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Communities serve as basic structural building blocks for understanding the organization 
of many real-world networks, including social, biological, collaboration, and communication 
networks. Recently, community search over graphs has attracted significantly increasing 
attention, from small, simple, and static graphs to big, evolving, attributed, and location-based 
graphs.
 In this book, we first review the basic concepts of networks, communities, and various 
kinds of dense subgraph models. We then survey the state of the art in community search 
techniques on various kinds of networks across different application areas. Specifically, we discuss 
cohesive community search, attributed community search, social circle discovery, and geo-social 
group search. We highlight the challenges posed by different community search problems. We 
present their motivations, principles, methodologies, algorithms, and applications, and provide 
a comprehensive comparison of the existing techniques. This book finally concludes by listing 
publicly available real-world datasets and useful tools for facilitating further research, and by 
offering further readings and future directions of research in this important and growing area. 

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis 
Digital Library of Engineering and Computer Science. Synthesis 
books provide concise, original presentations of important research 
and development topics, published quickly, in digital and print formats.
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C H A P T E R 3

Cohesive Community Search
This chapter discusses the problem of community search in simple graphs, and focuses on just
the structural characteristics of networks. In this simplest setting, a graph represents a structure
of interactions within a group of vertices. We consider an undirected, unweighted simple graph
G D .V .G/; E.G// with n D jV.G/j vertices and m D jE.G/j edges. Community models in
this class can only leverage the structural characteristics of networks, essentially focusing on the
density of the connection structure. Given a set of query nodes, community search is to find
a densely-connected subgraph containing all query nodes. Community search has attracted a
great deal of attention, motivated by applications such as social circle discovery, advertising and
viral marketing, content recommendation, and team formation [55]. Several different criteria
to assess the goodness of a community have been proposed recently, based on dense subgraphs
such as quasi-clique, k-core, k-truss, and densest-subgraph.

In the following sections, we introduce representative community models in detail. As-
sociated with each community model is its corresponding community search problem. Specif-
ically, we present four kinds of community search models based on quasi-clique, k-core, k-
truss, and densest-subgraph respectively. Section 3.1 introduces the k-clique-based commu-
nity search models, which aim at finding highly cohesive communities. However, finding k-
clique [139] and even -quasi-k-clique [54] have been proven to be NP-hard, which imposes
a severe computational bottleneck. The heuristic algorithms reduce the complexity, but cannot
give a theoretical guarantee of the approximation quality [54]. Section 3.2 presents the com-
munity search models based on k-core, which has polynomial time complexity for computing
the k-core subgraph and makes the k-core-based community search computationally tractable
and efficient [18, 55, 122, 157]. Section 3.3 presents the community models based on k-truss,
which unlike k-core considering simple edge connections only, requires each edge connection to
be contained within at least k � 2 triangles [89, 96]. Section 3.4 studies the densest-subgraph-
based community model, which uses the technique of random walk for detecting communi-
ties with highest query-biased densities [180]. For most of these community search problems,
queries consisting of one or more vertices have been studied. Section 3.5 summarizes all com-
munity models introduced in this chapter.

3.1 QUASI-CLIQUE COMMUNITY MODELS
In this section, we first introduce a clique-based community model. Recall that a k-clique is a
complete graph of k vertices where every pair of nodes is connected by an edge (see Defini-
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tion 2.3.1). Then, we generalize it to a quasi-clique-based community model and formulate its
corresponding community search problem.

3.1.1 CLIQUE-BASED COMMUNITY DETECTION
In a clique, every pair of vertices is adjacent. Clique is a widely accepted structure of communities
where a group of vertices are densely connected to each other. The clique percolation method
(CPM) is a well-known approach for analyzing overlapping communities in networks [139]. The
high-level idea of CPM is to first find a k-clique as a seed and then expand it to a community.
This approach works well on small-scale networks, but has a poor performance on large-scale
networks, due to the expensive computation of k-clique enumeration.
Algorithm. The CPM method builds up the communities in a bottom-up manner. It starts from
the k-cliques, i.e., complete subgraphs of k vertices. Two cliques are adjacent if they share k � 1

vertices. Based on the definitions of k-clique and clique adjacency, a community is defined as
the maximal union of k-cliques where each pair of k-clique subgraphs can be reached from each
other via a series of adjacent k-cliques.

For example, given the graph G in Figure 3.1 and a parameter k D 4, the subgraphs of G

induced by fv1; v2; v3; v5g and fv1; v3; v4; v5g are both k-cliques, respectively, denoted H1 and
H2 shown in Figures 3.2a and 3.2b. The k-cliques H1 and H2 are adjacent since they share .k �

1/ D 3 vertices fv1; v3; v5g—see Figure 3.2c. Finally, the CPM method finds one community
formed by vertices fv1; v2; v3; v4; v5g (Figure 3.2d). The community is the union of all k-cliques
(H1 and H2) that can be reached from each other through a series of adjacent k-cliques.

v7 v3

v8 v4

v2v6

v5v9

v1

Figure 3.1: An example of graph G.

Overlapping Communities. Intuitively, given a query vertex q, there may exist several com-
munities containing q. k-clique communities naturally form the overlapping communities of q.
Figure 3.3 shows four different k-clique communities, highlighted in different colors, detected
by CPM where k D 4 [139]. Note that two 4-cliques are adjacent if they share 3 vertices, and
any k-clique can be reached only from the k-cliques of the same community through a series
of adjacent k-cliques. The yellow community shares a single vertex with the blue one, whereas
it overlaps with the green one in three vertices and one edge. These overlapping parts are high-
lighted in red.
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(a) H1 (b) H2 (c) k-clique adjacency (d) k-clique community 

H1 

H2 

Figure 3.2: An example of applying the CPM method for k D 4 on graph G in Figure 3.1. H1 and
H2 are 4-cliques and share 3 vertices {v1; v3; v5}, thus H1 and H2 are adjacent as 3 � .k � 1/.

Figure 3.3: An example of k-clique communities detected by the clique percolation method
(CPM) [139]. Here, k D 4. Used with Permission.

Limitations of clique-based community model. Intuitively, the CPM method requires to lo-
cate all maximal cliques, which is known to be an NP-hard problem. Even though this approach
has already been applied successfully for analyzing networks with a few million nodes, the run-
ning time complexity is exponential in k in the worst case and it is not practical for very large
values of k. Besides its high running time complexity, the definition of communities based on
cliques is a restrictive notion, which limits opportunities for locating communities in real data.
First, every pair of vertices in a k-clique must be connected, allowing no missing edges. For ex-
ample, consider the graph G in Figure 3.1 and the parameter k D 4, graphs H3 and H4 shown
in Figures 3.4a and 3.4b are not 4-cliques, which implies that the CPM method would miss the
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community C1 shown in Figure 3.4d. Second, two k-cliques are considered adjacent iff they share
as many as k � 1 vertices, and there is no flexibility in the amount of overlap allowed between
k-cliques. This is another source of rigidity in the definition of clique-based communities.

v7 v3

v8
v8

v8

v9

v7
v7

v4

v2v6
v6

v5v9

v1v1
v1

v1

(a) H3 (b) H4 (c) α-adjacency (d) α-adjacency-γ-quasi-k-cliques 

v1, v6,  v7, v8

v1, v7, v8, v9

H3 

C1 C2 
H4 

Figure 3.4: An example of applying .˛; /-OCS model on graph G in Figure 3.1. Here, k D 4,
 D 0:8, and ˛ D 3. H1 and H2 are -quasi-k-cliques, and they are ˛-adjacent as they share at
least ˛ vertices.

3.1.2 QUASI-CLIQUE-BASED COMMUNITY SEARCH
To address the limitations of the CPM method, Cui et al. relax its two constraints of clique
and adjacency [54]. In this section, we introduce a more general model of Online Community
Search, called .˛; /-OCS, based on their work.

Problem Formulation
First, the constraint of k-clique is relaxed to quasi-clique by allowing some missing edges within
the subgraph. The concept of quasi-clique is one of several dense subgraphs defined in Chapter 2
(see Definition 2.3.3).

Definition 3.1.1 (-quasi-k-clique) Given a positive integer number k and a number 0 �  � 1,
a -quasi-k-clique is a graph of k vertices with at least b k.k�1/

2
c edges.

Second, the adjacency constraint is relaxed. In .˛; /-OCS, two -quasi-k-cliques are
considered adjacent if they share at least ˛ vertices, where 1 � ˛ � k � 1. It is defined as ˛-
adjacency.

Definition 3.1.2 (˛-adjacency) Given two -quasi-k-cliques G1 and G2, they are considered ad-
jacent if they share at least ˛ vertices, where 1 � ˛ � k � 1.

Based on the definitions of -quasi-k-clique and ˛-adjacency, the quasi-clique-based
community is defined as follows.

Definition 3.1.3 (Quasi-clique based Community) Given a graph G and three parameters k, ˛,
and  , an ˛-adjacency--quasi-k-clique is the maximal connected subgraph such that every pair of
-quasi-k-cliques can be reached from each other via a series of ˛-adjacent -quasi-k-cliques.
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The problem of .˛; /-OCS is formulated as follows.

Problem 3.1.1 (.˛; /-OCS [54]) Given a query vertex q and three parameters k, ˛, and  , the
problem of .˛; /-OCS is to find all ˛-adjacency--quasi-k-cliques containing q.

For example, given the graph G in Figure 3.1, consider the .˛; /-OCS model on G with
query vertex q D v1, and parameters k D 4,  D 0:8, and ˛ D 3. The subgraphs H3, H4 shown
in Figures 3.4a and 3.4b are both -quasi-k-cliques, as H3 and H4 both have edge density as 5

6
�

 D 0:8. In addition, the -quasi-k-cliques H3 and H4 are adjacent as they share .k � 1/ D 3

vertices fv1; v7; v8g, see Figure 3.4c. By Definition 3.1.3, H3 and H4 are merged into a single ˛-
adjacency--quasi-k-clique C1 formed by vertices fv1; v6; v7; v8; v9g; see Figure 3.4d.Moreover,
it is easy to verify that subgraph C2 shown in Figure 3.4d is also an ˛-adjacency--quasi-k-clique
containing v1. Finally, the .˛; /-OCS model returns two communities C1 and C2 as answers to
the community search with the above parameters.

Query Processing Algorithms
In this section, we first introduce an exact and straightforward solution to solving .˛; /-OCS.
After that, a more efficient approximation algorithm is presented. The core idea of the effi-
cient algorithm for finding .˛; /-OCS is finding a -quasi-k-clique and meanwhile checking
the adjacency constraint for pruning disqualified candidates for speed-up. Similar to CPM, this
approach works well on small-scale networks, but not real large-scale networks, due to the ex-
pensive computation of -quasi-k-clique enumeration.
ANaiveMethod. The basic algorithm is outlined in Algorithm 3.4, which consists of two major
stages. In the first stage, initially the query vertex q is added into a unvisited list S . Then, for
each unvisited vertex, we find all -quasi-k-cliques that contain the vertex, and the unvisited
new vertices of these -quasi-k-cliques are added to S . We repeat this procedure until no new
vertex can be seen among the -quasi-k-cliques found. In the second stage, we calculate the
clique adjacency for all -quasi-k-cliques found in the first step. Finally, we return all clique
components as the resulting communities.
An Improved Algorithm. Cui et al. [54] point out that the decision version of .˛; /-OCS
problem, which determines whether there are any k-cliques containing the query vertex, is NP-
hard. The naive algorithm needs to enumerate an exponential number of -quasi-k-cliques for a
candidate community, which is clearly inefficient. Even worse, many such -quasi-k-cliques do
not belong to a valid community. To avoid such wasteful computation, the adjacency constraint
can be checked when a -quasi-k-clique is enumerated. Following this strategy, Cui et al. [54]
propose an improved algorithm, shown in Algorithm 3.5. The algorithm runs iteratively. In each
iteration it finds an unvisited -quasi-k-clique containing the query vertex using the procedure
of Next-Quasi-Clique. If such a -quasi-k-clique exists, we Expand the -quasi-k-clique to find
an ˛-adjacency--quasi-k-cliques community by following the constraint of ˛-adjacency.
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Algorithm 3.4 Naive .˛; /-OCS
Input: A graph G D .V; E/, a query vertex q, numbers k,  , and ˛.
Output: ˛-adjacency--quasi-k-cliques containing q.

1: //Stage 1. Find all the candidate -quasi-k-cliques;
2: S  fqg.
3: while S is not empty do
4: for all unvisited vertex v 2 S do
5: mark v as visited;
6: find all -quasi-k-cliques containing v;
7: Add unvisited new vertices into S ;
8: //Stage 2. Calculate clique adjacency;
9: Calculate the adjacency matrix of candidate -quasi-k-cliques;

10: Return ˛-adjacency--quasi-k-cliques containing q;

Algorithm 3.5 Improved .˛; /-OCS
Input: A graph G D .V; E/, a query vertex q, numbers k,  , and ˛.
Output: ˛-adjacency--quasi-k-cliques containing q.

1: R ;;
2: while true do
3: seed  Next-Quasi-Clique(q, {q});
4: if seed D ; then break;
5: C  Expand(seed );
6: R R [ fC g;
7: return R;

In the following, we detail the implementations of the procedures:Next-Quasi-Clique and
Expand.
Next-Quasi-Clique.

Finding a -quasi-k-clique is computationally hard. A brute-force method needs to enu-
merate all k-sized subsets for identifying a valid -quasi-k-clique. Cui et al. [54] propose a
procedure using depth-first search strategy with backtracking, shown in Algorithm 3.6. The
method Next-Quasi-Clique(u, S) starts from a candidate vertex set S by exploring vertex u0s

neighborhood. It iteratively adds a new vertex into S until an unvisited -quasi-k-clique GS is
found (lines 3–4). The backtracking has two significant advantages. First, it speeds up the search
process by pruning impossible candidates (lines 7–9). Second, it selects a new vertex v from the
neighbors of the current vertex u (lines 10–12), which ensures the answer GS is a connected
subgraph. Given a vertex set S � V , the maximum number of edges in a -quasi-k-clique that
contains GS is

f .S/ D jE.GS /j C
.k � jS j/.k C jS j � 1/

2
; (3.1)
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Algorithm 3.6 Next-Quasi-Clique (u, S)
Input: a vertex u, a candidate vertex set S .
Output: a -quasi-k-clique containing u.

1: ans ;;
2: if jS j D k then
3: if GS is an unvisited -quasi-k-clique then
4: return GS ;
5: else
6: return ans;
7: f .S/ D jE.GS /j C

.k�jS j/.kCjS j�1/
2 ;

8: if f .S/ < 
k.k�1/

2 then
9: return ans;

10: for v 2 N.u/ � S do
11: ans Next-Quasi-Clique (v, S [ fvg);
12: if ans ¤ ; then break;
13: return ans;

Algorithm 3.7 Expand (C )
Input: a -quasi-k-clique C .
Output: an ˛-adjacency--quasi-k-clique containing C .

