
Communication-Efficient Distributed Deep Learning
with Merged Gradient Sparsification on GPUs

Shaohuai Shi†, Qiang Wang†, Xiaowen Chu†∗, Bo Li‡, Yang Qin§, Ruihao Liu¶, Xinxiao Zhao¶
†High-Performance Machine Learning Lab, Department of Computer Science, Hong Kong Baptist University
‡Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

§Department of Computer Science and Technology, Harbin Institute of Technology (Shenzhen)
¶MassGrid.com, Shenzhen District Block Technology Co., Ltd.

†{csshshi, qiangwang, chxw}@comp.hkbu.edu.hk, ‡bli@cse.ust.hk, §csyqin@hitsz.edu.cn, ¶{wany,zhxx}@massgrid.com

Abstract—Distributed synchronous stochastic gradient descent
(SGD) algorithms are widely used in large-scale deep learning
applications, while it is known that the communication bottle-
neck limits the scalability of the distributed system. Gradient
sparsification is a promising technique to significantly reduce
the communication traffic, while pipelining can further over-
lap the communications with computations. However, gradient
sparsification introduces extra computation time, and pipelin-
ing requires many layer-wise communications which introduce
significant communication startup overheads. Merging gradients
from neighbor layers could reduce the startup overheads, but
on the other hand it would increase the computation time of
sparsification and the waiting time for the gradient computation.
In this paper, we formulate the trade-off between communications
and computations (including backward computation and gradient
sparsification) as an optimization problem, and derive an optimal
solution to the problem. We further develop the optimal merged
gradient sparsification algorithm with SGD (OMGS-SGD) for
distributed training of deep learning. We conduct extensive
experiments to verify the convergence properties and scaling
performance of OMGS-SGD. Experimental results show that
OMGS-SGD achieves up to 31% end-to-end time efficiency
improvement over the state-of-the-art sparsified SGD while pre-
serving nearly consistent convergence performance with original
SGD without sparsification on a 16-GPU cluster connected with
1Gbps Ethernet.

Index Terms—Distributed Deep Learning; Gradient Commu-
nication; Merged Gradient

I. INTRODUCTION

Deep learning has been successfully applied in many real-
world AI applications [1], while it requires massive compu-
tations to train a satisfactory model. Distributed computing
environments (e.g., GPU clusters or Google TPU pods) are
deployed to accelerate the training process of large deep neural
network (DNN) models using distributed stochastic gradient
descent (SGD) methods [2]. The data-parallel synchronous
SGD algorithm is one of the most widely used optimizers
for distributed training of DNNs because it has the same
convergence performance as the classical SGD. However,
synchronous SGD requires additional data communication
and model synchronization in each iteration, which limit the
scalability of the distributed system and reduce the utilization
of computing resources. E.g., when training ResNet-50 (with

*Corresponding author.

model size 97MB) on a 16-node GPU cluster (Nvidia P102-
100) connected by 1Gbps Ethernet, the computing time is
0.18s (with an overall mini-batch size of 256) while the
communication time is 1.92s. To address the communication
challenge, there exist (1) algorithmic-level approaches that
try to reduce the communication traffic; and (2) system-level
approaches that try to hide some communication overhead by
pipelining communications with computations.

On the algorithmic level, gradient compression techniques
(especially Top-k sparsificaiton) [3][4][5][6] have been re-
cently proposed to significantly reduce the communication
traffic with little impact on the model accuracy, which makes it
possible to train large DNNs on low bandwidth networks (e.g.,
1Gbps Ethernet). Top-k sparsification [3][4] in distributed
SGD (TopK-SGD hereafter) only exchanges a small portion of
gradients (e.g., top 0.1% local gradients) in each iteration and
accumulates other gradients until they become large enough
later. TopK-SGD has been theoretically and empirically ver-
ified that it has convergence guarantee with the same order
of convergence rate as vanilla SGD [4][7][8]. Although the
TopK-SGD algorithm reduces the communication traffic, it
introduces extra computing overheads on the selection of top-
k gradients at each iteration, which brings a new challenge for
many-core processors [9][10]. When the computing overhead
of gradient sparsification is comparable to the gradient com-
putation time and the communication time, it will again limit
the scaling efficiency.

Regarding the system-level optimization, one can increase
the workload of the accelerator by large-batch training
[11][12][2] to reduce the communication-to-computation ratio.
However, large batch size may sacrifice the convergence
performance and its theoretical convergence property remains
as an active open research problem. On the other hand, by
exploiting the layer-wise structure of DNN models, the wait-
free backpropagation (WFBP) algorithm [13][14] can pipeline
the layer-wise communications and computations so that some
communication overheads can be hidden. We call this kind of
pipelined distributed SGD algorithms as P-SGD. In P-SGD,
each node needs to invoke one communication for each layer
(or tensor) and hence many rounds of communications will be
generated, resulting in many times of startup communication
latency [15][16]. To alleviate the impact of the multiple

startup time problem, merged-gradient (or called tensor fusion)
techniques [15][16][17][18] have been proposed recently by
both academia and industry.

To embrace both advantages of gradient compression and
pipelining, we may naively integrate TopK-SGD and pipelin-
ing together [19], which is called LAGS-SGD. Unfortunately,
LAGS-SGD could result in even worse performance as there
still exists the startup problem of many-layer communications.
Merged-gradient methods could alleviate this phenomenon by
merging tensors from multiple layers into a single one, but
the merged layers may bring higher computational overheads
on gradient sparsification and longer waiting time for the
backward computation. In this paper, we call the set of LAGS-
SGD schemes with merged gradient sparsification MGS-SGD.
We aim to explore whether it is possible to derive an optimal
merging scheme that can maximize the overlap between com-
munications and computations with sparsified gradients.

To this end, we first formulate the communication challenge
in LAGS-SGD as an optimization problem which targets at
minimizing the iteration time. Then we propose an opti-
mal solution named Optimal Merged Gradient Sparsification
(OMGS)1, whose time complexity is O(L2) where L is the
number of layers or tensors2. We implement the OMGS
based distributed SGD (OMGS-SGD) algorithm, and conduct
experiments on various DNN models with several data sets
to verify the convergence performance of OMGS-SGD. We
demonstrate the improved scaling efficiency compared to the
existing methods. Experimental results show that our proposed
OMGS-SGD achieves up to 31% improvement compared to
TopK-SGD on the 16-GPU cluster connected with 1GbE. Our
contributions are summarized as follows:

• We formulate an optimization problem for pipelined
TopK-SGD which overlaps communications and compu-
tations. We derive an optimal solution for the optimiza-
tion problem without affecting the training speed.

