈ [1, 1440]. We generate

the number of arriving tasks at each time slot, n(T ), T ∈
[1, 1440] according to the Poisson distribution and refine it

until
∑1440

T=1 n(T ) = NON . At each time slot, we pick the

(
∑T−1

o=1 n(T ) + 1)-th to
∑T

o=1 n(T )-th task from the online

task set to construct the current arrival tasks, of which ai = T .

For each l and θ setting, we generate 1000 groups of the

above task sets. We compute the average Eidle, Eoverhead and

Erun separately.

B. DVFS Effect on a Single Task

In this subsection, we present the experimental results and

simulation results of GPU DVFS on a single task. According

to our measurements, scaling down the core voltage and

applying the corresponding maximum allowed core frequency

can significantly reduce the energy consumption. The memory

frequency scaling influences the energy consumption mostly

on the execution time, and different applications have different

optimal memory frequency settings. Fig. 3 shows the derived

optimal voltage/frequency setting and the corresponding en-

ergy saving of our 9 benchmark applications. Legend ‘Wide’

Fig. 3. The energy saving and the optimal voltage/frequency setting of the 9
benchmark applications. The x-axis stands for the task indices.

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

Fig. 4. Decomposition of the total energy consumption. In the figure, ‘EDL’
and ‘BIN’ denote our EDL readjustment algorithm and the bin-packing
algorithm without GPU DVFS, while ‘EDL-D’ and ‘BIN-D’ denote the
algorithms with GPU DVFS.

stands for our simulated scaling interval, and ‘Narrow’ stands

for the realistic scaling interval. For both intervals, the optimal

core voltage/frequency is relatively low, close to the allowed

lowest setting. The optimal memory frequency varies, depend-

ing on the application characteristics. The derived optimal

voltage/frequency settings coincide with our measurements.

C. EDL Baseline Performance

As proven in [20], there is no optimal solution for our

online task scheduling problem. In this work, we refer to the

performance of the task scheduling algorithms without GPU

DVFS as the baseline performance. In this subsection, we

execute the EDL algorithm without runtime readjustment, i.e.,

θ = 1.

We show the total energy decomposition in Fig.4, where

the two highest bars denote the baseline energy consumption.

The EDL algorithm leads to less energy consumption for

all the l configurations. The runtime energy consumption is

independent of l or the scheduling algorithm, with a constant

value of 11.03 GJ. The overhead energy is marginal in the

whole energy portfolio, varying from 8.32 to 8.78 MJ, and it

slightly decreases as l increases. The idle energy consumption

changes to the server configuration significantly, varying from

0.03 to 1.13 GJ.

The larger idle energy consumption is mainly caused by

those idle CPU-GPU pairs that cannot be turned off even if no

active task has been assigned to them. When l = 1, each CPU-

GPU pair is idle for at most ρ after task processing, while when

l = 16, the idle period of a CPU-GPU pair is overall much

longer, that the CPU-GPU pairs on one server are idle for at



θ

θ

Fig. 5. Comparison between the energy consumption of the non-DVFS and
DVFS scheduling algorithms.

least about ρ. Intuitively the more load balanced at runtime,

the less idle system energy is. When we examine the runtime

task mapping status, the bin-packing first-fit algorithm usually

ends in a few CPU-GPU pairs of much heavier workload than

the other CPU-GPU pairs. This would cause more idle system

energy when l is large.

D. EDL DVFS Performance

We conduct DVFS experiments with θ = 1 and θ = 0.9
firstly, and then discuss the readjustment with other values of

θ. For each group of experiments, we use the same offline and

online task sets as those of the baseline simulation.

Fig. 4 shows the DVFS energy consumption with three

lower bars. The runtime energy consumption of the DVFS

algorithms is still a constant. It reduces from 11.03 GJ to 7.05

GJ; about 36.8% of runtime energy is saved with GPU DVFS.

