

Efficient Cross-layer Community Search in Large Multilayer Graphs

Longxu Sun, Xin Huang, Zheng Wu, Jianliang Xu

Hong Kong Baptist University

Roadmap

- Background
- Related Work
- Preliminaries
- Proposed Methodology
- Experiments
- Conclusions

Follow My Slides

Background: Multilayer Graphs

Background: Multilayer Graphs

Background: Community Search

Community Search: find densely connected communities

- query-dependent & highly-personalized
- support for different kinds of graphs

Background: Community Search

Background: Community Search in MLGs

Background: Applications

- Event planning
- Social marketing
- Recommendation
- Biological data analysis

Location-based Social Marketing

1) failure to identify informative communities with the most layers when a multilayer graph is associated with a large number of layers;
 2) failure to distinguish the degree of connections in internal layers and cross-layers.

Papers	Gra	ph Types	Main Ideas		
	Heterogeneous Information Networks	Multiplex Graphs	Multilayer Graphs	Dense Subgraph Model	Random Walk
Fang et al. PVLDB 2020	\checkmark			\checkmark	
Jiang et al. PVLDB 2022	\checkmark			\checkmark	
Zhou et al. PVLDB 2023	\checkmark			\checkmark	
Behrouz et al. PVLDB 2022		\checkmark		\checkmark	
Luo et al. KDD 2020		✓ ✓	\checkmark		\checkmark
Ours	\checkmark	\checkmark	\checkmark	\checkmark	

Preliminary: Overview

Preliminary: (k, d)-core

Definition 1 ((k, d)-core). Given a multilayer graph MG and two parameters $k, d \in \mathbb{Z}^{\geq 0}$, a connected two-layer subgraph $H(H_i, H_j, E_{ij}^H) \subseteq$ MG located at layers G_i and G_j is (k, d)core *if and only if* H admits the following conditions:

- ∀v ∈ V_i(H), the intra-degree at layer G_i: deg_{Hi}(v) ≥ k;
 ∀v ∈ V_j(H), the intra-degree at layer G_j: deg_{Hj}(v) ≥ k;
 k;
- 3) $\forall v \in V_i(H) \cup V_j(H)$, the inter-degree: $\deg_{E_{ij}^H}(v) \ge d$.

Preliminary: Strong Cross-layer Connectivity

Definition 2 (Strong Cross-layer Connectivity). Given a multilayer graph H, we say that H has the strong cross-layer connectivity between two layers G_i and G_j if and only if there exists a non-empty two-layer subgraph of (k, d)-core $H' \subseteq H$ at layers G_i , G_j , denoted as $H_i \xleftarrow{H} H_j$.

Preliminary: Fully-connected Multilayer Connectivity

Definition 3 (Fully-connected Multilayer Community). Given a multilayer subgraph $H \subseteq$ MG and two numbers k, d, we say that H is a full-layer connected multilayer community *if* and only *if* for every pair of layers $i, j \in \mathcal{L}(H)$, there exists a strong cross-layer connectivity between G_i and G_j , such that, $\forall i, j \in \mathcal{L}(H), H_i \xleftarrow{H} H_j$.

Preliminary: Multilayer Community Search Problem

V₃ G₁ Hd Query U3 G2 G₃ W1 W₅ W4 G₄

MCS-problem is NP-Hard

Problem 1 (MCS-problem). Given a multilayer graph $MG(V_M, E_M, \mathcal{L})$, a set of query vertices $Q \subseteq V_M$, two parameters $k, d \in \mathbb{Z}^{\geq 0}$, the problem of cross-layer community search in MG (MCS-problem) is to find a connected community $H \subseteq MG$ satisfying the following four constraints:

- 1) Query-dependent personalization: $Q \subseteq V(H)$;
- 2) Core-dense internal layers: $\forall i \in \mathcal{L}(H)$, H_i is a connected k-core;
- 3) Fully-connected cross-layers: $\forall i, j \in \mathcal{L}(H)$, two layers H_i and H_j are connected via a (k, d)-core in H;
- 4) Cross-layer maximization: $|\mathcal{L}(H)|$ is maximized.

 $\bullet \bullet \bullet \bullet$

Proposed Methodologies: Framework

The additional phase is for relaxed MCS problem which starting from Q to search pathconnected multilayer community H.

(b) *Phase-I:* K-Core Component Extraction (c) *Phase-II:* Cross-layer (k, d)-Core Verification (e) Path-layer based Community Search

The key idea of MCS framework consists of three phases:

- I. extracting k-core components at all layers;
- II. identifying the strong cross-layer connectivity for any two k-core components at different layers;
- III. starting from Q to search fully-connected multilayer community H.