• We propose the OMGS-SGD training algorithm which
explores the optimal merged gradient sparsification on
SGD. We implement a prototype of OMGS-SGD on
PyTorch and make it publicly available3.

• We conduct extensive experiments on a 16-node GPU
cluster to verify the convergence of OMGS-SGD, and
show that it outperforms existing algorithms in terms of
wall-clock running time.

For the ease of discussion, we list the different distributed
SGD algorithms and compare them in Table I.

The rest of the paper is organized as follows. We present
some preliminaries in Section II, followed by the formulation
of the problem we need to address in Section III. We derive
an optimal solution to the formulated problem and propose
an OMGS-SGD training algorithm in Section IV. We then

1Although we mainly focus on the sparsified SGD algorithms, it is also
applicable to other compression methods such as gradient quantization.

2In current deep learning frameworks (e.g., TensorFlow [20] and PyTorch
[21]), a layer may have two tensors (weight and bias).

3https://github.com/HKBU-HPML/OMGS-SGD.

TABLE I
COMPARISON OF DIFFERENT DISTRIBUTED SGD ALGORITHMS.

Algorithm Pipeline Sparsification Merged Gr. Opt. M.
P-SGD [13] 3 7 7 7
MG-WFBP [16] 3 7 3 3
TopK-SGD [4] 7 3 3 7
LAGS-SGD [19] 3 3 7 7
MGS-SGD 3 3 3 7
OMGS-SGD 3 3 3 3

Note: “Merged Gr.” indicates whether gradients are merged or not, and “Opt.
M.” indicates whether it uses an optimal merging strategy.

evaluate the performance of OMGS-SGD with extensive ex-
periments in Section V. Section VI introduces related work,
and we conclude the paper in Section VII.

II. PRELIMINARIES

Forward B
L

B
L-1

B
1...

Comm.
L

Comm.
L-1 ... Comm.

1

...

Hidden overhead Time

(a) P-SGD

Forward Backward Communication Update Sparsification

Forward

U
pd

at
e

B
L

B
L-1

B
1... ...Comm.

L,L-1,…,1Sp
ar

.

Time

Forward

(b) TopK-SGD

U
pd

at
e

Forward

B
L

B
L-1

B
1... ...

Comm.
L Time

Forward

(c) LAGS-SGD

...

Comm.
1…

S.
 L

S.
 1

S.
 L-

1

U
pd

at
e

Forward

Comm.
L-1

B
L

B
L-1

B
1... ...

Comm.
L,L-1 Time

Forward

(d) MGS-SGD or OMGS-SGD

Comm.
1

S.
 1

S.
 L,

L-
1

U
pd

at
e

Forward...

...

Fig. 1. Comparison of four distributed SGD algorithms.

In this section, we introduce some preliminaries which help
us formulate the problem in Section III. For ease of presen-
tation, we list some frequently used notations throughout this
paper in Table II.

A. Mini-batch SGD

We briefly introduce the process of mini-batch SGD on a
single worker (e.g., a GPU), which is an iterative algorithm
that aims to train an L-layer model with parameters W whose
dimension is d. Each iteration consists of several steps. Let
us consider the ith iteration. First, it loads a mini-batch of
data Di, and the data is further transferred to GPU memory.
Second, it launches a sequence of GPU kernels to do the feed-
forward computation from layer 1 to layer L to derive the
loss value L(Wi, Di). Third, it launches another sequence of
GPU kernels to calculate the gradients∇L(Wi, Di) from layer

TABLE II
FREQUENTLY USED NOTATIONS

Name Description
P The number of workers (GPUs) in the cluster.
α Startup time of a single operation of gradients aggregation.
β Transmission and aggregation time per gradient.
d The number of parameters of a deep model.
d(l) The number of parameters in the learnable layer l.
L The number of learnable layers (or tensors) of a deep model.
titer Time of an iteration.
tf Time of the forward pass in each iteration.
tb Time of the backward pass in each iteration.
tu Time of the model update in each iteration.
t
(l)
b Time of the gradient calculation of layer l in each iteration.
τ
(l)
b The timestamp when layer l begins to calculate gradients.
t
(l)
s Time of the gradient sparsification of layer l in each iteration.
τ
(l)
s The timestamp when layer l begins to sparsify gradients.
tc Time of gradient aggregation in each iteration.
t
(l)
c Time of gradient aggregation of layer l in each iteration.
τ
(l)
c The timestamp when layer l begins to exchange gradients.
tno
c The non-overlapped communication cost in each iteration.

L back to layer 1, which is referred to as backpropagation.
Finally it updates the model parameters by

Wi+1 =Wi − η · ∇L(Wi, Di). (1)

In general, the most time-consuming parts are the second (the
forward pass) and third (the backward pass) steps, whose time
are represented as tf and tb respectively. We ignore the data
loading and transferring time at the first step since they can
be easily parallelized with the previous iteration. We also
ignore the update time since it is very small compared to the
forward and backward computations [22][23]. The backward
pass can only be started after the forward pass, so the gradient
calculation of the last layer L begins after the forward pass.
The backward pass time can be represented by summing up
the layer-wise computations, i.e., tb =

∑L
l=1 t

(l)
b .

If we denote the beginning time of an iteration by 0, then
the layer-wise beginning timestamp of backpropagation can be
formulated as

τ lb =

{
tf l = L

τ
(l+1)
b + t

(l+1)
b 1 ≤ l < L

. (2)

It is also obvious that the iteration time of SGD on a single
worker can be estimated by

tSGD
iter = tf +

L∑
l=1

t
(l)
b . (3)

B. Pipelining on distributed SGD

Distributed SGD with data-parallelism exploits multiple
workers to perform forward and backward computations in
parallel with their local data. At the end of each iteration, it
aggregates the gradients from all workers and then updates
the model by the average gradients. Thus, distributed SGD
introduces the communication overhead on the gradient ag-
gregation and model distribution. On the traditional distributed

SGD without gradient sparsification, pipelining between com-
munications and computations is a common practice to hide
some communication overheads [13][14][16][2] by exploiting
the layer-wise structure of DNN models, which we refer to as
P-SGD. The pipeline process between communications and
backward computations is illustrated in Fig. 1(a). This is
possible because the gradient computation of layer i−1 has no
dependency on layer i’s communication, hence the communi-
cation of layer i and the gradient computation of layer i − 1
can be parallelized. Note that some layers’ communications
can be hidden by the gradient computations of their previous
layers. We denote the total communication time cost as tc.

