

Community Search
over Big Graphs

Xin Huang
Laks V.S. Lakshmanan
Jianliang Xu

Series ISSN: 2153-5418

store.morganclaypool.com

Series Editor: H.V. Jagadish, University of Michigan
Founding Editor: M. Tamer Özsu, University of Waterloo

Community Search over Big Graphs
Xin Huang, Hong Kong Baptist University
Laks V.S. Lakshmanan, University of British Columbia
Jianliang Xu, Hong Kong Baptist University

Communities serve as basic structural building blocks for understanding the organization
of many real-world networks, including social, biological, collaboration, and communication
networks. Recently, community search over graphs has attracted significantly increasing
attention, from small, simple, and static graphs to big, evolving, attributed, and location-based
graphs.
 In this book, we first review the basic concepts of networks, communities, and various
kinds of dense subgraph models. We then survey the state of the art in community search
techniques on various kinds of networks across different application areas. Specifically, we discuss
cohesive community search, attributed community search, social circle discovery, and geo-social
group search. We highlight the challenges posed by different community search problems. We
present their motivations, principles, methodologies, algorithms, and applications, and provide
a comprehensive comparison of the existing techniques. This book finally concludes by listing
publicly available real-world datasets and useful tools for facilitating further research, and by
offering further readings and future directions of research in this important and growing area.

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research
and development topics, published quickly, in digital and print formats.

H
U

A
N

G
 • LA

K
SH

M
A

N
A

N
 • X

U

 C
O

M
M

U
N

IT
Y SE

A
R

C
H

 O
VER

 BIG
 G

R
A

PH
S

 M
O

R
G

A
N

 &
 C

LA
Y

P
O

O
L H.V. Jagadish, Series Editor

9

C H A P T E R 2

Cohesive Subgraphs
In many real applications where information is modeled using graphs, communities are formed
by a set of similar entities that are densely connected with certain relationships. Massive net-
works can often be understood and analyzed in terms of these communities [165]. In the lit-
erature, several different models for cohesive (dense) subgraphs and communities have been
proposed, which we will discuss in Chapters 3–6. Specifically, dense subgraphs of various
kinds are often used as building blocks of communities. In this chapter, we will review vari-
ous kinds of dense/cohesive subgraphs, including clique [31, 45, 166, 182], quasi-clique [162],
k-DBDSG [132], k-clan [132], k-club [132], k-plex [165], k-core [19, 44], k-truss [50, 165], k-
ecc [38], and densest subgraphs [15, 106]. We also investigate their relationships and compare
their structural properties using illustrative examples.

2.1 COMMUNITY SEARCH AND COHESIVE SUBGRAPHS
This book focuses on the community models based on cohesive subgraphs. Unlike community
detection, there are three desirable properties for community search models: cohesive structure
for high-quality communities, support for easy querying and personalization, and fast algorithms
for efficient query processing. The detailed reasons are as follows.

• In real-world applications, communities usually have many kinds of topological structures
in different shapes. This brings significant challenges for developing a perfect model to fit
all of the variously shaped community structures. However, the intuition that community
search shares with community discovery is that community members often have densely
connected relationships with members of the same community, and have seldom connec-
tions with others beyond this community. This observation naturally motivates the model
of community as dense subgraphs. In addition, diameter and connectivity have been con-
sidered as important features for modeling communities. Small diameter and high connec-
tivity are proposed as criteria for good communities in [61, 81]. Small diameter guarantees
that any two vertices in a community can be found within a short distance of each other.
High connectivity ensures the connectivity between vertices in the community is strong
and robust.

• Besides good structural properties, high efficiency is highly desirable for community
search. This is because community search, being query driven, should be answered in
an efficient way, so as to allow the user to interactively modify her query and explore

10 2. COHESIVE SUBGRAPHS
the resulting communities found. There exist several classical dense subgraphs, includ-
ing clique [31], quasi-clique [162], k-DBDSG [132], k-clan [132], k-club [132], and k-
plex [165]. In principle, any of these dense subgraphs could be used as a basis for com-
munity search. However, one drawback of these dense subgraph models is that they are
NP-hard to discover. Consequently, the search of communities based on such dense sub-
graphs given a query, is inefficient and intractable for real-time query processing. Recently
proposed dense subgraphs k-core [19, 44] and k-truss [50, 165] make real-time retrieval
of communities possible, since they can be computed in polynomial time. Moreover, us-
ing a single parameter of k, we can get a hierarchical community structure of a query
vertex [89]. Polynomial-time complexity for computing cohesive subgraphs of k-core and
k-truss is a game-changer in the field of community search, which attracts significant
interest in the study of problems related to community search in social and information
networks [18, 55, 64, 65, 89, 93, 96, 122–124, 157, 199].

In the following sections, we first introduce the basic concepts of graph theory in Sec-
tion 2.2. Then, we introduce various kinds of classical dense subgraphs, which are NP-hard to
compute, in Section 2.3. Next, we present the definitions of k-core and k-truss, recently widely
used in community search, which have a polynomial-time complexity, in Section 2.4. We not
only introduce their concepts but also their decomposition algorithms, which are particularly
useful in building indexes for speeding up the query processing. Finally, more dense subgraphs
including the densest subgraph and k-ecc are introduced in Section 2.5.

2.2 NOTATIONS AND NOTIONS
We start with a brief introduction of the notations and notions used in this book.

2.2.1 GRAPHS AND SUBGRAPHS
A graph G.V; E/ is a set of nodes (or vertices) V together with a set of lines (edges) E. Any
line of E connects a pair of nodes, say u, v: we denote this as an edge .u; v/ 2 E and say that u

and v are adjacent to each other in G. We also denote the number of vertices and the number of
edges, respectively, as n D jV j and m D jEj. A self-loop is an edge connecting a node to itself.
Unless otherwise specified, all graphs discussed in this book are simple graphs: finite, non-empty,
undirected, and having no self-loops. In addition, a complete graph Kp is a graph of p vertices,
where every pair of vertices is adjacent to each other.