1: ans C ;
2: for S � C , jS j D ˛ do
3: f .S/ D jE.GS /j C

.k�jS j/.kCjS j�1/
2 ;

4: if f .S/ < 
k.k�1/

2 then continue;
5: for S 0 � V , jS 0j D k � ˛ do
6: C 0  S [ S 0;
7: if C 0 is an unvisited -quasi-k-clique then
8: ans ans [ Expand (C 0);
9: return ans;

where jE.GS /j is the number of edges existing in GS , and .k�jS j/.kCjS j�1/
2

results from the max-
imum number of candidate edges. .k�jS j/.kCjS j�1/

2
D .k � jS j/jS j C .k�jS j/.k�jS j�1/

2
is formed

by two parts: the first part is .k � jS j/jS j edges between the vertices in S and the .k � jS j/ ver-
tices in -quasi-k-clique that are not in S ; the second part is .k�jS j/.k�jS j�1/

2
edges among those

.k � jS j/ vertices. Obviously, if f .S/ <  k.k�1/
2

, we can certainly prune the candidate S (lines
8–9).
Expand. The procedure Expand(C ) for finding an ˛-adjacency--quasi-k-clique containing C

via ˛-adjacency is outlined inAlgorithm 3.6.The key idea is to find a subset S of size jS j D ˛ and
then find another subset S 0 from the local neighborhood subgraph of C so that the combined
subgraph S [ S 0 is a valid ˛-adjacency--quasi-k-clique (lines 2–8). Note that it is not needed to
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enumerate S 0 from the entire vertex set V (line 5).The induced graph GS[S 0 is always connected,
thus, in the worst case, we just need to explore the jS 0j-hop-neighborhood of S , which contains
all vertices at most jS 0j hops away from any vertex in S [54].
Duplication Detection of -quasi-k-cliques. In both procedures Next-Quasi-Clique and Ex-
pand, we may generate the same -quasi-k-clique from different search paths. Hence, we need
to identify whether a -quasi-k-clique has ever been generated before, i.e., visited. For this pur-
pose, a hash table is used to store the visited -quasi-k-cliques, allowing for querying a visited
clique in constant time. Consider the following hash function:

h.C / D

 X
v2C

ID.v/ � aID.v/

!
mod b (3.2)

where a; b are two large primes and ID.v/ is the id of v. Hashing each k-sized -quasi-k-clique
takes O.k/ time. Applying the DFS strategy, the complexity of such hashing computation can
be further reduced to O.1/ [54].
Limitations of .˛; /-OCS model. Next, we analyze the limitations of the .˛; /-OCS model.

• First,  as an average density measure may not necessarily guarantee a cohesive commu-
nity structure. Consider the graph in Figure 3.5 which is a 0.8-quasi-7-clique containing
query vertex q. However, q is only connected with one vertex in the community, thus it is
obviously not a cohesive community for q.

• Second, there are three parameters ˛; ; k in this model, the setting of which may vary
significantly for different query vertices. For example, in a research collaboration network,
the communities of a famous scholar and a junior scholar can be dramatically different in
terms of the community size and density. Thus, it is difficult to choose proper values for
the three parameters given an arbitrary query vertex.

• Third, finding ˛-adjacency--quasi-k-clique has been proven to be NP-hard [54], which
imposes a severe computational bottleneck. The approximate algorithms for clique enu-
meration and expansion proposed in [54] reduce the complexity, but they cannot give a
theoretical guarantee on the approximation quality since it is NP-hard to approximate
maximum cliques.

3.2 CORE-BASED COMMUNITY MODELS
In this section, we present community models built upon the dense subgraph of k-core. Recall
that a k-core is the largest subgraph of graph G such that every vertex has degree at least k

within this subgraph (see Definition 2.4.1). There exist several k-core-based community mod-
els such as Global-Core and Constrained-Core [157], Local-Core [55], Minimum-Core [18], and
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s4 qs3

s5 s6

s1 s2

Figure 3.5: A 0.8-quasi-7-clique containing q.

k-Influential [122]. We summarize these works into three types of community models and intro-
duce them in detail. The first one is maximum-core community model. It aims at maximizing
the density of community, i.e., find a connected k-core with the largest k. The second one is
minimum-sized k-core community model, which finds a k-core community with the smallest
vertex size. The third one is k-Influential community model, which finds k-Influential communi-
ties with the largest influence scores.

3.2.1 MAXIMUM-CORE COMMUNITY SEARCH
Global-Core Community Search
Sozio and Gionis [157] propose one of the widely known formulations of k-core-based com-
munity search model. The problem is to find a connected subgraph that contains all query nodes
and maximizes the minimum degree in this subgraph. This problem, termed Global-Core, is
defined as follows.

Problem 3.2.1 (Global Core) Given a graph G.V; E/ and a set of query nodes Q � V , find an
induced subgraph H D .VH ; EH / of G, such that:

(i) H is a connected subgraph containing the query nodes (Q � H/; and

(ii) the minimum degree of H is maximized.

Sozio and Gionis [157] show that the Global-Core can be solved in linear time in the
size of the input graph. The core idea is to adapt the peeling strategy of core decomposition
by removing the weakest nodes, and finally obtaining a connected community with the largest
coreness. Specifically, the algorithm applies the idea of core decomposition to remove a node
having the minimum degree along with its incident edges in each iteration. The algorithm stops
when the remaining connected subgraph containing the query nodes becomes disconnected.
This process generates a set of immediate subgraphs. Among these subgraphs, the connected
subgraph containing all query nodes and having the maximum minimum degree is returned as
the answer.
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Example 3.2.1 Consider the graph G in Figure 3.6. For query vertices Q D fv3; v7g, the Global-
Core community containing Q is shown in Figure 3.7. It is a connected k-core containing Q with the
largest k D 2. Notice that the 3-core, shown in Figure 3.6, is disconnected, even though it contains the
query nodes.

1 - Core

2 - Core

3 - Core

v1

v4
v9

v5
v8

v3v6

v2

v7
v10

v11

v12

Figure 3.6: An example graph G for k-core-based community models.

v8

v2

v9

v10v7

v5

v4

v6 v3

Figure 3.7: A Global-Core community for query vertices Q D fv3; v7g.

In addition, Global-Core tends to find quite large solutions. The large communities may
involve redundant nodes or free-riders that are far away and irrelevant to the query nodes.
This negatively affects the accuracy of the discovered communities. To address this issue, Sozio
and Gionis [157] present a constrained version of community search problem where an upper
bound on the size of the output community and an upper bound on the total distance between
community members are imposed. In the following, we present the constrained version of the
community search problem as Constrained-Core [157].

Constrained-Core Community Search
Two constraints, namely the size constraint and the distance constraint, are introduced in the
Constrained-Core model. For the size constraint, it requires that the vertex size of a desired
community H be not greater than a user-specified threshold. The distance constraint is defined
as follows. First, denote by distG.v; q/ the length of the shortest path between v and q in G,
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where distG.v; q/ D C1 if v and q are not connected. Given a node v in the graph G, the
distance of v from the query nodes Q is defined to be DQ.G; v/ D

P
q2Q distG.v; q/2, and

DQ.G/ D maxv2V.G/fDQ.G; v/g is defined as the distance of the farthest node from the query
nodes. For defining DQ.G; v/, other alternatives are also possible, for instance, usingmax instead
of
P

or not using square.
Based on the Global-Core community model, the size constraint, and the distance con-

straint, the Constrained-Core community model is formulated as follows.

Problem 3.2.2 (Constrained Core) Given a graphG.V; E/, a set of query nodesQ � V , a number
d (distance constraint), and an integer s (size constraint), find an induced subgraph H D .VH ; EH /

of G, such that:

(i) H is a connected subgraph containing the query nodes (Q � H/;

(ii) DQ.H/ � d ;

(iii) jVH j � s; and

(iv) the minimum degree of H is maximized.

Condition (i) ensures that the query nodes Q do not belong to different connected com-
ponents. Condition (ii) is the distance constraint, which can avoid the pathological situations
of attaching communities that are far away from the query nodes. Condition (iii) requires that
H has at most s nodes. In addition, the objective function to maximize is the density measure,
i.e., minimum degree in H .

Example 3.2.2 Let us consider the graph G in Figure 3.6, and apply the definition of Constrained-
Core community model on graph G, with query vertices Q D fv3; v7g, distance parameter d D 100,
and size parameter s D 8. One answer of Constrained-Core community is shown in Figure 3.8. The
number of vertices is 8, which satisfies the size constraint. The whole community is a connected k-core
with the largest k D 2, which satisfies the distance and size constraints. It is smaller than the Global-
Core community in Figure 3.7, as it prunes away those vertices far away from the query nodes.

v8

v2

v9

v7

v5

v4

v6 v3

Figure 3.8: A Constrained-Core community for query vertices Q D fv3; v7g. Here, the distance
parameter d D 100 and the size parameter s D 8.
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Algorithm Greedy-Fast. A well-known combinatorial optimization problem is the Minimum
Steiner Tree problem, defined as follows: given a graph G D .V; E/ with non-negative edge
weights and a subset of vertices S � V , find a tree T in G that spans S and has the mini-
mum total weight. T may involve vertices in V n S . The minimum Steiner tree problem is well
known to be NP-hard. From this, it follows that the problem of finding a minimum-degree-
based community is also NP-hard. Thus, a heuristics method Greedy-Fast is proposed in [157]
to find communities with a bounded size by achieving good quality and optimization efficiency.
Specifically, Greedy-Fast performs a preprocessing phase to shrink the input graph to the s0

closest nodes to the query nodes, where s0 is a minimum number such that the resulting graph
remains connected and contains at least s nodes. The intuition of this preprocessing phase is
that the closer nodes are more likely to be the nodes that belong to their community. Next, the
algorithm applies a greedy strategy to iteratively remove the nodes with the smallest degree and
ensures the discovered community satisfies the distance and size constraints.

Local-Core Community Search
Cui et al. [55] study the same problem of Global-Core for the special case with a single query
vertex, i.e., jQj D 1.

Problem 3.2.3 (Local Core) Given a graphG.V; E/ and a query vertex q, find an induced subgraph
H D .VH ; EH / of G containing q, such that:

(i) H is a connected subgraph containing the query vertex (q 2 H/; and

(ii) the minimum degree of H is maximized.

Example 3.2.3 Consider the graph G in Figure 3.6. Applying the definition of the Local-Core com-
munity model on G with query vertex q D v7, Figure 3.9 shows the Local-Core community, a con-
nected 3-core containing q.

v9

v8

v7
v10

v11

Figure 3.9: A Local-Core community for query nodes Q D fv7g.

Algorithm. Since the methods for Global-Core and Constrained-Core both need to visit the en-
tire input graph, their computation can be expensive over large graphs. Cui et al. [55] propose
a local-search algorithm to improve the efficiency of the Global-Core algorithm. This algorithm
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iteratively expands the neighborhood of the (unique) query vertex, until a subgraph that is guar-
anteed to contain an optimal solution has been built. Then, this subgraph is used as a reduced
version of the input graph to retrieve the optimal solution. The worst-case time complexity of
the Local-Core is still linear in the size of the whole input graph, but Local-Core has been shown
to achieve better efficiency than Global-Core in practice. The detailed algorithm can be found
in [55].

3.2.2 MINIMUM-SIZED k-CORE COMMUNITY SEARCH
Problem Formulation
Definition 3.2.1 (Minimum-Core) Given a graph G and a set of query nodes Q, H is a Minimum-
Core community, if H satisfies the following two conditions.

(1) Connected k-core. H is a connected k-core containing Q with the largest k, i.e., Q �H � G

and 8v 2 V.H/, degH .v/ � k.

(2) Smallest Size. H is a subgraph with the smallest number of vertices satisfying condition (1).That
is, ÀH 0 � G, such that jV.H 0/j < jV.H/j, and H 0 satisfies condition (1).

Example 3.2.4 Consider the graph G in Figure 3.6, and apply the definition of the Minimum-Core
community model onG with query verticesQ D fv3; v7g. Figure 3.10 shows theMinimum-Core com-
munity for queryQ.The community consists of 7 vertices and is a connected 2-core, which hasminimum
vertex size.

v8

v2

v9

v7

v5

v4

v3

Figure 3.10: A Minimum-Core community for query vertices Q D fv3; v7g.

Consider the three different models Global-Core, Constrained-Core, and Minimum-Core. Their
query results in the above examples for the same query vertices Q D fv3; v7g in graph G are, respec-
tively, shown in Figure 3.7, Figure 3.8, and Figure 3.10. We can see that all three communities are
connected 2-cores containing the query vertices Q. However, the Constrained-Core model is able to
shrink the Global-Core community into a smaller one, while the Minimum-Core model is most strin-
gent in finding the most compact community.

Algorithm
Barbieri et al. [18] propose an index-based approach to solve the Minimum-Core community
search effectively and efficiently. The high-level idea of Minimum-Core community search al-
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gorithms is firstly constructing an index for keeping the structural information of all k-cores,
and then developing an efficient heuristic strategy to connect all query nodes into a candidate
community and refine it. The approach is composed of two phases: preprocessing and query
processing. In the preprocessing phase, a Shell-Index is constructed in order to precompute and
store some useful information for query processing. The query processing phase consists of two
sub-phases: a retrieval phase, where the proper information computed/stored during the prepro-
cessing is retrieved from the Shell-Index, and an online processing phase, where the information
retrieved is further processed in order to obtain an answer to the query. In the following, we first
introduce the Shell-Index.
Shell-Index. The index is constructed for the maintenance of maximal connected k-cores in
graphs. The idea is to apply the core decomposition on graph G and precompute all maximal
connected k-cores. Further, all maximal connected k-cores are organized into a tree-shaped
structure to easily retrieve any maximal connected k-core that contains the given query vertices.
This tree-shaped structure is called Shell-Index.

The data structure of Shell-Index T for graph G is defined as follows. Suppose that the
maximum core number in G is cmax. Then T has cmax different levels of tree nodes. We use
Sk

i to denote the i-th tree node at level k of T , 1 � k � cmax. Each tree node Sk
i consists

of a set of k-class vertices whose core number is k, i.e., Sk
i � Ψ.k/. Moreover, the subtree of

T rooted at Sk
i corresponds to a maximal connected k-core in G. For example, consider the

graph G in Figure 3.6. The largest core number of G is 3. It consists of three class sets Ψ.1/ D

fv1; v12g, Ψ.2/ D fv2g, and Ψ.3/ D fv3; v4; v5; v6; v7; v8; v9; v10; v11g. As we can see the Shell-
Index T shown in Figure 3.11. T has three levels of tree nodes. At the level 1, it has a node
S1

1 D fv1; v12g indicating vertices v1 and v12 have core number 1. The subtree of T rooted at S1
1

corresponds to a maximal connected 1-core. First, the subtree has four tree nodes and S D S1
1 [

S2
1 [ S3

1 [ S3
2 D V , and the induced subgraph GS is the whole graph, which is the maximal

connected 1-core. Similarly, it can be easily verified that the subtrees of G rooted at S3
1 and S3

2

correspond, respectively, to the maximal connected 3-cores in Figure 3.6. We note that if graph
G is disconnected, the Shell-Index of G will be a forest consisting of multiple trees, where each
tree represents a connected component in G.

Level 1        S1               v1v12

Level 2        S1                  v2

Level 3         v3v4v5v6         

v7v8v9

 S1            

v10v11     S2

1

2

3 3

Figure 3.11: The Shell-Index for graph G in Figure 3.6.
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Algorithm 3.8 Shell-Index Construction
Input: A graph G D .V; E/.
Output: Shell-Index of G.