When l = 1, the three algorithms have similar energy con-

sumption, about 7.08-7.12 GJ, where the bin-packing DVFS

algorithm is slightly better. For other values of l, the EDL

readjustment (θ = 0.9) DVFS algorithm has the least energy

consumption, followed by the bin-packing DVFS algorithm

and the EDL DVFS (θ = 1) algorithm. When l = 16, the total

energy consumption of the three algorithms are 8.51, 9.92,

10.57 GJ respectively.

We further compare the idle energy and the turn-on over-

head in Fig. 5. The DVFS algorithms lead to increases of idle

system energy, especially for the EDL DVFS algorithm with-

out runtime adjustment. If runtime θ-readjustment is applied,

the idle energy is effectively controlled. When l = 16, the idle

energy of the EDL non-DVFS, DVFS without readjustment

and DVFS θ-readjustment algorithms are 1.13, 1.89, 1.45

GJ, respectively. For the bin-packing algorithm, the difference

between the DVFS and non-DVFS in idle energy consumption

is relatively small, as 0.22 GJ when l = 16. The turn-

on overhead is still marginal in the whole energy portfolio.

In general, the bin-packing algorithm is more effective in

controlling the turn-on overhead, which means that the newly

arriving tasks are more likely to be assigned to current busy

servers, while it is the opposite for the EDL DVFS algorithm

without readjustment.

To summarize, the EDL algorithm has better performance

in the energy conservation in both the baseline and the DVFS

simulation, but a runtime readjustment is needed when a server

has many CPU-GPU pairs. A better balance between the

θ

θ

θ

θ

Fig. 6. The energy consumption with runtime readjustments.

runtime energy and the idle energy & turn-on overhead is

more necessary when GPU DVFS is applied.

E. Effectiveness of the EDL Readjustment

In previous section, we have confirmed that the θ-

readjustment is effective in controlling the idle energy when

GPU DVFS is applied. We now discuss the impact of θ on

the effectiveness of readjustment strategy.

We conduct the EDL DVFS θ-readjustment algorithm with

five different values of θ. We plot the average idle energy,

turn-on overhead, runtime energy and the total energy in Fig.

6. It is clear from our experimental results that smaller θ will

result in slightly larger runtime energy consumption but less

idle energy and turn-on energy. With θ 6= 1, we consume

less total energy, less idle energy and less turn-on overhead,

especially for large l. For example, when l = 16, applying

θ = 0.95 reduces the total energy consumption from 10.58

GJ to 8.51 GJ, and reduces the idle energy from 3.5 GJ to

1.45 GJ. It is notable that when θ 6= 1, the total energy, the

idle energy, and the turn-on overhead do not vary much to θ
for the same l. Much more energy is consumed when θ = 1,

therefore a runtime readjustment is quite necessary. For all

the experiments, θ = 0.95 ends in the minimum total energy

consumption only except l = 8.

Fig. 7 shows the energy reduction compared to the baseline

total energy consumption of the EDL algorithm of all the

θ configurations. Theoretically the energy reduction is upper

bounded by the average runtime energy reduction of the

set of benchmark applications, i.e., 38% in our case. With

appropriate θ, our online EDL algorithm can conserve 30-

36% of energy, very close to the theoretical upper limit. But

as l becomes larger, the energy reduction gradually decreases.

Besides, the energy conservation of larger l depends more on



θ θ θ θ θ

Fig. 7. The energy reduction compared to the baseline energy consumption.

the θ-readjustment. The selection of parameter θ depends on

the ratio of the runtime energy over the idle energy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study the energy conserving on CPU-GPU

hybrid clusters. We propose the GPU-specific DVFS power

and performance models, and derive the appropriate GPU

voltage/frequency setting through mathematical optimization.

We also design a heuristic scheduling algorithm to assign

multiple tasks to the cluster, which uses the runtime DVFS

readjustment to make a good balance between the dynamic

energy consumption and static energy consumption. We find

that for the online arriving tasks, the static energy is non-

negligible, that a better balance of the dynamic energy and

the static energy is quite necessary. Our algorithm has better

energy saving than the traditional bin-packing solution.

In this work, we make a number of assumptions in the prob-

lem formulation to simplify the problem, such as homogeneity

of CPUs and GPUs. We leave a more practical formulation and

solution for our future work. It is also interesting to consider

the case that a single task can occupy multiple GPUs.

ACKNOWLEDGEMENT

This work is partially supported by HKBU Grant FRG2/14-

15/059 and Shenzhen Basic Research Grant SCI-2015-SZTIC-

002.

REFERENCES

[1] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in Proceedings of ACM ISCA’07, June 2007.

[2] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating
server idle power,” in Proceedings of ACM ASPLOS’09, March 2009,
pp. 205–216.

[3] J. Clark, “Google cuts its giant electricity bill with DeepMind-
powered AI,” [Online] http://www.bloomberg.com/news/articles/2016-
07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[5] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer, and H. Meuer,
“TOP500,” [Online] http://www.top500.org.