Figure 2.1 shows an example of graph G.V; E/ with 10 nodes and 14 edges, where jV j D
jfv1; v2; : : : ; v10gj D 10 and jEj D 14. As we can see, G is a simple and undirected graphwithout
self-loops.

A graph H D .V .H/; E.H// is a subgraph of graph G.V; E/ denoted H � G, iff V.H/ �

V and E.H/ � E. In addition, when a graph H is a subgraph of graph G, we say that graph G

is a supergraph of H . Furthermore, we give the definition of induced subgraph as follows.

2.2. NOTATIONS AND NOTIONS 11

v1 v2

v5

v4

v8

v9

v3
v6

H2 H1

v7
v10

Figure 2.1: An example of graph G with 10 nodes and 14 edges. Two subgraphs H1 and H2 of
G.

Definition 2.2.1 (Induced Graph) Given a graph G.V; E/ and a vertex set S � V , the induced
subgraph of G by S is GS D .S; ES / where the edge set ES D f.v; u/ W v; u 2 S; .v; u/ 2 Eg.

In addition, we define the maximality using supergraphs. A subgraph H � G satisfying a given
property is maximal provided no proper supergraph of H , that is also a subgraph of G, satisfies
that property.

In Figure 2.1, the subgraph H1 of G consists of 4 vertices and 6
edges, i.e., the vertex set V.H1/ D fv7; v8; v9; v10g, and the edge set E.H1/ D

f.v7; v8/; .v7; v9/; .v7; v10/; .v8; v9/; .v8; v10/; .v9; v10/g. As we can see, for any pair of
vertices in H1, there exists an edge connecting them, indicating H1 is a complete subgraph of 4
nodes, i.e., a 4-clique. In addition, since we cannot find any supergraph H 0 containing H1 to
be a clique, H1 is the maximal complete subgraph K4 of G.

2.2.2 DEGREE AND NEIGHBORS
The set of neighbors of a vertex v in graph G is denoted by NG.v/, i.e., NG.v/ D fu 2 V W

.v; u/ 2 E.G/g. The degree of a vertex v in G is the number of neighbors (vertices) adjacent to
v, denoted by dG.v/ D jNG.v/j. When the context is obvious, we drop the subscript and denote
the set of neighbors as N.v/ and the degree as d.v/. We use dmax D maxv2V d.v/ to denote the
maximum vertex degree in G. Given a subgraph H of G, we use NH .v/ to represent the set of
neighbors to v in the subgraph H only. Similar extensions may be made to degree, path, and
other definitions below.

For example, in the graph G shown in Figure 2.1, vertex v7 has 4 neighbors N.v7/ D

fv6; v8; v9; v10g, thus the degree of v7 is 4 as d.v7/ D 4. In the subgraph H1 of G, v7 has 3
neighbors as NH1

.v7/ D fv8; v9; v10g and dH1
.v7/ D 3.

2.2.3 PATH, CYCLE, CONNECTIVITY, AND DIAMETER
A path, connecting two vertices v; u of a subgraph H , consists of a series of vertices v, w1,
w2, …, wl�1, u 2 V.H/, such that .v; w1/ 2 E.H/, .wi ; wiC1/ 2 E.H/ for 1 � i < l � 1, and
.wl�1; u/ 2 E.H/. The length l of a path is given by the number of its edges.

12 2. COHESIVE SUBGRAPHS
A cycle Cl of length l is a path of length l , where u D v. A triangle in G is a cycle of length

3. We denote a triangle involving vertices u; v; w 2 V as 4uvw .
Consider the graph G in Figure 2.1 and two vertices v8; v9, one path P connecting v8 and

v9 can be P D< v8; v7; v9 > which consists of two edges .v8; v7/ and .v7; v9/. The length of P

is 2. Moreover, the cycle formed by vertices v7, v8, v9 is a triangle 4v7v8v9
.

A subgraph H of G is connected if every pair of vertices u; v 2 H is connected by a path
in H . W.l.o.g we assume in this book that the graph G we consider is connected. Note that this
implies that m � n � 1.

Furthermore, we give the definition of the shortest path. For two nodes u; v 2 G, we
denote by distG.u; v/ the length of the shortest path between u and v in G, where distG.u; v/ D

C1 if u and v are not connected. Based on the concept of the shortest path, we can define
graph diameter as follows. The diameter of a graph G is defined as the maximum length of
a shortest path in G, i.e., diam.G/ D maxu;v2GfdistG.u; v/g. One well-known relation will be
frequently used in this book, that is, if H is a subgraph G, then for every pair of vertices v; u 2 H ,
distG.u; v/ � distH .u; v/. In other words, the distance between any two vertices in a subgraph
of G cannot be shorter than their distance in G itself.

Continuing the above example in Figure 2.1, we know that the shortest path between v8

and v9 is the edge .v8; v9/ of length as 1, thus the path P D< v8; v7; v9 > is not the short-
est path as jP j D 2. Considering the graph G, the shortest path between v1 and v10 has 5
edges, distG.v1; v10/ D 5, which is the longest shortest path in G. As such, the diameter of G is
diam.G/ D maxv;u2GfdistG.v; u/g D 5. In addition, consider the subgraph H D H1 [H2, the
distance between v2 and v7 in graph H is distH .v2; v7/ D C1.

