
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 1

The Power of Bounds: Answering Approximate
Earth Mover’s Distance with Parametric Bounds

Tsz Nam Chan, Man Lung Yiu, Leong Hou U, Member, IEEE

Abstract—The Earth Mover’s Distance (EMD) is a robust similarity measure between two histograms (e.g., probability distributions). It
has been extensively used in a wide range of applications, e.g., multimedia, data mining, computer vision, etc. As EMD is a
computationally intensive operation, many efficient lower and upper bound functions of EMD have been developed. However, they
provide no guarantee on the error. In this work, we study how to compute approximate EMD value with bounded error. First, we
develop a parametric dual bound function for EMD, in order to offer sufficient trade-off points for optimization. After that, we propose an
approximation framework that leverages on lower and upper bound functions to compute approximate EMD with error guarantee. Then,
we present three solutions to solve our problem. Experimental results on real data demonstrate the efficiency and the effectiveness of
our proposed solutions.

Index Terms—Earth Mover’s Distance, parametric bounds, approximation framework

F

1 INTRODUCTION

The Earth Mover’s Distance (EMD) is a similarity measure
between two histograms (e.g., probability distributions). It is
more robust than traditional similarity measures like the Eu-
clidean distance. EMD has been extensively used in multimedia
databases [6], [7], [17], [20], [34], [39], [42], [44], data mining
[5], computer vision [30], [36], [40], artificial intelligence [28],
machine learning [10] and text retrieval [25]. Nevertheless, EMD
is a computational intensive operation. Even with the fastest
known algorithm [29], it requires O(d3 log d) time to compute
the exact EMD value, where d is the dimensionality (i.e., number
of histogram bins). Furthermore, the need for rapid solutions
is motivated by the fact that many applications require EMD
computations on a massive amount of objects, which are quoted
as follows:

• “In real applications, datasets may contain hundreds of
thousands or even millions of objects. An EMD similarity
join on them may take weeks to months to complete on a
single machine.” [17]

• “Typically, the EMD between two histograms is modeled
and solved as a linear optimization problem, the min-cost
flow problem, which requires super-cubic time. The high
computational cost of EMD restricts its applicability to
datasets of low-scale.” [39]

In this paper, we focus on computing approximate EMD yet
allowing user to control the error. Specifically, given an error
parameter ε, our problem is to find an approximate EMD value
R such that R is within 1 ± ε times the exact EMD value. We
are not aware of efficient algorithms that satisfy the above error

• T. N. Chan and M. L. Yiu are with the Department of Computing, Hong
Kong Polytechnic University, Hong Kong.
E-mail: {cstnchan, csmlyiu}@comp.polyu.edu.hk

• L. H. U is with the State Key Laboratory of Internet of Things for Smart
City and the Department of Computer and Information Science, University
of Macau.
E-mail: ryanlhu@um.edu.mo

requirement. The database community has derived several lower
and upper bound functions of EMD [6], [42], [20], [34], [39].
However, these bound functions provide no guarantee on the error
of the bound.

Motivated by this, we wonder whether existing lower and
upper bound functions can be exploited to solve our problem
efficiently. Intuitively, if we can obtain a lower bound ` and
an upper bound u of the exact EMD value such that they are
sufficiently close (e.g., u/` ≤ 1 + ε), then we get an approximate
EMD value with error guarantee. The next question is how to
select appropriate lower and upper bound functions with respect
to ε. Consider all possible pairs of 〈LBi, UBj〉 where LBi is
a lower bound function, and UBj is an upper bound function.
Ideally, if we can accurately estimate the response time and the
error for each pair 〈LBi, UBj〉, as shown in Figure 1, then the
optimal solution is to choose the cheapest pair (i.e., 〈LB1, UB4〉)
whose error is below ε. The challenge is how to estimate quickly
the response time and the error, while the estimates are reasonably
accurate. This issue is complicated by the fact that, even within
the same dataset, the same pair 〈LBi, UBj〉 of bound functions
may yield different response time and error for different pairs of
histograms.