C. TopK-SGD

Top-k sparsification SGD (TopK-SGD) [3][4] is a promising
algorithm for reducing the communication traffic in distributed
training. In TopK-SGD, each worker sparsifies its local gra-
dients (e.g., it only selects the top-k gradients and k can be
two to three orders smaller than the model dimension), whose
training process is shown in Fig. 1(b). Notice that TopK-
SGD introduces an extra computing overhead on gradient
sparsification since every worker needs to select the top-k
local gradients, which requires some additional computing
time (denoted by ts). Moreover, it is not possible to overlap
communications and computations in the original TopK-SGD
because the top-k gradients are selected from the whole set of
gradients, i.e., the gradient communication can only happen
after all gradients have been calculated. In TopK-SGD, the
iteration time can be estimated by

tTopKSGD
iter = tf +

L∑
l=1

t
(l)
b + ts + tc. (4)

D. LAGS-SGD: Pipelining on TopK-SGD

In order to enable the pipelining of computations and
communications on TopK-SGD, the layer-wise sparsification
selects the top-k gradients from each layer rather than the
global top-k gradients [19]. This mechanism is referred to
as LAGS-SGD, as illustrated in Fig. 1(c). The convergence
properties of LAGS-SGD are analyzed in [19]. To overlap
the communications with computations, one should sparsify
the gradients of a layer immediately after they have been
calculated so that the sparsified gradients can be ready for
communication. Formally, we have the following equations
to estimate the iteration time for LAGS-SGD, in which tnoc
denotes the non-overlapped communication cost in each iter-
ation.

tLAGS
iter = tf +

L∑
l=1

t
(l)
b +

L∑
l=1

t(l)s + tnoc , (5)

τ
(l)
b =

{
tf l = L

τ
(l+1)
s + t

(l+1)
s 1 ≤ l < L

, (6)

τ (l)s = τ
(l)
b + t

(l)
b , (7)

τ (l)c =

{
τ
(l)
s + t

(l)
s l = L

max{τ (l)s + t
(l)
s , τ

(l+1)
c + t

(l+1)
c } 1 ≤ l < L

, (8)

and
tnoc = τ (1)c + t(1)c − τ (1)s + t(1)s . (9)

E. Top-k Selection on GPUs

The number of parameters of modern DNN models range
from millions to billions. Top-k sparsification requires an
efficient Top-k selection algorithm [4]. However, the Top-k
selection algorithm [9] contains many irregular data access
which are not friendly to the GPU architecture, hence the
compression overhead is non-negligible. To model the time
cost of the gradient sparsification with the Top-k selection
algorithm, we build a relationship between the elapsed time
ts(d, ρd) and the dimension d for selecting k = ρ×d elements
(0 < ρ ≤ 1) from a d-dimension tensor as

ts(d, k) = γρd log d, (10)

where γ is an estimated parameter for a particular GPU.

F. Communication Model

For the sparsified gradient aggregation, the gradients should
be communicated across multiple workers. The local Top-k
selections would generate irregular indices of selected gradi-
ents so that the commonly used AllReduce collective [2][16]
cannot be applied for TopK-SGD or LAGS-SGD. We adopt
the recently proposed AllGather method [24] for the sparse
gradient aggregation. The efficient AllGather collective utilizes
the doubling recursive algorithm [24][25], whose running time
can be modelled as

tc(d) = α+ β × d, (11)

where α is the overhead that is not related to the message
size, β is the transmission time per byte, and d is the message
size in bytes. The time model of Eq. (11) indicates that
gradient aggregation consists of the startup time and the
transmission time, which is a commonly used communication
model [26][27][16].

III. PROBLEM FORMULATION

It is obvious that transmitting two messages (with sizes of d1
and d2) separately is more expensive than transmitting a single
message with a size of d1+d2 according to Eq. (11). It is easy
to see that if one merges all layers’ gradients into a single one
(i.e., the single-layer communication [15]), the communication
cost will be the lowest. However, the single-layer communi-
cation requires all gradients be calculated before transmitting,
and hence misses the pipelining opportunity. Therefore, our
target is to find the optimal overlapping between commu-
nications and computations during the training process by
merging multiple tensors into one when possible so that the
network bandwidth can be better utilized. Unlike the problem
formulated in [16] whose computation time of backpropaga-
tion keeps unchanged throughout the whole training process,
the overlapping problem with sparsified gradients introduces
extra costs due to the computation of gradient sparsification.

Furthermore, the compression overhead according to Eq. (10)
would be enlarged on merged gradients, that is

ts(d1, ρd1) + ts(d2, ρd2) < ts(d1 + d2, ρd1 + ρd2). (12)

For a given deep model that needs to be trained with LAGS-
SGD on a specific P -GPU cluster, we want to determine which
layers should be merged together. The gradients of the merged
layers are further sparsified and aggregated. Our purpose is to
minimize the iteration time. Before formulating the problem,
we introduce the concept of merged-layer.

Definition 1. Merged-layer: A layer l is called a merged-layer
if at the timestamp of τ (l)s , instead of compressing the gradients
of the layer, merging its gradients into its previous layer l−1 to
be compressed together. The operator ⊕ defines the gradients
merging between two consecutive layers, say (l)⊕ (l − 1).

If layer l is a merged-layer, then layer l and l− 1 have the
following properties:

• l is larger than 1, which indicates that the first layer
cannot be a merged-layer because there is no previous
layer to be merged.

• Layer l has no compression and communication opera-
tions, i.e.,

t(l)s = t(l)c = 0. (13)

• The gradient size of layer l − 1 is enlarged by d(l), i.e.,

d(l−1) = d(l−1) + d(l). (14)

• The gradient calculation of layer l − 1 can immediately
begin after the gradient calculation of layer l finishes, i.e.,

τ
(l−1)
b = τ

(l)
b + t

(l)
b . (15)

Note that in our analysis, a layer 1 < l ≤ L is either a
merged-layer or a normal layer. We use lm to denote that l
is a merged-layer, and ln for a normal layer. Therefore, there
are 2L−1 combinations for 1 < l ≤ L and l ∈ {lm, ln}. Let
M denote the combination set, i.e.,

M = {[L,L− 1, ..., 1]|1 < l ≤ L and l ∈ {lm, ln}} . (16)

For the LAGS-SGD algorithm that allows the merged-layers
to exist, which is called MGS-SGD shown in Fig. 1(d), the
iteration time can be formulated by

titer = τ (1)c + t(1)c , (17)

where τ (1)c is the time moment that layer 1 begins its commu-
nication, and t(1)c is the time duration of layer 1’s communi-
cation which is the last operation at each iteration. Since the
beginning time of layer 1’s communication is determined by
layer 2’s communication and layer 1’s computations, we can
formulate the problem as follows.