2.3 CLASSICAL DENSE SUBGRAPHS
A community (group) is usually regarded as a set of members that are interconnected with dense
substructures. For example, in social networks, there are several concepts associated with com-
munities that indicate various types and configurations of social groups, such as social circles,
peer groups, coteries, and so on [132]. To effectively represent such more or less closely knit
groups, several definitions of subgraphs are developed with the help of graph theory and net-
work science. A well-known concept of peer group is the clique: a group all members of which
are in contact with, or are friends with, or know each other. However, relaxed concepts of cliques
are also necessary to denote less loosely knit, yet significantly homogeneous social groups, e.g.,
for every pair of members, even if they are not in mutual contact, have multiple common third
contacts [132].

There is a large body of work on mining dense subgraph patterns, including clique [31, 45,
166, 182], quasi-clique [162], k-DBDSG, k-clan, k-club, k-core [19, 44], k-truss [50, 165, 192],
dense neighborhood graph [168], to name a few. In the following, we first introduce cliques and
their relaxed variants.

2.3. CLASSICAL DENSE SUBGRAPHS 13
2.3.1 CLIQUE AND QUASI-CLIQUE
We start with the well-known notion of k-cliques.

Definition 2.3.1 (k-Clique) A k-clique is a complete subgraph of k vertices, where every pair of
vertices is adjacent.

A k-clique is the densest graph among all k-node graphs. Let G be the graph shown in
Figure 2.2, with subgraphs H1 (Figure 2.2a) and H2 (Figure 2.2b). H1 is a 4-clique, while H2

misses being one by just one edge. Nevertheless, the vertices of H2 form a closely knit cohesive
subgraph. Another dense subgraph called -quasi-k-clique has been introduced for capturing
subgraphs that are “close” to being cliques, based on the notion of edge density, defined next.

v2

v5

v4

v8

v9

v3

(a) H1 (b) H2

v7 v10

Figure 2.2: Examples of k-clique as H1 and -quasi-k-clique as H2 where k D 4 and D 0:8.

Definition 2.3.2 (Edge Density) Given a graph G.V; E/, the edge density of G is defined as
den.G/ D 2jE j

jV j.jV j�1/
.

By tuning the edge density of the graph using a parameter , a generalization of k-clique,
called -quasi-k-clique is defined as follows.

Definition 2.3.3 (-Quasi-k-Clique) A -quasi-k-clique is a graph of k vertices with at least
b k.k�1/

2
c edges where 0 � � 1.

In Figure 2.2, H2 has 4 vertices and 5 edges, and the edge density of H2 is den.H2/ D
2�5

4�.4�1/
D

5
6
D 0:833. Thus, H2 is a 0:8-quasi-4-clique where den.H2/ � 0:8.

Clique and quasi-clique enumeration methods include the classical algorithm [31], the
external-memory H �-graph algorithm [45], redundancy-aware clique enumeration [166], max-
imum clique computation using MapReduce [182], and optimal quasi-clique mining [162].

2.3.2 k-DBDSG, k-CLAN, k-CLUB, AND k-PLEX
Other kinds of dense subgraphs proposed in the literature include k-DBDSG, k-clan, k-club,
and also k-plex.

14 2. COHESIVE SUBGRAPHS
Definition 2.3.4 (k-distance bounded dense subgraph [132]) A k-distance bounded dense
subgraph (k-DBDSG) is a loose definition of a clique on n vertices. Specifically, a k-DBDSG of a
graph G is a maximal subgraph H � G such that every pair of vertices u; v 2 V.H/ is at most a
distance k apart in G, i.e., distG.u; v/ � k, 8u; v 2 V.H/.

Note that, due to the maximality of H , for each node x 2 V.G/ n V.H/, there exists a
node v 2 V.H/ with distG.x; v/ > k.

From this definition, it can be seen that the k-DBDSG is a global notion, in that it is based
on the overall structure of the network, i.e., based on the entire graph and reflected in its distance
matrix. We note that k-DBDSG was originally defined in [132], where the term n-clique was
used to describe it, where n is the bound on the distance between pairs of nodes. Owing to the
obvious confusion this may cause with the standard notion of k-clique, we have changed the
terminology to k-DBDSG.

Notice that the bound k is on the distance between vertices of H , where the distance is
measured in the original graph G. Consequently, the diameter of H may exceed k. For example,
consider the graph G in Figure 2.3a, and the two subgraphs H1 and H2 of G presented in
Figures 2.3b and 2.3c. First, both subgraphs are 2-DBDSG’s, as distG.u; v/ � 2 holds for any pair
of vertices u; v in H1 and H2. However, the diameter of H1 is 3 as the shortest path connecting
v4 and v5 passes through vertices v2 and v3. On the other hand, the diameter of H2 is 2.

v6

v1

v1

v4 v5

v2 v3

v4 v5

v2 v3

v1

v4

v2 v3

v4 v5

v2

v6

v3

(a) Graph G (b) Graph H1 (c) Graph H2 (d) Graph H3

Figure 2.3: Several examples of k-DBDSGs, k-clans, k-clubs, and also k-plexes. Here k D 2.
H1 is a k-DBDSG of G, but not a k-clan. H2 is a k-DBDSG, a k-clan, a k-club, and also a 3-plex
with 5 vertices. H3 is a k-club, but not a k-DBDSG or a k-clan.

Definition 2.3.5 (k-clan [132]) A k-clan H of a graph G is a k-DBDSG of G such that for every
pair of vertices v; u in H , the distance in H is at most k, i.e., distH .v; u/ � k.

In the above example, H1 is not a 2-clan, since the distance distH1
.v4; v5/ D 3 > 2. In

contrast, H2 is a k-clan and k-DBDSG for k D 2. Notice that since a k-clan is a 2-DBDSG, it is
required to be maximal.

