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ShapeNet: A Shapelet-Neural Network
Approach for Multivariate Time Series
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Kwok-Pan Chun, and Grace L.H.Wong
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The organization of this supplementary materials is as
follows. Section 1 presents some preliminaries and the prob-
lem statement. The details of the preprocess are given in
Section 2. Section 3 reports the differentiation of the loss
function. Section 4 explains the pseudo-code of multivariate
shapelet transformation. Section 5 introduces the datasets
tested in the full paper.

1 PRELIMINARIES

In this section, we present some preliminaries and the
problem statement. We summarize the notations and their
meanings in Table 1.
Definition 1. Distance between two time series [3]. The

distance of the sequence Tp of the length |Tp| and Tq of
the length |Tq| is denoted as (w.l.o.g. assuming |Tq| ≥
|Tp|),

dist(Tp, Tq) = min
j=1,··· ,|Tq|−|Tp|+1

1

|Tp|

|Tp|∑
l=1

(tqj+l−1 − tpl)2,

(1)
where tqi and tpi are the i-th value of Tp and Tq ,
respectively. �

Intuitively, dist is the distance of the shorter sequence Tp
to the most similar subsequence in Tq , as illustrated with in
Figure 1(a). Then we define Shapelet S as follows.
Definition 2. Shapelet S [9]. A shapelet S of the length |S|

of class Cj , where Cj ∈ C, is a time series subsequence,
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Fig. 1. (a) An illustration of the best match location of a subsequence in
a time series; and (b) An illustration of a multivariate time series dataset
— extracted from Basicmotions [1]

which represents class Cj and discriminates Cj from
other classes, i.e., C \ {Cj}. That is, for all Tj having the
label Cj , dist(Tj , S) is smaller than dist(Tk, S), where Tk
is time series having a label in C \ {Cj}. �

The apparent difference between UTS and MTS is that
there are multiple observations at each timestamp in
MTS. An example of the MTS dataset, called Basicmotions
from [1], is shown in Figure 1(b). While the definition of
shapelet can be naturally extended for MTS, the candidates
of shapelet of MTS are voluminous, which makes the classi-
fication problem more difficult.

Example 1. In Figure 1(b), six variables (V = 6) are recorded
by an accelerometer and a gyroscope. In the dataset,
there are four classes, i.e., |C| = 4, namely standing,
walking, running, and playing badminton. Each class is
accompanied with 10 training cases (instances) and 10
test cases. Thus, the overall number M of instances is 80.
The length (N ) of each time series is 100. It is ineffective
and inefficient to compute all the distances between each
time series and numerous subsequences in the dataset. �

Problem statement. Given a multivariate time series dataset
D, consisting of M multivariate time series instances
T1,T2, · · · ,TM with V variables, this paper investigates a
shapelet-based classifier. �
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Algorithm 1: Shapelet candidate generation

Input: MTS dataset D = TM×V×N , sliding window size
φ

Output: Shapelet candidates Ω
1 for l in φ do
2 Initialize Ωl = ∅ ;
3 for m = {1, 2, · · · ,M} do
4 for v = {1, 2, · · · , V } do
5 for i = {1, 2, · · · , N − l + 1 } do
6 e = T v(i, i+ l − 1) ;
7 Ωl = Ωl + e ;

8 return Ω

2 DATA PREPROCESSING

In this subsection, we present the details for preparing the
multivariate time series data for Mdc-CNN. Specifically, we
present the shapelet candidate generation and the triplets
selection for the unsupervised representation learning.
Shapelet candidate generation. We apply sliding windows
of different sizes to generate abundant shapelet candidates
from the original multivariate time series [7][8]. A variate
label is then annotated to each candidate, for shapelet trans-
formation in Section 4. Thus, there are two labels for each
shapelet candidate: one for the variable and one for the
class of the time series. The shapelet candidate generation
procedure is summarized in Algo. 1.
Triplet selection. The numbers of triplets of some real-world
datasets are large, and it is computationally prohibitive and
sub-optimal to use all the triplets for training. Instead, we
conduct triplet sampling.

Specifically, we construct the triplet tuple (x,xxx+,xxx−),

namely

(
x,

⋃
i∈[1,K+]

(x+i ),
⋃

i∈[1,K−]

(x−i )

)
from shapelet

candidates at the beginning of each iteration as follows.
I. We do the clustering on the candidates by kmeans [5]
to obtain Y clusters. We randomly select one candidate
as the anchor sample x. II. Then, from the same cluster,
top K+ other shapelet candidates nearest to the anchor are
chosen as positive samples xxx+. III. For the negative samples
xxx−, we randomly pick candidates from other clusters in
proportion. The generalization of this procedure to mini-

TABLE 1
Summary of frequently used notations

Notation Meaning
T a time series (t1, t2, · · · , ti, · · · , tN ),

where ti is the i-th value in T
and N is the length of T

D a time series dataset (T1, T2, · · · , TM ),
where M is the number of time series in D

Ta,b a subsequence Ta,b of T , (ta, · · · , tb),
where 1 ≤ a ≤ b ≤ N ,
a and b, the beginning and ending positions