Given a deep model with L layers trained with MGS-SGD
across a P -node cluster, we want to find a combination m ∈
M such that the iteration time titer is minimal. That is

minimize: max{τ (1)s + t(1)s , τ (2)c + t(2)c }+ t(1)c , (18)

s.t. m ∈M. (19)

IV. SOLUTION

A. Theoretical Analysis

Due to the sequential layer-wise structure of backpropaga-
tion, we can determine the gain from a merged-layer, which
is not affected by other layers. To find the optimal solution,
the key idea is to determine whether merging a layer could
bring performance gain or not. If yes, we make the layer a
merged-layer; otherwise, we keep the layer as a normal one.

According to Eqs. (5)-(9), for any layer l, 1 < l ≤ L, the
completion time of its previous layer l − 1 is formulated as

µ(l−1)
c =τ (l−1)

c + t(l−1)
c

=max{τ (l−1)
s + t(l−1)

s , τ (l)c + t(l)c }+ t(l−1)
c

=max{τ (l−1)
b + t

(l−1)
b + γρd(l−1) log d(l−1)

, τ (l)c + α+ βd(l)}+ α+ βd(l−1)

=max{τ (l)s + t(l)s + t
(l−1)
b + γρd(l−1) log d(l−1)

, τ (l)c + α+ βd(l)}+ α+ βd(l−1)

=max{τ (l)b + t
(l)
b + t

(l−1)
b +

γρ(d(l) log d(l) + d(l−1) log d(l−1)), τ (l)c + α+ βd(l)}
+ α+ βd(l−1).

We would like to check whether µ(l−1)
c can be shorten by

merging layer l to layer l − 1. In other words, if making l

be a merged-layer would achieve smaller µ(l−1)
c , then layer l

becomes a merged-layer; otherwise l is a normal layer. Assume
that l is a merged-layer, then we use properties of Eqs. (13)-
(15) to derive the completion time of layer l − 1, which is

µ̃(l−1)
c =max{τ (l−1)

b + t
(l−1)
b + γρd(l−1) log d(l−1),

τ (l)c + α+ βd(l)}+ α+ βd(l−1)

=max{τ (l)b + t
(l)
b + t

(l−1)
b

+ γρ(d(l−1) + d(l)) log(d(l−1) + d(l)), τ (l)c }
+ α+ β(d(l−1) + d(l)).

Let tgain = µ
(l−1)
c − µ̃(l−1)

c denote the saving time by making
layer l be a merged-layer. We have

tgain =max{τ (l)b + t
(l)
b + t

(l−1)
b +

γρ(d(l) log d(l) + d(l−1) log d(l−1)), τ (l)c + α+ βd(l)}
+ α+ βd(l−1)−
−max{τ (l)b + t

(l)
b + t

(l−1)
b

+ γρ(d(l−1) + d(l)) log(d(l−1) + d(l)), τ (l)c }
− α− β(d(l−1) + d(l))

=max{τ (l)b + t
(l)
b + t

(l−1)
b +

γρ(d(l) log d(l) + d(l−1) log d(l−1)), τ (l)c + α+ βd(l)}
−max{τ (l)b + t

(l)
b + t

(l−1)
b

+ γρ(d(l−1) + d(l)) log(d(l−1) + d(l)), τ (l)c }
− βd(l).

From the above equation, we need to eliminate the two maxi-
mum operators for further derivation. For ease of presentation,
we use u(l) = τ

(l)
b + t

(l)
b + t

(l−1)
b . Then we have

tgain =max{u(l) + γρ(d(l) log d(l) + d(l−1) log d(l−1))

, τ (l)c + α+ βd(l)}−
max{u(l) + γρ(d(l−1) + d(l)) log(d(l−1) + d(l)), τ (l)c }
− βd(l).

To eliminate the two maximum operators in the above tgain,
we need to discuss all 4 cases (a maximum operator has 2
cases). Due to the fact that

γρ(d(l) log d(l) + d(l−1) log d(l−1))

< γρ(d(l−1) + d(l)) log(d(l−1) + d(l)), (20)

we only need to discuss the other 3 cases:
C1.

Q1 u(l)+γρ(d(l) log d(l)+d(l−1) log d(l−1)) > τ
(l)
c +α+βd(l)

and
Q2 u(l) + γρ(d(l−1) + d(l)) log(d(l−1) + d(l)) > τ

(l)
c .

It yields

tgain = γρd(l) log d(l) + d(l−1) log d(l−1)

− (d(l−1) + d(l)) log(d(l−1) + d(l))− βd(l). (21)

It is obvious that tgain < 0; so in such case, making layer l a
merged-layer cannot bring time saving.

C2.
Q3 u(l)+γρ(d(l) log d(l)+d(l−1) log d(l−1)) < τ

(l)
c +α+βd(l)

and
Q4 u(l) + γρ(d(l−1) + d(l)) log(d(l−1) + d(l)) < τ

(l)
c .

It yields
tgain = α, (22)

which is obviously larger than zero. Therefore, we can con-
clude that making the layer a merged-layer can save execution
time under the conditions of C2.

C3.
Q3 u(l)+γρ(d(l) log d(l)+d(l−1) log d(l−1)) < τ

(l)
c +α+βd(l)

and
¬Q4 u(l) + γρ(d(l−1) + d(l)) log(d(l−1) + d(l)) > τ

(l)
c .

It yields

tgain = τ (l)c + α− u(l) − γρ(d(l−1) + d(l)) log(d(l−1) + d(l)).

Therefore, only if
Q5 τ

(l)
c + α > u(l) + γρ(d(l−1) + d(l)) log(d(l−1) + d(l)),

then making layer l a merged-layer can save execution time.
From the above analysis, we can see that only under par-

ticular conditions, making layer l a merged-layer can shorten
the iteration time. More formally,

(Q3 ∧Q4) ∨ (Q3 ∧ ¬Q4 ∧Q5) =⇒ l = lm, (23)

which is equivalent to

Q3 ∧Q5 =⇒ l = lm. (24)

The statement of (24) indicates that if a layer satisfies Q3
and Q5, then the layer should be a merged-layer to bring the
performance gain.

Theorem 1. Given a DNN model with L layers to be trained
with MGS-SGD on a P -node cluster. If the computing perfor-
mance of sparsification satisfies (10) and the communication
performance satisfies (11), then we can make any layer l
(1 ≤ l ≤ L) to be a merged-layer or a normal layer according
to the following equation to achieve the minimal iteration time.

l =

{
lm, 1 < l ≤ L and Q3 ∧Q5 is true
ln, otherwise

. (25)

Proof. Given a specific DNN model and the communication
speed of a cluster, we use t∗iter to denote the iteration time
when assigning layers 1 ≤ l ≤ L according to the above
equation. It is obvious that by changing any layer l from the
merged-layer to a normal layer (tgain = µ̃(l) − µ(l) < 0), or
changing any layer l from the normal layer to a merged-layer
(tgain = µ(l)− µ̃(l) < 0), it would not bring shorter time than
t∗iter, which concludes the optimality of t∗iter.