2.3. CLASSICAL DENSE SUBGRAPHS 15
Consequently, a k-clan H of G satisfies the following conditions:
(1) for all vertices u; v 2 V.H/: distH .u; v/ � k; and
(2) for all vertices w 2 V.G/ n V.H/, there exist a vertex u 2 V.H/ with distG.u; w/ > k.
It is easy to see that a k-clan is a stronger notion than a k-DBDSG. By definition, k-clans

are k-DBDSGs of diameter at most k in H .

Definition 2.3.6 (k-club [132]) A k-club H of a graphG is a maximal subgraph ofG with diameter
at most k, i.e., diam.H/ � k.

k-clan v.s. k-club While the definitions of k-club and k-clan look very similar, their maximality
conditions are issued on different distance constraints.The distance function of k-club focuses on
the local subgraph H , which requires the maximal subgraph achieving distH .v; u/ � k. On the
other hand, a k-clan H is first a k-DBDSG by definition. Thus, the distance function of k-clan
focuses on the global graph G, which requires the maximal subgraph achieving distG.v; u/ � k.
The following example shows the difference of k-clan and k-club.

Example 2.3.1 Consider the subgraph H3 in Figure 2.3d of graph G in Figure 2.3a. H3 is a k-club
(k=2), since diam.H3/ D 2 and there exists no supergraphH 0 ofH3 with diam.H 0/ D 2. On the other
hand, H3 is not a 2-DBDSG (k=2) since it violates the maximality constraint; as a supergraph of H3,
H1 is a 2-DBDSG (k=2). Hence, H3 is not k-clan (k=2) by definition.

The notion of k-plex relaxes the degree of each vertex within a clique of n vertices from
.n � 1/ to .n � k/ [165].

Definition 2.3.7 (k-plex) A k-plex of size n is a subgraph H of size n where each vertex is adjacent
to at least n � k vertices in H .

For example, H2 in Figure 2.3c is a 3-plex of size 5, as each vertex has at least .5 � 3/ D 2

neighbors in H2.
Comparisons andAlgorithms.All the above-mentioned cohesive subgraphs are relatively small
substructures in a graph. The basic ones are the cliques (i.e., complete subgraphs) and maximal
cliques. As the definition of clique is often too rigid, more relaxed forms of cohesive subgraphs
have been studied. The k-DBDSG relaxes the distance between any two vertices in a clique from
1 to k. The k-clan is the same as the k-DBDSG except for imposing a constraint on the diameter.
The k-club removes the k-DBDSG requirement from the k-clan. The k-plex relaxes the degree
of each vertex within a clique of n vertices from n � 1 to n � k. The quasi-clique can be either
a relaxation on the density or the degree. However, the computation of all the above cohesive
subgraphs is NP-hard [132, 162, 165].

The algorithms typically need to enumerate the subgraphs corresponding to all subsets
of vertices for finding all maximal cliques, quasi-cliques, k-DBDSGs, k-clans, k-clubs, and k-
plexes [132].

16 2. COHESIVE SUBGRAPHS

2.4 k-CORE AND k-TRUSS
In this section, we introduce two common dense subgraph definitions of k-core and k-truss.
In addition, we present algorithms for core decomposition and truss decomposition on graphs,
which can efficiently find k-core and k-truss for any possible value k.

2.4.1 k-CORE
The k-core of a graph G is the largest subgraph of G in which every vertex is adjacent to at least
k other vertices within the subgraph. In other words, we can define k-core as follows.

Definition 2.4.1 [K-Core] Given a graph G and an integer k, a k-core H of G is the largest sub-
graph such that 8v 2 V.H/, degH .v/ � k.

If a vertex v is present in the k-core subgraph, but not in the .k C 1/-core subgraph, we
say the core number of v is k. We next give the formal definition of core number.

Definition 2.4.2 [Core Number]The core number of a vertex v 2 V , denoted '.v/, is the maximum
integer k for which there exists a k-core of G that contains v.

We denote the maximum core number of any vertex in a graph as cmax. Based on the core
number of vertices, we can partition vertices into different classes. The k-class of G, Ψ.k/, is
defined as Ψ.k/ D fv W v 2 V; '.v/ D kg.

We illustrate the concepts of k-core and k-class using an example. Consider the graph
G in Figure 2.4. The whole graph G is a 1-core, since each vertex has degree at least 1. The
1-class Ψ.1/ D fv1g, 2-class Ψ.2/ D fv2; v3; v4; v5; v6g, and 3-class Ψ.3/ D fv7; v8; v9; v10g. In
this example, the largest core number of any vertex is cmax D 3. The 3-core is formed by the
subgraph of G induced by Ψ.3/, and the core number of vertex v7 is '.v7/ D 3.

1 - Core

2 - Core

3 - Core

v1

v4 v9

v5 v8

v3v2 v6 v7 v10

Figure 2.4: An example of k-core in graph G where 1 � k � 3. There exists no 4-core in G.

Core decomposition. The problem of core decomposition of a graph G is to find all possible
k-cores of G, for k D 0; 1; : : : ; cmax, where cmax is the maximum core number of any vertex

2.4. k-CORE AND k-TRUSS 17

Algorithm 2.1 Core Decomposition
Input: G D .V; E/

Output: '.v/ for each v 2 V

1: sort the vertices in G in ascending order of their degree;
2: while (G is not empty)
3: let d be the minimum vertex degree in G;
4: while (there exists a vertex v with degree of at most d)
5: '.v/ d ;
6: remove v and all edges incident to v from G;
7: update the vertex degrees and reorder the remaining vertices in ascending order of their degree;
8: return '.v/ for each v 2 V ;

in G. Equivalently, the problem is to find all k-classes of G for k D 0; 1; : : : ; cmax. Given the
core decomposition of G, we can easily obtain the k-core of G for any k, as the subgraph of G

induced by the vertex set
S

k�i�kmax Ψ.i/.
Algorithm. For the sake of exposition, we describe a basic core decomposition algorithm [19]
that computes the core number of each vertex in G.The skeleton of core decomposition is outlined
in Algorithm 2.1. It is a simple bottom-up method that computes the k-class from smaller to
larger values of k [44].