Proposed Methodologies: Relaxed pMCS-problem

Definition 4 (Path-layer Connectivity). For a given multilayer subgraph $H \subseteq MG$, two layers H_i and H_j with $i, j \in \mathcal{L}(H)$, $i \neq j$, we say that H_i and H_j has the *path-layer connectivity*, denoted as $H_i \stackrel{H}{\longleftrightarrow} H_i$, if and only if there exists a path (H_{p_1},\ldots,H_{p_r}) such that every pair of layers $(H_{p_x},H_{p_{x+1}})$ where $1 \le x < r$, is strong cross-layer connected, i.e., $H_{p_x} \stackrel{H}{\longleftrightarrow} H_{p_{x+1}}, p_1 = i, \text{ and } p_r = j.$

Problem 3 (pMCS-problem). Given a multilayer graph MG, a set of query vertices Q, two parameters k and d, the problem of path-layer based multilayer community search is to find a connected subgraph $H \subseteq MG$ satisfying four constraints:

1) H contains all query vertices Q; 2) $\forall i \in \mathcal{L}(H), H_i \text{ is a } k\text{-core};$

Tree Structure 3) $\forall i, j \in \mathcal{L}(H)$, the path-layer connectivity $H_i \stackrel{H}{\longleftrightarrow} H_j$

always holds; is maximized.

Proposed Methodologies: MCS vs pMCS

(a) Multilayer Graph MG

(b) Phase-I: K-Core Component Extraction (c) Phase-II: Cross-layer (k, d)-Core Verification

(e) Path-layer based Community Search

 $\bullet \bullet \bullet \bullet$

Proposed Methodologies: (k, d)-core Index

Definition 5 ((k, d)-coreness). Given two layers G_i and G_j , the (k, d)-coreness of a cross-layer edge (u, v) in E_{ij} , denoted as $\Phi((u, v))$, is a set of unique (k, d) pairs, such that for any pair of $(k, d) \in \Phi((u, v))$, $\Phi^k((u, v)) = d$. Moreover, for any $(k, d) \in \Phi((u, v))$, there exists no $(k', d') \in \Phi((u, v))$ such that both $k' \ge k$ and $d' \ge d$ hold.

Experiments: Datasets

Setup: All experiments were performed on a server with an Intel Xeon Gold 6330 2.0 GHz CPU and 1T RAM, running 64-bit Oracle Linux 8.8.

Datasets types:		News groups:	6ng, 9ng	
Collaboration networks:	DBLP, Citeseer	Protein-protein networks:	Yeast	
Social networks:	Twitter, Friendfeed, Venetie	Agriculture data:	FAO	

Dataset	n	m	m_l	m_s	l
DBLP	41,892	661,883	280,707	381,176	2
Twitter	47,280	535,062	445,287	89,775	3
6ng	4,500	29,984	9,000	20,984	5
9ng	6,750	44,980	13,500	31,480	5
Citeseer (CS)	15,533	68,376	56,548	11,828	3
Yeast	4,458	8,500,745	8,473,997	26,748	4
FAO	214	14,456,470	318,346	14,138,124	364
FriendFeed (FF)	510,338	20,204,534	18,673,520	1,531,014	3
Venetie	206	21,310	19,955	1,355	43

Experiments: Comparison on All Algorithms

Quality evaluation on all chosen datasets.

RWM: a random-walk-based approach for localmultilayer community search [Luo et al. KDD 2020].FirmTruss: a truss-based community search approach in
multiplex networks [Behrouz et al. PVLDB 2022].

- Naive-MCS: our baseline method for full-layered community enumerations.
- Path-MCS: the path-layer community search algorithm.
 - **MCS**: our fast approach for full-layer community search.
- Path-iMCS: our index-based Path-MCS.
- iMCS: our index-based improved approach of MCS.

Experiments: Scalability Evaluation

Efficiency evaluation by varying parameters (k, d) on Twitter.

Efficiency evaluation by varying parameters (k, d) on DBLP.

Efficiency evaluation by varying |L(MG)|.

Experiments: Index Quality Comparison

A COMPARISON OF INDEX SIZE AND CONSTRUCTION TIME.

	DBLP	Twitter	6ng	9ng	CS	Yeast	FAO	FF	Venetie
Graph Size (MB)	8.99	9.43	0.377	0.59	1.71	117	211	357	0.286
(k, d)-core Index Size (MB)	4.15	7.32	0.25	0.376	1.1	336	523	307	0.417
FirmTruss Index Size (MB)	NA	NA	NA	NA	NA	1380	2600	2670	2.8
(k, d)-core-indexing Time (h)	3.63	3.44	0.005	0.009	1	29.02	4.27	98.39	0.001
FirmTruss-indexing Time (h)	NA	NA	NA	NA	NA	15.54	0.71	11.55	0.008

Conclusion

- We propose a novel dense subgraph of **(k, d)-core** in multilayer graphs, strengthening the connections in internal layers and cross-layers.
- Based on (k, d)-core, we formulate our new problem of multilayer community search (MCS) to maximize the number of cross-layers and prove the MCS problem to be NP-hard.
- We propose an exact enumeration algorithm and a bound-and-search method, which reduces the *full-layer connectivity* to *path-layer connectivity* to accelerate efficiency.
- In addition, we design a **(k, d)-core index** to store all (k, d)-core information and propose an index-based algorithm to speed up community search.
- We conduct extensive experiments to evaluate the effectiveness and efficiency of our algorithms on **nine** real-world datasets.

THANK YOU

Q&A

VIEW MY SLIDES

LEAVE YOUR COMMENT

VIEW MY HOMEPAGE