1: Apply the core decomposition on G using Algorithm 2.1;
2: Let cmax be the maximum core number in G;
3: Tree-shaped structure T  ;;
4: Graph H  ;;
5: for k  cmax to 1 do
6: Let k-class set Ψ.k/ D fv W v 2 V; '.v/ D kg.
7: Let k-edge set Ek D f.v; u/ 2 E W '.v/ � k; '.u/ � k; minf'.v/; '.u/g D kg;
8: Adding the subgraph H 0.Ψ.k/; Ek/ into H to find all maximal connected k-cores fC1; : : : ; Cr g using

Union-Find forest;
9: for i  1 to r do

10: Add a tree node Sk
i where Sk

i D Ψ.k/ \ Ci , denoted by the i-th node at the k-th level of Tree T ;
11: if 9Sk0

j � Ci where k < k0 � cmax and Sk0

j has no parent in T do
12: Add a relationship <parent, child> between nodes Sk

i and Sk0

j in tree T .
13: return tree-shaped structureT as Shell-Index of G;

Shell-Index Construction. Algorithm 3.8 presents a method of constructing Shell-Index for a
graph G. The basic idea is to compute all maximal connected components and then organize
them into a tree-shaped structure, based on an inclusion rule that the .k C 1/-core is a subgraph
of the k-core, for all k. However, for each vertex v with core number '.v/ D l , v may be present
in many maximal connected k-cores for 1 � k � l . To avoid duplicate information and save
storage cost, each vertex v is stored only once to indicate the maximal connected k-core with
the largest k, that contains v. In this way, Shell-Index is organized in an elegant tree structure.The
algorithm starts by applying the core decomposition on G using Algorithm 2.1 (line 1). Then, we
obtain all core numbers of vertices and let cmax be the maximum one (line 2). We construct the
Shell-Index T from scratch level-by-level in a bottom-upmanner (lines 3–12). In other words, we
first create the k-th-level tree nodes and then create the .k � 1/-th-level tree nodes. At the level
k (lines 6–12), we define a set of nodes with core number k, as Ψ.k/ D fv W v 2 V; '.v/ D kg

and the k-edge set Ek D f.v; u/ 2 E W '.v/ � k; '.u/ � k; minf'.v/; '.u/g D kg (lines 6–7).
We add the subgraph H 0.Ψ.k/; Ek/ into H to find all maximal connected k-cores fC1; : : : ; Crg

(line 8). Then, for each maximal connected k-core Ci , we create a subtree of T rooted by Sk
i

(lines 9–12). The tree nodes Sk
i are formed by a set of k-class vertices in Ci , i.e., Sk

i D Ψ.k/ \ Ci .
Then, we add tree edges between Sk

i and Sk0

j where k0 > k, indicating that each vertex present
in the subtree of T rooted at Sk0

j also belongs to the maximal connected k-core Ci . Finally, the
algorithm returns T as Shell-Index (line 13).

Example 3.2.5 Figure 3.12 shows a special case of tree edges that are between Sk
i and Sk0

j , where
k0 > k C 1. Consider the graph G in Figure 3.12a, and the corresponding Shell-Index of graph G is
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shown in Figure 3.12b.The induced subgraph ofG by the vertex set fv7; v8; v9; v10; v11g is a connected
4-core, thus vertices fv7; v8; v9; v10; v11g are stored in the tree node S4

2 at the level-4 of Shell-Index.
The vertex v12 can present in a connected 2-core, but does not belong to any 3-core. Thus, v12 is stored
in the tree node S2

1 at the level 2 of Shell-Index. Due to the edge .v12; v7/, we add a tree edge between
S2

1 and S4
2 , indicating that a maximal connected 4-core rooted at S4

2 belongs to a maximal connected
2-core rooted at S2

1 .

Level 1     v13

Level 2    v12

Level 3             v6

Level 4     v1v2v3v4v5                  

v7v8v9
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  v10v11
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v6 v12 v7

v8

v9

v10

v11

v13

(a) Graph G (b) !e Shell-Index of graph G

Figure 3.12: An example of Shell-Index.

Now, based on the Shell-Index, we are ready to present the query processing phase in
detail. This phase consists of two steps: retrieval of the information computed from Shell-Index,
and online processing of this information to obtain the final query answer.
Retrieval from Shell-Index. Given a set of query vertices Q, the retrieval phase aims at finding
a maximal connected k-core H � with the largest k containing all query vertices Q. To retrieve
H � from Shell-Index, the problem is turned into one of finding a subtree of T rooted at a k-th
level node with the largest k. This is a classical problem of finding the lowest-common-ancestor
(LCA). In the worst case, for every vertex q 2 Q, we may visit each tree node S containing q

all the way to the root, and finally find the lowest-common-ancestor. The time complexity is
O.jQjcmax C jH

�j/. The well-known Tarjan’s offline lowest common ancestors (LCA) algo-
rithm can also be applied to store Shell-Index, which enables constant time online retrieval [69].
Online processing. The retrieval phase described above finds the set H � containing all solutions
to Global-Core for a given query Q. The goal of the online processing phase is to further refine
H � to extract a solution that is as small as possible. Since the Minimum-Core community search
problem is NP-hard, Barbieri et al. [18] propose an efficient heuristic algorithm called Greedy-
Connection. The idea of Greedy-Connection is as follows. A solution to Minimum-Core needs to
satisfy two constraints: (a) the query vertices are connected, and (b) the solution has minimum
degree no less than the core number of any vertex in H �. Among all possible solutions satisfying
these constraints, the goal is to output a community with the smallest vertex size. The main
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intuition of Minimum-Core is to look at constraints (a) and (b) one by one. In particular, one
may first find a solution that satisfies constraint (a) only, and then refine this solution in order
to make it satisfy constraint (b) too. The motivation is that in real-world graphs with power-
law-like degree distribution, the minimum degree of a community is typically small (i.e., in the
order of a few tens or even less); thus, it is likely that any solution that satisfies (only) constraint
(a) needs just a very few additional vertices to satisfy constraint (b) too. As a result, Barbieri et
al. [18] apply a bottom-up method to find a connected subgraph using as few more vertices as
possible. After that, they perform a sequential procedure that first ensures connection among the
query vertices, and then aims at satisfying the constraint on the minimum degree. They apply
the Steiner Tree algorithm [108] to connect all query vertices Q.

3.2.3 INFLUENTIAL COMMUNITY SEARCH

Motivation. In all previous studies on community detection and search, a community is defined
as a densely connected subgraph. This ignores another important aspect, namely the “influence”
(or importance) of a community. In many applications, we are interested in finding the most
influential communities. For example, consider the following two scenarios. Suppose that Alice
is a database researcher. She may want to identify the most influential research groups from
the co-authorship network of the database community, so as to be aware of the recent trends
of database research by the “movers and shakers,” which can be modeled using those influential
groups and following their publications and blogs. Another example is the influential commu-
nities in the social network. A user Bob may intend to follow the most influential groups of three
different topics “technology,” “investments,” and “politics,” so that he can track the recent activ-
ities from those three influential groups and may conduct further analytics on that activity data.
Both of the above applications motivate the identification of the most influential communities
within a network [122].

Note that [122] proposes to measure the influence of a community by counting the min-
imum value of influential importance among all nodes in the community. The node influence
is different from influential edges in social networks, which are based on independent cascade
(IC) model or linear threshold (LT) model [28, 42, 75, 105, 127]. Several studies of influential
community search [120, 184] have recently been conducted using diffusion models, which leave
the study of influential community search under diffusion models such as IC and LT models as
an open problem.

Problem Formulation
In this section, we describe k-Influential community search, the problem of finding influential
communities in large networks. For this, Li et al. [122] propose a new community model called
k-Influential community based on the well-known concept of connected k-core, where the im-
portance of nodes is taken into account. To find the k-Influential community, the key ideas of
the proposed solutions are building an index that incorporates the importance of nodes and
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the structure of k-core, and developing an index-based online query processing algorithm for
quickly identifying the k-Influential community containing query nodes. In the following, we
introduce the problem setting using several new definitions.
Graph with node weights. Consider an undirected graph G D .V; E/ and a node weight func-
tion w, such that each node v in G is associated with a non-negative weight w.v/, denoting
the influence (or importance) of the node v. Such weight can be computed using the PageR-
ank algorithm [138], centrality, degree, expected spread computed using a standard diffusion
model [105], or other user-defined ranking functions. Additionally, without loss of generality,
we assume that the weight of each node is distinct. Note that if that is not the case, we can
break ties using node identity whenever w.vi / D w.vj /, for distinct nodes vi and vj [122]. The
influence score of a subgraph is defined as follows.

Definition 3.2.2 (Influence Score) Given a subgraph H of graph G, the influence score of H is
the minimum weight of the vertices in H , i.e., f .H/ D minv2VH

w.v/.

Example 3.2.6 Consider the weighted graphG in Figure 3.13where each vertex has a weight, shown
in red color, e.g., vertex v6 has weight 6. The subgraph H1 � G shown in Figure 3.14a has weight
f .H1/ D minv2fv5;v7g w.v/ D 5. Similarly, the subgraphs H2 and H3 in Figures 3.14b and 3.14c
both have weight f .H2/ D f .H3/ D 5.
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Figure 3.13: An example of weighted graph G (the numbers in red denote the node weights).
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Figure 3.14: An example of k-Influential community H3 where k D 2. H1 and H2 are not k-
Influential communities for any k 2 f1; 2; 3g.
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Based on the definitions of k-core and influence score, a k-Influential community is defined

as follows.

Definition 3.2.3 (K-Influential Community) Given a graph G and a parameter k, the k-
Influential community is defined as a maximal connected k-core H such that there exists no other con-
nected k-core H 0 having f .H 0/ D f .H/ and H � H 0.

In the k-Influential community model, the parameter k measures the cohesiveness of the
community. Note that a maximal connected k-core H must be an induced subgraph of G,
thus the requirement of induced subgraph is redundant and is removed from the definition of
k-Influential community [122].

Example 3.2.7 Consider the graph G in Figure 3.13 and k D 2. The subgraph H3 is a k-Influential
community, since it is a maximal connected 2-core such that each vertex in H3 has degree at least 2
and f .H3/ D 5. On the other hand, H1 and H2 are not 2-influential communities. H1 is not even
a connected 2-core, since each vertex has degree only 1. On the other hand, although H2 is a connected
2-core, H2 violates the maximal property (see Definition 3.2.3). H2 is not a maximal connected 2-
core with f .H2/ D 5, since H2 � H3 and f .H2/ D f .H3/ D 5. Notice that H3 is also a maximal
connected 3-core with influence score f .H3/ D 5, and is thus also a k-Influential community for k D 3.

Intuitively, a good influential community should not only be a strongly cohesive induced
subgraph, but also have a large influence value. In many practical applications, we are typically
interested in the most influential communities whose influence values are larger than those of
other influential communities. Based on these motivations, the definition of k-Influential com-
munity search is given as follows.

Problem 3.2.4 (k-Influential) Given a graph G D .V; E/, a weight function w, and parameters k

and r , find the top-r k-Influential communities with the highest influence scores.

Example 3.2.8 Consider the graph G in Figure 3.13 and parameters k D 3 and r D 1. The solution
for k-Influential on G is the k-Influential community H3 in Figure 3.14c, since H3 has the highest in-
fluence score f .H3/ D 5. However, if we modify the parameters to k D 2 and r D 1, then the solution
will be the subgraph of G by induced by the vertices fv6; v7; v8g, since4v6v7v8

is the 2-core with the
highest influence score f .4v6v7v8

/ D 6.

It is important to note that although we define the influence score of a community as
the minimum weight of a node in the community, we could also in principle aggregate the
weights in other ways, e.g., MAX, by defining the influence score as the maximum weight of the
nodes in the community. The techniques proposed in [122] (e.g., ICP-Index to be introduced in
Section 3.2.3) can be easily extended to process queries for the MAX aggregation of influence
scores. In place of minimum weight, we could aggregate node weights using other aggregate
functions such as MAX or AVG in order to define the influence score of a community. In this
case, some simplemodifications to the proposed techniques are needed to solve this more general
k-Influential community search problem.
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DFS-Based Query Processing Algorithm
We first make some observations of k-Influential communities from the example graph G in
Figure 3.13.

Observation 3.1 Given a graph G and any k-core H of G, each maximal component of H is
a k-Influential community. For example, the 2-core of graph G in Figure 3.13 is itself; G is the
maximal component of G, and is thus a 2-Influential community. Its influence score is 1.

Observation 3.2 For any k-Influential community H , let v be the vertex that has the smallest
weight in H , i.e., v D arg minv2V.H/ w.v/. Let us first remove the vertex v and all its incident
edges from H . Since the remaining graph may have vertices with degree less than k, we then
continue removing these unqualified vertices and their incident edges until the remaining graph
is empty or all remaining vertices have degree at least k in H . As a result, eachmaximal connected
component of the remaining graph H is a k-Influential community. For example, consider the
graph G from Figure 3.13. As seen above, it is a 2-influential community, and the vertex v1

has the smallest weight of 1. Let us remove the vertex v1 and its incident edges from G. The
remaining graph satisfies the k-core property and contains two maximal connected components
R2 and R3 (see Figures 3.15b and 3.15c), which are k-Influential communities.

(a) R1 (b) R2 

(c) R3 (d) R4 
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Figure 3.15: All k-Influential communities fR1; R2; R3; R4g of graph G in Figure 3.13. Here,
k D 2.
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Algorithm 3.9 The DFS-based algorithm
Input: A graph G D .V; E/, a weight function w, and parameters k and r .
Output: The top-r k-Influential communities.

1: Find k-core H of G using the core decomposition in Algorithm 2.1;
2: l  0;
3: while H ¤ ; then
4: l  l C 1;
5: v�  arg maxv2V.H/ w.v/;
6: Let Hv� be the maximal connected component of H containing v�;
7: Rl  Hv� ; // Hv� is a k-Influential community;
8: Delete v� and its incident edges from H ;
9: Maintain k-core property of H by iteratively removing vertex v with degH .v/ < k and its incident edges;

10: if l � r then
11: return fRl ; :::; Rl�rC1g;
12: else
13: return fRl ; :::; R1g;

Algorithm. Based on the above observations, we are ready to present an efficient algorithm for
k-Influential community search in Algorithm 3.9. The key idea is largely similar to that for k-core
decomposition. First, for the given parameter k, we find the k-core H of graph G using the core
decomposition in Algorithm 2.1 (line 1). Then, we iteratively invoke the following procedure
until the resulting graph H becomes empty (lines 3–9). The procedure has two steps. The first
step is to find a vertex v� with the smallest weight in H . Based on Observation 3.1, the maximal
connected component of H containing v�, denoted Hv� , is a k-Influential community. We have
the influence score f .Hv�/ D w.v�/ and add Hv� to our list of k-Influential communities (lines
4–7). The second step is to remove v� and its incident edges from H and maintain k-core
property in the remaining graph H , i.e., each vertex in H has degree at least k (lines 8–9). Finally,
if the number of discovered k-Influential communities is less than r , we return all k-Influential
communities the algorithm found; otherwise, we return the top-r k-Influential communities
fRl ; : : : ; Rl�rC1g with the highest influence scores.

Example 3.2.9 We apply Algorithm 3.9 on the graph G in Figure 3.13 with parameters k D 2 and
r D 1. The whole graph G is 2-core, H is identical to G (line 1). In the first iteration, we identify
the vertex v� D v1 with the smallest weight of 1 and obtain the k-Influential community R1 D G

in Figure 3.15a. After the removal of vertex v1, the remaining graph consists of two components as
shown in Figures 3.15b and 3.15c. In the second iteration, we identify the vertex v� D v2 and obtain
the maximal connected component Hv� D R2 in Figure 3.15b. After removing v2 from the graph,
vertices v3 and v4 will be also deleted for violating the property of k-core. Repeating the above process,
in the third and fourth iterations, k-Influential communities R3 and R4 in Figures 3.15c and 3.15d
are obtained. Finally, for r D 1, the algorithm returns fR1g as the (top-r) answer.
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Complexity Analysis. The time complexity and space complexity is O.mC n/, which is the
same as the complexity of core decomposition algorithm.