[6] A. Gharaibeh, E. Santos-Neto, L. B. Costa, and M. Ripeanu, “The energy
case for graph processing on hybrid CPU and GPU systems,” in Pro-

ceedings of the 3rd Workshop on Irregular Applications: Architectures

and Algorithms, November 2013, pp. 2:1–2:8.
[7] W.-C. Feng and T. Scogland, “The Green500 list, June, 2016,” [Online]

http://www.green500.org/lists/green201606.
[8] X. Mei, K. Zhao, C. Liu, and X. Chu, “Benchmarking the memory hier-

archy of modern GPUs,” in Proceedings of the IFIP 11th International

Conference on Network and Parallel Computing, 2014, pp. 144–156.

[9] X. Mei and X. Chu, “Dissecting GPU memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed

Systems, vol. 28, no. 1, pp. 72–86, Jan 2017.
[10] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,

“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in Proceedings of

IEEE/ACM MACRO, 2006, pp. 347–358.
[11] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,

“Effects of dynamic voltage and frequency scaling on a K20 GPU,” in
Proceedings of IEEE ICPP’13, 2013, pp. 826–833.

[12] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato,
“Power and performance analysis of GPU-accelerated systems,” in
Proceedings of USENIX HotPower’12, Berkeley, CA, USA, 2012.

[13] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres, “Power
and performance characterization and modeling of GPU-accelerated
systems,” in Proceedings of the IEEE 28th International Parallel and

Distributed Processing Symposium (IPDPS), May 2014, pp. 113–122.
[14] X. Mei, Q. Wang, and X. Chu, “A survey and measurement study of GPU

DVFS on energy conservation,” Digital Communications and Networks,
December 2016.

[15] D. H. Kim, C. Imes, and H. Hoffmann, “Racing and pacing to idle:
Theoretical and empirical analysis of energy optimization heuristics,” in
Proceedings of IEEE 3rd International Conference on Cyber-Physical

Systems, Networks, and Applications (CPSNA), 2015, pp. 78–85.
[16] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource

allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[17] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in Proceedings of the 36th Annual Symposium on Foun-

dations of Computer Science, Oct 1995, pp. 374–382.
[18] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor

real-time systems,” in Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS), April 2003.
[19] S. Albers, F. Müller, and S. Schmelzer, “Speed scaling on parallel

processors,” in Proceedings of the 19th Annual ACM Symposium on

Parallel Algorithms and Architectures, June 2007, pp. 289–298.
[20] K. S. Hong and J. Y.-T. Leung, “Online scheduling of real-time tasks,”

in Proceedings of the 9th Real-Time Systems Symposium. IEEE, 1988,
pp. 244–250.

[21] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,” ACM

Transactions on Algorithms (TALG), vol. 3, no. 4, 2007.
[22] W. Liu, Z. Du, Y. Xiao, D. A. Bader, and C. Xu, “A waterfall model

to achieve energy efficient tasks mapping for large scale GPU clusters,”
in Proceeding of the IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW), May
2011, pp. 82–92.

[23] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin, “Power-
efficient time-sensitive mapping in heterogeneous systems,” in Proceed-

ings of the 21st International Conference on Parallel Architectures and

Compilation Techniques. ACM, 2012, pp. 23–32.
[24] R. Nath and D. Tullsen, “The CRISP performance model for dynamic

voltage and frequency scaling in a GPGPU,” in Proceedings of ACM

MICRO’15, December 2015, pp. 281–293.
[25] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Dynamic and

aggressive scheduling techniques for power-aware real-time systems,” in
Proceedings of the 22nd IEEE Real-Time Systems Symposium, December
2001, pp. 95–105.

[26] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proceedings of ACM Annual International Symposium on

Computer Architecture (ISCA). ACM, 2010, pp. 280–289.
[27] Q. Wang and X. Chu, “GPGPU performance estimation with core and

memory frequency scaling,” arXiv preprint arXiv:1701.05308, 2017.
[28] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,

“GPGPU performance and power estimation using machine learning,”
in IEEE 21st International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2015, pp. 564–576.
[29] X. Mei, L. S. Yung, K. Zhao, and X. Chu, “A measurement study

of GPU DVFS on energy conservation,” in Proceedings of USENIX

HotPower’13, 2013.
[30] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-

ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.