Another issue is that, the limited number of bound functions
prevents us to conduct fine-grained optimization. We need a wide
spectrum of bound functions for EMD to provide sufficient trade-
off points for optimization. To address this issue, we propose the
concept of parametric dual bound function, which produces both
lower and upper bounds simultaneously via shared computation,
while its running time and tightness can be controlled via a
parameter. In Figure 1, we indicate a parametric dual bound
function by a dotted line in blue. By choosing its parameter
value carefully, it is possible to obtain a better choice than the
pair 〈LB1, UB4〉. Since it is common to have skewed data in
real applications [16], [17], we will exploit the characteristics of
skewed data to design a parametric dual bound function. As a
remark, Wichterich et al. [42] have devised a parametric lower
bound function, but not any parametric upper bound function. In
contrast, we utilize shared computation to compute both lower and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2

upper bounds simultaneously.

response time

error

LB1,UB3

Exact

parametric

bound function

ε

LB2,UB3

LB1,UB4

LB2,UB4

Fig. 1: Illustration of bound functions

We attempt to tackle our problem in two directions. First, we
propose an adaptive approach, which does not rely on any training.
It gradually invokes tighter bound functions until satisfying the
error requirement. Then, we develop an enhancement, called
lightweight adaptive approach, by reducing the number of calls
to bound functions. Finally, we apply training to collect statistics,
and exploit them to boost the performance of our solution.

In our experimental study, we will evaluate both the efficiency
and the effectiveness of our proposed methods. We will conduct
case study on the representative application (i.e., kNN image
retrieval) and demonstrate that approximate EMD values yield
reasonably accurate results. Our methods achieve an order of
magnitude speedup over the fastest exact computation method.

Our technical contributions are summarized as follows.

• We develop a parametric dual bound function for EMD, in
order to offer sufficient trade-off points for optimization.

• We propose an approximation framework that leverages
lower and upper bound functions to compute approximate
EMD with error guarantee.

• We present three solutions for our problem via our approx-
imation framework.

We first discuss the related work in Section 2. In Section 3,
we define our problem formally and briefly review existing bound
functions for EMD in the literature. In Section 4, we present our
parametric lower and upper bound functions. We propose our
approximation framework with three solutions in Section 5. In
Section 6, we present experimental results on real datasets and
then conclude in Section 7.

2 RELATED WORK

The Earth Mover’s Distance (EMD) was first introduced in [32] as
a similarity metric in image databases. Comparing to other bin-by-
bin distances (e.g., Euclidean distance), the cross-bin calculation
makes EMD better match the human perception of differences.
EMD can be regarded as a special case of the minimum cost
flow problem and many algorithms have been proposed in litera-
ture [2], e.g., capacity scaling algorithm, cost scaling algorithm,
transportation simplex, and network simplex. However, their worst
case time complexity remains super cubic to the number of bins,
which limits the applicability of EMD.

In order to employ EMD as a similarity metric in large
datasets, the database community attempted to use a filter-and-
refinement framework to reduce the number of exact EMD com-
putations. The key factor of the filter-and-refinement framework is

to provide a tight lower / upper bound estimation such that more
EMD computations can be pruned at the filtering stage. Thereby,
there are plenty of EMD bounding techniques [26], [6], [42], [34],
[39] being proposed in the database community. In this work, we
design a new approximate framework by reutilizing these bounds,
which not only provides high quality approximate result (due to
the tightness of these bounds) but also reduces the implementation
difficulty.

In the theoretical computer science community, there are quite
a few of studies [19], [4], [24], [1] in calculating approximate
EMD. However, they either focus on a planar graph setting (i.e.,
calculating EMD on two planar point-sets) [19] or lack of flow
concept (i.e., the approximate ratio is analyzed based on a uni-
flow model) [4], [24], [1]. On the other hand, EMD is also the
special case of the minimum cost flow problem in which their
approximation methods can be also applied for EMD. Some recent
studies from [31], [8] can be used to compute approximate EMD
within the δ-additive error, i.e., the approximate EMD value differs
from the exact EMD value by at most δ. The time complexity of
these algorithms normally depends on both the dimensionality, δ
and the maximum value of the cost matrix. However, it is hard to
set the parameter δ, since setting the reasonable δ (not too large
or small) depends on the exact EMD value, which is not known
in advance. In contrast, we propose to use ε-multiplicative error
(i.e., relative error); it is easier to choose the parameter ε as it does
not require knowing the exact EMD value. Recently, Sherman
[35] proposes generalized preconditioning method to transform
minimum cost flow problem to minimum `1 norm problem, which
can be efficiently solved by combining existing numerical solvers
[9], [27]. This approach can be used to evaluate approximate EMD
value within the relative error ε in O(d2(1+o(1))ε−2) time (which
is near O(d2ε−2) once d is very large).