ICP-Index-Based Query Processing Algorithm
Although Algorithm 3.9 takes linear time in graph size, an index-based algorithm can further
improve efficiency for query processing. The basic idea is to first precompute all k-Influential
communities for every k, then use a space-efficient structure called ICP-Index to keep track of
all k-Influential communities in memory. Based on ICP-Index, the algorithm produces all top-r
results in optimal time.
A novel ICP-Index. We first introduce ICP-Index using the Example 3.2.9. Assume k D 2 and
consider all k-Influential communities fR1; R2; R3; R4g of graph G, as shown in Figure 3.13. The
k-Influential communities R1; R2; R3; R4 have increasing influence scores. Moreover, R2 and R3

are subgraphs of R1 and recursively R4 is a subgraph of R3. We define an inclusion relationship
on k-Influential communities as follows. Given two k-Influential communities A and B with
A � B , we say A is a sub-k-Influential community of B . Based on such an inclusion relationship,
all k-Influential communities can be organized in a tree-shaped (more generally, a forest-shaped)
structure. However, instead of storing all communities explicitly, which is expensive, we can
represent them compactly.We only store those nodes of a k-Influential community H that are not
included in any sub-k-Influential communities of H . For example, in the k-Influential community
R1, the vertex v1 does not belong to any sub-k-Influential communities R2, R3, or R4. Thus, in
the ICP-Index in Figure 3.16b (for k D 2), we create an isolated tree node Sv1

D fv1g containing
v1. It can be seen in a similar way that the node corresponding to Sv5

in Figure 3.16b only
needs to store the vertex v5. The tree of ICP-Index rooted at Sv1

corresponds to the k-Influential
community R1, i.e., the union of the vertex sets of all tree nodes in Figure 3.16b is V D Sv1

[

Sv2
[ Sv5

[ Sv6
. Similarly, the tree of ICP-Index rooted by Sv5

corresponds to the k-Influential
community R3.
ICP-Index Construction. The ICP-Index construction algorithm is outlined in Algorithm 3.10.
The general idea is to repeatedly run Algorithm 3.9 for finding all k-Influential communities for
any k. More precisely, it consists of two steps: generating tree nodes and generating tree edges. First,
it invokes Algorithm 3.9 cmax times, where cmax is the maximum core number in G. That is,
for each 1 � k � cmax, it applies Algorithm 3.9 to generate isolated tree nodes in the tree Tk for
k-Influential communities. Second, it invokes a procedure of tree construction that adds edges
between tree nodes generated in Step 1, in order to build ICP-Index.
Generating Tree Nodes. In the procedure of tree node generation, after the deletion of v�,
all vertices removed because of violation of the k-core property in H must be stored in a tree
node (lines 10–13 of Algorithm 3.10). Notice that the vertex v� with the smallest weight is
also included in the tree node Sv� . The reason is that all these deleted nodes are excluded in
any sub-k-Influential communities H 0 � H . For example, consider the second iteration of Al-
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(a) ICP-index (k = 1) (b) ICP-index (k = 2) (c) ICP-index (k = 3)
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Figure 3.16: Tree organization of all the k-Influential communities of graph G in Figure 3.13.

gorithm 3.10 for k D 2 and vertex v� D v2. The corresponding tree node is Sv2
D fv2; v3; v4g.

After removal of vertex v2, vertices v3 and v4 are deleted due to the violation of the k-core
property.
Generating Tree Edges. After generating all tree nodes in the previous step, the procedure
ConstructTree adds the edges by connecting tree nodes for each tree Tk , 1 � k � cmax. First,
we treat each isolated node of Tk as a single-node tree. Then, we iteratively “merge” two trees
into one and finally obtain the tree (or forest) structure as ICP-Index. Here the merge operation
between two trees P1 and P2 is defined as follows. Let S1 and S2 be the roots of subtrees P1 and
P2, respectively. Assume that f .S1/ < f .S2/ where f .Si / D minu2Si

w.u/ for i D 1; 2. Then,
the merge operation between S1 and S2 is to add an edge between S1 and S2 indicating S2 is
a child node of S1. We note that such a bottom-up tree construction algorithm for all k can be
done by traversing the graph once, in decreasing order of node weights (lines 3–13).
Query Processing Algorithm. Based on the ICP-Index, the query processing algorithm is
straightforward. To find the top-r k-Influential communities with the highest influence scores
for a given k, we first identify the tree Tk in the ICP-Index. Given any tree node S 2 Tk , de-
note the subtree of Tk rooted at S as T S

k
, which corresponds to a k-Influential community.

In other words, let the vertex set be C D [x2T S
k

x, then the induced subgraph GC is a k-
Influential community. Thus, we then generate answers by returning r subtrees T S

k
with the high-

est weights, where the weight of a tree node is the minimum weight of nodes in its root vertex,
i.e., f .T S

k
/ D minx2T S

k
;v2x w.v/. The time complexity of the ICP-Index based query processing

algorithm is linear in the size of the answer, which is optimal.
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Algorithm 3.10 ICP-Index Construction
Input: A graph G D .V; E/ and a weight function w.
Output: ICP-Index of G.

1: Apply the core decomposition on G using Algorithm 2.1;
2: Let cmax be the maximum core number in G;
3: for k  1 to cmax do
4: Compute k-core H of G based on the core numbers of vertices;
5: Tk  ;; l  0;
6: while H ¤ ; then
7: l  l C 1;
8: v�  arg maxv2V.H/ w.v/;
9: Let Hv� be the maximal connected component of H containing v�;

10: Delete v� and its incident edges from H ;
11: Maintain k-core property of H by iteratively removing vertex v with degH .v/ < k and its incident

edges;
12: Let Sv� be the set of vertices removed from H at this loop and v� 2 S ;
13: Add an isolated node Sv� into tree Tk ;
14: return ConstructTree();

15: Procedure ConstructTree()
16: // This procedure adds the connecting edge between vertices in each tree Tk ;
17: for all node u in G sorted in decreasing order of w.u/ do
18: for 8v 2 N.u/ with w.v/ > w.u/ do
19: for i  1 to min cu; cv do
20: Su  the root of a tree containing u in Ti ;
21: Sv  the root of a tree containing v in Ti ;
22: if Su ¤ Sv then
23: Add an edge between Su and Sv indicating that Sv is a child of Su;
24: return {T1; :::; Tcmax };

Discussion
Li et al. [122] study another problem formulation of k-Influential using a non-containment
constraint. It is defined as follows. Given a k-Influential community H , H satisfies the non-
containment constraint if and only if there exists no k-Influential community H 0 � H such that
f .H 0/ > f .H/ holds. Thus, H is called a non-contained k-Influential community. The problem
of non-contained k-Influential is to find the top-r non-contained k-Influential communities with
the highest influence scores [122]. Since there is no inclusion relationship among the top-r
non-contained k-Influential communities, no redundant results are included. To solve the prob-
lem of non-contained k-Influential, a slight modification needs to be made to Algorithm 3.9, by
adding one more check. For a k-Influential community H , we conclude H is a non-contained
k-Influential community provided H does not contain a k-core, upon removing the node with
the smallest weight from H .
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Table 3.1: Comparison of state-of-the-art k-core-based methods [18]. The ratings of the first
four methods Global-Core, Constrained-Core, Local-Core, and Minimum-Core for Empirical Ef-
ficiency and Quality are from [18]. k-Influential is rated by us, based on the linear running time
of graph size and high quality of specific communities with the maximum influence score.

Methods Empirical Effi  ciency Quality Query Vertices Parameter-Free

Global-Core [157] + + Multiple Yes

Constrained-Core [157] + + + Multiple No

Local-Core [55] + + + + Single Yes

Minimum-Core [18] + + + + + + Yes Yes

k-Infl uential [122] + + + + + + No No

3.2.4 COMPARISON OF VARIOUS k-CORE COMMUNITY MODELS
A comparison of the state-of-the-art k-core-based methods is provided in Table 3.1, which is
extended from the comparison table in [18] by additionally including k-Influential in the com-
parison. We compare all methods in terms of empirical efficiency, quality, the number of query
vertices, and whether they are parameter-free.

In terms of empirical efficiency, the method of Constrained-Core is the worst. The problem
of Constrained-Core is shown to be NP-hard, and Sozio and Gionis [157] devise heuristics that
perform even worse than the known heuristics for standard Global-Core. Besides the efficiency
limitations, the available algorithms for Constrained-Core also suffer from providing no guar-
antee w.r.t. the optimal minimum degree. The Local-Core method deals with the same problem
as Global-Core for the special case of a single query vertex. In terms of improving efficiency and
quality, Local-Core is proposed for searching for communities in the local graph structure and
speeds up the search processing by avoiding global search.

Another problem proposed in [55] and [18] is to find a k-core with the smallest size
that contains a set of given query vertices Q. Cui et al. [55] define this problem for the case
of a single query vertex, i.e., jQj D 1, and they do not propose algorithms. They show that this
problem is NP-hard. Barbieri et al. [18] extend this result to the general case where jQj � 1

by using a reduction from the minimum Steiner tree problem and propose a general approach
called Minimum-Core to find k-core-based communities containing multiple query vertices. This
method improves the efficiency of the above methods and also offers a method for finding Local-
Core proposed by Cui et al. for the special case of a single query vertex. Moreover, k-Influential
method address a different problem from the above. The time complexity of ICP-Index based
query processing algorithm is optimal w.r.t. the answer size.
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3.3 TRUSS-BASED COMMUNITY MODELS

Motivation. In social networks, it is quite typical that pairs of friends have several common
friends, thus forming many triangles [60]. Indeed, triangles are regarded as the fundamental
building blocks of networks and lead to a high clustering coefficient [20, 136, 165, 174, 177]. In
a social network, a triangle indicates that two friends have a common friend “endorsing” their
friendship, which shows a strong and stable relationship among the three friends. Intuitively,
the more common friends two people have, the stronger their relationship.

In this section, we discuss community models based on the dense subgraphs of k-truss.
Given a graph G, the k-truss of G is the largest subgraph in which every edge is contained
in at least .k � 2/ triangles within the subgraph [50] (see Definition 2.4.4). The k-truss is a
type of cohesive subgraph defined based on triangles which model stable relationships among
three nodes. However, the k-truss subgraph may be disconnected, for example, the subgraph
shown in Figure 3.17a, consisting of the two shaded regions, forms the 4-truss which is obvi-
ously disconnected. Thus, the classical k-truss subgraph may not correspond to a meaningful
community. To address this issue, Huang et al. [89, 96] propose two different constraints to
build up densely-connected community models. One truss community model is based on the
triangle connectivity such that every pair of edges of a truss community should be connected
to each other via a series of triangles. The high-level idea of finding triangle-connected com-
munities is to build an index, incorporating the triangle connectivity and k-truss structure. An
index-based truss community search algorithm is proposed to find answers in optimal time. An-
other truss community model is based on the k-truss with the smallest diameter. The core idea
of closest community search is to find a k-truss connecting all query nodes and then shrink the
community to reduce the diameter as much as possible. In the following, we will introduce in
detail these two truss community models, based on (i) triangle connectivity and (ii) diameter.

3.3.1 TRIANGLE-CONNECTED TRUSS COMMUNITY SEARCH
An triangle connectivity constraint is imposed on top of the k-truss, that is, any two edges in a
community either belong to the same triangle, or are reachable from each other through a series
of adjacent triangles. Here two triangles are said to be adjacent if they share a common edge.
The triangle connectivity requirement ensures that a discovered community is connected and
cohesive. This defines triangle-connected truss community model.

Notions and Notations
In the following, we give a series of definitions and then formulate the model. A triangle in G

is a cycle of length 3. Let u; v; w 2 V be the three vertices on the cycle. We denote this triangle
by 4uvw. Then the support of an edge is defined as follows.

Definition 3.3.1 (Support) The support of an edge e.u; v/ 2 E in G, denoted sup.e; G/, is defined
as jf4uvw W w 2 V gj. When the context is obvious, we replace sup.e; G/ by sup.e/.
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We write e 2 4 to indicate that the edge e belongs to the triangle 4. We next define

triangle adjacency and triangle connectivity.
Definition 3.3.2 (Triangle Adjacency) Given two triangles41;42 in G, they are adjacent if41

and42 share a common edge, which is denoted by41 \42 ¤ ;.
Definition 3.3.3 (Triangle Connectivity) Given two triangles4s;4t in G,4s and4t are tri-
angle connected, if there exist a series of triangles41; : : : ;4n in G, where n � 2, such that41 D 4s ,
4n D 4t and for 1 � i < n,4i \4iC1 ¤ ;.

For the graph G in Figure 3.17a, e.q; p4/ is contained in 4qp3p4
and 4qp2p4

, thus its
support sup.e.q; p4// D 2. 4qp3p4

and 4qp2p4
are triangle adjacent as they share a common

edge e.q; p4/. 4tp3p4
and 4qp2p4

are triangle connected through 4qp3p4
in G.

(a) Graph G (b) Two 4-truss communities for q 
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Figure 3.17: k-truss community example.

Problem Formulation
Based on the definitions of support and triangle connectivity, we define the model of triangle
connected truss community in the following. For simplicity, we also call the triangle connected
k-truss community as k-truss community for short, and use both of them interchangeably in this
book.
Definition 3.3.4 (K-Truss Community) Given a graph G and an integer k � 2, G0 is a k-truss
community, if G0 satisfies the following three conditions.
(1) K-Truss. G0 is a subgraph of G, denoted as G0 � G, such that 8e 2 E.G0/, sup.e; G0/ � .k �

2/.

(2) Triangle Connectivity. 8e1; e2 2 E.G0/, 941;42 in G0 such that e1 2 41, e2 2 42, then
either41 D 42, or41 is triangle connected with42 in G0.

(3) Maximal Subgraph. G0 is a maximal subgraph satisfying conditions (1) and (2).That is, ÀG00 �

G, such that G0 � G00, and G00 satisfies conditions (1) and (2).
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Actually the largest subgraph that satisfies condition (1) is exactly the k-truss definition

used in the literature [50, 165]. However, the k-truss condition itself is insufficient to define a
cohesive and meaningful community due to the following two reasons. First, a k-truss subgraph
can be disconnected, thus does not represent a cohesive community. For example, as seen ear-
lier, in Figure 3.17a, the subgraph consisting of the two shaded regions is the 4-truss, which is
disconnected. So this 4-truss subgraph does not correspond to a meaningful community. Sec-
ond, for a fixed k value, any vertex can belong to at most one k-truss subgraph. This limitation
cannot deal with a common scenario that a user can participate in multiple communities.

With these considerations, the triangle connectivity requirement is imposed in condi-
tion (2) to ensure that the discovered communities are connected and cohesive. The rationale is
that a triangle represents a strong and stable relationship among three vertices. If any two edges
in a subgraph are reachable from each other through a series of adjacent triangles, the subgraph
must be connected, and have a cohesive structure among all involved vertices. This definition
also allows a vertex to participate in multiple communities.

Example 3.3.1 Two 4-truss communities containing vertex q are shown in Figure 3.17b as C1 and
C2. We can verify that every edge in C1 is contained in at least two triangles, any two edges in C1

are reachable through adjacent triangles, and C1 is maximal. Thus, C1 is a 4-truss community. These
properties also hold for another 4-truss community C2. Notice that C1 and C2 are connected with, i.e.,
reachable from, each other, although they are not triangle connected with each other. If we had defined a
k-truss community based on classical notion of connectivity, the union of the graphs C1 and C2 would
be regarded a k-truss community. However, as the edges in C1 cannot reach the edges in C2 through
adjacent triangles, C1 and C2 cannot merge as one large community. This is very reasonable, as there
is no direct connection between the two vertex sets fp1; p2; p3; p4g and fr1; r2; r3g. Finally, we can
see that vertices q and t participate in both communities C1 and C2.

Problem Definition Given a graph G.V; E/, a query vertex vq 2 V , and an integer k � 2, find
all k-truss communities containing vq .

Why K-Truss Community?
To help appreciate the benefits of the k-truss community model, let us compare it with one of
the most recent proposals for a community model, namely the ˛-adjacency--quasi-k-clique
model [54]. Compared with that model, the k-truss community model has three significant ad-
vantages: stronger guarantee on cohesive structure, fewer parameters, and lower computational
cost. These nice properties, which are inherited from the k-truss subgraph [50], not only lead
to the discovery of more cohesive and meaningful communities, but also enable the design of
more efficient, scalable, and easier-to-use algorithms for community search. We elaborate these
properties below.
BoundedDiameter inK-TrussCommunity. As shown in [50], the diameter of a k-truss com-
munity C with jC j vertices is no larger than b2jC j�2

k
c. This property guarantees that the shortest
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distance between any two vertices in a community is bounded, which has been considered as
an important feature of a good community in [61]. As an example, consider the 4-truss com-
munity C1 in Figure 3.17b. The diameter of C1 is 2, which matches the diameter upper bound
b

2�6�2
4
c D 2.

