
Feature Article: Proteus, a Grid based Problem Solving Environment for Bioinformatics: Architecture and Experiments 7

Proteus, a Grid based Problem Solving Environment
for Bioinformatics: Architecture and Experiments

Mario Cannataro�, Carmela Comito�, Filippo Lo Schiavo�, and Pierangelo Veltri�

Abstract— Bioinformatics can be considered as a bridge be-
tween life science and computer science. Biology requires high
and large computing power to performance biological appli-
cations and to access huge number of distributed and (often)
heterogeneous databases. Computer scientists and database com-
munities have expertises in high performance algorithms com-
putation and in data management. Considering bioinformatics
requirements, in this paper we present PROTEUS , a Grid-based
Problem Solving Environment for bioinformatics applications.
PROTEUS uses ontology to enhance composition of bioinformatics
applications. Architecture and preliminary experimental results
are reported.

Index Terms— Bioinformatics, Grid, Ontology, Problem Solv-
ing Environment (PSE).

I. INTRODUCTION

RESEARCH in biological and medical areas (also known
as biomedicine), requires high performance computing

power and sophisticated software tools to treat the increasing
amount of data derived by always more accurate experiments
in biomedicine. The emerging bioinformatics area involves
an increasing number of computer scientists studying new
algorithms and designing powerful computational platforms to
bring computer science in biomedical research. According to
[5], Bioinformatics can thus be considered as a bridge between
life science and computer science.

Biologists and computer scientists are working in designing
data structure and in implementing software tools to support
biomedicine in decoding the entire human genetic informa-
tion sequencing (i.e. DNA), also known as genome.Even if
many issues are still unsolved, (i.e., such as heterogeneous
data sets integration and metadata definitions), the attention
is now focused on new topics related to genomics. Today,
the new challenge is studying the proteome, i.e. the set of
proteinsencoded by the genome, to define models represent-
ing and analyzing the structure of the proteins contained in
each cell, and (eventually) to prevent and cure any possible
cell-mutation generating human diseases such that producing
cancer-hill cells [15].

Proteins characteristics can be simply represented by strings
sequences encoding amino acidsthat are the basic building
blocks composing proteins. Nevertheless, the high number of
possible combinations of amino acids composing proteins, as
well as the huge number of possible cell-mutation, require
a huge effort in designing software and environments able
to treat generic micro-biology problems. Moreover, proteins

1University of Magna Graecia of Catanzaro, Italy surname@unicz.it
2University of Calabria, Italy surname@si.deis.unical.it

present spatial (i.e., three dimensional) structure that (partially)
depends on amino acids composition: 3D protein structure
predictions and folding are other important issues interesting
medicine and drug discovery. Pattern matching algorithms and
tools have to be combined with high performance multidimen-
sional and imaging software tools to analyze and eventually
prevent proteins behaviors.

Proteomics data sets in applications can be produced by ex-
periments, or can be extracted from publicly available databases
as those produced and maintained by research community:
e.g. Protein Data Bank (PDB) [22], the SWISS-PROT pro-
tein database [29], the GenBank DNA sequences collections
[21]. Optimized data models are required to represent protein
structures as well as ”ad hoc” software tools are necessary
to integrate and combine data obtained from experiments or
from querying protein database and to extract information un-
derstandable by biomedical researchers. Nevertheless, hetero-
geneity both in data format and database access policy justify
the interest of bioinformaticians for (biomedical-) data models,
specialized software for protein searching and combinations,
as well as data mining tools for information extraction from
datasets. On the other hand, data and software distribution
requires high performance computational platforms to execute
distributed bioinformatics applications.

Computational Grids (or simply Grid) are geographically
distributed environments for high performance computation
[27]. In a Grid environment is possible to manage heteroge-
neous and independent computational resources offering pow-
erful services able to manage huge volumes of data [28].
Grid community [14] recognized both bioinformatics and post-
genomic as an opportunity for distributed high performance
computing and collaboration applications. The Life Science
Grid Research Group [24] established under the Global Grid
Forum, believes bioinformatics requirements can be fitted and
satisfied by Grid services and standards, and is interested in
what new services should Grids provide to bioinformatics ap-
plications. In particular, given the number of applications re-
quiring ability in reading large and heterogeneous datasets
(e.g. protein databases) or in creating new datasets (e.g. mass
spectrometry proteomic data [15]), a large number of biologist
projects are investing in Grid environments as well as many
computer scientists are investing in developing Bioinformat-
ics applications on Grid (also known as BioGrids). E.g., the
Asia Pacific BioGRID [4] is attempting to build a customized,
self-installing version of the Globus Toolkit [32], a diffused
environment for designing and managing Grid, comprising
well tested installation scripts, avoiding dealing with Globus
details. In the European Community Grid Project [31], whose

IEEE Computational Intelligence Bulletin February 2004 Vol.3 No.1



8 Feature Article: M. Cannataro, C. Comito, F. L. Schiavo, and P. Veltri

aim is funding Grid applications in selected scientific and
industrial communities, the Bio-GRID work group is devel-
oping an access portal for biomolecular modeling resources
[18]. The project develops various interfaces for biomolecular
applications and databases that will allow chemists and biolo-
gists to submit work to high performance computing facilities,
hiding Grid programming details. Finally, myGrid is a large
United Kingdom e-Science project to develop open source
data-intensive bioinformatics application on the Grid [30]. The
emphasis is on data integration, workflow, personalization and
provenance. Database integration is obtained both by dynamic
distributed query processing, and by creating virtual databases
through federations of local databases.