The algorithm first sorts the vertices in G in ascending order of their degrees. Then the
algorithm iteratively removes from G a vertex v with the minimum degree, together with all the
edges incident to it, and assigns d , the current minimum degree in G, as its core number '.v/.
Upon the removal of v, we also update the degrees of the remaining vertices and reorder them
according to their new degrees. The algorithm terminates when all vertices are removed from
G. In this way, we can compute the core numbers of all vertices in G.

Batagelj and Zaversnik [19] apply bin-sort to order the vertices, leading to an overall
running time complexity of O.m/ for the algorithm.

Clearly, k-cores constitute dense subgraphs, since each vertex is required to have degree
at least k. On the other hand, a k-core may be disconnected, e.g., consider a graph G consisting
of two isolated 4-cliques shown in Figure 2.5a. Then the 3-core of the graph G is the union of
the two disjoint 4-cliques. However, in the application of community detection and search, it is
critical that the community be connected. This motivates the following.

Definition 2.4.3 [Connected K-Core] Given a graph G and an integer k, a connected k-core is a
connected subgraph H � G, such that 8v 2 V.H/, degH .v/ � k.

Figure 2.5b shows a subgraph H of G in Figure 2.5a. H is a connected 3-core, since every
vertex has a degree of 3 in H and H is connected.

18 2. COHESIVE SUBGRAPHS

v1

v2

v3

v6

v7

v4

(a) G (b) H

v5 v8

v2

v3

v1 v4

Figure 2.5: An example of classical k-core G and connected k-core H . Here k D 3.

2.4.2 k-TRUSS
Recall that the k-core of a graph is the largest subgraph such that each vertex has degree at least
k in this subgraph. Similar to the definition of k-core, the k-truss, as a definition of cohesive
subgraph of a graph G, requires that each edge be contained in at least .k � 2/ triangles within
this subgraph. Consider the graph G in Figure 2.6; in the subgraph of the whole grey region
(i.e., excluding the nodes v1 and v6), each edge is contained in at least one triangle. Thus, the
subgraph is a 3-truss. It is well known that most of the real-world social networks are triangle-
based, in the sense that connections are induced by triangle closures, which always have a high
local clustering coefficient.1 Triangles are also known as the fundamental building blocks of
networks [165]. In a social network, a triangle indicates two friends having a common friend,
which shows a strong and stable relationship among the three friends. Intuitively, the more
common friends two people have, the stronger their relationships. In a k-truss, every pair of
friends is “endorsed” by at least .k � 2/ common friends. Thus, a k-truss with a large value of k

signifies strong interconnections between members of the subgraph.
We use the notation4uvw to denote a triangle over u; v; w, i.e., a subgraph over the vertices

fu; v; wg, every pair of which is adjacent. Given an edge e.u; v/ 2 E in G, the support of edge e,
is defined as the number of triangles containing e, denoted supG.e/ D jf4uvw W w 2 V gj. When
the context is obvious, we drop the subscript and denote the support as sup.e/. Based on the
definition of support, we formally define the k-truss as follows.

Definition 2.4.4 [K-Truss] Given a graph G and an integer k, a k-truss H of G is the largest
subgraph such that 8e 2 E.H/, supH .e/ � .k � 2/.

Note that just like the k-core, the k-truss may be disconnected. For example, consider
the graph G in Figure 2.6: the 3-truss consists of two components, viz., the subgraphs of G

induced by vertex sets fv2; v3; v4; v5g and fv7; v8; v9; v10g. Similar to the definition of k-core in
Definition 2.4.3, we define a connected k-truss based on the definition of k-truss [50, 165] as
follows.

1The local clustering coefficient of a vertex v in a graph measures how close its neighborhood is to being a clique: Lv WD
2jf.v;w/2Ejv;w2N.v/gj

jN.v/j.jN.v/j�1/
.

2.4. k-CORE AND k-TRUSS 19

2 - Truss

3 - Truss

4 - Truss

v1

v4 v9

v5 v8

v3v2 v6 v7 v10

Figure 2.6: An example of k-truss in graph G where 2 � k � 4. There exists no 5-truss in G.

Definition 2.4.5 [Connected K-Truss] Given a graph G and an integer k, a connected k-truss is a
connected subgraph H � G, such that 8e 2 E.H/, supH .e/ � .k � 2/.

Intuitively, a connected k-truss is a connected subgraph such that each edge .u; v/ in the
subgraph is “endorsed” by k � 2 common neighbors of u and v [50]. In a connected k-truss
graph, each node has degree at least k � 1 and a connected k-truss is also a connected .k � 1/-
core [19]. Next, we define the trussness of a subgraph, an edge, and a vertex.

Definition 2.4.6 [Trussness] The trussness of a subgraph H � G is the minimum support of an edge
in H plus 2, i.e., �.H/ D 2Cmine2E.H/fsupH .e/g. The trussness of an edge e 2 E.G/ is �.e/ D

maxH�G^e2E.H/f�.H/g. The trussness of a vertex v 2 V.G/ is �.v/ D maxH�G^v2V.H/ f�.H/g.

Consider the graph G in Figure 2.6 as an example. The trussness of the edge e.v2; v3/ is
�.e/ D 3, since the edge e.v2; v3/ is present in a 3-truss, but not in a 4-truss.
Truss Decomposition. The problem of truss decomposition is to find all possible k-trusses of
the graph for k D 0; 1; : : : ; ktmax, where ktmax is the maximum truss number of any edge in G.
Equivalently, the problem is to find the trussness of all edges of G. For any k, we can easily see
that the edge set of the k-truss of G is fe W e 2 E; k � �.e/ � ktmaxg.