Approximate EMD has also been studied in the computer
vision [36], [30], database [20] and machine learning [3] com-
munities. Pele et al. [30] remove some records from the cost
matrix when their values are larger than a pre-defined threshold.
The EMD computation time is correlated to the sparsity of the
cost matrix so that the threshold plays a role in controlling the
quality and the efficiency. Jang et al. [20] store a set of hilbert
curves and assign the distance between two images based on these
curves. However, the approximate quality is highly relevant to
the hilbert curve selection and there is no theoretical guarantee.
Shirdhonkar et al. [36] utilize the wavelet theory in their approxi-
mation algorithm, but do not offer any error guarantee. Altschuler
et al. [3] develop Sinkhorn projection-based iterative algorithms
for evaluating approximate EMD. Like [31], [8], they provide the
δ-additive error guarantee, which is hard to set in practice, but not
relative error guarantee.

3 PRELIMINARIES

3.1 Problem Definition
The Earth Mover Distance (EMD) [33] can be used to measure
the dissimilarity between two histograms (e.g., probability dis-
tributions). We represent a histogram by p = [p1, p2, ..., pd],
where d is the dimensionality (i.e., number of bins). Following the
previous studies [33], [39], [34], we assume that each histogram p
is normalized, i.e.,

∑d
j=1 pj = 1. Given two histograms q and p,

the EMD between them is defined as the minimum-cost flow on a
bipartite flow network between q and p. We denote a cost matrix
by c and a flow matrix by f , where ci,j models the cost of moving
flow from qi to pj , and fi,j represents the amount of flow to move

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 3

from qi to pj . Formally, we define emdc(q,p) as the following
linear programming problem.

emdc(q,p) = minimize
f

d∑
i=1

d∑
j=1

ci,jfi,j

such that ∀i, j ∈ [1..d] : fi,j ≥ 0

∀i ∈ [1..d] :
d∑
j=1

fi,j = qi

∀j ∈ [1..d] :
d∑
i=1

fi,j = pj

According to Ref. [33], EMD satisfies the triangle inequality
provided that the cost matrix c is a metric (i.e., non-negativity,
symmetry and triangle inequality for all ci,j).

Lemma 1 (Proved in Ref. [33]). For any histograms q,p, r with
the same dimensionality, we have:

emdc(q,p) ≤ emdc(q, r) + emdc(r,p)

EMD is computationally expensive. Even with the fastest
known algorithm [29], it is still expensive to compute the exact
EMD value, which takes O(d3 log d) time. Instead, we propose to
compute an approximate EMD value R with bounded error. We
formulate our problem below; it guarantees that R is within 1± ε
times the exact EMD value. Our objective is to develop efficient
algorithms for this problem.

Problem 1 (Error-Bounded EMD). Given an error threshold ε,
this problem returns a value R such that Eq,p(R) ≤ ε, where the
relative error of R is defined as:

Eq,p(R) =
|R− emdc(q,p)|
emdc(q,p)

(1)

Table 1 summarizes the frequently-used symbols in this paper.

TABLE 1: Symbols

Symbols Description
emdc(q,p) Earth Mover’s Distance between vectors q and p
Eq,p(R) Relative error between R and emdc(q,p)
LB, UB Lower and upper bound functions
`, u Abbreviation of LB(q,p) and UB(q,p)

Emax(`, u) Validation function Emax(`, u) = u−`
u+`

Γ Historical workload
T(LB(q,p), UB(q,p)) Running time of LB and UB on (q,p) pair

T(Alg(q,p)) Running time of Alg (e.g., ADA-L ...) on (q,p) pair

3.2 Existing Bound Functions

We introduce existing lower bound and upper bound functions for
EMD in the literature, which will be used in subsequent sections.
These bound functions must satisfy the following properties (cf.
Definition 1).