In this paper we consider a world where biomedical soft-
ware modules and data can be detected and composed to define
problem-dependent applications. We wish to provide an envi-
ronment allowing biomedical researchers to search and com-
pose bioinformatics software modules for solving biomedical
problems. We focus on semantic modelling of the goals and
requirements of bioinformatics applications using ontologies,
and we employ tools for designing, scheduling and controlling
bioinformatics applications. Such ideas are combined together
using the Problem Solving Environment (PSE) software de-
velopment approach [23]. A Problem Solving Environment is
an integrated computing environment for composing, compil-
ing, and running applications in a specific area [34], leaving
the user free to work on application and not on software
programming [9]. Grid-based PSEs are related to distributed
and parallel computing and leverages basic Grid services and
functionalities. E.g., the KNOWLEDGE GRID [13], based on
the Globus Toolkit [32], is a Grid-based problem solving en-
vironment providing a visual environment (i.e., called VEGA)
to design and execute distributed data mining applications on
the Grid [12].

We present PROTEUS , a software architecture allowing to
build and execute bioinformatics applications on Computa-
tional Grids [27]. The proposed system is a Grid-based Prob-
lem Solving Environment (PSE) for bioinformatics applica-
tions. We define an ontology-based methodology to describe
bioinformatics applications as distributed workflows of soft-
ware components. The architecture and first implementation
of PROTEUS based on the KNOWLEDGE GRID [13], are
presented. Also, we present use of PROTEUS to implement an
application of human protein clustering. A preliminary version
of this work can be found in [11].

The paper is organized as follows. Section II report bio-
logical data characterisics and environment requirements for
bioinformatics applications. Section III presents a first imple-
mentation of PROTEUS based on KNOLEDGE GRID, report-
ing PROTEUS architecture and software modules. Section IV
presents the ontology based processing to design bioinformat-
ics applications with PROTEUS . Section V reports experiences
on designing and running a simple case study of clustering
human proteins using PROTEUS , and finally Section VI con-
cludes the paper and outlines future works.

II. BIOINFORMATICS ISSUES

Bioinformatics involves the design and development of ad-
vanced algorithms and computational platforms to solve prob-
lems in biomedicine. Applications deal with biological data
obtained by experiments, or by querying heterogeneous and
distributed databases. Methods for acquiring, storing, retriev-
ing and analyzing such data are also necessary. In this section
we sketch some characteristics of biological data, with par-
ticular emphasis to proteins data, and present some available
biological databases. We then discuss about requirements of
biological applications.

A. Biological Data and Databases

Handling biological data has to deal with exponentially grow-
ing sets of highly inter-related data rapidly evolving in type
and contents. Designers of biological databases and querying
engines have to consider some data management issues well
known to database community. Biological data are often ob-
tained combining data produced by experiments, or extracted
by common databases. Data are thus often heterogeneous both
in structure and content. Combining data coming from differ-
ent sources requires human expertise to interact with different
data format and query engines: e.g., data can be reported in
text files or in relational tables or in HTML documents, while
query interfaces may be textual or graphical (e.g., SQL-like,
or query by example). Moreover, databases need to react to
frequent data update: new data emerge regularly from new
experimental results, thus databases must be updated and re-
freshed accordingly.

Biological data are often represented as string sequences
and described using natural language. Most of the existing
biological data represent data as flat file structured as a set of
field/value pairs, weakly interconnected with indexing systems
such as the Sequence Retrieval System (SRS) [7] (see below).
Even 3D protein structures are often represented as raster
images which content cannot be captured by any automatic
query engine (e.g., based on similarity image matching), and
need human interaction.

Biological data in bioinformatics comprise sequences of
nucleotides (i.e., DNA) and sequences of amino acids (i.e.,
proteins). There are four different type of nucleotides, distin-
guished by the four bases: adenine (A), cytosine (C), guanine
(G) and thymine (T), thus a single strand of DNA can be rep-
resented as a string composed of the four letters: A, C, G, T. A
triple of nucleotides encodes an amino acid, while amino acids
form proteins. Although there are �

�
� �� different triples

of nucleotides, in nature there exists only 20 different amino
acids that can compose a protein. Each protein can be thus
represented as a string composed by a 20-character alphabet,
where each character represents an amino acid (e.g., G for
glycine, A for alanine, V for valine, etc.). Since nucleotides
and amino acids are represented with alphabet letters, the
natural representation of a biological element (genes sequence
or proteins sequence) is a string of characters. Data models are
then based on string structures. To represent both nucleotides
and amino acid chains, flat non-structured files as well as files
enriched by field/value pairs structures can be used.

February 2004 Vol.3 No.1 IEEE Computational Intelligence Bulletin



Feature Article: Proteus, a Grid based Problem Solving Environment for Bioinformatics: Architecture and Experiments 9

Structured data models (e.g., object oriented or relational
[33]) are useful for data retrieval. Nevertheless, most of the
useful biological databases are populated gathering data from
different and often heterogeneous sources each providing its
own database structure and query search engine. The data
integration topic and the effort of defining uniform data model
and query engine is another important issue that has been inter-
esting computer scientists, for all kind of data. E.g., XML (eX-
tensible Mark up Language), the language for data exchange
on the Web, has been attracting bioinformaticians. Thanks
to its semi-structured nature [1], in XML it is possible to
represent both data and (when present) structure in a single
paradigm. XML query engine can filter data using their struc-
ture (if presents) and finally extract data using key-word based
queries. Where still documents exists in different databases,
XML ”abstract” documents [2] can be used to integrate het-
erogeneous data sources or as exchange mechanism (data me-
diator) between different databases. Moreover, ontologiescan
also be used for data integration. An Ontology is a system
to share standard and unambiguous information about an ob-
served domain. Ontologies are used to realize semantic tools
to retrieve and analyze biological data coming from different
data sources, using a given set of similar terminology. As
we will see, PROTEUS utilizes ontologies to leverage users
from knowing exactly all applications specifications and data
locations and structures.