(K-1)-Edge-Connected Graph. A graph is (k � 1)-edge-connected if it remains connected
whenever fewer than k � 1 edges are removed [72]. A k-truss community is guaranteed to be
(k � 1)-edge-connected [50]. This property ensures a high connectivity of a community, which
has been proposed as a criterion for a good community in [81]. In contrast, the -quasi-k-
clique is not (k � 1)-edge-connected whenever  < 1. For example, the 0.8-quasi-7-clique in
Figure 3.5 becomes disconnected when just one edge is removed.
FewerParameters. In the k-truss community model, we only need to specify the trussness value
k, which controls the diameter, the triangle connectivity, and the edge support in a community.
In contrast, the ˛-adjacency--quasi-k-clique model requires three parameters, the adjacency
parameter ˛, the density  , and the clique size k. Arguably, one advantage of having more
parameters may give more control over the properties of the community. On the other hand, it
is much more difficult to set proper values for different parameters.
PolynomialTimeComplexity.There exist polynomial time algorithms [50, 165] for computing
k-truss subgraphs. By applying such algorithms, one can compute the k-truss subgraphs for all
k. The precomputed results enable to design compact index structures and efficient algorithms
for querying k-truss communities. In contrast, finding -quasi-k-cliques has been proven to be
NP-hard [54], which imposes a severe computational bottleneck.

A Simple Index-Based Query Processing Algorithm
In the following, we discuss how to process a k-truss community query on a graph. We begin
by describing a simple k-truss index and use it to develop a simple k-truss community search
algorithm (Figure 3.18). We will subsequently analyze the limitations of this simple approach.

s1 s2

s4

s3

r1 r2

p

q

x2 x3

x1 x4 5-Truss Edge

4-Truss Edge

3-Truss Edge

Figure 3.18: An example graph for k-truss community search.
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Algorithm 3.11 Query Processing Using K-Truss Index
Input: G D .V; E/, an integer k, query vertex vq

Output: k-truss communities containing vq

1: visited ;; l  0;
2: for u 2 N.vq/ do
3: if �..vq ; u// � k and .vq ; u/ … visited
4: l  l C 1; Cl  ;; L ;;
5: L:push..vq ; u//; visited visited [ f.vq ; u/g;
6: while L ¤ ;

7: .x; y/ L:pop./; Cl  Cl [ f.x; y/g;
8: for z 2 N.x/ \N.y/ do
9: if �..x; z// � k and �..y; z// � k

10: if .x; z/ … visited
11: L:push..x; z//; visited visited [ f.x; z/g;
12: if .y; z/ … visited
13: L:push..y; z//; visited visited [ f.y; z/g;
14: return fC1; : : : ; Cl g;

ASimple K-Truss IndexConstruction First, a truss decomposition algorithm [165] is applied
to compute the trussness of all edges in G. Then, for each vertex v 2 V , we sort its neighbors
u 2 N.v/ in descending order of the edge trussness �.e.u; v//. For each distinct trussness value
k � 2, wemark the position of the first vertex u in the sorted adjacency list where �.e.u; v// D k.
This supports efficient retrieval of v’s incident edges with a given trussness value. We also use a
hashtable to maintain all the edges and their trussness values. This is the simple k-truss index.
Query Processing Algorithm 3.11 outlines the procedure for processing a k-truss community
query based on the simple index. Given an integer k and a query vertex vq , the algorithm checks
every incident edge on vq to search k-truss communities. If there exists an unvisited edge .vq; u/

with �..vq; u// � k, .vq; u/ is used as the seed edge to form a new community Cl . By definition,
all the other edges in Cl should be reachable from .vq; u/ through adjacent triangles. So we
push .vq; u/ into a queue L and perform a BFS traversal to search for other edges for expanding
Cl , i.e., edges which have trussness no less than k and form triangles with edges already in Cl

(lines 6–13). When L becomes empty, all edges in Cl have been found. Then the algorithm
checks the next unvisited incident edge of vq for forming a new community ClC1. This process
iterates until all incident edges of vq have been processed. Finally, a set of k-truss communities
containing vq are returned.

The correctness of Algorithm 3.11 is apparent since the algorithm essentially computes k-
truss communities by following the definition, that is, exploring triangle-connected edges with
trussness no less than k in a BFS manner. We next show the complexity of the simple k-truss
index construction and query processing by Algorithm 3.11.
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Theorem 3.3.1 The construction of the simple k-truss index takes O.

P
.u;v/2E minfd.u/; d.v/g/

time and O.m/ space. The index size is O.m/. Algorithm 3.11 takes O.dAmaxjAnsj/ time to process
one query, where Ans D C1 [ : : : [ Cl is the union of the produced k-truss communities, jAnsj is the
number of edges in Ans and dAmax is the maximum vertex degree in Ans.

Proof. The truss decomposition algorithm (Algorithm 2.2) takes O.
P

.u;v/2E minfd.u/; d.v/g/

time and O.m/ space for computing the trussness of all edges. Sorting the adjacency lists of all
vertices in G can be done in O.m/ time and O.m/ space, using binsort, similarly to using the
sorted degree array in [19, 37]. Building an edge hashtable costs O.m/ time and O.m/ space.
Thus, the construction of the k-truss index takes O.

P
.u;v/2E minfd.u/; d.v/g/ time and O.m/

space. The index size is O.m/.
In k-truss community search, for each edge .u; v/ in the generated communities, Algo-

rithm 3.11 accesses the common neighbors of u and v, i.e., N.u/ \N.v/ (lines 7–9), whose size
is bounded by dAmax. Thus, the query time complexity is O.dAmaxjAnsj/. �

Example 3.3.2 Suppose we want to query the 4-truss communities containing vertex q in the graph
in Figure 3.18. Algorithm 3.11 first visits edge .q; s1/ with �..q; s1// D 5 � 4, and adds it into
L. The algorithm pops .q; s1/ from L and inserts it into a new community C1. Then the algorithm
checks the common neighbors of q and s1 and the edges between them. Consider a common neigh-
bor s2 as an example. As �..q; s2// � 4 and �..s1; s2// � 4, both edges .q; s2/ and .s1; s2/ are then
inserted into C1 and also pushed into L for further expansion. This BFS expansion process contin-
ues until L becomes empty and the 4-truss community C1 is the subgraph induced by the vertex set
fq; s1; s2; s3; s4; x1; x2; x3; x4g.

TCP-Index-Based Query Processing Algorithms
In this section, we introduce a compact and elegant structure, called Triangle Connectivity Pre-
serving Index (TCP-Index), and a highly efficient algorithm to process a k-truss community
query. We first discuss the limitations of the simple k-truss index.
Limitations of Simple K-Truss Index Algorithm 3.11 has two drawbacks in its query process-
ing mechanism of using the simple k-truss index. Specifically, in lines 8–13, for any edge .x; y/

that has already been included in Cl , the algorithm needs to access adjacent edges .x; z/ and
.y; z/ for each common neighbor z of x and y. The following two cases lead to unnecessary and
excessive computational overhead.

1. Unnecessary access of disqualified edges: If �..x; z// < k or �..y; z// < k, then
.x; z/; .y; z/ will not be included in Cl , thus accessing and checking such disqualified edges
is clearly wasteful and should be avoided.

2. Repeated access of qualified edges: For each edge .u; v/ in Cl , it is accessed at least 2.k �

2/ times in the BFS traversal, which is a huge overhead, but avoidable. This is because
�..u; v// � k, .u; v/ is contained in at least .k � 2/ triangles by definition. For each such
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triangle denoted 4uvw, .u; v/ will be accessed twice when we do BFS expansion from the
other two edges .u; w/; .v; w/. It follows that the query time of Algorithm 3.11 is lower
bounded by �.kjAnsj/.

TCP-Index In view of these two drawbacks, Huang et al. [89] design a novel Triangle Con-
nectivity Preserving Index, or TCP-Index for short, which avoids the computational issues of
Algorithm 3.11 outlined above. Remarkably, the TCP-Index supports the k-truss community
query in O.jAnsj/ time, which is essentially optimal. Meanwhile, the TCP-Index can be con-
structed in O.

P
.u;v/2E minfd.u/; d.v/g/ time and stored in O.m/ space, which has exactly the

same complexity as the simple k-truss index.
TCP-Index Construction

We first present some observations from the example in Figure 3.18.

Observation 3.3 Consider 4pqs3
in which the three edge trussness values are 5, 3, and

3. Then 4pqs3
can appear in a 3-truss community, but not in 4- or 5-truss communi-

ties. To generalize, a triangle 4xyz can appear only in k-truss communities where k �

minf�..x; y//; �..x; z//; �..y; z//g.

Observation 3.4 Consider the subgraph in Figure 3.19a, extracted from the graph in Fig-
ure 3.18. By definition, vertices x1; x2; x3; x4 all belong to the same 5-truss community con-
taining q (see Figure 3.18), as each involved edge has trussness 5, and 4qx1x2

and 4qx1x3
are

adjacent via edge .q; x1/.4qx1x2
and4qx1x3

are triangle connected. Similarly,4qx1x2
,4qx1x3

,
4qx1x4

, 4qx2x3
, 4qx2x4

and 4qx3x4
all are triangle connected. Thus, we can use a compact

representation for vertex q as depicted in solid line in Figure 3.19b, which preserves the truss-
ness and triangle connectivity information for community search. Note that there is no need to
include edges .x2; x3/, .x2; x4/, and .x3; x4/, as the tree-shaped structure clearly indicates that
x2; x3; x4 belong to the same 5-truss community as x1 by triangle connectivity.

q q
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x3 x4
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5
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(a) Subgraph extracted from Figure 3.18 (b) Compact representation

Figure 3.19: Compact representation of a community with query vertex q.
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Algorithm 3.12 TCP-Index Construction
Input: G D .V; E/

Output: TCP-Index Tx for each x 2 V

1: Perform truss decomposition for G;
2: for x 2 V do
3: Gx  f.y; z/jy; z 2 N.x/; .y; z/ 2 Eg;
4: for .y; z/ 2 E.Gx/ do
5: w.y; z/ minf�..x; y//; �..x; z//; �..y; z//g;
6: Tx  N.x/;
7: kmax  maxfw.y; z/j.y; z/ 2 E.Gx/g ;
8: for k  kmax to 2 do
9: Sk  f.y; z/j.y; z/ 2 E.Gx/; w.y; z/ D kg;

10: for .y; z/ 2 Sk do
11: if y and z are in different connected components in Tx

12: add .y; z/ with weight w.y; z/ in Tx ;
13: return fTx jx 2 V g;

Observation 3.5 From Figure 3.18, we can see the two 5-truss communities
fq; x1; x2; x3; x4g; fq; s1; s2; s3; s4g involving vertex q are contained in the 4-truss com-
munity fq; x1; x2; x3; x4; s1; s2; s3; s4g, which is in turn contained in the 3-truss community,
which is the whole graph.

Based on the above observations, Algorithm 3.12 outlines the procedure of construct-
ing the TCP-Index. For each vertex x 2 V , we build a graph Gx , where V.Gx/ D N.x/, and
E.Gx/ D f.y; z/j.y; z/ 2 E.G/; y; z 2 N.x/g. For each edge .y; z/ 2 E.Gx/, we assign a weight
w.y; z/ D minf�..x; y//; �..x; z//; �..y; z//g, which indicates that 4xyz can appear only in k-
truss communities where k � w.y; z/, based on Observation 3.3. The TCP-Index for vertex x is
a tree structure, denoted as T x , which is initialized to be the node set N.x/. Then in lines 8–12,
for each k from the largest weight kmax to 2, we iteratively collect the set of edges Sk � E.Gk/

whose weight is k. For each .y; z/ 2 Sk , if y; z are still in different components of Tx , we add
the edge .y; z/ with a weight w.y; z/ into Tx . Essentially, Tx is the maximum spanning forest
of Gx . The trees Tx for all x 2 V form the TCP-Index of graph G.

Example 3.3.3 Figure 3.20 shows the TCP-Index for vertex q in the graph in Figure 3.18. Tq is
initialized to be N.q/. Figure 3.20a shows the tree structure when we add edges whose weights are 5.
According to Observation 3.4, when the edges .x1; x2/ and .x1; x3/ are added into Tq , the edge .x2; x3/

will not be added into Tq , as x2; x3 are already connected in Tq and we know that x2; x3 belong to
the same 5-truss community by triangle connectivity. This is essential to keep Tq as a compact forest.
The complete TCP-Index for q is shown in Figure 3.20c. According to the community containment
relationship in Observation 3.5, it is sufficient to use a single structure Tq for all trussness levels from
kmax to 2.
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Figure 3.20: TCP-Index construction of vertex q.

Theorem 3.3.2 The TCP-Index of graphG can be constructed inO.
P

.u;v/2E minfd.u/; d.v/g/ time
and O.m/ space by Algorithm 3.12. The index size is O.m/.

Proof. The first step costs O.
P

.u;v/2E minfd.u/; d.v/g/ time. For a vertex x 2 V , it takes
O.
P

y2N.x/ minfd.x/; d.y/g/ time to list all triangles containing x to obtain Gx in line 3.
The number of edges jE.Gx/j is O.

P
y2N.x/ minfd.x/; d.y/g/, thus Tx can be computed

in O.
P

y2N.x/ minfd.x/; d.y/g/ time by Kruskal’s algorithm. For all vertices in V , it takes
O.
P

x2V

P
y2N.x/ minfd.x/; d.y/g/ time in total to build the TCP-Index. Thus, the time com-

plexity of Algorithm 3.12 is O.
P

.u;v/2E minfd.u/; d.v/g/.
For a vertex x 2 V , Gx , as a subgraph of G, takes O.m/ space, which can be released after

obtaining Tx . Tx , as a spanning forest on the vertex set N.x/, takes O.jN.x/j/ space. Thus, the
TCP-Index size for all vertices is O.

P
x2V jN.x/j/ D O.m/. �

We remark that the arboricity of a graph is the minimum number of spanning forests
needed to cover the edges of the graph. According to [47], O.

P
.u;v/2E minfd.u/; d.v/g/ �

O.�m/ where � is the arboricity of a graph G. ��min fd
p

m e; dmaxg holds for any graph. Thus,
the TCP-Index construction takes O.

P
.u;v/2E minfd.u/; d.v/g/ � O.�m/ � O.m1:5/ time.

Query Processing Using TCP-Index
We first illustrate query processing through an example, before we formally present the

algorithm. According to the design of the TCP-Index, if two vertices are connected through
a series of edges with weight � k in Tx for x 2 V , these two vertices belong to the same k-
truss community via a series of adjacent triangles. Consider Tq in Figure 3.20c. As x2; x3 are
connected through two edges with weight 5, they belong to the same 5-truss community. Thus,
we first define the k-level connected vertex set on a tree Tx to find all such vertices that belong to
a k-truss community.

Definition 3.3.5 (K-Level Connected Vertex Set) For x 2 V and y 2 N.x/, we use Vk.x; y/ to
denote the set of vertices which are connected with y through edges of weight � k in Tx . We adopt the
convention that y also belongs to this set, i.e., y 2 Vk.x; y/.
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Example 3.3.4 If wewant to query 5-truss communities containing a query vertex q, we first visit an
incident edge on q, say .q; x1/, where �..q; x1// D 5. From Tq we retrieve the vertex set V5.q; x1/ D

fx1; x2; x3; x4g as they are connected through edges with weight 5. According to Observation 3.4, these
four vertices belong to the same 5-truss community with q. As V5.q; x1/ � N.q/, we can construct part
of the community as shown in Figure 3.21a.