Definition 1. LB(q,p) is called a lower bound function if
emdc(q,p) ≥ LB(q,p) for any q,p. UB(q,p) is called an
upper bound function if emdc(q,p) ≤ UB(q,p) for any q,p.

We summarize several representative lower and upper bound
functions in the literature in Table 2. For each bound function,
we show its name (in subscript), its time complexity, and its
reference(s). We refer the interested readers to the references.

Most of the bound functions yield time complexities in terms
of the histogram dimensionality d. Wichterich et al. [42] propose
a parametric lower bound function LBRed,dr , which accepts an
additional parameter dr (i.e., reduced dimensionality) to control
its running time and tightness.

TABLE 2: Summary of lower and upper bound functions for EMD

Name Type Time Complexity Reference Parametric
LBIM lower O(d2) [6] no
LBProj lower O(d) [34], [11] no
LBRed,dr lower O(d2 + dr

3 log dr) [42] yes
UBG upper O(d2) [39] no
UBH upper O(d) [20], [21] no

4 PARAMETRIC DUAL BOUNDING

Although there exists a parametric lower bound function [42],
we are not aware of any parametric upper bound function in
the literature. Instead of providing separate functions for lower
bound and upper bound, we propose another parametric dual
bound function, which utilizes shared computation to compute
both lower and upper bounds simultaneously, and offers control
on running time and tightness via a parameter. Moreover, our
parametric bound functions take advantage of skewed property of
data, we provide the case study in Section 4.4 to demonstrate our
parametric lower bound is generally superior than [42] for small
error in this type of datasets.

4.1 Exact EMD on Sparse Histograms
Recall from Section 3 that the computation of emdc(q,p) is
equivalent to the minimum-cost flow problem on a bipartite flow
network. This flow network contains d2 edges because there is an
edge between each qi and each pj .

It turns out that, when both q and p are sparse histograms (i.e.,
having 0 in many bins), it is possible to shrink the flow network
without affecting the exact EMD value. Consider the example in
Figure 2 where the dimensionality is d = 4. Since each flow fi,j
(from qi to pj) must be non-negative, any bin with zero value must
have zero flow (to and from other bins). Therefore, we can safely
remove the edge for fi,j if either qi = 0 or pj = 0. For example,
in Figure 2, it suffices to keep only 2 × 2 = 4 edges in the flow
network.

q

p

1 2 3 4

1 2 3 4

0.5 0.5 0 0

0 0 0.8 0.2

Fig. 2: Bipartite graph for sparse EMD computation

Formally, we introduce the notation Φ(p) to measure the
denseness of the histogram.

Definition 2. Let Φ(p) be the number of non-zero bins in
histogram p, i.e., Φ(p) = COUNT{j : pj 6= 0}.

With this idea, we can compute the exact value of emdc(q,p)
in O(d3

s log ds) time, where ds = max(Φ(q),Φ(p)).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 4

4.2 Skew-Transform Operation
Based on the idea of efficient EMD evaluation on sparse his-
tograms, we propose the Skew-Transform operation which will be
used for our skew-based bound functions. This operation takes a
histogram p and an integer λ as input, and returns a histogram
p′ that contains exactly λ non-zero bins (i.e., Φ(p′) = λ).
We illustrate an example of this operation in Figure 3, with
the input p = [0.1, 0.1, 0.6, 0.2] and λ = 2. After moving
values in bin 1 and bin 2 to bin 3, we obtain the histogram
p′ = [0, 0, 0.8, 0.2], which contains exactly two non-zero bins.
As we will explain later, an upper bound ubmove(p,p′) can be
derived efficiently from the sequence of movements. In this case,
we have: ubmove(p,p′) = 0.1 · c2,3 + 0.1 · c1,3.

0.6

0.1

2 31 4

0.1
0.2

0.7

2 31 4

v
(1)

0.2
0

move 0.1

from (2) to (3)

0.8

2 31 4

0.2

00
0.1

move 0.1

from (1) to (3)

p = v
(0) p' = v

(2)

Fig. 3: Example for skew transform

We adopt a greedy method to implement the skew-transform
operation. First, we select a source bin (say, s) with the smallest
non-zero value. Then, we select a target bin (say, t) such that it
has non-zero value and the smallest movement cost cs,t. We repeat
the above procedure until the result histogram p′ contains exactly
λ non-zero bins. The pseudo-code of this method is described in
Algorithm 1.

