Review of Number Theory

1. Preliminary

R : real numbers $Z = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} : \text{ integers}$ $N = \{1, 2, 3, \dots\} : \text{ natural numbers, or positive integers}$ $Q = \{\frac{n}{m} \mid n, m \in Z \text{ and } m \neq 0\} : \text{ rational numbers}$

Divisibility:

 $d \mid n$ means there is an integer k such that n = dk. We can say d divides n, or d is a divisor of n, or n is a multiple of d.

Division Algorithm:

If a and b are integers and b > 0, then there exist unique integers q and r satisfying the two conditions: a = bq + r and $0 \le r < b$. q is called the quotient and r is called the remainder.

MOD operation:

For b > 0, define a mod b = r where r is the remainder given by the Division Algorithm when a is divided by b, that is, a = bq + r and $0 \le r < b$.

Greatest Common Divisor:

Let $a, b \in Z$. If $a \neq 0$ or $b \neq 0$, we define gcd(a, b) to be the largest integer d such that $d \mid a$ and $d \mid b$. We define gcd(0, 0) = 0.

Bezout's Lemma:

For all integers a and b, there exist integers s and t such that gcd(a, b) = sa + tb.

2. Prime Numbers

An integer p > 1 is a prime number if and only if its only divisors are ± 1 and $\pm p$.

Euclid's Theorem:

There are infinitely many prime numbers.

Prime Number Theorem:

Let $x \in R$, x > 0. $\pi(x)$ denotes the number of primes p such that $p \le x$.

$$\pi(x) \sim \frac{x}{\ln(x)}$$
 for all $x > 0$. Or, $\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1$.

 $\pi(10^2) = 25, \pi(10^3) = 168, \pi(10^4) = 1229, \pi(10^5) = 9592, \pi(10^6) = 78498,$ $\pi(10^7) = 664579, \pi(10^8) = 5761455, \pi(10^9) = 50847534$

Prime Factorization:

Any integer a > 1 can be factored in a unique way as $a = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$ where $p_1 < p_2 < \cdots p_t$ are prime numbers and where each a_i is a positive integer. Or, $a = \prod_{i=1}^{t} p_i^{a_i}$. For example: $600 = 2^3 \times 3^1 \times 5^2$.

Relatively prime:

We say that *a* and *b* are relatively prime if gcd(a, b)=1.

Euclid's Lemma:

If p is a prime and p|ab, then p|a or p|b.

3. Congruences

Let $m \ge 0$. We write $a \equiv b \pmod{m}$ if $m \mid a - b$, and we say that *a* is congruent to *b* modulo *m*. Here *m* is said to be the modulus of the congruence.

Theorem:

For m > 0 and for all a, b, c:

- $a \equiv b \pmod{m} \Leftrightarrow a \mod m = b \mod m$.
- $a \equiv a \pmod{m}$ (reflexivity)
- $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$ (symmetry)
- $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$ (transitivity)

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- $a \pm c \equiv b \pm d \pmod{m}$
- $ac \equiv bd \pmod{m}$
- $a^n \equiv b^n \pmod{m}$ for all $n \ge 1$
- $f(a) \equiv f(b) \pmod{m}$ for all polynomials f(x) with integer coefficients.

4. Fermat's and Euler's Theorems

Fermat's Theorem:

If p is prime and a is a positive integer not divisible by p, then $a^{p-1} \equiv 1 \mod p$.

Euler's Totient Function:

 $\phi(n)$: the number of positive integers less than *n* and relatively prime to *n*. For a prime number *p*, $\phi(p) = p - 1$.

Euler's Theorem:

For every *a* and *n* that are relatively prime: $a^{\phi(n)} \equiv 1 \mod n$.

5. Discrete Logarithms

Remark: Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-Hellman key exchange, ElGamal system, and the Digital Signature algorithm.

Ordinary logarithms:

For base x and for a value y, if $y = x^i$, then $i = \log_x(y)$, and $y = x^{\log_x(y)}$. Properties of logarithms: $\log_x(1) = 0$ $\log_x(x) = 1$ $\log_x(yz) = \log_x(y) + \log_x(z)$ $\log_x(y^r) = r \log_x(y)$

Primitive root:

If *a* is a primitive root of *n*, then its powers $a, a^2, ..., a^{\phi(n)}$ are distinct (mod *n*) and are all relatively prime to *n*. In particular, for a prime number p, if *a* is a primitive root of *p*, then $a, a^2, ..., a^{p-1}$ are distinct (mod *p*).

Index:

Consider a primitive root *a* for some prime number *p*. It follows that for any integer *b*, we can find a unique exponent *i* such that $b \equiv a^i \mod p$ where $0 \le i \le p-1$. This exponent i is referred to as **the index of the number** *b* **for the base** *a* **(mod** *p***). We denote this value as \operatorname{ind}_{a,p}(b). Or, b \equiv a^i \mod p, 0 \le i \le p-1 \Rightarrow i = \operatorname{ind}_{a,p}(b).**

Discrete logarithm problem:

Consider the equation $y = g^x \mod p$. Given g, x, and p, it is very easy to calculate y. However, given y, g, and p, it is very difficult to find x.