The existent biological databases contain protein and DNA
sequences, 3D structures of protein sequences (i.e., images and
description) and relationships between different sequences. They
are mainly public available through the Web and offer database
query interfaces and information retrieval tool to catch data
coming from different databases. Most of them are produced
and maintained by the research community; e.g., European
Molecular Biology Laboratory (EMBL) [29] and American
National Center for Biotechnology Information (NCBI) [21]
give access to nucleotide and protein sequence databases. The
former gives access to SWISS-PROT, a database of protein
sequences obtained from translations of DNA sequences or
collected from the scientific literature or applications. The
latter maintains GenBank, a collection of all known DNA
sequences. Moreover, a useful protein database is the Protein
Data Bank (PDB) [22], that is a database of 3D-coordinates of
macromolecular structures. Moreover two Web publicly avail-
able databases are the Sequence Retrieval System (SRS)and
the Entrez system. SRS [7] is a Web-based retrieval system for
biological data. It accesses to different available web databases
and builds an index of URLs to integrate them. The index is
used as a database view on different databases, providing a sin-
gle interface allowing users to formulate queries on different
databases. SRS provides the user with transparency from com-
munication with sources (i.e. location, connection protocols
and query language), but it does not provide guidance about
source relevance for a given query, and no data integration
is provided in the query results. Entrez [20] is the NCBI
text-based search interface on the major biological databases
(e.g., nucleotide database, protein sequence databases, struc-
ture databases, etc). Query results are obtained by combining
data coming from different databases, using a proximity score

grouping sequences and references based on similarity char-
acteristics. Queries can be built using a ”query by example”
based interface.

B. Biological Application Requirements

Novel Bioinformatics applications and in particular Pro-
teomics ones, involve different data sets either produced in a
given experiment, or available as public databases or different
software tools and algorithms. Applications deal with (i) data
sources, i.e. local and/or remote databases, and (ii) specialized
services, algorithms and software components: e.g., pattern
matching algorithms to match protein sequences in protein
databases. From a computational point of view, it is necessary
consider that Bioinformatics applications:

� are naturally distributed, due to the high number of in-
volved data sets;

� require high computing power, due to the large size of
data sets and the complexity of basic computations;

� access heterogeneous and distributed data, e.g. answering
queries may require accessing several databases;

� need secure software infrastructures to manage private
data.

Computational requirements have to deal with the sharing
of computational resources, the integrated access to biological
databases, as well as an efficient, large-scale data movement
and replication. High performance requirements and distribu-
tion of software and data in Bioinformatics created a great
interests in the Grid community.

Finally, software tools, data sources and Grid computational
nodes, can be glued by using knowledge representation and
management techniques. Defining semantic representation of
data is one of the last challenge of the computer science
community [26]. A possibility is using ontologies to build
Knowledge Bases modeling knowledge about bioinformatics
resources and processes. Basic retrieval techniques, as well as
querying tools, can be used to extract knowledge by ontology
databases.

III. PROTEUS: ARCHITECTURE AND SOFTWARE

MODULES

This Section presents PROTEUS , a Grid-based Problem Solv-
ing Environment for composing, compiling, and running Bioin-
formatics applications on the Grid. To fulfill bioinformatics
application requirements and to help biologists in their appli-
cations, PROTEUS introduces semantic modeling of Bioinfor-
matics processes and resources, following an emergent trend
in Semantic Grids and Knowledge Grids.

To fulfill bioinformatics application requirements, we pro-
pose a framework based on:

� Grids, with their security, distribution, service orientation,
and computational power;

� Problem Solving Environment approach, useful to define,
describe and execute (i.e. control) such applications;

� Ontologies, Web (Grid) Services, and Workflows tech-
nologies, at an inner level, to describe, respectively, the
semantics of data sources, software components with their
interfaces, and performances and bioinformatics tasks.

IEEE Computational Intelligence Bulletin February 2004 Vol.3 No.1



10 Feature Article: M. Cannataro, C. Comito, F. L. Schiavo, and P. Veltri

With the first item PROTEUS satisfies the high powerful com-
putational requirements of bioinformatics applications. More-
over Grid environment is composed of distributed computa-
tional nodes, and fulfill the distributed nature of bioinformatics
applications and data management.

Fig. 1. PROTEUS General Architecture

PSE provide a dictionary of data and tools locations allow-
ing users to build their applications disposing of all necessary
tools. We imagine a world where biologists want to access a
single tools and data virtual store where they may compose
their applications. In particular, PROTEUS modules uses and
combines open source bioinformatics software, and public-
available biological databases. Private databases (i.e. databases
accessible with registration via Web) can be also considered.
Drawback in using open source packages (i.e., often defined in
research environments) and in providing software tools, is that
users have to know the nature of their data (i.e. their semantic)
and details of software components, while they have to con-
centrate on biological domain and attended results. Moreover,
the access to such components is often available by command
line only. To overcome such problems, PROTEUS simplifies the
use of software tools by adding metadata to available software
and modelling applications through ontology. Ontologies are
used to build PROTEUS Knowledge Base, modeling knowledge
about bioinformatics resources and processes.

PROTEUS can be used to assist users in:

� formulating problems, allowing to compare different avail-
able applications (and choosing among them) to solve a
given problem, or to define a new application as compo-
sition of available software components;

� running an application on the Grid, using the resources
available in a given moment thus leveraging the Grid
scheduling and load balancing services;

� viewing and analyzing results, by using high level graphic
libraries, steering interfaces (that allow to interactively
change the way a computation is conducted), and access-
ing the past history of executions, i.e. the past results,
that form a knowledge base.

In the following, we present the PROTEUS overall architec-
ture, while the next subsection describes a first implementation
of the system and its main software modules.

A. Architecture

A main goal of PROTEUS is to leverage existing software
easing the user work by: (i) adding metadata to software,
(ii) modeling application through ontology, (iii) offering pre-
packaged bioinformatics applications in different fields (e.g.
proteomics), (iv) using the computational power of Grids. PRO-
TEUS extends the basic PSE architecture and is based on the
KNOWLEDGE GRID approach [13]. Main components of
PROTEUS (see Figure 1) are:

� Metadata repository about software components and data
sources (i.e. software tools, databases and data sources).
It contains information about specific installed resources.