At this stage, we still miss the edges between the four vertices, for example, .x2; x3/; .x3; x4/,
etc. This is because Tq , which is a spanning forest, does not keep all the edges between the vertices. To
fully recover all the edges in the 5-truss community, for each vertex xi 2 V5.q; x1/, we “reverse” the
edge .q; xi / to .xi ; q/, then further expand the community in xi ’s neighborhood. Take vertex x2 as an
example. We reverse .q; x2/ to .x2; q/ and then query x2’s index Tx2

to get the vertex set V5.x2; q/ D

fq; x1; x3; x4g, as x1; x3; x4 are connected with q in Tx2
. Then we can obtain the edges between x2

and every vertex in V5.x2; q/. After this, the community is shown in Figure 3.21b. Similarly, we
perform the reverse operation for each vertex x1; x3; x4 and get the complete 5-truss community in
Figure 3.21c. We can observe that in this search process, each edge in a community is accessed exactly
twice, for example, accessing .q; x2/ from Tq and .x2; q/ from Tx2

.

x1 x2

q

x3 x4

(a) Expansion from q (b) Expansion from x2 (c) Complete 5-truss community

x1 x2

q

x3 x4

x1

x2

q
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Figure 3.21: 5-truss community query on q using TCP-Index.

Algorithm 3.13 outlines the procedure of query processing using the TCP-Index. Similar
to Algorithm 3.11, Algorithm 3.13 computes the k-truss communities for a query vertex vq by
expanding from each incident edge on vq in a BFS manner. If there exists an unvisited edge
.vq; u/ with �..vq; u// � k, .vq; u/ is the seed edge to form a new community Cl (lines 2-4).
Then the algorithm performs a BFS traversal using a queue L in lines 5-13. For an unvisited
edge .x; y/, it searches the vertex set Vk.x; y/ from Tx . The procedure for computing Vk.x; y/

is listed in lines 15-16. For each z 2 Vk.x; y/, the edge .x; z/ is added into Cl . Then we perform
the reverse operation, i.e., if .z; x/ is not visited yet, it is pushed into L for z-centered community
expansion using Tz . Note that .z; x/ and .x; z/ are considered different here. When L becomes
empty, all edges in Cl have been found. The process iterates until all incident edges of vq have
been processed. Finally, a set of k-truss communities containing vq are returned.

We show the correctness of Algorithm 3.13 in the following.

Lemma 3.3.1 Given a query vertex x 2 V and an integer k, Algorithm 3.13 correctly computes all
k-truss communities containing x.
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Algorithm 3.13 Query Processing Using TCP-Index
Input: G D .V; E/, an integer k, query vertex vq

Output: k-truss communities containing vq

1: visited ;; l  0;
2: for u 2 N.vq/ do
3: if �..vq ; u// � k and .vq ; u/ … visited
4: l  l C 1; Cl  ;; L ;;
5: L:push..vq ; u//;
6: while L ¤ ;

7: .x; y/ L:pop./;
8: if .x; y/ … visited
9: compute Vk.x; y/;

10: for z 2 Vk.x; y/ do
11: visited visited [ f.x; z/g; Cl  Cl [ f.x; z/g;
12: if the reversed edge .z; x/ … visited
13: L:push..z; x//;
14: return fC1; � � � ; Cl g;
15: Procedure compute Vk.x; y/

16: return fzjz is connected with y in Tx through edges of weight � kg;

Proof. First, for an edge .y; z/ in Tx , by definition, w.y; z/ D

minf�..x; y//; �..x; z//; �..y; z//g, so if w.y; z/ � k, then 4xyz is included in a k-truss
community of x.

Second, for two adjacent edges .y; z1/; .y; z2/ in Tx , we can conclude that 4xyz1
;4xyz2

are adjacent via edge .x; y/.
Third, Vk.x; y/ contains the set of vertices which are connected with y through edges of

weight� k in Tx . Based on the above two points, it leads to the discovery of all the triangles with
weight � k that can reach edge .x; y/ in x’s neighborhood. These connected triangles appear in
the same k-truss community containing x.

Last, for an edge .x; z/ where z 2 Vk.x; y/, the same operation on its reverse edge .z; x/

will further expand the k-truss community in z’s neighborhood via Tz . Thus, the k-truss com-
munity is expanded via adjacent triangles in a BFS manner.

The correctness of Algorithm 3.13 follows from the above points. �

Theorem 3.3.3 The time complexity of Algorithm 3.13 is O.jAnsj/, where Ans D C1 [ : : : [ Cl is
the union of the produced k-truss communities and jAnsj is the number of edges in Ans.

Proof. Each edge .x; y/ in the generated communities is accessed exactly twice: accessing .x; y/

from Tx and .y; x/ from Ty . Thus, the time complexity of Algorithm 3.13 is O.jAnsj/. �

Complexity Comparison. By using the TCP-Index and the simple k-truss index, each edge in a
k-truss community is accessed exactly twice vs. at least 2.k � 2/ times. In addition, the TCP-Index
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successfully avoids the unnecessary access of disqualified edges whose trussness is less than k.
These are the key reasons that explain the difference in the query time between Algorithms 3.13
and 3.11, i.e., O.jAnsj/ vs. O.dAmaxjAnsj/. It is worth noting that the TCP-Index construction
has exactly the same time and space complexity as the simple k-truss index.

Case Study of k-truss and .k � 1; 1/-OCS Models on DBLP
We present a case study to compare the k-truss and .k � 1; 1/-OCS community models. A
collaboration network is built from the DBLP data set1 for this purpose. A vertex represents an
author and an edge is added between two authors if they have co-authored three or more papers.
The network contains 234,879 vertices and 541,814 edges.

We query the 5-truss community containing “Jiawei Han” which is shown in Figure 3.22.
For comparison, we follow the case study in [54] which uses the .k � 1; 1/-OCS model to query
“Jiawei Han” by setting k D 5; ˛ D 4;  D 1, which produces communities at a similar scale as
shown in Figure 3.23. Note that we duplicate some authors who participate in more than one
community in Figure 3.23, e.g., “Jian Pei”, “Jian Pei_1” and “Jian Pei_2”, for a better visualization
effect. We have the following observations:

• The k-truss model generates five communities containing “Jiawei Han” (see Figure 3.22),
among which the four smaller ones are also found by the .k � 1; 1/-OCS model and de-
picted using the same color in Figure 3.23.

• The largest 5-truss community depicted in blue in Figure 3.22, however, is decomposed
into seven smaller communities by the .k � 1; 1/-OCS model in Figure 3.23. This phe-
nomenon can be explained by the different mechanisms of the two community models.
The .k � 1; 1/-OCS model tends to find the small, clique-based “paper communities,” in
which all the involved scholars appear in the same paper. For example, a paper commu-
nity is formed by “Jiawei Han”, “Philip S. Yu”, “Chen Chen”, “Xifeng Yan”, and “Feida
Zhu”. In contrast, such small paper communities can be merged into a larger dense one by
the condition of triangle connectivity in the k-truss model. For example, two small paper
communities can be merged if they share a common edge as (“Jiawei Han”, “Philip S. Yu”)
and form a 5-truss graph after being merged.

• A less restrictive community criterion can be realized by tuning ˛ and  in [54]. But in the
experiment, if we set ˛ < k � 1 or  < 1, it cannot output all communities within the time
limit of 60 seconds set in the executable code of [54], owing to the expensive quasi-clique
enumeration.

• Finally, we observe a community containing “Guozhu Dong” and five other authors (de-
picted in purple) in Figure 3.23 is completely subsumed by another bigger community
(depicted in black) in the same figure. Such duplicate output, which is not desired, may

1http://dblp.uni-trier.de/xml/
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Figure 3.22: Five 5-truss communities containing Jiawei Han.

Figure 3.23: Eleven 4-adjacency-1.0-quasi-5-clique communities containing Jiawei Han.
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be explained by the approximate heuristics for clique enumeration and expansion used
in [54].

3.3.2 CLOSEST TRUSS COMMUNITY SEARCH

Motivation. In the k-truss community model discussed above, given one query node q and a
parameter k, a k-truss community containing q is a maximal k-truss containing q, in which
each edge is “triangle connected” with other edges. Triangle connectivity is strictly stronger
than classical edge connectivity. The k-truss community model works well to find all overlapping
communities containing a single query node q. It is natural to search for communities containing
a set of query nodes in real applications, but the above community model, extended for multiple
query nodes, has the following limitations. Due to the strict requirement of triangle connectivity
constraint, the model may fail to discover any community for query nodes. For example, for the
graph of Figure 3.24a and query nodes Q D fv4; q3; p1g, the above k-truss community model
cannot find a qualified community for any k, since the edges .v4; q3/ and .q3; p1/ are not triangle
connected in any k-truss.

In this section, we present the problem of closest community search [96], i.e., given a set
of query nodes, find a dense connected subgraph that contains the query nodes, in which nodes
are close to each other. Based on graph diameter, we find the closest truss community containing
query nodes with the smallest diameter.

v2

t

v5 v2 v5

v1
v3 q3 v1

v3 q3

q1 q1

q2 v4 q2 v4
p3

p1

p2

(a) Graph G (b) Closest Truss Community
for Q = {q1, q2, q3}

4-Truss

Figure 3.24: An example of closest truss communit.

Notions and Notations
For a pair of nodes u; v 2 G, we denote by distG.u; v/ the length of the shortest path between u

and v in G, where distG.u; v/ D C1 if u and v are not connected. We make use of the notions
of graph query distance and graph diameter.
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Definition 3.3.6 (Query Distance) Given a graph G and a set of query nodes Q � V , for each
vertex v 2 G, the vertex query distance of v is the maximum length of a shortest path from v to a
query node q 2 Q, i.e., distG.v; Q/ D maxq2Q distG.v; q/. For a subgraph H � G, the graph query
distance of H is defined as distG.H; Q/ Dmaxu2H distG.u; Q/D maxu2H;q2Q distG.u; q/.

Definition 3.3.7 (Graph Diameter) The diameter of a graph G is defined as the maximum length
of a shortest path in G, i.e., diam.G/ D maxu;v2GfdistG.u; v/g.

For the graph G in Figure 3.24a and Q D fq2; q3g, the vertex query distance of v2 is
distG.v2; Q/ Dmaxq2Q fdistG.v2; q/gD 2, since distG.v2; q3/ D 2 and distG.v2; q2/ D 1. Let H

be the subgraph of Figure 3.24a shaded in gray.Then the query distance of H is distG.H; Q/ D 3.
The diameter of H is diam.H/ D 4.

Problem Formulation
On the basis of the definitions of k-truss and graph diameter, the closest truss community is defined
as follows.

Definition 3.3.8 (Closest Truss Community) Given a graph G and a set of query nodes Q, G0 is
a closest truss community (CTC), if G0 satisfies the following two conditions.

(1) Connected k-truss. G0 is a connected k-truss containingQ with the largest k, i.e.,Q �G0 � G

and 8e 2 E.G0/, sup.e/ � k � 2.

(2) Smallest Diameter. G0 is a subgraph of smallest diameter satisfying condition (1). That is,
ÀG00 � G, such that diam.G00/ < diam.G0/, and G00 satisfies condition (1).

Condition (1) requires that the closest community containing the query nodes Q be
densely connected. In addition, Condition (2) makes sure that each node is as close as pos-
sible to every other node in the community, including the query nodes. We next illustrate the
notion of CTC as well as the consequence of considering Conditions (1) and (2) in different
orders.

Example 3.3.5 In Definition 3.3.8, we first consider the connected k-truss of G containing
query nodes with the largest trussness, and then among such subgraphs, regard the one with
the smallest diameter as the closest truss community. Consider the graph G in Figure 3.24a,
and Q D fq1; q2; q3g; the subgraph in the region shaded grey is a 4-truss containing Q, and
is a subgraph with the largest trussness that contains Q, and has diameter 4. Notice that in
Figure 3.24a, although the nodes p1; p2; p3 belong to the 4-truss and are strongly connected
with q3, they are far away from the query node q1. Figure 3.24b shows another 4-truss containing
Q but not p1; p2; p3, and its diameter is 3. It can be verified that this is the 4-truss containing
the query nodes Q, that has the smallest diameter. Thus, by Condition (2) of Definition 3.3.8,
the 4-truss graph in Figure 3.24a will not be regarded the closest truss community, whereas the
one in Figure 3.24b is indeed the CTC.
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Example 3.3.6 Suppose we apply the conditions in Definition 3.3.8 in the opposite order. That
is, we first minimize the diameter among connected subgraphs of G containing Q and look for
the k-truss subgraph with the largest k in that subgraph. First, we find that the cycle of f.q1; t /;

.t; q3/; .q3; v4/; .v4; q2/; .q2; q1/g is a connected subgraph containing Q with the smallest di-
ameter 2. Then, we find that this cycle is also the k-truss subgraph with the largest k containing
itself. However, it is only a 2-truss, which has a loosely connected structure compared to Fig-
ure 3.24b. It is left as a simple exercise to the reader to verify that other subgraphs with the
same smallest diameter 2 that contain Q D fq1; q2; q3g do not admit k-trusses with k > 2. This
justifies the choice of the order in which Conditions (1) and (2) should be applied.

The problem of CTC search is stated as follows.

Problem 3.3.1 (CTC-Problem) Given a graph G.V; E/ and a set of query vertices Q D

fv1; : : : ; vrg � V , find a closest truss community containing Q.

Problem Analysis
Since the closest truss community model is based on the concept of k-truss, the communities
capture good structural properties of k-truss, such as k-edge-connected and hierarchical structure.
In addition, since CTC is required to have minimum diameter, it also has bounded diameter.
Small diameter, k-edge-connected, hierarchical structure. First, it has been shown that the
diameter of a connected k-truss with n vertices is no more than b2n�2

k
c [50]. Moreover, a k-

truss community is (k � 1)-edge-connected [50], as it remains connected whenever fewer than
k � 1 edges are removed [72]. In addition, k-truss-based community has hierarchical structure
that represents the essence of a community at different levels of granularity [89], that is, k-truss
is always contained in the .k � 1/-truss for any k � 3.
Largest k. There is a trivial upper bound on the maximum possible trussness of a connected
k-truss containing the query nodes.

Lemma 3.3.2 For a connected k-truss H satisfying definition of CTC for Q, we have k � min
f�.q1/; : : : ; �.qr/g holds.

Proof. First, we have Q � H . For each node q 2 Q, q cannot be contained in a k-truss in G,
whenever k > �.q/. Thus, the fact that H is a k-truss subgraph containing Q implies that k �

minf�.q1/; : : : ; �.qr/g. �

Lower and upper bounds on diameter. Since the distance function satisfies the triangle in-
equality, i.e., for all nodes u; v; w, distG.u; v/ � distG.u; w/C distG.w; v/, we can express the
lower and upper bounds on the graph diameter in terms of the query distance as follows.

Lemma 3.3.3 For a graph G.V; E/ and a set of nodes Q � G, we have distG.G; Q/ � diam.G/ �

2distG.G; Q/.
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Proof. First, the diameter diam.G/ D maxv;u2G distG.v; u/, which is clearly no less than
distG.G; Q/ D maxv2G;q2Q distG.v; q/ for Q � G. Thus, distG.G; Q/ � diam.G/. Second, sup-
pose that the longest shortest path in G is between v and u. Then 8q 2 Q, we have diam.G/ D

dist.v; u/ � dist.v; q/C dist.q; u/ � 2distG.G; Q/. The lemma follows. �

Hardness and Approximation

Hardness. In the following, we show the CTC-Problem is NP-hard. Thereto, we define the
decision version of the CTC-Problem.

Problem 3.3.2 (CTCk-Problem) Given a graph G.V; E/, a set of query nodes Q D fv1; : : : ; vrg �

V and parameters k and d , test whether G contains a connected k-truss subgraph with diameter at
most d , that contains Q.

Theorem 3.3.4 The CTCk-Problem is NP-hard.