The basic idea of truss decomposition is similar to the core decomposition, that is, to
successively remove the edge with the smallest support in each iteration.

We present the truss decomposition algorithm proposed in [165]. Invoked on a graph G,
it computes the trussness of each edge. As outlined in Algorithm 2.2, after the initialization,
for each k starting from k D 2, the algorithm iteratively removes a lowest support edge e.u; v/

with sup.e/ � k � 2. We assign the trussness of the removed edge as �.e/ D k. Upon removal
of e, we decrement the support of all other edges that form a triangle with e, and reorder them
according to their new supports. This process continues until all edges with support less than or
equal to .k � 2/ are removed. In this way, we can compute the trussness of all edges in G, and
complete the truss decomposition of G.

20 2. COHESIVE SUBGRAPHS

Algorithm 2.2 Truss Decomposition
Input: G D .V; E/

Output: �.e/ for each e 2 E

1: k 2;
2: compute sup.e/ for each edge e 2 E;
3: sort all the edges in ascending order of their support;
4: while(9e such that sup.e/ � .k � 2/)
5: let e D .u; v/ be the edge with the lowest support;
6: assume, w.l.o.g, deg.u/ � deg.v/;
7: for each w 2 N.u/ and .v; w/ 2 E do
8: sup..u; w// sup..u; w// � 1;

sup..v; w// sup..v; w// � 1;
9: reorder .u; w/ and .v; w/ according to their new support;

10: �.e/ k, remove e from G;
11: if (not all edges in G are removed)
12: k k C 1;
13: goto Step 4;
14: return f�.e/je 2 Eg;

The algorithms of core decomposition and truss decomposition presented in this and pre-
vious sections are both in-memory algorithms, i.e., they assume that the whole graph can fit
in main memory. Various studies have been done on core decomposition and truss decomposi-
tion in different settings, including in-memory [19, 50, 192], external-memory [44, 165], and
MapReduce [51]. In addition, [89, 192] design incremental algorithms for updating a k-truss
w.r.t. edge insertions/deletions.

2.5 MORE DENSE SUBGRAPHS
The dense subgraphs are often interpreted as “communities” [40], based on a basic assumption
that the connections inside a community are much denser than those between communities. The
problem of finding the dense subgraphs of a graph is an important primitive in data analysis, with
wide-ranging applications from community mining to spam detection and to the discovery of
biological network modules [15]. In Section 3.4, we will introduce one community search model
based on the densest subgraph.

In this section, we first give an introduction to densest subgraphs, and then briefly describe
other types of dense subgraphs.

2.5.1 DENSEST SUBGRAPHS
Definition 2.5.1 (Classical Edge Density) Given a graph G.V; E/ and a vertex set S � V , the
density �.S/ is defined as �.S/ D jE.S/j

jS j
D
P

v2S

degGS
.v/

2jS j
.

2.5. MORE DENSE SUBGRAPHS 21
With these two definitions, the problem of finding the densest subgraph with the maxi-

mum edge density can be formulated as follows [15, 106].

Definition 2.5.2 (Densest Subgraph) Given a graph G, we find a vertex set S� such that the in-
duced subgraph GS� � G has the maximum edge density, i.e., S� D arg maxS�V f�.S/g. Then, the
induced subgraph GS� is the densest subgraph of G.

It is well known that finding a subgraph with the maximum edge density can be solved op-
timally using the parametric flow or linear programming relaxation [15]. We denote the problem
of finding the densest subgraph as DS-Problem. However, given a positive integer k, finding the
maximum density of a subgraph GS containing at least k vertices is NP-hard [106]. We denote
the problem of computing the maximum edge density with at least k vertices as DalK-Problem.
Specifically, the problem can be formulated as follows [15, 106].

Definition 2.5.3 (DalK-Problem) Given a graph G and a positive integer k > 0, the DalK-Problem
is to find a vertex set S�

�k
such that S�

�k
D arg maxS�V;jS j�kf�.S/g. Then, the induced subgraph

GS�
�k

is the densest subgraph of k vertices.

For example, consider the graph G in Figure 2.1, the subgraph H1 is the densest subgraph
of 4 vertices.
Approximation. For ˛ � 1, we say that an algorithm achieves an ˛-approximation to a maxi-
mization (minimization) problem P with objective function f , provided on every input instance
with optimal solution A�, the algorithm outputs a feasible answer A such that f .A/ � f .A�/=˛

(resp., f .A/ � ˛ � f .A�/).
Algorithms. In the literature, various algorithms have been proposed to address the DS-Problem
and the DalK-Problem. For the DS-Problem, there exist several exact algorithms [15] to find
the densest subgraph of an arbitrary size, including parametric flow [113] and linear program-
ming relaxation [39]. Kortsarz and Peleg [107] and Charikar [39] independently propose 2-
approximation algorithms for the DS-Problem. On a high level, the combinatorial approxima-
tion algorithm proposed by Charikar [39], iteratively removing the worst node (w.r.t. degree)
from the graph in each iteration, is similar to the core decomposition algorithm. For the DalK-
Problem, Andersen and Chellapilla [10] apply a similar idea of core decomposition to achieve
a 3-approximation to the DalK-Problem. In addition, Khuller and Saha [106] further develop
a greedy algorithm to obtain a 2-approximation solution for the DalK-Problem. In the follow-
ing, we present an algorithm, Algorithm 2.3, called FindLargeDenseSubgraph, which achieves
3-approximation to the DalK-Problem [10].

The algorithm is outlined in Algorithm 2.3. It starts from the original graph G as Hi and
proceeds in passes. In each pass, the vertex with the smallest degree is removed. We output one
of the intermediate subgraphs fHjV j; HjV j�1; : : : ; Hkg with at least k vertices and the largest
edge density to form an approximation to the DalK-Problem.