� Ontologies. We have two kinds of ontology in our sys-
tem: a domain ontology and an application ontology. The
domain ontology describes and classifies biological con-
cepts and their use in bioinformatics as well as bioin-
formatics resources spanning from software tools (e.g.
EMBOSS) to data sources (biological databases such as
SWISS-PROT). The application ontology describes and
classifies main bioinformatics applications, represented
as workflows. Moreover it contains information about
application’s results and comments about user experience.
Both ontologies contain references to data in metadata
repository.

� Ontology-based application designer. An ontology-based
assistant will either suggest the user the available appli-
cations for a given bioinformatics problem/task, or will
guide the application design through a concept-based search
of basic components (software and databases) into the
knowledge base. Selected software components will be
composed as workflows through graphic facilities.

� Workflow-based Grid execution manager. Graphic rep-
resentations of applications are translated into Grid exe-
cution scripts for Grid submission, execution and man-
agement.

Ontologies and metadata are organized in a hierarchical
schema: at the top layer ontologies are used to model the ratio-
nale of bioinformatics applications and software components,
whereas at the bottom layer specific metadata about avail-
able (i.e. installed) bioinformatics software and data sources
are provided. Ontology guides the user in the choice of the
available software components or complete applications on the
basis of her/his requirements (ontology-based application de-
sign) [8], whereas the low layer metadata will be used to really
access software tools and databases, providing information like
installed version, format of input and output data, parameters,
constraints on execution, etc. When the application requires
an installed tool, i.e. the ontology-based application design
module issues a (resource) request, an ontology-based match-
making algorithm finds the best match between the request
and the available resources.

The ontology will be updated whenever new software tools
or data sources are added to the system, or new applications are
developed (i.e. designed through composition of software com-
ponents). This enables the realization of a Knowledge Base of
applications/results, which is enriched whenever new applica-
tions are developed or new results are obtained. Thus, new

February 2004 Vol.3 No.1 IEEE Computational Intelligence Bulletin



Feature Article: Proteus, a Grid based Problem Solving Environment for Bioinformatics: Architecture and Experiments 11

users may gain knowledge about pre-existing experiments.

Fig. 2. Software Modules of PROTEUS

B. A First Implementation

The current implementation of PROTEUS is based on the
KNOWLEDGE GRID, a joint research project of ICAR-CNR,
University of Calabria, and University of Catanzaro, aiming
at the development of an environment for geographically dis-
tributed high-performance knowledge discovery applications
[13]. PROTEUS system modules are described in Figure 2. The
ontology modules represent the main innovation with respect
to the KNOWLEDGE GRID. It allows to describe bioinfor-
matics resources (i.e. the Ontology Repository) offering new
ontology-based services (i.e. the Ontology Management Ser-
vices) to search and find the most appropriate software com-
ponents needed to solve a bioinformatics task. We are working
on PROTEUS implementation based on a new architecture spe-
cialized to support the complex workflows of bioinformatics
applications on Grid [10].

Similarly to the KNOWLEDGE GRID, PROTEUS is built as
a bag of services divided in two layers: the Core services that
interface the basic Grid middleware and the Ontology-based
services that interface the user by offering a set of services
for the design and execution of bioinformatics applications.

The Core services allow the submission, execution, and
control of a distributed computation over the Grid. Main ser-
vices include the management of ontologies and metadata de-
scribing features of software components, applications and
data sources. Moreover, this layer coordinates the application
execution by attempting to fulfill the application requirements
and the available grid resources. The Core services comprise:

� The Knowledge Directory Service (KDS) offers a uni-
form access to ontologies and metadata stored in the
following repositories: resource ontology (OR), resource
metadata (KMR), execution plans, i.e., application work-
flows (KEPR), and results of bioinformatics applications

(KBR). The ontology is represented by a DAML+OIL
[16] document stored in the Ontology Repository (OR),
whereas metadata are represented as XML documents.

� The Resource Allocation and Execution Management Ser-
vice (RAEMS) is used to find the best mapping between
an execution plan and available Grid resources, with the
goal of satisfying the application requirements and Grid
constraints.

The Ontology-based services allow to compose, validate,
and execute a parallel and distributed computation, and to store
and analyze its results. The Ontology-based services comprise:

� The Ontology Management Services (OMS) offer a graph-
ical tool for the ontology browsing, a set of utilities for
the updating of the ontology, and a set of APIs for ac-
cessing and querying the ontology by means of a set of
object-oriented abstractions of ontology elements. These
services are used to enhance the following services.

� The Data Access Service (DAS) allows to search, select,
extract, transform and delivery data to be analyzed.

� The Tools and Algorithms Access Service (TAAS) allows
to search and select bioinformatics tools and algorithms.

� The Execution Plan Management Service (EPMS) is a
semi-automatic tool that takes data and programs selected
by the user and generates a set of different, possible
execution plans (workflows) that meet user, data and al-
gorithms requirements and constraints. Execution plans
are stored into the KEPR.

� The Results Presentation Service (RPS) allows to visual-
ize the results produced by a bioinformatics applications.
The result metadata are stored in the KMR and managed
by the KDS.

The design and execution of an application using PROTEUS

run through the following steps:

1) Ontology-based resources selection. The search, location
and selection of the resources to be used in the appli-
cations are executed by using the DAS and TAAS tools
that invoke the OMS. Using the OMS the design process
is composed of two phases:

� Software tools and data sources selection. Browsing
and searching the ontology allow a user to locate the
more appropriate component to be used in a certain
phase of the application.

� XML metadata access. The ontology gives the URLs
of all instances of the selected resources available
on the grid nodes, i.e. the URLs of the relevant
metadata files stored in the KMRs.

2) Visual application composition, through a graphical model
that represents the involved resources and their relations.

3) Abstract execution plan generation, corresponding to the
graphical model of the application. The plan is generated
by using the EPMS services and then is stored into the
KEPR.

4) Application execution on the Grid. The abstract execu-
tion plan is translated into a source Globus RSL (Re-
source Specification Language) script by the RAEMS
module, then this script is submitted to the GRAM (Globus
Resource Allocation Manager) service.

IEEE Computational Intelligence Bulletin February 2004 Vol.3 No.1



12 Feature Article: M. Cannataro, C. Comito, F. L. Schiavo, and P. Veltri

5) Results visualization and storing, by using the RPS ser-
vices.