Algorithm 1 Skew Transform Operation
1: procedure SKEW-TRANSFORM(histogram p, cost matrix c, integer λ)
2: p′ ← p
3: ubmove ← 0
4: while Φ(p′) > λ do
5: s← argmin{i : p′i 6= 0}
6: t← argmin{j : cs,j , p

′
j 6= 0, j 6= s}

7: δ ← p′s
8: ubmove ← ubmove + cs,tδ
9: p′t ← p′t + δ; p′s ← 0

10: return (p′, ubmove)

The value ubmove computed by Algorithm 1 is indeed an
upper bound of emdc(p,p′). We prove this in the following
lemma.

Lemma 2. When Algorithm 1 terminates, it holds that: ubmove ≥
emdc(p,p

′).

Proof. In each iteration of the Algorithm 1, the movement of value
δ from bin s to bin t is feasible; it preserves the summation terms∑
j=1..d fij = pi, ∀i,

∑
i=1..d fij = p′j , ∀j and ensures that each

movement incurs non-negative flow from bin s to t. Therefore,
fij ≥ 0, ∀i, j. This means that the total movement cost is at least
the minimum possible cost emdc(p,p′).

The time complexity of Algorithm 1 is O((d− λ)d).

4.3 Skew-Based Bound Functions
We illustrate the idea behind our bound functions in Figure 4.

• First, we transform histograms q and p into sparser his-
tograms q′ and p′. To control their sparsity, we introduce

a parameter λ in the transform operation and require that
Φ(q′) = Φ(p′) = λ.

• Then, we derive lower and upper bound functions for
emd(q,p) by using the transformed histograms (i.e.,
q′,p′) and their relationships with the original histograms
(i.e., q,p).

q

p

q'

p'

emd
c
(q,q')

emd
c
(p,p')

emd
c
(q',p')emd

c
(q,p)

Skew transform

Skew transform

λ non-zero bins

Fig. 4: Skew-based lower and upper bounds

As shown in Figure 4, our bounds for emdc(q,p) depend on
three terms emdc(q,q′), emdc(p,p′), and emdc(q′,p′). Since
q′ and p′ are sparse, we can compute emdc(q′,p′) efficiently by
the idea in Section 4.1. However, this idea cannot be used to accel-
erate the computation of emdc(q,q′), and emdc(p,p′). To re-
duce the computation time, we replace emdc(q,q′), emdc(p,p′)
by fast-to-compute upper bounds UB(q,q′), UB(p,p′) (cf.
Section 4.2). Specifically, we propose the following parametric
functions in terms of λ and call them as skew-based bound
functions:

LBskew,λ(q,p) = emdc(q
′,p′)− UB(q,q′)− UB(p,p′)

UBskew,λ(q,p) = emdc(q
′,p′) + UB(q,q′) + UB(p,p′)

(2)

such that (i) Φ(q′) = Φ(p′) = λ and (ii) UB(·, ·) is an upper
bound function of emdc(·, ·).

Observe that both LBskew,λ(q,p) and UBskew,λ(q,p)
share all the terms, suggesting an opportunity for shared com-
putation for both bounds.

Lemma 3 shows that LBskew,λ(q,p) and UBskew,λ(q,p)
are lower and upper bound functions for emdc(q,p), respectively.

Lemma 3. For any histograms q,p, we have: LBskew,λ(q,p) ≤
emdc(q,p) ≤ UBskew,λ(q,p).