B. Algorithm

According to Theorem 1, we derive the algorithm to find
all merged-layers for a given DNN model. The pseudo-code
of the algorithm is shown in Algorithm 1.

In Algorithm 1, there are several procedures including “Top-
KPerfModel” (TKPM, Lines 15-16), “AllGatherPerfModel”
(AGPM, Lines 17-18), “CalculateCommStart” (CCMS, Lines
19-26), “CalculateCompStart” (CCPS, Lines 27-36) and
“Merge” (Lines 37-41). The first two are the performance
models of the Top-k selection operation on GPUs and the
communication model of AllGather for gradients aggregation
according to Eq. (10) and (11) respectively. “CalculateComm-
Start” and “CalculateCompStart” are two functions that calcu-
late the layer-wise beginning timestamps of the communica-
tions and computations respectively. ‘Merge” is a function that
makes a layer be a merged-layer and applies Eqs. (13)-(15).
The algorithm first initializes all layers as normal layers (Line
1), and then (Lines 2-3) calculates the start timestamps and
estimates the compression time and communication time using
“CalculateCommStart” and “CalculateCompStart” procedures.
After the prerequisites are computed, the algorithm searches
the layers from the last one to the second one to check whether
it satisfies Q3 and Q5 (Lines 4-7). If a layer l satisfies Q3
and Q5, then a merge operation is executed to update the
information and the pre-defined normal layer is changed to a
merged-layer (Lines 8-13).

Algorithm 1 has a time complexity of O(L2), and is only
executed once before the training process begins. In Line 4,
the algorithm needs to scan from layer L to 2 and check if a
layer can be assigned as a merged-layer, which requires O(L)
steps. For each check, if the layer can be a merged-layer,
then it requires to calculate the start time of computation and
communication, which has a complexity of O(L). Therefore,
the total time complexity of the algorithm is O(L2).

Algorithm 1 FindMergedLayers
Input: γ, α, β, ρ, L, tb = [1...L], d = [d(1), d(2), ..., d(L)].
Output: m

1: Initialize m[1...L] = [1n, 2n, ..., Ln];
2: τb, τs, ts = CCPS(tb,d, L, 0);
3: τc, tc = CCMS(ts, τs,d, L);
4: for l = L→ 2 do
5: µ = τb[l] + tb[l] + tb[l − 1];
6: Q3 = µ + TKPM(d[l]) + TKPM(d[l − 1]) < τc[l] +

AGPM(d[l]);
7: Q5 = τc[l] + α > µ+ TKPM(d[l] + d[l − 1]);
8: if Q3 and Q5 then
9: Merge(tb, ts, tc, d, l);

10: τb2, τs2, ts2 = CCPS(tb[1...l],d[1...l], l, τb[l]+tb[l]);
11: τb[1...l] = τb2; τs[1...l] = τs2;
12: τc, tc = CCMS(ts, τs,d, L);
13: m[l] = lm;
14: Return m;
15: procedure TOPKPERFMODEL(d) //TKPM
16: Return γ ∗ ρ ∗ d ∗ log d;
17: procedure ALLGATHERPERFMODEL(d) //AGPM
18: Return α+ β ∗ d;
19: procedure CALCULATECOMMSTART(ts, τs,d, L) //CCMS
20: Initialize τc[1...L], tc[1...L];
21: for l = L→ 1 do
22: tc[l] = AGPM(d[l]);
23: τc[L] = τs[L] + ts[L];
24: for l = L− 1→ 1 do
25: τc[l] = max{τc[l + 1] + tc[l + 1], τs[l] + ts[l]};
26: Return τc, tc;
27: procedure CALCULATECOMPSTART(tb,d, L, τ) //CCPS
28: Initialize τb[1...L], τs[1...L], ts[1...L];
29: for l = L→ 1 do
30: ts[l] = TKPM(d[l]);
31: τb[L] = τ ;
32: τs[L] = τb[L] + tb[l];
33: for l = L− 1→ 1 do
34: τb[l] = τs[l + 1] + ts[l + 1];
35: τs[l] = τb[l] + tb[l];
36: Return τb, τs, ts;
37: procedure MERGE(tb, ts, tc, d, l)
38: tb[l − 1] = tb[l − 1] + tb[l]; tb[l] = 0;
39: d[l − 1] = d[l − 1] + d[l]; d[l] = 0;
40: tc[l − 1] = AGPM(d[l − 1]); tc[l] = 0;
41: ts[l − 1] = TKPM(d[l − 1]); ts[l] = 0;

Based on the optimal merging strategy, we propose the
optimal merged gradient sparsification SGD (OMGS-SGD)
training algorithm in Algorithm 2. Compared to MGS-SGD,
OMGS-SGD checks if a layer l is defined as a merged-layer
(Line 14 and Line 24). If yes, there will be no compression or
communication for layer l and its gradients will be buffered
(Line 18 and Line 28); otherwise, it invokes the compression
and communication using buffered gradients (Lines 15-16 and
Lines 25-26).

V. EVALUATION

In this section, we first demonstrate the performance models
of Top-k selection and the AllGather communication on the
real-world environment, and then present the convergence

Algorithm 2 OMGS-SGD at worker g
Input: D = [{X1, y1}, ..., {Xn, yn}], net

1: Initialize shared and synchronized queue Q;
2: Get m from Algorithm 1;
3: ASYNCCOMMUNICATION(Q,m);
4: while not stop do
5: Sample a mini-batch of data from D;
6: ASYNCCOMPUTATION(data, net,Q,m);
7: WaitForLastCommunicationFinished();
8: net.W = net.W − η · ∇net.W ,
9: procedure ASYNCCOMPUTATION(data, net,Q,m)

10: Initialize gb; //gradient buffer
11: ForwardComputation(data, net.W);
12: for l = L→ 1 do
13: BackwardComputation(l);
14: if m[l] is ln then
15: CompressComputation(gb);
16: Clear gb;
17: else
18: gb.push(l)

19: Q.push(l);
20: procedure ASYNCCOMMUNICATION(Q,m)
21: Initialize gb; //gradient buffer
22: while isRunning do
23: l = Q.pop();
24: if m[l] is ln then
25: AllGather(gb);
26: Clear gb;
27: else
28: gb.push(l);
29: if l == 1 then
30: NotifyLastCommunicationFinished();

performance of our proposed OMGS-SGD compared to the
vanilla SGD without sparsification. Finally, we demonstrate
and discuss the time performance of OMGS-SGD compared
with other existing methods.