Proof. We reduce the well-known NP-hard problem of Maximum Clique (decision version) to
the CTCk-Problem. Given a graph G.V; E/ and a number k, the Maximum Clique Decision
problem is to check whether G contains a clique of size k. Thus, we can construct an instance
of the CTCk-Problem, consisting of graph G, d D 1, and Q D ;.

We show that the instance of the Maximum Clique Decision problem is a YES-instance
iff the corresponding instance of the CTCk-Problem is a YES-instance. Clearly, any clique with
at least k nodes is a connected k-truss with diameter 1. On the other hand, given a solution H for
the CTCk-Problem, H must contain at least k nodes since H is a k-truss, and diam.H/ D d D 1,
which implies H is a clique. �

The hardness of the CTC-Problem follows from this. The next natural question is whether
the CTC-Problem can be approximated.
Approximation. For ˛ � 1, we say that an algorithm achieves an ˛-approximation to the CTC
search problem if it outputs a connected k-truss subgraph H � G such that Q � H , �.H/ D

�.H �/ and diam.H/ � ˛ � diam.H �/, where H � is the optimal CTC. That is, H � is a connected
k-truss with the largest k s.t. Q � H �, and diam.H �/ is the minimum among all such CTCs
containing Q. Notice that the trussness of the output subgraph H matches that of the optimal
solution H � and that the approximation is only w.r.t. the diameter: the diameter of H is required
to be no more than ˛ � diam.H �/.
Non-Approximability. We next show that the CTC-Problem cannot be approximated within
a factor better than 2. This result is established through a reduction, again from the Maximum
Clique Decision problem to the problem of approximating the CTC-Problem, given k. In the
next section, we describe a 2-approximation algorithm for the CTC-Problem, thus essentially
matching this lower bound. Note that the CTC-Problem with given parameter k is essentially
the CTCk-Problem.



3.3. TRUSS-BASED COMMUNITY MODELS 69
Theorem 3.3.5 Unless P = NP, for any " > 0, the CTC-Problem with given parameter k cannot be
approximated in polynomial time within a factor .2 � "/ of the optimal.

Proof Sketch: It can be shown that a .2 � "/-approximation algorithm for the CTC-Problem
with given parameter k can be used to distinguish between the YES and NO instances of the
Maximum Clique Decision problem.

CTC Search Algorithm
In this section, we present a greedy algorithm called Basic for the CTC search problem. Then,
we show that this algorithm achieves a 2-approximation to the optimal result.
BasicAlgorithmicFramework. Here is an overview of our algorithm Basic. First, given a graph
G and query nodes Q, we find a maximal connected k-truss, denoted G0, containing Q and
having the largest trussness. As G0 may have a large diameter, we iteratively remove nodes far
away from the query nodes, while maintaining the trussness of the remainder subgraph at k.
Algorithm.Algorithm 3.14 outlines the procedure of finding a closest truss community based on
a greedy strategy. For query nodes Q, we first find a maximal connected k-truss G0 that contains
Q, such that k D �.G0/ is the largest (line 1). Then, we set l D 0. For all u 2 Gl and q 2 Q, we
compute the shortest distance between u and q (line 4), and obtain the vertex query distance
distGl

.u; Q/. Among all vertices, we pick up a vertex u� with the maximum distGl
.u�; Q/, which

is also the graph query distance distGl
.Gl ; Q/ (lines 5–6). Next, we remove the vertex u� and its

incident edges from Gl , and delete any nodes and edges needed to restore the k-truss property
of Gl (lines 7–8). We assign the updated graph as a new Gl . Then, we repeat the above steps
until Gl does not have a connected subgraph containing Q (lines 3–9). Finally, we terminate by
output graph R as the closest truss community, where R is any graph G0 2 fG0; : : : ; Gl�1g with
the smallest graph query distance distG0.G0; Q/ (line 10). Note that each intermediate graph
G0 2 fG0; : : : ; Gl�1g is a k-truss with the maximum trussness as required.

Example 3.3.7 We apply Algorithm 3.14 onG in Figure 3.24 forQ D fq1; q2; q3g. First, we obtain
the 4-truss subgraphG0 shaded in gray, using a procedure wewill shortly explain.Then, we compute all
shortest distances, and get the maximum vertex query distance as distG0

.p1; Q/ D 4, and u� D p1.
We delete node p1 and its incident edges from G0; we also delete p2 and p3, in order to restore the
4-truss property. The resulting subgraph is G1. Any further deletion of a node in the next iteration of
the while loop will induce a series of deletions in line 8, eventually making the graph disconnected or
containing just a part of query nodes. As a result, the output graph R, shown in Figure 3.24b, is just
G1. Also distR.R; Q/ D 3, andR happens to be the exact CTCwith diameter 3, which in this example
is optimal.

Approximation Analysis
Algorithm 3.14 can achieve a 2-approximation to the optimal solution, that is, the obtained
connected k-truss community R satisfies Q � R, �.R/ D �.H �/ and diam.R/ � 2diam.H �/,
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Algorithm 3.14 Basic (G, Q)
Input: A graph G D .V; E/, a set of query nodes Q D fq1; : : : ; qr g.
Output: A connected k-truss R with a small diameter.

1: Find a maximal connected k-truss containing Q with the largest k as G0;
2: l  0;
3: while connectGl

.Q/ D true do
4: Compute distGl

.q; u/, 8q 2 Q and 8u 2 Gl ;
5: u�  arg maxu2Gl

distGl
.u; Q/;

6: distGl
.Gl ; Q/ distGl

.u�; Q/;
7: Delete u� and its incident edges from Gl ;
8: Maintain k-truss property of Gl ;
9: GlC1  Gl ; l  l C 1;

10: R arg minG02fG0;:::;Gl�1g distG0.G0; Q/;

for any optimal solution H �. Since any graph in fG0; : : : ; Gl�1g is a connceted k-truss with
the largest k containing Q by Algorithm 3.14, and R 2 fG0; : : : ; Gl�1g, we have Q � R and
�.R/ D �.H �/. In the following, we show that diam.R/ � 2diam.H �/. We start with a few key
results. For graphs G1; G2, we say G1 � G2 to mean V.G1/ � V.G2/ and E.G1/ � E.G2/.

Lemma 3.3.4 Given two graphs G1 and G2 with G1 � G2, for u; v 2 V.G1/, distG2
.u; v/ �

distG1
.u; v/ holds. Moreover, if Q � V.G1/, then distG2

.G1; Q/ � distG1
.G1; Q/ also holds.

Proof. It trivially follows from the fact that G2 preserves the paths between the nodes in G1.
�

Recall that in Algorithm 3.14, in each iteration i , a node u� with themaximum dist.u�; Q/

is deleted from Gi , but distGi
.Gi ; Q/ is not monotonously nonincreasing during the process,

hence distGl�1
.Gl�1; Q/ is not necessarily the minimum. Note that in Algorithm 3.14, Gl is

not the last feasible graph (i.e., connected k-truss containing Q), but Gl�1 is. The observation
is shown in the following lemma.

Lemma 3.3.5 In Algorithm 3.14, it is possible that for some 0 � i < j < l , we have Gj � Gi , and
distGi

.Gi ; Q/ < distGj
.Gj ; Q/ holds.

Proof. It is easy to see that, because for a vertex v 2 G, distG.v; Q/ is non-decreasing monotone
w.r.t. subgraphs of G. More precisely, for v 2 Gi \Gj , distGi

.v; Q/ � distGj
.v; Q/ holds. �

An important observation is that if an intermediate graph Gi obtained by Algorithm 3.14
contains an optimal solution H �, i.e., H � � Gi and distGi

.Gi ; Q/ > distGi
.H �; Q/, then the

algorithm will not terminate at GiC1.

Lemma 3.3.6 In Algorithm 3.14, for any intermediate graph Gi , we have H � � Gi and
distGi

.Gi ; Q/ > distGi
.H �; Q/, then GiC1 is a connected k-truss containing Q and H � � GiC1.
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Proof. Suppose H � � Gi and distGi

.Gi ; Q/ > distGi
.H �; Q/. Then there exists a node u 2

Gi nH � s.t. distGi
.u; Q/ D distGi

.Gi ; Q/ > distGi
.H �; Q/. Clearly, u … Q. In the next iter-

ation, Algorithm 3.14 will delete u from Gi (Step 7), and perform Step 8. The graph resulting
from restoring the k-truss property is GiC1. Since H � is a connected k-truss containing Q, the
restoration step (line 8) must find a subgraph GiC1 s.t. H � � GiC1, and GiC1 is a connected
k-truss containing Q. Thus, the algorithm will not terminate in iteration .i C 1/. �

The polynomial Algorithm 3.14 can find a connected k-truss community R having the
minimum query distance to Q, which is optimal.

Lemma 3.3.7 For any connected k-truss H with the highest k containing Q, distR.R; Q/ �

distH .H; Q/.

Proof. The following cases may occur for Gl�1, which is the last feasible graph obtained by
Algorithm 3.14.

Case (a): H � Gl�1. We have distGl�1
.Gl�1; Q/� distGl�1

.H; Q/; otherwise, if distGl�1

.Gl�1; Q/ > distGl�1
.H; Q/, we can deduce from Lemma 3.3.6 that Gl�1 is not the last feasible

graph obtained by Algorithm 3.14, a contradiction. Thus, by Step 10 in Algorithm 3.14 and
the fact that distGl�1

.Gl�1; Q/ � distGl�1
.H; Q/, we have distR.R; Q/ � distGl�1

.Gl�1; Q/ �

distGl�1
.H; Q/ � distH .H; Q/.

Case (b): H ª Gl�1. There exists a vertex v 2 H deleted from one of the subgraphs
fG0; : : : ; Gl�2g. Suppose the first deleted vertex v� 2 H is in graph Gi , where 0 � i � l � 2,
then v� must be deleted in Step 7, but not in Step 8. This is because each vertex/edge of H

satisfies the condition of k-truss, and will not be removed before any vertex is removed from Gi .
Then, we have distGi

.Gi ; Q/ D distGi
.v�; Q/ D distGi

.H; Q/, and distGi
.Gi ; Q/ � distR.R; Q/

by Step 10. As a result, distR.R; Q/ � distGi
.H; Q/ � distH .H; Q/. �

Based on the preceding lemmas, we have the following.

Theorem 3.3.6 Algorithm 3.14 provides a 2-approximation to the CTC-Problem as diam.R/ �

2diam.H �/.

Proof. Since distR.R; Q/ � distH �.H �; Q/ by Lemma 3.3.7, we get diam.R/ � 2distR.R; Q/�

2distH �.H �; Q/ � 2diam.H �/ by Lemma 3.3.3. The theorem follows from this. �

Complexity Analysis
In the implementation of Algorithm 3.14, we do not need to keep all intermediate graphs, but
just record the removal of vertices/edges at each iteration. Let G0 be the maximal connected
k-truss found in line 1 of Algorithm 3.14. Let n0 D jV.G0/j and m0 D jE.G0/j, and let d 0

max be
the maximum degree of a vertex in G0.

At each iteration i of Algorithm 3.14, we delete at least one node and its incident edges
from Gi . Clearly, the number of removed edges is no less than k � 1, thus the total number of
iterations is t � minfn0 � k; m0=.k � 1/g, i.e., t is O.minfn0; m0=kg/. We have the following.
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Theorem 3.3.7 Algorithm 3.14 takes O..jQjt C �/m0/ time and O.m0/ space, where t 2

O.minfn0; m0=kg/, and � is the arboricity of graphG0. Furthermore, we have � � minfd 0
max;
p

m0g.

Proof Sketch: First, listing all triangles of G0 and creating a series of k-truss graphs
fG0; : : : ; Gl�1g take O.�m0/ time in all, where � is the arboricity of graph G0. Second, the
computation of shortest distances by a BFS traversal starting from each query node q 2 Q takes
O.t jQjm0/ time for t iterations. Third, for the space consumption, we only record the sequence
of removed edges from G0 for attaching a corresponding label to graph Gi at each iteration i ,
which takes O.m0/ space in all. We refer the reader to [97] for complete details of the proof.

Case Study
Figure 3.25b shows a closest truss community [96] detected on DBLP network using the query
Q D {“Alon Y. Halevy,” “Michael J. Franklin,” “Jeffrey D. Ullman,” “Jennifer Widom.”} It has
14 authors, 81 edges, and an edge density of 0.89. Figure 3.25a shows a larger connected 9-
truss containing the same query nodes, which includes the graph of Figure 3.25b as a subgraph.
It is clear that this larger 9-truss includes several authors who are far away from and loosely
connected with queried authors, and has an edge density of 0.18. This illustrates the superiority
of closest truss community.

(a) 9-truss [50] (b) Closesst truss community [96]

Figure 3.25: Community search on DBLP network using query Q D{“Alon Y. Halevy,”
“Michael J. Franklin,” “Jeffrey D. Ullman,” “Jennifer Widom.”}
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3.4 QUERY-BIASED DENSEST COMMUNITY MODEL
Motivation. Most community models find communities that contain a set of query nodes and
alsomaximizes (orminimizes) a goodnessmetric.However, mostmodels using goodnessmetrics
tend to include irrelevant subgraphs in the detected communities. Such irrelevant subgraphs are
referred as “free riders” in the literature.Wu et al. [180] introduce a query-biased node weighting
scheme to reduce the free rider effect. The core idea of the proposed solutions is to give large
node weights to such free riders far from query nodes, leading to a low density of a community
involving these free riders. Finally, the communities with the largest density are returned as
answers.

In this section, we discuss the community model based on the densest subgraphs devel-
oped by Wu et al. [180]. Given a graph G, the densest subgraph of G achieves the largest average
degree among all possible subgraphs of G. Given a set of query nodes, the discovered commu-
nities should be densely connected in the local neighborhood of query nodes. In the following,
we first use random walk-based proximity values to weight the nodes, with regard to the query
nodes. The nodes farther away from the query nodes will have larger weights, which intuitively
means that they are less important and thus will be levied more penalty in the calculation of
density. After node weighting, we then introduce a new goodness metric of the query-biased
density, and show that the query-biased densest subgraph is a target community in the neigh-
borhood of the query node.

3.4.1 NOTIONS AND NOTATIONS
We first define the terms proximity, query-biased node weight, and query-biased density.
Proximity and Query-Biased Node Weight. To measure proximity, we use a variant of the
degree normalized penalized hitting probability, which is referred to simply as the penalized
hitting probability [180]. Let w.u; v/ be the edge weight between u and v, w.u/ be the degree of
node u, and wmax be the maximum node degree. The transition probability from u to v is w.u;v/

wmax
,

which is normalized by the maximum degree.2 The penalized hitting probability penalizes the
random walk for each additional step. The probability of hitting the query nodes for the first
time is used as the proximity value. The penalized hitting probability can be defined as follows.
Definition 3.4.1 (Penalized Hitting Probability) Given a graphG.V; E/ and a set of query nodes
Q, the proximity value of u 2 V with regard to the query nodes Q is defined as

r.u/ D

(
1; if u 2 QI

c
P

v2Nu

w.u;v/
wmax

� r.v/; if u 2 V �QI

where c, .0 < c < 1/ is a decay factor.
Note that the power iteration method [148] can be used to solve the above linear system

in O.�m/ time, where � is the number of iterations.
2It follows that the weight of an edge can never exceed the maximum node degree in the graph.
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Then, the query-biased node weight can be defined as follows.

Definition 3.4.2 (Query-Biased Node Weight) The query-biased node weight �.u/ of node u is
defined as the reciprocal of the penalized hitting probability r.u/, i.e., �.u/ D 1=r.u/.