Proof. By the triangle inequality (Lemma 1), we obtain:

emdc(q,p
′) ≤ emdc(q,q′) + emdc(q

′,p′)

emdc(q,p) ≤ emdc(q,p′) + emdc(p
′,p)

Adding these two inequalities, we get:

emdc(q,p) ≤ emdc(q′,p′) + emdc(q,q
′) + emdc(p

′,p)

≤ emdc(q′,p′) + UB(q,q′) + UB(p,p′)

This implies that emdc(q,p) ≤ UBskew,λ(q,p).
By using Lemma 1 in another way, we obtain:

emdc(q
′,p) ≥ emdc(q′,p′)− emdc(p′,p)

emdc(q,p) ≥ emdc(q′,p)− emdc(q′,q)

Adding these two inequalities, we get:

emdc(q,p) ≥ emdc(q′,p′)− emdc(q′,q)− emdc(p′,p)

≥ emdc(q′,p′)− UB(q,q′)− UB(p,p′)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 5

This implies that emdc(q,p) ≥ LBskew,λ(q,p).

Regarding the time complexity, the transformation operation
(in Section 4.2) takes O((d − λ)d) time, and the exact EMD
computation on transformed histograms takes O(λ3 log λ) time.
Thus, the total time complexity is: O((d− λ)d+ λ3 log λ).

4.4 Case study on Parametric Lower Bound Functions

Recall from Table 2, LBRed,dr [42] is the only paramet-
ric lower bound function in the literature. In order to com-
pare the effectiveness of our parametric bound functions, we
first sample 1000 (q,p) pairs from CAL-RGB and CAL-Lab
datasets (see Section 6.1.1 for details). Then we test the run-
ning time (per pair) with respective to the average relative er-
ror of each bound, i.e. 1

1000

∑
(q,p)Eq,p(LBRed,dr (q,p)) and

1
1000

∑
(q,p)Eq,p(LBskew,λ(q,p)). We select the most suitable

parameters of λ and dr such that the relative errors to be approx-
imately 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. As shown in Figure 5,
our bound function LBskew,λ generally outperforms the existing
bound function LBRed,dr under the small average relative error
(e.g., 0 to 0.2). The main reason is our bound function LBskew,λ
applies the smallest bin value shift first greedy strategy (cf. Figure
3) which is more suitable for skewed data. However, LBRed,dr
does not consider this property.

LBskew,λ O LBRed,dr ♦

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

R
un

ni
ng

 t
im

e
(m

s/
pa

ir)

Average Relative Error

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 0.05 0.1 0.15 0.2 0.25 0.3

R
un

ni
ng

 t
im

e
(m

s/
pa

ir)

Average Relative Error

Fig. 5: Case study for our LBskew,λ and LBRed,dr [42]

5 APPROXIMATION FRAMEWORK

Although the lower/upper bound functions (cf. Table 2 and Section
4) may be used to compute approximate EMD value R, they
provide no guarantee on the relative error (i.e., Eq,p(R) ≤ ε).

In contrast, we propose a framework to compute an approxi-
mate EMD value with bounded error. Our framework leverages on
lower/upper bound functions for EMD. As shown in Figure 6, our
framework consists of the following two components.

• The controller selects a lower bound function and an upper
bound function. Then it computes a lower bound `, an
upper bound u, and an approximate result R which is the
value between ` and u.

• The validator receives information (e.g., `, u,R) from
the controller, and then checks whether the relative error
definitely satisfies Eq,p(R) ≤ ε.

If the validator returns true, then the controller reports R to the
user. Otherwise, the controller needs to obtain tighter bounds for
` and u, and repeats the above procedure.

Fig. 6: Framework

5.1 Validator

In order to secure the correctness of our framework, we specify
the following requirements for the validator:

• If it returns true, then it guarantees that the approximate
result R must satisfy Eq,p(R) ≤ ε.

• Otherwise, it does not provide any guarantee for R.

For brevity in the remaining subsection, we use `, u and e to
represent LB(q,p), UB(q,p) and emdc(q,p).

e (unknown):

between l and u

l uR

Fig. 7: Validation

As shown in Figure 7, since the validator does not know
the exact value e, it cannot directly compute the relative error
of R, i.e., Eq,p(R). Nevertheless, the validator can compute the
maximum possible relative error of R, according to Lemma 4.

Lemma 4. Eq,p(R) ≤ max

(
R
` − 1, 1− R

u

)
.