A. Experimental Settings

Cluster Configuration: We conduct experiments on a 16-
node cluster connected with 1GbE, and each node installs an
Nvidia P102-100 GPU. The hardware configuration of each
node is shown in Table III. All GPU machines are installed
with the Nvidia GPU driver at version 390.48 and CUDA-9.1.
The communication libraries are OpenMPI-3.1.14 and NCCL-
2.1.55. We use the highly optimized distributed training library
Horovod6 [17] at version 1.4.1. The deep learning framework
is PyTorch7 at version 0.4.1 with cuDNN-7.1.

DNN Models: We choose various DNN models including
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) on different data sets. Specifically, the
chosen DNN models are VGG-16 [28] on Cifar-10 [29]
that contains 50, 000 training samples and 10, 000 validation
samples, ResNet-50 [30] and Inception-v4 [31] on ImageNet
[32] that contains about 1.2 million training examples and

4https://www.open-mpi.org/
5https://developer.nvidia.com/nccl
6https://github.com/uber/horovod
7https://pytorch.org/

TABLE III
THE HARDWARE/SOFTWARE CONFIGURATION.

Name Model
CPU Intel(R) Celeron(R) CPU N3350 @ 1.10GHz
GPU Nvidia P102-100 (@1.8GHz and 5GB Memory)
Memory 4GB DDR3 with a 16GB swap file
Disk 256GB SSD
Network 1 Gbps Ethernet (1GbE)
OS Ubuntu-16.04

50, 000 validation samples, and a 2-layer LSTM language
model (LSTM-PTB) on the PTB [33] data set which contains
923, 000 training samples and 73, 000 validation samples. The
hyper-parameters for training are shown in Table IV.

TABLE IV
HYPER-PARAMETERS FOR TRAINING DEEP MODELS.

Model Data Set # Epochs Batch Size ρ η

VGG-16 Cifar-10 140 128 0.001 0.1
ResNet-50 ImageNet 90 16 0.001 0.01
InceptionV4 ImageNet 90 32 0.001 0.01
LSTM-PTB PTB 40 100 0.005 1.0

Note: All models are trained with FP32 precision. Batch size is for each
worker. ρ is the density and η is the learning rate.

B. Performance Models

0.0 0.5 1.0 1.5 2.0 2.5 3.0
of parameters 1e8

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

To
p-

k
se

le
ct

io
n

tim
e

[s
]

Predicted (γ=2.188970e-10)
Measured

(a) Top-k selection on a GPU

0.0 0.2 0.4 0.6 0.8 1.0
Size of parameters [bytes] 1e6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Al
lG

at
he

r t
im

e
[s

]

Measured
Predicted (=1.1e-02, =1.7e-08)

(b) AllGather on a 16-node cluster

Fig. 2. Performance models.

From Eq. (10), it can be seen that the time cost of Top-k
selection depends on γ, ρ and d. ρ and d are the input pa-
rameters for a given tensor, while γ is an estimated parameter
for a particular GPU. To estimate γ, we measure the time cost
on various sizes of tensors. We set ρ = 0.001, which is a
commonly used density [4], and the number of parameters is
in the range of [1K, 1M]. The modeling result of P102-100
GPU is shown in Fig. 2(a), and the estimated γ = 2.2−10.

From Eq. (11), it can be seen that the time cost of AllGather
aggregation is related to α, β and the tensor size d. α and β are
two environment-aware parameters which could be affected
by the number of workers, the bandwidth and latency of the
network. Under our configured experimental environments (16
nodes connected with 1GbE), we measure the time cost of
AllGather with a range of sizes [1K, 1M] using the benchmark
tool nccl-tests8 which includes both the PCIe and Ethernet
transmissions. The modeling results are shown in Fig. 2(b),
which also indicates the estimated α and β.

8https://github.com/NVIDIA/nccl-tests

0 25 50 75 100 125
of epochs

0.4

0.6

0.8
va

l a
cc

ur
ac

y
VGG-16

0 20 40 60 80
of epochs

0.0

0.2

0.4

0.6

va
l a

cc
ur

ac
y

ResNet-50

0 10 20 30 40
of epochs

200

400

600

800

pe
rp

le
xi

ty

LSTM-PTB
P-SGD OMGS-SGD

Fig. 3. Comparison of validation performance on three deep models.

C. Convergence Performance

Before demonstrating the wall-clock training time per-
formance, we first present the convergence performance of
OMGS-SGD compared to P-SGD. We use ρ = 0.001 and
ρ = 0.005 for CNNs and LSTM respectively. We measure
the top-1 validation accuracy (higher is better) for image
classification problems (on Cifar-10 and ImageNet) and the
perplexity (lower is better) for the language model (on the
PTB data set) with respect to the number of epochs running
on a 16-GPU cluster. The convergence comparison is shown
in Fig. 3 on three deep models trained on three data sets. It
can be seen that our proposed OMGS-SGD algorithm achieves
nearly consistent validation accuracy with the dense version.

D. Iteration Time

We evaluate the iteration time of the three training algo-
rithms9 (MGS-SGD with a hand-crafted threshold of 8, 19210,
TopK-SGD and our proposed OMGS-SGD) on a 16-node GPU
cluster connected with a 1GbE switch.

The number of final merged layers is different on different
neural networks due to the diverse number of layers and
various GPU workloads. The number of layers after merging
on different deep models and algorithms are shown in Table
V. Compared to the threshold merged version of layer-wise
algorithm (MGS-SGD), our OMGS-SGD finds the optimal
merging solution to the problem under different environments
of the clusters adaptively.

The experimental results of iteration time are shown in Table
VI. It can been that OMGS-SGD always achieves the best
performance among the three compared algorithms.

On the VGG-16 model, OMGS-SGD only achieves slight
improvement over TopK-SGD. The main reason is that the
computing time of VGG-16 is small due to the small input
resolution (3 × 28 × 28), while the number of parameters is
large. Therefore, OMGS-SGD prefers to merge layers because

9P-SGD is excluded as it runs very slow with dense gradients on 1GbE.
10Since current deep learning frameworks use tensors to represent param-

eters, it could have two tensors (bias and weight) for a layer, while the size of
the bias tensor is much smaller than the weight tensor. Hence, the hand-crafted
threshold is necessary to merge small tensors, otherwise the time performance
will be extremely bad. So we do not show the time performance of LAGS-
SGD; instead we use a threshold of 8, 192 for MGS-SGD.