22 2. COHESIVE SUBGRAPHS

Algorithm 2.3 FindLargeDenseSubgraph
Input: G D .V; E/, k

Output: an induced subgraph of G with at least k vertices

1: Let i jV j and Hi G;
2: d 0; H � ;;
3: while (i � k)
4: �.Hi / D

E.Hi /
V.Hi /

;
5: if �.Hi / � d then
6: d �.Hi /; H � Hi ;
7: let v be a vertex with the minimum degree in Hi ;
8: remove v and all edges incident to v from Hi ;
9: Hi�1 Hi ;

10: i i � 1;
11: return H �;

In terms of time complexity analysis, Algorithm 2.3 runs in time O.mC n/ in a graph G

with n vertices and m edges. The approximation ratio of Algorithm 2.3 is shown in the following
theorem.

Theorem 2.5.1 FindLargeDenseSubgraph.G; k/ of Algorithm 2.3 is a 3-approximation algorithm
for the DalK-Problem [10].

Theorem 2.5.1 shows that the approximation ratio of Algorithm 2.3 is 3, which indicates
the discovered subgraph H � by Algorithm 2.3 has at least 1=3 of the density of an optimal
solution OPT for the DalK-Problem, i.e., �.H �/ � �.OPT/=3.

2.5.2 k-ECC AND k-VCC
In this section, we introduce two kinds of dense subgraphs, namely k-edge-
connected component (k-ecc) [38, 197] and k-vertex-connected component (k-vcc) [126, 178],
which, respectively, enforce the constraints of edge connectivity and vertex connectivity. We
start with the definition of k-edge-connected graphs.

Definition 2.5.4 (k-edge-connected) A graph G.V; E/ is k-edge-connected if G is still connected
after removing fewer than k edges fromG. In otherwords, ifG0.V; E nX/ is connected for anyX � E

where jX j < k, then G is k-edge-connected.

Consider the graphs in Figure 2.3. Graph G in Figure 2.3a is 2-edge-connected, as G

remains connected if any one edge is removed from G. On the other hand, graph H1 in Fig-
ure 2.3b is 1-edge-connected, since H1 will become disconnected if the edge .v2; v4/ is removed
from H1.

2.5. MORE DENSE SUBGRAPHS 23
Definition 2.5.5 (k-edge-connected component (k-ecc) [38]) A subgraph H � G is a k-edge-
connected component of graph G, if (i) H is k-edge-connected and (ii) any proper supergraph of H

in G is not k-edge-connected.

Consider the graph H1 in Figure 2.3b. H1 is 1-edge-connected. The triangle 4v1v2v3
is

a subgraph of H1, and 4v1v2v3
is 2-edge-connected. Moreover, 4v1v2v3

is a 2-edge-connected
component of H1, since any supergraph of 4v1v2v3

in H1 is 1-edge-connected.
Using Definition 2.5.5, in the following we show several properties of k-edge-connected

components. First, a k-edge-connected component is an induced subgraph of G. Second, a
k-edge-connected component is maximal in that adding any vertices and their incident edges
into the component would make the new graph no longer k-edge-connected. Third, the k-
edge-connected components of a graph are pairwise disjoint. The problem of computing all k-
edge-connected components is to decompose a graph G into a set of disjoint k-edge-connected
components. To this end, Chang et al. [38] propose a novel graph decomposition paradigm to
iteratively decompose a graph G.

Similar to k-edge-connected graphs, k-vertex-connected graphs can be defined as fol-
lows [178].

Definition 2.5.6 (k-vertex-connected) A connected graph G is said to be k-vertex-connected if it
has more than k vertices and remains connected whenever fewer than k vertices are removed.

Notice that by definition, when a vertex is removed, all edges incident on the vertex are re-
moved as well. For example, consider the graph G and H1, respectively, in Figures 2.3a and 2.3b.
According to Definition 2.5.6, G is 2-vertex-connected, since the removal of vertices v4 and v5

would make vertex v6 disconnected from the remaining vertices in G. On the other hand, the
removal of any one vertex from graph G leaves G connected. Thus, G is 2-vertex-connected.

The notion of k-vcc can be defined analogously to k-ecc. It is easy to see that the k-
vertex-connected components, i.e., maximal k-vertex-connected subgraphs, of a given graph
may be overlapping. Wen et al. [178] propose a polynomial-time algorithm to enumerate all
k-vertex-connected components of a graph by recursively partitioning the graph into overlap-
ping subgraphs.We note that between k-vcc and k-ecc, k-ecc has been studiedmore extensively
in the literature on dense subgraphs and community search. In our subsequent discussion, we
thus focus more on k-ecc. Exploration of community models based on k-vcc may be interesting
future work.

2.5.3 OTHER DENSE SUBGRAPHS
Besides the above-mentioned dense subgraphs, there are other types of dense subgraphs. For
example, Wang et al. [168] define a dense neighborhood graph based on common neighbors,
which is a connected subgraph in which the lower bound on the number of triangles of edges is
locally maximized. Their definition renders the problem NP-hard and their proposed solution is

24 2. COHESIVE SUBGRAPHS
approximate [165]. Gibson et al. [74] study dense bipartite subgraphs that are pairs of subsets
A; B � V such that the nodes of A are densely connected with the nodes of B .