Proof. By the definition of Eq,p(R), we have:

Eq,p(R) =
|R− e|
e

=

∣∣∣∣Re − 1

∣∣∣∣
Case 1: R ≥ e

Eq,p(R) =
R

e
− 1 ≤ R

`
− 1 (By e ≥ `)

Case 2: R < e

Eq,p(R) = 1− R

e
≤ 1− R

u
(By e ≤ u)

Combining both cases, we obtain the following inequality:

Eq,p(R) ≤ max

(
R

`
− 1, 1− R

u

)

Our next step is to find the optimal R in order to minimize the
maximum possible relative error max

(
R
` −1, 1− R

u

)
. According

to Theorem 1, it is minimized when R = 2`u
`+u , and the maximum

possible relative error becomes u−`
u+` .

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 6

In subsequent sections, we use the notation Emax(`, u) to
represent u−`u+` .

Theorem 1. If R = 2`u
`+u , then:

(1) max
(
R
` − 1, 1− R

u

)
achieves minimum.

(2) Eq,p(R) ≤ u−`
u+` .

Proof. For (1), we observe that the first term R
` − 1 is monotonic

increasing with R and the second term 1 − R
u is monotonic

decreasing with R. In order to minimize it, we set:

R

`
− 1 = 1− R

u
⇐⇒ R =

2`u

`+ u

For (2),

Eq,p(R) =
|R− e|
e

=

∣∣∣∣Re − 1

∣∣∣∣ =

∣∣∣∣ 2`u

e(`+ u)
− 1

∣∣∣∣
≤ max

(∣∣∣∣ 2`u

`(`+ u)
− 1

∣∣∣∣, ∣∣∣∣ 2`u

u(`+ u)
− 1

∣∣∣∣)
=
u− `
u+ `

Therefore, once the condition u−`
u+` ≤ ε is fulfilled, R = 2`u

`+u
can achieve the bounded error Eq,p(R) ≤ ε.

5.2 Training-free Controllers
In this section, we propose two control algorithms: Adaptive
(ADA) and Lightweight Adaptive (ADA-L) which utilize our de-
veloped parametric lower and upper bound functions (cf. Section
4). These two control methods can be readily used on-the-fly
because they do not need any training.

5.2.1 Adaptive (ADA)
Recall from Section 4.3, our parametric dual bound functions
LBskew,λ and UBskew,λ depend on the parameter λ, which
can affect both the running time and the error. This calls for an
automatic method for selecting a suitable value for λ, upon the
arrival of the (q,p)-pair.

We propose the adaptive approach (ADA) as illustrated in
Figure 8. It gradually applies tighter bounds until passing the
validation test. We present this method in Algorithm 2. It consists
of an adaptive phase which performs validation by our parametric
bound functions LBskew,λ, UBskew,λ in ascending order of λ.
We denote the increasing sequence of λ values by Λ (cf. Line
2). The algorithm executes our parametric bound functions in
ascending order of λ ∈ Λ until passing. It terminates as soon
as it passes the validation test.

l1 u1l2 l3 u2u3

gradually using tighter bounds

Fig. 8: Adaptive approach

We propose one instantiation for Λ below:

• Exponential sequence: We introduce a parameter α >
1 and construct Λ = 〈bαic : i ≥ 0, bαic < d〉. For

Algorithm 2 Adaptive Algorithm (ADA)
1: procedure ADA(histogram q, histogram p, cost matrix c, error threshold
ε)

2: initialize the sequence Λ of increasing integers
3: for each λ ∈ Λ do . compute LBskew,λ, UBskew,λ
4: (q′, ub1)←Skew-Transform(q, λ)
5: (p′, ub2)←Skew-Transform(p, λ)
6: temp← emdc(q′,p′) . expensive call
7: `← temp− ub1 − ub2; u← temp+ ub1 + ub2
8: if Emax(`, u) ≤ ε then . Theorem 1
9: return R = 2`u

`+u

10: return emdc(q,p) . expensive call

example, when α = 1.4 and d = 25, the sequence is:
〈1, 1, 1, 2, 3, 5, 7, 10, 14, 20〉. In implementation, we omit
duplicate integers in the sequence.

Theoretically, we show that ADA can be worse than the ADA-
Opt (which knows the optimal λ value in advance for each (q,p)
pair) by only a constant factor 5.18 if α = 1.2.