Fig. 3. Some Taxonomies of the Bioinformatics Ontology

IV. ONTOLOGIES IN PROTEUS

Ontologies are used in PROTEUS to describe the semantics
of the components and data resources involved in applications.
In this section we describe a first Bioinformatics Ontology, and
its management using the Ontology Management Services.

A. An Ontolgy on Bioinformatics Domain

Currently PROTEUS presents an ontology on bioinformatics
domain that tries to integrate different aspects of bioinformat-
ics, including computational biology, molecular biology and
computer science. In such ontology we classify the following
bioinformatics resources:

1) biological data sources, such as protein databases (e.g.,
SwissProt, PDB);

2) bioinformatics software components, such as tools for
retrieving and managing biological data (e.g., SRS, En-
trez, BLAST, EMBOSS );

3) bioinformatics processes/tasks (e.g. sequence alignment,
similarity search, etc.).

The modelling of the above cited bioinformatics resources,
has been made on the basis of classification parameters that
will guide users in the composition of the application and in
the choosing of the most suitable resources to use.

Biological data sources have been classified on the basis of
the following features:

� the kind of biological data (e.g., proteins, genes, DNA);
� the format in which the data is stored (e.g., sequence,

BLAST proteins sequence);
� the type of data source (e.g., flat file, relational database,

etc);

� the annotations specifying the biological attributes of a
database element.

Bioinformatics processes and software components have been
organized in the ontological model on the basis of the follow-
ing parameters:

� the task performed by the software components; that is
the typology of the bioinformatics process (e.g., sequence
analysis, secondary structure prediction, etc);

� the steps composing the task and the order in which the
steps should be executed;

� the methodology (method) that the software uses to per-
form a bioinformatics task;

� the algorithm implemented by the software;
� the data sourceon which the software works on;
� the kind of outputproduced by the software;
� the software components used to perform a task (e.g.

BLAST, EMBOSS, etc.).

Taxonomies that specialize each of those classification pa-
rameters have been partially implemented. Every taxonomy
specializes the concept of interest using two kinds of relation-
ships through which simple/multiple inheritance could be ap-
plied: the first kind of relationship is the specialisation/generalisation
(”is-a”) relationship that specialises/generalises general/specific
concepts in more specific/general ones; and the part of/has
part relationship that defines a partition as subclass of a class.
Figure 3 shows some taxonomies of the ontology by using the
OilEd ontology editor [6].

Thus we have organized our ontological model in such a
way to have a large number of small local taxonomies that
may be linked together via non-taxonomic relations. As an
example, since every software performs a task, the Software
taxonomy is linked to the Task taxonomy through the Per-
formsTaskrelation. The ontology can be explored by choosing
one of the previous classification parameters. For example,
exploring the Task taxonomy it is possible to determine for a
given task what are the available algorithms performing it and
then which software implements the chosen algorithm. More-
over it is possible to find the data sources and the biological
elements involved in that task. On the other hand, exploring the
Algorithm taxonomy it is possible to find out the biological
function behind an algorithm, the software implementing it,
the kind of data source on which it works.

B. The Ontology Management Services

PROTEUS offers ontology-based services and as such it needs
a means through which manipulate and access ontologies stored
in the Ontology Repository(see Figure 2). To this aim we
introduced in the architecture shown in Figure 2 the Ontology
Management Services(OMS). The OMS provides a set of
high-level services for managing ontologies such as utilities
for browsing and querying them. These utilities are supplied
both as graphical tools as well as a set of Java APIs.

The API implementation is realized for accessing and query-
ing the ontology: the API will provide a set of object-oriented
abstractions of ontology elements such as Concept, Relation,
Properties, and Instance objects providing query facilities.

February 2004 Vol.3 No.1 IEEE Computational Intelligence Bulletin



Feature Article: Proteus, a Grid based Problem Solving Environment for Bioinformatics: Architecture and Experiments 13

Fig. 5. Snapshot of the Ontology Browser

The graphical tool provides a combined search and browse
facility over the ontology:

� Ontology querying. Through the ontology-based search
engine offered by the OMS, user can find detailed infor-
mation about domain resources modeled in the ontology.
The result set is accurate, because the semantic of the
target terms is indicated by concepts from the underlying
ontology. Our ontology-based search engine supports sev-
eral kinds of simple inference that can serve to broaden
queries including equivalence (to restate queries that dif-
fer only in form), inversion, generalization, and special-
ization to find matches or more general or more specific
classes and relations. If the result set of a query is empty,
the user can at least find objects that partially satisfy the
query: some classes can be replaced by their superclasses
or subclasses. Both narrowing and broadening the scope
of the query are possible due to the ontological nature of
the domain description.

� Ontology browsing. The ontology browser is a navigation
facility that presents an overview of the whole data set:
it shows the classes, their relations and instances. The
browser gradually presents deeper levels of the ontology:
the user starts at the top of the ontology and can navigate
towards more specific topics by clicking the classes of
interest (diving into the information).

Since we have implemented the ontology in the DAML+OIL
ontology language, the services offered by the OMS allow
support only for DAML+OIL [16] encoded ontologies. At this
time we have implemented a graphical tool for the browsing
of ontologies (see Figure 5); using such tool the user browses
the ontology choosing one of the input point (left panel of
the frame) representing the taxonomies of the ontology and
navigates visiting the sub tree topics until reaching a concept
of interest. The concept of interest is shown in the middle of
the right panel of the frame and related concepts are displayed
around it. The ontology may be browsed by promoting any of

the related concepts to be the central concept. The new central
concept is then linked to all its related concepts.

V. A CASE STUDY: CLUSTERING OF HUMAN PROTEINS

This Section presents some first experimental results ob-
tained implementing a simple bioinformatics application. We
first present the overall application workflow, and then we dis-
cuss the design of such application. Currently, the application
is first designed by using the Ontology Management Services
described in the previous section, and then the selected re-
sources are composed into a Data Flow Diagram by using
VEGA (Visual Environment for Grid Applications) [12], the
KNOWLEDGE GRID user interface.