C the label set
V the number of variables/observations
T a MTS T = (T 1, T 2, · · · , T v · · · , TV ),

where T v = (tv1 , t
v
2 , · · · , tvi , · · · , tvN )

D a MTS dataset (T1,T2, · · · ,TM ),
where M is the number of MTS in D

S a set of shapelets

Algorithm 2: Selection of triplet (APN)
Input: Shapelet candidates Ω
Output: (x,xxx+,xxx−)

1
⋃Y
i=1 Ωi ← kmeans(Ω) ;

2 for i = {1, 2, · · · , Y } do // for each cluster

3 {Anchor selection}
4 x← Ωi.Random() ;
5 Ωi = Ωi \ {x} ;

6 {Positive selection}
7 for k = {1, 2, · · · ,K+} do
8 x+ = Ωi.Top(x) ;
9 Ωi = Ωi \ {x+} ;

10 xxx+ = xxx+ ∪ {x+} ;
11 k++ ;

12 {Negative selection in proportion}
13 for j = {1, 2, · · · , Y } \ {i} do
14 for k = {1, 2, · · · ,

⌈
K−

Y−1

⌉
} do

15 x− = Ωj .Random() ;
16 Ωi = Ωi \ {x−} ;
17 xxx− = xxx− ∪ {x−} ;
18 k++ ;
19 return (x,xxx+,xxx−)

cluster	1
cluster	2
cluster	3
cluster	4

time series 
subsequences

clustering

Anchor, Positive, 
Negative samples selection

Fig. 2. An illustration of triplet sampling, black for Anchor, red for Positive
samples, blue for Negative samples [best viewed in color]

batch training is straightforward, and thus, we omit the
details. An example of the triplet selection process is shown
in Figure 2. Algo. 2 presents the pseudo-code of triplet
selection.

Algo. 2 details the pseudo-code of triplet selection. In
Line 1, the shapelet candidates are clustered. This avoids
selecting positive (negative, respectively) samples that are
highly similar to each other, but gives little information for
training. The three parts of Algo. 2 are corresponding to the
selection of anchor (Lines 4−5), and positive and negative
samples (Lines 7−11 and Lines 13−18), respectively.

Example 2. After shapelet candidate generation, we have
some candidates with different lengths (the leftmost
part of Figure 2). For each length, we use a clustering
technique to divide them into several groups (4 groups
in this example). The following processes are the same
for each cluster, and we take cluster 1 as an illustration
in Figure 2. We arbitrarily choose one time series sub-
sequence (shapelet candidate) as the anchor (the solid
black circle). We obtain 8 closest candidates as positive
samples (the solid red circle). Then, negative samples are
selected from other clusters in proportion, specifically,
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7, 1, 3 negative samples (the blue solid hexagon, square,
triangle) in these three clusters, respectively. �

After we train the network with the triplets using the
cluster-wise triplet loss function, we use the network to
embed all the other shapelet candidates.
Analysis. We can find that all elements, namely the anchor,
positives, and negatives in the tuple are selected at each
batch. As the training goes on, our network minimizes the
loss of a batch of triplet tuples at each iteration, which can
be approximately regarded as minimizing all the triplets.
Thus, although we do not consider the loss of all triplets,
the effectiveness of our network can be improved through
sampling in practice.

3 DIFFERENTIATION OF THE LOSS FUNCTION

In order to compute the derivative of Eq. 7 in the full paper,
all the involved functions of the model should be differen-
tiable. Unfortunately, the maximum function of Eq. 4 and
Eq. 5 in the full paper are not continuous and differentiable.
We therefore introduce a differentiable approximation to the
maximum function [2].

For the sake of organizational clarity, we use D+
i,j and

D−i,j to represent ||f(x+i )− f(x+j )||22 and ||f(x−i )− f(x−j )||22,
respectively.

Dpos ≈ D̃pos =

K+∑
i=1

K+∑
j=1

D+
i,j · e

α·D+
i,j

K+∑
i=1

K+∑
j=1

eα·D
+
i,j

(2)

and

Dneg ≈ D̃neg =

K−∑
i=1

K−∑
j=1

D−i,j · e
α·D−

i,j

K−∑
i=1

K−∑
j=1

eα·D
−
i,j

, (3)

where α > 0 in Eq. 2 and Eq. 3 yields a smooth maximum
approximation.

The gradients of overall maximum distance are pre-
sented in Eq. 4 and Eq. 5.

