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Background: Multilayer Graphs
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Background: Community Search

Community Search: find densely connected communities
— query-dependent & highly-personalized
— support for different kinds of graphs

Figure Source: S. Malhotra, “Deep Dive Into Graph Traversals,” medium.com, 2017. [Online].



Background: Community Search
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Community search in single layer graphs



Background: Community Search in MLGs
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Community search in multilayer graphs



Background: Applications

* Event planning
* Social marketing
* Recommendation

* Biological data analysis

(a) Subject 1 (b) Subject 2 (c) Subject 3

Identify Functional Systems

Location-based Social Marketing

Data Minin rs
Query Node n PP ~
Data Mining

Author Collaboration Network Paper Citation Network
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e 00 1) failure to identify informative communities with the most layers when a
multilayer graph is associated with a large number of layers;

Related WorkS i:ozii]g;ee:: distinguish the degree of connections in internal layers and

Papers Graph Types Main Ideas
Heterogeneous Multiplex Multilayer Dense Subgraph Random Walk
Information Networks Graphs Graphs Model
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2020
Jiang et al. PVLDB v v
2022
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2023
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2022
Luo et al. KDD 2020 v v v v
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Preliminary: Overview

Hy is a (2,1)-core Hp has the SLC Hcis a FLC

(a) Multilayer Graph MG (b) (k, d)-core Hgy (c) Strong Cross-layer Connectivity (d) Full-connected Multilayer Community (e) Multilayer Community Search



Preliminary: (k, d)-core

Hais a (2,1)-core

e )
Definition 1 ((k, d)-core). Given a multilayer graph MG and

two parameters k,d € Z=Y, a connected two-layer subgraph
H(H;, Hj, Ef) € MG located at layers G; and Gj is (k,d)-
core if and only if H admits the following conditions:

1) Vv € V;(H), the intra-degree at layer G;: degy. (v) > k;

2) Yv € V;(H), the intra-degree at layer G;: deg H; (v) >
k;

3) Yv € V;(H) UV;(H), the inter-degree: deggx (v) > d.)




Preliminary: Strong Cross-layer Connectivity

Hp has the SLC

Definition 2 (Strong Cross-layer Connectivity). Given a mulj
tilayer graph H, we say that H has the strong cross-layer
connectivity between two layers G; and G if and only if there
exists a non-empty two-layer subgraph of (k,d)-core H' C H

at layers G;, G, denoted as H; LN H;.
\ y




Preliminary: Fully-connected Multilayer Connectivity

Hc is a FLC

( )
Definition 3 (Fully-connected Multilayer Community). Given

a multilayer subgraph H C MG and two numbers k,d, we
say that H is a full-layer connected multilayer community if
and only if for every pair of layers i, j € L(H ), there exists a
strong cross-layer connectivity between G; and G, such that,

| Vi,j € L(H), H; 5 H.

J




Preliminary: Multilayer Community Search Problem

MCS-problem is NP-Hard

(Problem 1 (MCS-problem). Given a multilayer graph\
MG(Vir, En, L), a set of query vertices Q C Vi, two
parameters k,d € 7Z2°, the problem of cross-layer community
search in MG (MCS-problem) is to find a connected commu-
nity H C MG satisfying the following four constraints:

1) Query-dependent personalization: Q C V(H);

2) Core-dense internal layers: Yi € L(H), H; is a
connected k-core;

3) Fully-connected cross-layers: Yi,j € L(H), two layers
H; and H; are connected via a (k,d)-core in H;

\_ 4) Cross-layer maximization: |L(H)| is maximized. )




o 00 The additional phase is for relaxed MCS

problem which starting from Q to search path-

Proposed Methodologies: Framework connected multilayer community H.

=Y V3\

1
. )
\'2) y
3

u

\
7 Uy U\
k=2, d=1 W Ws ~\ )
3
\wzmwy

(d) Phase-III:
FLC-based Community Layer Maximization

l
ss@
)

—

ue ] £E:
A Queg] g I
C, A c
p) 3 2 4
he / ) )
REUTCY ey SERaE (b) Phase-I: K-Core Component Extraction (c) Phase-II: Cross-layer (k, d)-Core Verification (e) Path-layer based Community Search

The key idea of MCS framework consists of three phases:
|.  extracting k-core components at all layers;

Il. identifying the strong cross-layer connectivity for any two k-core components at different
layers;

lll. starting from Q to search fully-connected multilayer community H.



Proposed Methodologies: Relaxed pMCS-problem

6eﬁniti0n 4 (Path-layer Connectivity). For a given multilayer

subgraph H C MG, two layers H; and H; with 7,5 € L(H),
i # j, we say that H; and H; has the path-layer connectivity,
denoted as H; o H j» if and only if there exists a path
(Hp,,...,Hp,) such that every pair of layers (H,,, Hp, . ,)
where 1 < x < r, is strong cross-layer connected, i.c.,

H : .
H, <+— H, . ,p1=1,and p,. =j.