Protein function prediction uses database searches to find
proteins similar to a new protein, thus inferring the protein
function. This method is generalized by protein clustering,
where databases of proteins are organized into homogeneous
families to capture protein similarity. We implemented a sim-
ple application for the clustering of human proteins sequences
using the TribeMCL method [3]. TribeMCL is a clustering
method through which it is possible to cluster correlated pro-
teins into groups termed ”protein family”. This clustering is
achieved by analysing similarity patterns between proteins in a
given dataset, and using these patterns to assign proteins into
related groups. In many cases, proteins in the same protein
family will have similar functional properties. TribeMCL uses
the Markov Clustering (MCL) algorithm [17].

We organized the application (see Figure 4) into four phases:
the Data Selection phaseextracts sequences from the database,
the Data Preprocessing phaseprepares the selected data to
the clustering operation, the Clustering phaseperforms the
Markov Clustering algorithm to obtain a set of protein clus-
ters, and finally the Results Visualization phasedisplays the
obtained results.

In the Data Selection phase all the human protein sequences
are extracted from the Swiss-Prot database using the se-
qret program of the EMBOSS suite. EMBOSS is a package

IEEE Computational Intelligence Bulletin February 2004 Vol.3 No.1



14 Feature Article: M. Cannataro, C. Comito, F. L. Schiavo, and P. Veltri

Fig. 4. Human Protein Clustering Workflow

of high-quality Open Source software for sequence analysis
[25]. seqret is a program for extracting sequences from
databases: in our application this program reads sequences
from the database and then write them to a file.

TribeMCL needs a BLAST comparison on its input data.
BLAST is a similarity searchtool based on string matching
algorithm [19]. Given a string it finds string sequences or
sub-sequences matching with some of the proteins in a given
database (alignment). BLAST carries out local alignmentsbe-
tween sequences or between a sequence and protein database.
Local alignment algorithms look for protein string matching
between protein subsequences. It ranks the subsequence results

using an expectation value (e-value). Given a sequence, it is
able to return the probability of a particular alignment to occur.
E.g., an e-value equal to zero means that the probability for
a given alignment to occur by chance is zero. In particular,
TribeMCL uses an all against allBLAST comparison as input
to the clustering process, thus once the protein sequences have
been extracted from the database, a BLAST computation has
to be performed.

The Data Preprocessing phase comprises the following steps.
To speed up the similarity search activity we partitioned the
seqret output in three smaller files; in this way three BLAST
computations can be run in parallel. The obtained raw NCBI
BLAST outputs are converted in the format required to create
the Markov Matrix used in the clustering phase by TribeMCL.
The parsing has been executed by using tribe-parse pro-
gram. Finally, the files obtained in the tribe-parse steps
are concatenated by using the cat program.

In the Clustering phase, the Markov Matrix is built by using
the tribe-matrix program that produces the matrix.mci
and proteins.index files. Then the clustering program
mcl is executed using the file matrix.mci.

Finally, in the Results Visualization phase the clustered data
are arranged in an opportune visualization format.

A. Application Development onPROTEUS

In VEGA the resources are just described by basic metadata
about technical details, and it does not provide any semantic
modelling. Moreover, users have to browse metadata on each
Grid node to search and select the resources needed in an
application.

In order to overcome these limitations, we have supplied
the VEGA environment with an ontological modelling of the
bioinformatics resources and an ontologies mananging tool.

The proposed Ontology Management Services can be used
both to enhance the application formulation and design, and to
help users to select and configure available resources (software
components and data sources).

The first step in the development of bioinformatics applica-
tions on PROTEUS is the Ontology-based resource selection
in which the user browses the ontology locating the more
appropriate components to use in the application. Next, the
selected resources are composed through the graphical model
of VEGA (Visual application composition).

The application workflow shown in Figure 4 has been mod-
elled as a set of VEGA workspaces [12]. We briefly remind
that a computation in VEGA is organized in workspaces. The
jobs of a given workspace are executed concurrently; whereas
workspaces are executed sequentially. The implementation of
our application required the development of 13 workspaces
grouped into the four different phases of the application: Data
Selection, Data Preprocessing, Clusteringand Results Visual-
ization.

Consider the following scenario: a PROTEUS user logged
on the host minos wants to define and execute the clustering
of human proteins. He/she only knows that needs a protein
sequences database from which to retrieve the sequences and
a software tool performing the clustering process. Moreover,

February 2004 Vol.3 No.1 IEEE Computational Intelligence Bulletin



Feature Article: Proteus, a Grid based Problem Solving Environment for Bioinformatics: Architecture and Experiments 15

Fig. 6. Snapshot of VEGA: Workspace 1 of the Data Selection Phase

let suppose that Grid nodes are configured as shown in Table I
and the Swiss-Prot database is replicated on each of them.

As a first step of the application formulation, the user browses
the Data Sourcetaxonomy (see Figure 5) of the domain on-
tology to locate the Swiss-Prot database. After that he/she
searches software for extracting sequences from the database.
Thus the user starts the ontology browsing from the Tasktax-
onomy and identifies the Extracting-sequences-from-
DB concept. From there following the performed-by label
the user finds the seqret program (see Figure 7) and through
its metadata file he/she locates the software on the minos
node.

Software Components Grid Nodes
minos k3 k4

seqret �
splitFasta �
blastall � � �

cat � � �
tribe-parse � � �
tribe-matrix �

mcl �
tribe-families �

TABLE I

SOFTWARE INSTALLED ON THE EXAMPLE GRID

At this point the user is ready to design the Data Selection
phase through VEGA constructing the following three work
spaces:

1) Workspace 1. The human protein sequences are extracted
from the SwissProt database using the seqret pro-

gram on minos (see Figure 6).
2) Workspace 2. The file obtained as result of the se-

qret execution is partitioned in three smaller files using
the splitFasta java utility class available on minos
producing the files split1.out, split2.out and
split3.out.