2.6 SUMMARY
We close this chapter by comparing the computational efficiency and structural cohesiveness
of four representative dense subgraphs: k-clique, k-ecc, k-core, and k-truss. Among them, k-
core, k-truss, and k-ecc are often used in community models, since they have decomposition
algorithms with a polynomial-time complexity. On the other hand, k-clique is a typical dense
subgraph that is NP-hard to compute. Similar dense subgraphs include k-plex, k-clan, k-club,
and -quasi-k-clique. We compare them in terms of theoretical analysis and experimental eval-
uation.
Theoretical Efficiency. In terms of theoretical computational efficiency of finding them, the
four subgraphs can be ordered as follows: k-core is the most efficient, then k-ecc and k-truss,
and k-clique is the most inefficient. This is because the algorithm of core decomposition takes
O.nCm/ time and O.nCm/ space, for a given graph with n nodes and m edges [19]. While
the decomposition of k-ecc for a specific k takes O.hlm/ time and O.nCm/ space, where h and
l are often bounded by constant numbers for real-world graphs [38]. As for k-truss decomposi-
tion, it has an O.m1:5/ time complexity [165], which is more expensive than the decomposition
of k-core and k-ecc. Finally, due to the NP-hardness of the Maximum Clique problem, the
decomposition problem, i.e., finding all k-clique’s takes exponential time in the graph size [31].
TheoreticalCohesiveness. In terms of cohesiveness analysis, the structural cohesiveness ranking
among these four subgraphs is: k-clique has the most cohesive structure, followed by k-truss, k-
ecc, and k-core. Obviously, a k-clique is a complete subgraph of k nodes, which has the smallest
diameter of 1 and the highest density of 1. Moreover, k-clique has the following properties:
(1) each node has at least k � 1 neighbors; (2) the graph remains connected after deleting fewer
than .k � 2/ edges; and (3) each pair of nodes has at least k � 2 neighbors. Thus, k-clique is a
subgraph of .k � 1/-core, .k � 2/-ECC, and .k � 2/-truss, indicating its strongest cohesiveness.
In addition, k-truss and k-ecc both are subgraphs of .k � 1/-core, obtained by filtering the
disqualified subgraphs based on cohesiveness constraints. Moreover, k-truss has the triangle
support constraint for each edge and naturally satisfies the edge connectivity of k-ecc. As a
result, the decreasing order of cohesiveness among the four subgraphs is as mentioned above.
Experimental Comparison. We have conducted experiments to compare the four dense sub-
graph models: k-core, k-ecc, k-truss, and k-clique. We report the running time (in seconds)
for comparing their efficiency and various structural metrics for comparing their cohesiveness
quality.

First, we compare the decomposition algorithms of k-core [19], k-ecc [38], k-truss [165],
and k-clique [56].We tested five real-world graph datasets: Email-Enron, Google, Livejournal,2

2Email-Enron, Google, Liverjournal are available at https://snap.stanford.edu/data/index.html.

2.6. SUMMARY 25

Wise,3 and UK-2002.4 Table 2.1 reports the statistics of these datasets and the running time
results of the decomposition algorithms. As expected, k-core is the most efficient method on all
datasets; k-ecc is faster than k-truss and k-clique; not surprisingly, k-clique is the worst of all.

Table 2.1: Efficiency comparison for four dense subgraph decomposition algorithms. Here, KD
103 and MD 106.

Datasets |V | |E | k-core [19] k-ecc [38] k-truss [165] k-clique [56]

email-Enron 36.7 K 183.8 K 0.2 s 0.8 s 5 s 201 s

Google 876 K 5.1 M 8.9 s 40.8 s 65 s >24 h

Livejournal 4.8 M 69 M 85 s 854 s 1,726 s >24 h

Wise 58.6 M 265.1 M 553 s 5,764 s 32,221 s >24 h

UK-2002 18.6 M 298.1 M 387 s 5,967 s 18,830 s >24 h

Second, we perform the quality comparison on the Livejournal network. We compare the
cohesiveness of the four dense subgraph models with the same parameter k D 6. We randomly
select 100 query nodes and find the corresponding connected subgraphs of k-clique, k-core, k-
truss, and k-ecc that contain the query nodes. We evaluate six structural metrics of those discov-
ered subgraphs: the number of vertices, the number of edges, diameter, density, average degree,
and clustering coefficient. Given a subgraph H � G, the average degree is defined as 2jE.H/j

jV.H/j
;

and the clustering coefficient is a measure of the degree to which the nodes in a graph tend to
cluster together.5 The quality results are reported in Table 2.2. Obviously, k-clique achieves the
best quality with the highest density and clustering coefficient, and has the smallest diameter
and graph size. In terms of density, average degree, and clustering coefficient, k-truss performs
better than k-core and k-ecc, which is consistent with the theoretical quality analysis.

Note that a k-truss has a good robustness of connectivity. A connected k-truss remains
connected when fewer than .k � 1/ edges are removed from the graph. For example, consider
the 4-truss of G in Figure 2.6, the 4-truss remains connected whenever any 2 edges are moved
from the 4-truss.

In summary, all discussed dense subgraphs are generally useful for community models,
but also have their own disadvantages on either efficiency or quality. In the following chapters,
we present different community search problems based on these models.

3Wise is available at http://www.wise2012.cs.ucy.ac.cy/challenge.html
4UK-2002 is available at http://law.di.unimi.it/datasets.php.
5https://en.wikipedia.org/wiki/Clustering_coefficient

26 2. COHESIVE SUBGRAPHS

Table 2.2: Quality comparison for k-core, k-ecc, k-truss, and k-clique on Livejournal dataset.
Here, k D 6.

Quality Metrics k-core k-ecc k-truss k-clique

� e number of vertices 1,894,460 1,880,000 1,164,210 6

� e number of edges 29,924,900 29,777,900 20,834,200 21

Diameter 17 15 18 1

Density 1.67 × 10-5 1.69 × 10-5 3.07 × 10-5 1.0

Average degree 31.59 31.69 35.79 5

Clustering coeffi cient 0.303 0.298 0.434 1.0