Problem 3 (pMCS-problem). Given a multilayer graph MG,
a set of query vertices QQ, two parameters k and d, the problem
of path-layer based multilayer community search is to find a
connected subgraph H C MG satisfying four constraints:

1) H contains all query vertices Q; Luve

. . Grruc
2) Vi€ L(H), H; is a k-core; Tree
3) Vi,j € L(H), the path-layer connectivity H; L H;

always holds;
4) |L(H)| is maximized. /




Proposed Methodologies: MCS vs pMCS
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(c) Phase-II: Cross-layer (k, d)-Core Verification

(e) Path-layer based Community Search
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Proposed Methodologies: (k, d)-core Index

H, is a (2,1)-core

a

H2 U2 Go (. .se ) )
\ /U Definition 5 ((k, d)-coreness). Given two layers G; and G},

et the (k, d)-coreness of a cross-layer edge (u,v) in E;;, denoted

U\ _ 4 as ®((u,v)), is a set of unique (k,d) pairs, such that for any
Wi G pair of (k,d) € ®((u,v)), ®*(u,v)) = d. Moreover, for any

! -/ 03 (k,d) € ®(u,v)), there exists no (k’,d’) € ®((u, v)) such that

s both &' > k and d’ > d hold.
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Experiments: Datasets

Setup: All experiments were performed on a server with an Intel Xeon Gold 6330 2.0 GHz CPU and 1T
RAM, running 64-bit Oracle Linux 8.8.

Datasets types: News groups: 6ng, 9ng
Collaboration networks: DBLP, Citeseer Protein-protein networks: Yeast
Social networks: Twitter, Friendfeed, Venetie Agriculture data: FAO
Dataset n m mi Mg [
DBLP 41,892 661,883 280,707 381,176 2
Twitter 47,280 535,062 445,287 89,775 3
6ng 4,500 29,984 9,000 20,984 5
Ong 6,750 44,980 13,500 31,480 5
Citeseer (CS) 15,533 68,376 56,548 11,828 3
Yeast 4,458 8,500,745 8,473,997 26,748 4
FAO 214 14,456,470 318,346 14,138,124 364
FriendFeed (FF) 510,338 20,204,534 18,673,520 1,531,014 3
Venetie 206 21,310 19,955 1,355 43




Experiments: Comparison on All Algorithms

In; - ST N N N OFm N OB CEm W
10 B S "
@ 102 1 ;
T 10 s B o ; 3
F  1r " b < j
01 o > iz
001 | | , | | ; S :ﬂwﬂm
DBLP Twitter 6ng 9ng CS Yeast FAO FF Venetie
Datasets
Efficiency evaluation on all chosen datasets.
Naive-MCS path-iMCS === RWM ——
iMCS =——=3 Firmtruss ——
102 |
Tl " N7
= T _ <
1+ [ L g
NA | ﬂ 4 e L < ﬂ + & 1 [
DBLP Twitter 6ng 9ng CS Yeast FAO FF Venetie
Datasets

Naive-MCS

path-MCS

MCS === path-iMCS ——

iMCS ——— Firmtruss 0

RWM

7z
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RWM: a random-walk-based approach for local
multilayer community search [Luo et al. KDD 2020].
FirmTruss: a truss-based community search approach in

multiplex networks [Behrouz et al. PVLDB 2022].

Naive-MCS: our baseline method for full-layered
community enumerations.

Path-MCS: the path-layer community search algorithm.
MCS: our fast approach for full-layer community search.
Path-iMCS: our index-based Path-MCS.

IMCS: our index-based improved approach of MCS.



Experiments: Scalability Evaluation
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Experiments: Index Quality Comparison

A COMPARISON OF INDEX SIZE AND CONSTRUCTION TIME.

DBLP Twitter 6ng 9ng CS Yeast FAO FF Venetie

Graph Size (MB) 899 943 0377 0.59 1.71 117 211 357 0.286

(k, d)-core Index Size (MB) 4.15 7.32 0.25 0.376 1.1 336 523 307 0.417
FirmTruss Index Size (MB) fNA NA NA NA NAJ1380 2600 2670 2.8

(k, d)-core-indexing Time (h) 3.63 3.44 0.0050.009 1 29.02 4.27 98.39 0.001
FirmTruss-indexing Time (h) | NA NA NA NA NAJ15.54 0.71 11.55 0.008




Conclusion

« We propose a novel dense subgraph of (k, d)-core in multilayer graphs, strengthening the
connections in internal layers and cross-layers.

- Based on (k, d)-core, we formulate our new problem of multilayer community search (MCS) to
maximize the number of cross-layers and prove the MCS problem to be NP-hard.

«  We propose an exact enumeration algorithm and a bound-and-search method, which reduces the
full-layer connectivity to path-layer connectivity to accelerate efficiency.

« In addition, we design a (k, d)-core index to store all (k, d)-core information and propose an
index-based algorithm to speed up community search.

« We conduct extensive experiments to evaluate the effectiveness and efficiency of our algorithms
on nine real-world datasets.
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