3) Workspace 3. split2.out and split3.out files
are transferred respectively on k3 and k4 nodes.

The next step in the application design is to identify the tool
performing the clustering process. To this aim the user starts
the ontology browsing from the Task taxonomy (see Figure
7) and identifies the proteins-clustering concept
(see Figure 8). From this point following the performed-
BySoftware property, the user finds out that TribeMCL
Tool is a software used for the clustering of proteins (see
Figures 8, 9). The HasInputproperty specifies that TribeMCL
takes as input the results of a BLAST computation, and the
producesOutputproperty states that output is a clustering of
protein families.

Following the HasMetadata link the user finds the URL
of the software metadata file. This file other than locating on
which Grid nodes the tool is installed, contains information
about how to access and use the tool, e.g. TribeMCL tool uses
an all against allBLAST comparison as input to the clustering
computation. Once again the user traverses the ontology to
search the opportune version of the BLAST software needed
in the process. This time the user explores the Software Tool
taxonomy in the direction of the similarity-search-sw
concept and from here identifies the BLAST tool and thus the
blastp program needed.

IEEE Computational Intelligence Bulletin February 2004 Vol.3 No.1



16 Feature Article: M. Cannataro, C. Comito, F. L. Schiavo, and P. Veltri

Fig. 7. Snapshot of the ontology browser

The Data Preprocessing phase consists of four VEGA work
spaces:

1) Workspace 1. The BLAST computation is performed on
the three nodes involved in the application containing
the output files of the first phase (see Figure 10).

2) Workspace 2. The sequence similarity search output files
are parsed using the tribe-parse software installed
on three nodes.

3) Workspace 3. The files created on the nodes k3 and k4
in the Workspace 2 are transferred to the minos node
where the software necessary to construct the Markov
matrix is available.

4) Workspace 4. cat execution to concatenate the files.

Fig. 8. Snapshot of the Ontology Browser

Once the files have been parsed using tribe-parse, it
is possible to build the Markov matrix using the tribe-
matrix program and perform the clustering operation. To
this aim we have organized the Clustering phase into three
VEGA workspaces:

1) Workspace 1. The Markov matrix is built using the tribe-
matrix program installed on minos

2) Workspace 2. The matrix.mci file is transferred to
k3 where the clustering program mcl is available.

3) Workspace 3. mcl execution producing the human.mcl
file.

Finally the Result Visualization phase has been organized
in three VEGA workspaces:

1) Workspace 1. The human.mcl and the protein.index
files are transferred on k4 node

2) Workspace 2. The tribe-families program is exe-
cuted on k4 producing the file human.cluster.

3) Workspace 3. The final result, human.cluster, is
transferred on minos to make it available to the user.

B. Experimental Results

The measurement of the execution times has been done in
two different cases: a) we considered only 30 human proteins,
and b) all the human proteins in the Swiss-Prot database (see
Table II). Comparing the execution times shown in Table II
we note that:

� The Data Selection and Results Visualization phases take
the same time for the two cases, meaning that sequences
extraction, file transfers and results displaying do not
depend on the proteins number to be analyzed.

� In the Pre-processing phase there is a huge difference
between the execution times of the two cases: the BLAST
computations considering all the proteins are computa-
tionally intensive, so we have 8h50’13” in the all proteins
case compared to 2’50” of the 30 proteins case.

� The execution of the mcl clustering program in the Clus-
tering phase is a computationally intensive operation and
consequently takes much more time when all the proteins
have to be analyzed (2h50’28” versus 1’40” ). Note that
the matrix file transferring time is the same for both
applications.

Fig. 9. Snapshot of the Ontology Browser

Fig. 10. Snapshot of VEGA: Workspace 1 of the Pre-processing Phase

February 2004 Vol.3 No.1 IEEE Computational Intelligence Bulletin



Feature Article: Proteus, a Grid based Problem Solving Environment for Bioinformatics: Architecture and Experiments 17

Finally, a sequential version of the application, all human
proteins case, has been executed on the minos host. This com-
putation has taken a total execution time of 26h48’26” com-
pared to the 11h50’53” of the parallel version. Moreover, some
problems occurred in the management of the BLAST output
file by the tribe-parsing program due to the high dimension of
the file (about 2GB).

VI. CONCLUSION AND FUTURE WORK

Novel Bioinformatics applications, and in particular Pro-
teomics applications, will involve different software tools and
various data sets, either produced in a given experiment, or
available as public databases. Such applications will need a
lot of semantic modeling of their basic components and will
require large computational power.

In this paper we presented the design and implementation
of PROTEUS , a Grid-based Problem Solving Environment for
Bioinformatics applications. PROTEUS uses an ontology-based
methodology to model semantics of bioinformatics applica-
tions. The current implementation of PROTEUS , based on the
KNOWLEDGE GRID, has been successfully used to imple-
ment an application of human protein clustering.

We are improving PROTEUS architecture and functionali-
ties by adding workflows methodologies for designing and
monitoring applications [10]. Future works will regard the
full implementation of PROTEUS and its use for the advanced
analysis of proteomic data produced by mass spectrometry, for
the early detection of inherited cancer [15].

TribeMCL Application Execution Time

Data Selection 30 proteins 1’44”

All proteins 1’41”

Pre-processing 30 proteins 2’50”

All proteins 8h50’13”

Clustering 30 proteins 1’40”

All proteins 2h50’28”

Results Visualization 30 proteins 1’14”

All proteins 1’42”

Total Execution 30 proteins 7’28”

Time All proteins 11h50’53”

TABLE II

EXECUTION TIMES OF THE APPLICATION

ACKNOWLEDGMENT

This work has been partially supported by Project ”FIRB
GRID.IT” funded by MIUR. Authors are grateful to Domenico
Talia for several suggestions on the main topic of this paper:
we owe him many ideas on Grid use and applications. Authors

also thank Antonio Massara, for support on the DAM+OIL
ontolgy browser. Finally, authors are particularly grateful to
Antonio Congiusta for discussion and contributions on the first
implementation of PROTEUS on Vega System.