TABLE V
THE NUMBER OF MERGED LAYERS.

Model # of Layers for Communication
TopK-SGD LAGS-SGD MGS-SGD OMGS-S.

VGG-16 1 54 13 2
ResNet-50 1 161 53 2
Inception-v4 1 449 150 7
LSTM-PTB 1 11 9 6

Note: MGS-SGD uses 8, 192 as a threshold to merge layers.

TABLE VI
COMPARISON OF THE AVERAGE ITERATION WALL-CLOCK TIME (IN

SECONDS) OF 1,000 RUNNING ITERATIONS.

Model TopK-SGD MGS-S. OMGS-S. s1 s2
VGG-16 0.336 0.523 0.331 1.015 1.578
ResNet-50 0.666 1.217 0.507 1.313 2.4
Inception-v4 1.602 3.389 1.247 1.284 2.717
LSTM-PTB 1.019 0.956 0.916 1.113 1.042

Note: “s1” and “s2” represent the speedup of OMGS-SGD over TopK-SGD
and MGS-SGD, respectively. MGS-SGD uses 8, 192 as a threshold to merge
layers.

there is little pipelining opportunity. Compared to MGS-
SGD, OMGS-SGD achieves 57% improvement. On very deep
models with the ImageNet data set, OMGS-SGD is about 1.3×
and 2.4× faster than TopK-SGD and MGS-SGD respectively.
In particular, OMGS-SGD is up to 31% faster than TopK-
SGD on the ResNet-50 model. Regarding the LSTM model,
OMGS-SGD achieves 11% improvement over TopK-SGD.

E. Time Breakdown

To understand the details of the improvement achieved by
OMGS-SGD, we breakdown the time of one iteration into
forward, backward, sparsification and non-overlapped commu-
nications. The time breakdown is shown in Fig. 4. As we
can see that on VGG-16, the non-overlapped communication
overhead of OMGS-SGD is very close to TopK-SGD so that
it has only very small improvement. On the very deep models
(ResNet-50 and Inception-v4), the non-overlapped communi-
cation time is shorten by about 2× using OMGS-SGD. On
the LSTM model, which is also relatively shallow, OMGS-
SGD achieves about 18% shorter communication time than
TopK-SGD. Overall, the computation time of sparsification
has also slight improvements. However, the Top-k selection

VGG-16 ResNet-50 Inception-v4 LSTM-PTB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Ti

m
e

[s
]

TopK-S.

TopK-S.

TopK-S.

TopK-S.

OMGS-S.

OMGS-S.

OMGS-S.

OMGS-S.

Forward
Backward
Sparsification
Communication

Fig. 4. Time breakdowns on four models with TopK-SGD and OMGS-SGD.

algorithm on the GPU is not efficient enough as it could
have larger cost than forward and backward computations.
Some efficient gradient sparsification methods are imperative
to further increase the training efficiency. We will leave this
as our future work.

VI. RELATED WORK

There are several kinds of techniques to reduce the com-
munication overhead in synchronous distributed SGD on deep
learning applications. We classify them into three categories.

Efficient Collectives: The first one is from the HPC re-
search community that provides the efficient communication
algorithms that try to maximally utilize the network band-
width, for example, ring-based AllReduce [34], optimized
communication collectives [35][36][14][24][37] and produc-
tive communication libraries NCCL and Gloo11. The key
ideas of the efficient communication algorithms are mainly
exploiting the structure of messages (e.g., message size) and
the network topology (e.g., Torus topology) to better utilize
the network bandwidth and reduce the negative impact from
the network latency.

Traffic Reduction: The second one is the algorithmic level
approaches that try to reduce the communication traffic, e.g.,
gradient quantization [38][6][5][39], gradient sparsification
[40][3][41][4][42][43] and delayed communication [44][45].
The gradient quantization techniques exploit the low precision
representation (e.g., 16-bit floating points) to transmit the
numbers, which could result in a maximum of 32× traffic
reduction when using 1-bit representation. Gradient sparsifica-
tion is an orthogonal approach to quantization, and its key idea
is transmitting the “significant” gradients (e.g., Top-k, where k
could be 0.1% of all gradients) on each communication round.

Communication Scheduling: The third one is the com-
munication scheduling under the same communication traf-
fic. One straightforward method is to increase the workload
of computation, which is also named large-batch training
[2][15][46][18], such that the communication-to-computation

11https://github.com/facebookincubator/gloo

ratio is as low as possible. Due to the layer-wise structure
of deep models and the backpropagation algorithm, the com-
munication and computation can be pipelined [14][13][47] to
further reduce the impact of communications. With increas-
ing number of workers, the startup time of communications
could dominate the whole communication time, especially
for small tensors. Hence merged gradients or tensor fusion
techniques [17][16] have been recently applied to reduce
the communication time. In [16], the authors proposed an
optimal merging solution for the WFBP algorithm on the dense
gradients, which is the most similar to our work. However,
due to the extra overheads from gradient compression, the
existing merging solution cannot be applied on LAGS-SGD.
In LAGS-SGD, besides the backpropagation computations and
gradient communications, it has extra computing overheads
on gradient sparsification. As a result, one should consider
the three variables together to determine whether the merging
could bring performance gain. To this end, this paper explores
the trade-off among three variables (backpropagation compu-
tations, sparsification computations and communications) as
an optimization problem and propose an optimal solution.

VII. CONCLUSION AND FUTURE WORK

In this paper, we first showed that the current Top-k gradient
sparsification techniques and pipelining between computations
and communications are sub-optimal in terms of time perfor-
mance in distributed synchronous SGD algorithms. Even if the
gradients are significantly sparsified to reduce the communi-
cation traffic, some small messages are required to be merged
together before transmitting across the network to reduce the
overall communication time. The merging operation, however,
would increase the computation time of gradient sparsification
and the waiting time for the computation. We formulated
the gradient merging problem to trade off communications
and computations (including gradient sparsification) as an
optimization problem, and derived an efficient optimal solution
with theoretical guarantees. According to the solution, which
can be computed with a small overhead before training, we
proposed the OMGS-SGD algorithm for distributed training of
deep learning. We conducted experiments on a 16-node cluster
connected with 1GbE links, where each node is equipped
with an Nvidia GPU. Experimental results showed that our
proposed OMGS-SGD outperforms existing Top-k based dis-
tributed SGD algorithms with little impact on the model
accuracy.

For the future work, it is worthy to explore efficient gradient
sparsification algorithms to distributed deep learning such that
one can further improve the training efficiency.