From Definitions 3.4.1 and 3.4.2, we always have 0 � r.u/ � 1 and �.u/ � 1. Consider
the example of graph and query nodes in Figure 3.26a. The nodes in community A are densely
connected to the query node through multiple short paths. Thus, the random walker will have a
high probability of hitting the query node starting from any node in A. On the other hand, there
are only a few long paths connecting the query node to the nodes not in A. Starting from these
nodes, a random walker will have low probabilities to hit the query node, since the probabilities
are penalized by the path lengths. Thus, the nodes in A will have higher proximity values than
the nodes not in A. The distribution of the node weights, i.e., the reciprocal of the proximity
values (i.e., the penalized hitting probabilities), is shown in Figure 3.26b, where a lighter color
indicates a higher proximity value.

(a) Graph and query nodes (b) Effect of node weighting

A

C

B

A

C

B

Figure 3.26: Examples of query-biased densest subgraph. The query node is the purple node in
Figure 3.26a; There exist three communities A, B, and C. Effect of node weighting with c D 0:9

in Figure 3.26b. Darker color represents higher node weight; Subgraph A is the query-biased
densest subgraph. Figures are borrowed from [180]. Used with Permission.

Query-Biased Density. Based on the query-biased node weights, the query-biased density is
defined as follows.
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Definition 3.4.3 (Query-Biased Density) Given a graph G.V; E/ and a set of query nodes Q, the
query-biased density of a subgraph GS of G induced by a set of nodes S is defined as

�.S/ D
jE.S/j

�.S/
;

where jE.S/j is the number of edges in the induced subgraph GS , and �.S/ D
P

u2S �.u/ is the sum
of the query-biased weights of nodes in S .

If the node weights �.u/ D 1, the query-biased density degenerates to the classic density
e.S/
jS j

. In the following, we use the query-biased density and density interchangeably if there is no
ambiguity. After node weighting, the densest subgraph is “shifted” to, i.e., is biased toward, the
neighborhood of the query nodes. For example, in the graph shown in Figure 3.26a, before node
weighting, the densest subgraph is B. Figure 3.26b shows the node weights after applying the
node weighting scheme. A darker (lighter) color represents a larger node weight (proximity).
After node weighting, subgraph A becomes the query-biased densest subgraph, which is as
desired.

3.4.2 PROBLEM FORMULATION
To make sure the discovered communities will be densely connected and close to the neighbor-
hood of the query nodes, we require the query-biased densest subgraph to always (1) contain the
query nodes and (2) be connected. As a result, the problem of query-biased densest community
search (QDC) can be formulated as follows.

Problem 3.4.1 (Query-Biased Densest Community Search (QDC)) Given a graph G.V; E/

and a set of query nodes Q, find an induced subgraph GS such that

(1) Q � S ;

(2) �.S/ is maximized; and

(3) GS is connected.

3.4.3 ALGORITHMS
Wu et al. [180] propose an efficient algorithm to solve the QDC problem. Because the problem
of QDC is NP-hard [180], it is challenging to develop efficient algorithms for find optimal com-
munities. Wu et al. [180] instead relax the constraint of connectivity and define a variant QDC0

of QDC, without the connectivity requirement. The intuition of this relaxation is as follows. If
there exists an optimal answer to the QDC0 problem and the discovered community is connected,
then this community is also an optimal solution to the QDC problem.

Problem 3.4.2 (QDC0) Given a graph G.V; E/ and a set of query nodes Q, find an induced subgraph
GS such that
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Algorithm 3.15 The algorithmic framework for the QDC problem
Input: A graph G D .V; E/, a set of query nodes Q, a decay factor c.
Output: A query-biased densest subgraph GS containing Q.

1: Compute the node weights for every node by Definition 3.4.2;
2: Compute the optimal solution GS of the QDC0 problem by Algorithm 3.16;
3: if GS is connected then
4: return GS I

5: if GS contains a connected component GT containing query nodes Q and at least one non-query node
then

6: return GT ;
7: Apply the Maximum Adjacency Search in Algorithm 3.17 to find a heuristic solution GS to QDC;
8: return GS ;

(1) Q � S and

(2) �.S/ is maximized.

Algorithmic Framework. The overall algorithm for the QDC problem is outlined in Algo-
rithm 3.15. It first computes the optimal solution GS to QDC0 using Algorithm 3.16 (line 2). If
GS is connected, GS is also the optimal solution to QDC (lines 3–4) and is returned as the output.
However, if GS is disconnected but there exists a connected subgraph GT of GS such that GT

contains all query nodes of Q and at least one non-query node, this connected subgraph GT is
returned as an approximate solution to QDC (lines 5–6). Otherwise, we apply another heuristic
algorithm to find a solution GS to QDC using Algorithm 3.17 (lines 7–8). In the following, we
present the details of Algorithms 3.16 and 3.17.
Algorithm for the QDC0 problem. Wu et al. [180] develop an exact polynomial time algorithm
for the QDC0 problem, outlined in Algorithm 3.16. This algorithm uses a new graph operation
called subgraph contraction, defined as follows.

Definition 3.4.4 (Subgraph Contraction) Given a graph G.V; E/ and a set of nodes Q, the oper-
ation of contracting a subgraph GQ of G into a supernode q results in a new graph G0.V 0; E 0/, where
the node set V 0 D .V �Q/ [ fqg and the weight of supernode q as r.q/ D

P
v2Q r.v/. The edge set

E 0 is constructed as follows.
(1) Keep edge .u; v/ and its weight w.u; v/ if .u; v/ 2 E and u … Q; v … Q.
(2) Add an edge .u; q/ with weight w.u; q/ D

P
v2Q w.u; v/, if u … Q.

(3) Add a self-loop edge .q; q/ with weight w.q; q/ D
P

v;u2Q w.u; v/, if w.q; q/ > 0.

The operation of subgraph contraction preserves the density of graph G and G0. That is,
for any S � V �Q, subgraphs GQ[S and G

0

fqg[S
have the same density, so do subgraphs GS

and G
0

S . Note that GQ[S is the induced subgraph of G by vertex set S [Q. G0
q[S is the induced
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Algorithm 3.16 The algorithm for the QDC0 problem
Input: A graph G D .V; E/, a set of query nodes Q, node weights � .
Output: A query-biased densest subgraph GS containing Q.

1: i  0; Q0  Q; S  ;;
2: G0  contract GQ0

into a supernode q0;
3: while true do
4: Compute the densest subgraph GiS using the parametric maximum flow algorithm [149];
5: if qi 2 S then
6: S�  S � fqi g [Qi ;
7: break;
8: QiC1  S [Qi ;
9: GiC1  contract GQiC1

into qiC1;
10: i  i C 1;
11: return GS� ;

subgraph of contraction graph G0 by vertex set q [ S , which also corresponds to the subgraph
GQ[S in G.

Example 3.4.1 Figure 3.27 shows an example of subgraph contraction [180]. In Figure 3.27a, each
node and edge have the same unit weight in graph G. Note that the purple node in G is a query node.
The densest subgraph ofG is a 6-clique enclosed by the green curve, which has a density of 2.5. However,
the densest subgraph does not include the query node, indicating it cannot be the answer of the QDC
problem.We contract the densest subgraph along with the purple node into a supernode in the new graph
G0 in Figure 3.27b.The densest subgraph of G0, enclosed by the purple curve, has a density of 2.38.This
densest subgraph contains the supernode, indicating that it also contains the query node. Therefore, this
densest subgraph is the optimal answer, which is also highlighted using the purple curve in Figure 3.27a.

(a) Original graph G (b) Contracted graph Gꞌ

Figure 3.27: An example of subgraph contraction [180]. Used with Permission.

The procedure is outlined in Algorithm 3.16. Initially, the subgraph induced by the query
nodes is contracted into a supernode (lines 1–2). In each iteration in lines 3–5, we find the
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densest subgraph Gi S in Gi using the classical parametric maximum flow algorithm [149]. If
the subgraph GiS contains the supernode qi , GS� where the vertex set S�  S � fqig [Qi , it
is an optimal solution of the QDC0 problem and returned. Otherwise, it adds the set S into Qi ,
which increases the density of the current subgraph GQi

. And then, it contracts GS[Qi
into a

supernode and repeats this process until the densest subgraph GiS contains the supernode qi .
Complexity Analysis of Algorithm 3.16. Algorithm 3.16 runs in O.� t/ time, where � is the
number of iterations and t is the running time of solving the densest subgraph problem using
maximum parametric flow [149]. Since at least one node is newly contracted into a supernode
in each iteration, we have � � n [180].

In the following, we describe the heuristic algorithm developed by Wu et al. [180] for the
QDC problem. This is used when solving QDC0 does not give the desired solution.
Maximum Adjacency Search. Algorithm 3.17 presents the algorithm of maximum adjacent
search, that is, to find a heuristic solution GS to QDC. First, the algorithm uses Mehlhorn’s
algorithm [131] to compute the Steiner tree connecting all the given query vertices (line 1). As
a result, the query vertices become connected together and this tree is used as the initial subgraph.
When computing the Steiner tree, the edge weight is set to the reciprocal of the original edge
weight. Next, the algorithm starts a local search process (lines 2–5). In each iteration, it finds a
vertex u with the maximum adjacency value, i.e., u arg maxv2V �Si

w.fvg; Si /=�.v/. Finally,
the intermediate subgraph with the maximum density during the local search process is returned
as the query-biased densest subgraph. A parameter L is set to control the search space. When
the vertex size of Si is larger than L, the algorithm will terminate.
Complexity Analysis of Algorithm 3.17. The algorithm runs for at most L iterations. Let davg

be the average degree of nodes. Then, for each iteration, it takes O.i � davg/ time to find a node
with the maximum adjacency value (line 4 of Algorithm 3.17). As a result, the time complexity
of the local search process is O.

PL
iD0.i � davg// � O.L2davg/. Finding the Steiner tree takes

O.mC n log n/ time [131].
Remarks. We note that the experimental results in [180] show that with more than 90% prob-
ability, Algorithm 3.15 gets the optimal solution of QDC by solving QDC0. With more than 5%
probability, Algorithm 3.15 gets an approximate solution of QDC by solving QDC0. Therefore,
only with less than 5% probability, Algorithm 3.15 needs to apply the heuristic algorithm in
Algorithm 3.17 to find a solution of QDC. However, it needs to be borne in mind that this has
no theoretical guarantee and that these findings are empirical.

3.5 SUMMARY
In this section, we summarize the various community models over simple graphs G.V; E/ that
were discussed in this chapter. These community models are based on different dense subgraph
definitions, such as clique [139], quasi-clique [54], densest subgraph [180], k-core [18, 55, 122,
157], and k-truss [89, 96]. In the following, we compare these models using metrics w.r.t. the
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Algorithm 3.17 Maximum Adjacency Search Algorithm
Input: A graph G D .V; E/, a set of query nodes Q, node weights � , a parameter L.
Output: A query-biased densest subgraph GS containing Q.

1: Compute the Steiner tree T connecting Q using the Mehlhorn’s algorithm [131];
2: S0  the vertex set V.T /; i  0;
3: while jSi j � L do
4: u arg maxv2V �Si

w.fvg; Si /=�.v/;
5: SiC1  Si [ fug;
6: i  i C 1;
7: x  arg maxi �.Si /; S�  Si ;
8: return GS� ;

following aspects: (i) consideration of query vertices, (ii) cohesive structure, (iii) index structure,
(iv) query processing efficiency, and (v) quality of approximation. Table 3.2 shows a comparison
of representative works on densely connected community search.
Query Vertices. Cui et al. [54] study the problem of online search of overlapping communi-
ties given a single query vertex, and design the ˛-adjacency -quasi-k-clique model. Huang et

Table 3.2: A comparison of representative works on cohesive community search. Here, “-” means
that there exists no index for community search. Heuristic algorithms have non-approximate
answers.

Method
Query 

Nodes
Cohesive Subgraph

Index 

Structure

Query 

Processing 

Effi  ciency

Quality 

Approximation

(α, γ)-OCS [54] Single α-adjacency-γ-quasi-k-clique - NP-hard Exact

Global-Core [157] Multiple k-core - O(n + m) Exact

Constrained-Core 

[157]
Multiple k-core - NP-hard Non-approximate

Local-Core [55] Single k-core - O(n + m) Exact

Minimum-Core [18] Multiple k-core Shell-Index NP-hard Non-approximate

k-Influential [122] Multiple k-core ICP-Index O(|Ans|) Exact

Triangle-Connected- 

Truss [89]
Single k-truss TCP-Index O(|Ans|) Exact

Closest-Truss [96] Multiple k-truss Truss-Index NP-hard 2-approximation

QDC [180] Multiple Densest-subgraph - NP-hard
Non-guarantee- 

approximate



80 3. COHESIVE COMMUNITY SEARCH
al. [89] propose a k-truss community model based on triangle connectivity to find all overlap-
ping communities of a given query vertex. They ignore the diameter of the resulting community.
Cui et al. [55] find a k-core community for a query vertex using local search. In addition, the
influential community model [122] finds top-r communities with the highest influence scores
over the entire graph; no query vertices are considered. Extending any of the above models
from one (or zero) query vertex to multiple query vertices raises interesting challenges. The
works [157], [18], [96], and [180] support community search with multiple query vertices.
Cohesive Structure. .˛; /-OCS [54] is developed based on the ˛-adjacency--quasi-k-clique.
There exist several different models based on k-core subgraph, e.g., [157], [55], [18], and [122].
Sozio et al. [157] propose a k-core-based community model, called the Cocktail Party model,
with distance and size constraints. The Triangle-Connected-Truss community model [89] and
Closest-Truss community model [96] are based on the connected k-truss. Conceptually, k-truss
is a more cohesive definition than k-core, as k-truss is based on triangles, where each “friend-
ship” is endorsed by multiple common “friends,” whereas k-core simply considers the vertex de-
gree [165]. Most recently, Wu et al. [180] study the query-biased densest connected subgraph
(QDC) problem for avoiding subgraphs irrelevant to query vertices in the community found.
While QDC [180] is also defined based on a connected graph containing the query vertices
similarly to Closest-Truss, it optimizes a fundamentally different function called query-biased
edge density, which is calculated as the overall edge weight averaged over the weight of vertices
in a community.
Index Structure and Query Processing Efficiency. Several studies [18, 89, 96, 122] propose
indexes to speed up the query processing for their community search models. Barbieri et al. [18]
design Shell-Index to quickly find amaximal connected k-core, and then solve the NP-hard prob-
lem of finding the minimum-sized community containing query nodes. Similarly, [122] pro-
poses ICP-Index to find k-Influential communities in the optimal time cost of O.jAnsj/, where
jAnsj is the size of the answer community. Both Shell-Index and ICP-Index are designed for
core-based community models. On the other hand, Huang et al. [89] design an elegant tree
structure of TCP-Index to find the truss-based communities in the optimal time complexity
of O.jAnsj/. The simple index of Truss-Index is used in [96] for finding a maximal connected
k-truss containing all query nodes with the largest number of k, aiming at speeding up the
query processing of approximation algorithms, due to NP-hardness of the problem. Other com-
munity models are not equipped with indexes, including .˛; /-OCS [54], Global-Core [157],
Constrained-Core [157], Local-Core [55], and QDC [180]. Among these methods without using
indexes, Global-Core [157] and Local-Core [55] can find the optimal solution in time complex-
ity of O.nCm/, whereas the other methods consider the NP-hard problems without proposing
polynomial-time algorithms achieving some approximation guarantee.
Quality of Approximation. The problems proposed in .˛; /-OCS [54], Constrained-
Core [157], Minimum-Core [18], and QDC [180] are NP-hard to compute, and do not admit
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approximations without further assumptions. [180] gives an approximation solution to QDC by
relaxing the problem. Unfortunately, as shown in [180], this could fail in real applications, for
two reasons. First, the algorithm may find a solution consisting of several connected compo-
nents with query vertices split between them. Second, the approximation factor can be large,
which can deteriorate further with a larger number of query vertices. In contrast, for Closest-
Truss, there is an efficient 2-approximation algorithm for finding the closest truss community
containing any set of query vertices.