∂D̃pos
∂D+

i,j

=
eα·D

+
i,j (1 + α(D+

i,j − D̃pos))
K+∑
i=1

K+∑
j=1

eα·D
+
i,j

(4)

∂D̃neg
∂D−i,j

=
eα·D

−
i,j (1 + α(D−i,j − D̃neg))

K−∑
i=1

K−∑
j=1

eα·D
−
i,j

(5)

Thus, the gradients of Eq. 7 in the full paper with respect
to f(x), f(xi

+), f(xi
−) are as follows:

∂L
∂f(x)

=

2
K+∑
i=1
||f(x)− f(x+

i )||2

K+∑
i=1
||f(x)− f(x+

i )||22

−
2
K−∑
i=1
||f(x)− f(x−i )||2

K−∑
i=1
||f(x)− f(x−i )||22

(6)

∂L
∂f(xi+)

=

2
K+∑
i=1
||f(x+

i )− f(x)||2

K+∑
i=1
||f(x)− f(x+

i )||22

+

K+∑
j=1

∂D̃pos
∂D+

i,j

· 4||f(x+
i )− f(x+

j )||2

(7)

∂L
∂f(xi−)

=

2
K−∑
i=1
||f(x)− f(x−i )||2

K−∑
i=1
||f(x)− f(x−i )||22

+

K−∑
j=1

∂D̃neg
∂D−i,j

· 4||f(x−i )− f(x−j )||2

(8)

Since Eq. 7 is differentiable, we use back propaga-
tion over the entire neural network based upon mini-
batch stochastic gradient descent together with Adam op-
timizer [6] to optimize our ShapeNet parameters.

Discussions. There are two main advantages of our cluster-
wise triplet loss function over the previous ones [4]. Firstly,
it accelerates convergence and improves stability through
not only selecting both multiple positive and negative
shapelet candidates but also minimizing the distance among
positive/negative shapelet candidates, which have not been
considered before. Secondly, the important property of
shapelets is that a shapelet is a subsequence (the anchor)
of a time series such that most of the time series in one class
(positives) are close to it, while most of the time series from
other classes (negatives) are far away from it.

4 MULTIVARIATE SHAPELET TRANSFORMATION

Algo. 3 is the pseudo-code of multivariate shapelet trans-
formation from final shapelet discovery (Lines 3−15),
and shapelet transformation for the original dataset
(Lines 17−23).

First, we do the clustering among all the new represen-
tations of the shapelet candidates f(Ω) using a standard
clustering algorithm (Line 3). We use (f(Ω))

i to denote the
ith cluster. Then, the nearest one to the centroid in each
cluster is added to the set f(S). In Lines 13−14, the utility
of each candidate (Eq. 8 in the full paper) is used to select
the top-k candidates. We trace f(S) to the original dataset
to retrieve their corresponding original subsequences (Line
15). They form the final shapelets Sk for the dataset, where
|Sk| = k.

Finally, the transformation computes the distance when
the shapelet and the time series that has the same variable
(Line 19). The distance between them is calculated by Eq. 1
(Line 20). After the calculation between one instance in the
original time series dataset and all the shapelets, the MST
representation of the instance is denoted as T̃m (Line 22).
Then, the MST representation of the dataset is D̃ = T̃M×k.

5 DATASETS

A well-known benchmark of MTS datasets, namely UEA
ARCHIVE, was tested. The detailed information of the
datasets can be obtained from [1]1. Table 2 shows the
datasets’ information, settings of the experiments with the
datasets, where Train, Test, Dimension, Length, and Class are
the numbers of time series in the training set and the testing
set, the variable of each instance, the length of time series,
and the number of classes, respectively.

1. http://www.timeseriesclassification.com
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Algorithm 3: Multivariate Shapelet Transformation

Input: MTS dataset D = TM×V×N , f(Ω), k
Output: Shapelets Sk

1 Initialize the priority queue f(S) = ∅,S = ∅ ;

2 {Shapelet discovery}
3
⋃Y
i=1 (f(Ω))i ← kmeans(f(Ω)) ;

4 for i = {1, 2, · · · , Y } do // each cluster
5 min = +∞ ;
6 f(S).push(f(min)) ;
7 foreach f(e) ∈ (f(Ω))i do
8 tmp = ||(f(Ω))i.centroid− f(e)||22 ;
9 if tmp < min then

10 min = tmp ;
11 f(S).pop() ;
12 f(S).push(f(e)) ;
13 Calculate U (Eq. 8 in the full paper) for each candidate

in f(S) ;
14 Sort each candidate based on U and select top-k

candidates, denoted as f(Sk);
15 Retrieve Sk of f(Sk) from D ;

16 {Shapelet transformation}
17 for m = {1, 2, · · · ,M} do
18 for j = {1, 2, · · · , k} do
19 v = Sj .variable ;
20 dm,j = dist(Tvm, Sj) ;
21 T̃m.append(dm,j) ;
22 T̃m =< dm,1, dm,2, · · · , dm,k > ;
23 D̃ = T̃M×k ;
24 return Sk

TABLE 2
Multivariate time series datasets information

Dataset Train Test Dimension Length Class
ArticularyWordRecognition 275 300 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
CharacterTrajectories 1422 1436 3 182 20
Cricket 108 72 6 1197 12
DuckDuckGeese 60 40 1345 270 5
EigenWorms 128 131 6 17984 5
Epilepsy 137 138 3 206 4
ERing 30 30 4 65 6
EthanolConcentration 261 263 3 1751 4
FaceDetection 5890 3524 144 62 2
FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2
InsectWingbeat 30000 20000 200 78 10
JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
LSST 2459 2466 6 36 14
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PEMS-SF 267 173 963 144 7
PenDigits 7494 3498 2 8 10
Phoneme 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8
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