ACKNOWLEDGEMENTS

The research was supported in part by Hong Kong RGC
GRF grants under the contracts HKBU 12200418, HKUST
16206417 and 16207818. We would also like to thank Nvidia
AI Technology Centre (NVAITC) for providing the GPU
clusters for some experiments.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: Training
ImageNet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[3] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proc. of EMNLP, 2017, pp. 440–445.

[4] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in Proc. of International Conference on Learning Representa-
tions, 2018.

[5] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Proc. of Advances in Neural Information Processing Systems, 2017,
pp. 1509–1519.

[6] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. of Advances in Neural Information Processing Systems, 2017,
pp. 1707–1718.

[7] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed
deep learning with sparse and quantized communication,” in Proc. of
Advances in Neural Information Processing Systems, 2018, pp. 2530–
2541.

[8] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed SGD with communication-efficient gradient sparsifica-
tion,” in Proc. of The 28th IJCAI, 2019, pp. 3411–3417.

[9] A. Shanbhag, H. Pirk, and S. Madden, “Efficient Top-K query pro-
cessing on massively parallel hardware,” in Proc. of The International
Conference on Management of Data, 2018, pp. 1557–1570.

[10] S. Shi, X. Chu, K. C. Cheung, and S. See, “Understanding top-k sparsi-
fication in distributed deep learning,” arXiv preprint arXiv:1911.08772,
2019.

[11] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep
learning software tools,” in Proc. of The 7th International Conference
on Cloud Computing and Big Data. IEEE, 2016, pp. 99–104.

[12] W. Wang and N. Srebro, “Stochastic nonconvex optimization with
large minibatches,” in Proc. of The 30th International Conference on
Algorithmic Learning Theory, 2019.

[13] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication architec-
ture for distributed deep learning on GPU clusters,” in Proc. of USENIX
ATC, 2017, pp. 181–193.

[14] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-
Caffe: Co-designing MPI runtimes and Caffe for scalable deep learning
on modern GPU clusters,” in Proc. of The 22nd ACM PPoPP, 2017.

[15] Y. You, A. Buluç, and J. Demmel, “Scaling deep learning on GPU and
Knights Landing clusters,” in Proc. of SC’17, 2017.

[16] S. Shi, X. Chu, and B. Li, “MG-WFBP: Efficient data communication
for distributed synchronous SGD,” in Proc. of IEEE INFOCOM. IEEE,
2019, pp. 172–180.

[17] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[18] X. Jia, S. Song, S. Shi, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu, and X. Chu, “Highly scalable
deep learning training system with mixed-precision: Training ImageNet
in four minutes,” in Proc. of Workshop on Systems for ML and Open
Source Software, collocated with NeurIPS 2018, 2018.

[19] S. Shi, Z. Tang, Q. Wang, K. Zhao, and X. Chu, “Layer-wise adaptive
gradient sparsification for distributed deep learning with convergence
guarantees,” in Proc. of The 24th European Conference on Artificial
Intelligence, 2020.

[20] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proc. of USENIX OSDI, 2016, pp.
265–283.

[21] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in Proc. of NIPS Autodiff Workshop, 2017.

[22] S. Shi, W. Qiang, and X. Chu, “Performance modeling and evaluation
of distributed deep learning frameworks on GPUs,” in Proc. of The
4th International Conference on Big Data Intelligence and Computing.
IEEE, 2018.

[23] Y. Wang, W. Wang, S. Shi, X. He, Z. Tang, K. Zhao, and X. Chu,
“Benchmarking the performance and power of AI accelerators for AI
training,” arXiv preprint arXiv:1909.06842, 2019.

[24] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T. Hoe-
fler, “SparCML: High-performance sparse communication for machine
learning,” in Proc. of SC’19, 2019, pp. 1–15.

[25] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” The International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49–66,
2005.

[26] S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level analysis and
modeling of network traffic,” in The 1st ACM SIGCOMM Workshop on
Internet Measurement. ACM, 2001, pp. 99–103.

[27] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lip-
shteyn, “RDMA over commodity ethernet at scale,” in Proc. of ACM
SIGCOMM, 2016, pp. 202–215.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[29] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research),” URL http://www.cs.toronto.edu/kriz/cifar.html,
2010.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of CVPR, 2016, pp. 770–778.

[31] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. of The 31st AAAI, 2017.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. of CVPR, 2009, pp.
248–255.

[33] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a
large annotated corpus of English: The Penn Treebank,” Computational
linguistics, vol. 19, no. 2, pp. 313–330, 1993.

[34] A. Gibiansky, “Bringing HPC techniques to deep learning.(2017),”
URL http://research. baidu. com/bringing-hpc-techniques-deep-learning,
2017.

[35] V. Turchenko, L. Grandinetti, G. Bosilca, and J. J. Dongarra, “Improve-
ment of parallelization efficiency of batch pattern BP training algorithm
using Open MPI,” Procedia Computer Science, vol. 1, no. 1, pp. 525–
533, 2010.

[36] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, “Efficient
large message broadcast using NCCL and CUDA-aware MPI for deep
learning,” in Proc. of The 23rd European MPI Users’ Group Meeting,
2016, pp. 15–22.

[37] S. Wang, D. Li, J. Geng, Y. Gu, and Y. Cheng, “Impact of network
topology on the performance of DML: Theoretical analysis and practical
factors,” in Proc. of IEEE INFOCOM, 2019, pp. 1729–1737.

[38] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and application to data-parallel distributed training of speech
DNNs,” in Proc. of INTERSPEECH, September 2014.

[39] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SIGNSGD: Compressed optimisation for non-convex problems,” in
Proc. of International Conference on Machine Learning, 2018, pp. 559–
568.

[40] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. of INTERSPEECH, 2015.

[41] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakr-
ishnan, “Adacomp: Adaptive residual gradient compression for data-
parallel distributed training,” in Proc. of The 32nd AAAI, 2018.

[42] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Proc. of Advances
in Neural Information Processing Systems, 2018, pp. 1299–1309.

[43] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous SGD algorithm with global Top-k sparsification
for low bandwidth networks,” in Proc. of The 39th IEEE ICDCS, 2019.

[44] T. Lin, S. U. Stich, and M. Jaggi, “Don’t use large mini-batches, use
local SGD,” arXiv preprint arXiv:1808.07217, 2018.

[45] S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. of International Conference on Learning Representations, 2019.

[46] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “ImageNet
training in minutes,” in Proc. of the 47th ICPP, 2018, pp. 1–10.

[47] Y. Li, M. Yu, S. Li, S. Avestimehr, N. S. Kim, and A. Schwing, “Pipe-
SGD: A decentralized pipelined SGD framework for distributed deep
net training,” in Proc. of Advances in Neural Information Processing
Systems, 2018, pp. 8045–8056.