REFERENCES

[1] S. Abiteboul and P. Buneman D. Suciu. Data on the Web. Morgan
Kauffman, 2000.

[2] Vincent Aguilra, Sophie Cluet, Tova Milo, Pierangelo Veltri, and Dan
Vodislav. Views in a Large Scale XML Repository. VLDB Journal,
11(3), November 2002.

[3] Enright A.J., Van Dongen S., and Ouzounis C.A. Tribemcl: An
efficient algorithm for large scale detection of protein families.
http://www.ebi.ac.uk/research/cgg/tribe/.

[4] ApBIONet.org. Asia pacific biogrid initiative.
http://www.ncbi.nlm.nih.gov/.

[5] P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Ap-
proach. MIT Press, 1998.

[6] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-
able ontology Editor for the Semantic Web. In Artificial Intelligence
Conference. Springer Verlag, September 2001.

[7] LION bioscience AG. Srs search data bank system. http://srs.ebi.ac.uk/.
[8] M. Cannataro and C. Comito. A DataMining Ontology for Grid

Programming. In Workshop on Semantics in Peer-to-Peer and Grid
Computing (in conj. with WWW2003), Budapest-Hungary, 2003.

[9] M. Cannataro, C. Comito, A. Congiusta, G. Folino, C. Mastroianni,
A. Pugliese, G. Spezzano, D. Talia, and P. Veltri. Grid-based PSE Toolk-
its for Multidisciplinary Applications. FIRB ”Grid.it” WP8 Working
Paper 2003/10, ICAR-CNR, December 2003.

[10] M. Cannataro, C. Comito, A. Guzzo, and P. Veltri. Integrating Ontology
and Workflow in PROTEUS, a Grid-Based Problem Solving Environ-
ment for Bioinformatics. Technical report, Univ. of Catanzaro, 2003.

[11] M. Cannataro, C. Comito, F. Lo Schiavo, and P. Veltri. PROTEUS: a
Grid Based Problem Solving Environment for Bionformatics. In ISBN
0-9734039-0-X, editor, Workshop on DataMining Ontology for Grid
Programming (KGGI 03), Halifax-canada, 2003.

[12] M. Cannataro, A. Congiusta, D. Talia, and P. Trunfio. A Data Mining
Toolset for Distributed High-performance Platforms. In Wessex Inst.
Press, editor, Data Mining Conference, 2002. Bologna, Italy.

[13] M. Cannataro and D. Talia. KNOWLEDGE GRID An Architecture
for Distributed Knowledge Discovery. Communication of ACM, 46(1),
2003.

[14] Grid Community. Global grid forum. http://www.gridforum.org/.
[15] G. Cuda, M.Cannataro, B. Quaresima, F. Baudi, R. Casadonte, M.C.

Faniello, P. Tagliaferri, P. Veltri, F.Costanzo, and S. Venuta. Proteomic
Profiling of Inherited Breast Cancer: Identification of Molecular Targets
for Early Detection, Prognosis and Treatment, and Related Bioinformat-
ics Tools. In WIRN 2003, LNCS, volume 2859 of Neural Nets, Vietri
sul Mare, 2003. Springer Verlag.

[16] Daml.org. Daml+oil language. http://www.daml.org/2001/03/daml+oil-
index.html.

[17] A.J. Enright, S. Van Dongen, and C.A. Ouzounis. An efficient algorithm
for large-scale detection of protein families. Nucleic Acids, 30(7), 2002.

[18] EUROGRID. Biogrid. http://biogrid.icm.edu.pl/.
[19] NCBI-National Cancer for Biotechnology Information. Blast database.

http://www.ncbi.nih.gov/BLAST/.
[20] NCBI-National Cancer for Biotechnology Information. Entrez, the life

science search engine. http://www.ncbi.nlm.nih.gov/Entrez/Index.html.
[21] NCBI-National Cancer for Biotechnology Information. Genbank dna

sequences. http://www.ncbi.nlm.nih.gov/.
[22] Research Collaboratory for Structural Bioinformatics (RCSB). Protein

data bank (pdb). http://www.rcsb.org/pdb/.
[23] S. Gallopoulos, E.N. Houstis, and J. Rice. Computer as Thinker/Doer:

Problem-Solving Environments for Computational Science. In Compu-
tational Science and Engineering. IEEE, 1994.

[24] Grid.org. Grid life science group. http://forge.gridforum.org/projects/
lsg-rg.

[25] EMBOSS Group. The european molecular biology open software suite.
http://www.emboss.org.

[26] WWW Semantic Group. World wide web semantic group.
http://www.w3c.org/semantic/.

[27] Foster I. and Kesselman C. The Grid: Blueprint for a Future Com-
putingInfrastructure. Morgan Kaufmann Publishers, 1999.

IEEE Computational Intelligence Bulletin February 2004 Vol.3 No.1



18 Feature Article: M. Cannataro, C. Comito, F. L. Schiavo, and P. Veltri

[28] W. E. Johnston. Computational and Data Grids in Large-Scale Science
and Engineering. Future Generation Computer Systems, 18, 2002.

[29] EMBL-European Molecular Biology Laboratory. The swiss-prot protein
database. http://www.embl-heidelberg.de/.

[30] University of Manchester. mygrid. http://mygrid.man.ac.uk/.
[31] Research and Technology Development project (RTD)-granted by the

European Commission. Eurogrid- application testbed for european grid
computing. http://www.eurogrid.org/.

[32] The globus project. http://www.globus.org/.
[33] J. D. Ullman. Principles of Database and Knowledge-Base Systems,

volume I. Computer Science Press, 1988.
[34] D. Walker, O. F. Rana, M. Li, M. S. Shields, and Y. Huang. The

Software Architecture of a Distributed Problem-Solving Environment.
Concurrency: Practice and Experience, 12(15), December 2000.

February 2004 Vol.3 No.1 IEEE Computational Intelligence Bulletin