Lemma 5. For every (q,p) pair, let T(ADA(q,p)) and
T(ADA-Opt(q,p)) be the running time of ADA(q,p) and
ADA-Opt(q,p) respectively. If α = 1.2, we have:

T(ADA(q,p))

T(ADA-Opt(q,p))
≤ 5.18

The detailed proof is shown in Appendix (Section 8).

5.2.2 Lightweight Adaptive (ADA-L)
ADA may examine several λ and compute emdc(q′,p′) multiple
times (in the adaptive phase). Thus, ADA can be expensive when ε
is small. To avoid such overhead, we propose a lightweight version
of the adaptive method, called ADA-L, such that it computes
emdc(q

′,p′) exactly once. Even though ADA-L does not have
theoretical performance guarantee as ADA (cf. Lemma 5), the
practical efficiency performance, as will be shown in experimental
section, is better than ADA.

We show this ADA-L method in Figure 9. This algorithm (cf.
Algorithm 3) applies the skew-transform operation on histograms
q′ and p′ such that they have one more zero bin. If the validation
condition is satisfied, then we continue the loop. Otherwise, we
terminate the loop and return emdc(q′,p′) as the approximate
result.

q’

p’ emdc(q’,p’)

Fig. 9: Lightweight adaptive approach

The correctness of the validation condition is established by
the following theorem.

Theorem 2. If R = emdc(q
′,p′), then:

Eq,p(R) ≤ UB(q,q′) + UB(p,p′)

LB(q,p)
(3)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 7

Proof. In the proof of Lemma 3, we have: emdc(q,p) ≤
emdc(q

′,p′) + UB(q,q′) + UB(p,p′) and emdc(q,p) ≥
emdc(q

′,p′) − UB(q,q′) − UB(p,p′). Thus, we obtain:
|emdc(q′,p′)− emdc(q,p)| ≤ UB(q,q′) + UB(p,p′).

Eq,p(R) =
|emdc(q′,p′)− emdc(q,p)|

emdc(q,p)
(Given value of R)

≤ UB(q,q′) + UB(p,p′)

emdc(q,p)

≤ UB(q,q′) + UB(p,p′)

LB(q,p)
(By Definition 1)

Therefore, once the condition UB(q,q′) + UB(p,p′) ≤
εLB(q,q′) is fulfilled, R = emdc(q

′,p′) can achieve the
bounded error Eq,p(R) ≤ ε.

Before computing R, we can bound the error Eq,p(R) by
using three terms, namely UB(q,q′), UB(p,p′) and LB(q,p).
In the algorithm, the value ` (cf. Line 2) corresponds to LB(q,p),
and the value ubsum + ub1 + ub2 (cf. Line 8) corresponds to
UB(q,q′) + UB(p,p′).

Algorithm 3 Lightweight Adaptive Method (ADA-L)
1: procedure ADA-L(histogram q, histogram p, cost matrix c, error

threshold ε)
2: `← LBProj(q,p) . Use the fastest lower bound function
3: ubsum ← 0
4: q′ ← q, p′ ← p
5: while Φ(q′) > 1 and Φ(p′) > 1 do
6: (q′′, ub1)←Skew-Transform(q′, c,Φ(q′)− 1)
7: (p′′, ub2)←Skew-Transform(p′, c,Φ(p′)− 1)
8: if ubsum + ub1 + ub2 ≤ ε · ` then . Theorem 2
9: ubsum ← ubsum + ub1 + ub2

10: q′ ← q′′, p′ ← p′′

11: else
12: break
13: return emdc(q′,p′) . expensive call

The most appealing property of this ADA-L is that it avoids the
expensive call of EMD operation in each iteration. The fast incre-
mental upper bound function (cf. Lemma 2) incrementally updates
UB(q,q′) and UB(p,p′) which leads to efficient computation
in each iteration.

5.3 Training-based Controller (ADA-H)

Some applications, e.g., image retrieval [33], [23], [22] and image
classification [45], might have huge historical workload data.
Such rich information can help to pick the bounds such that the
framework can find a good approximate result R at lower cost,
compared to training-free controllers (e.g., ADA-L).

As discussed in Table 2, there exist several lower bound func-
tions LB ∈ SetLB and upper bound functions UB ∈ SetUB
at lower cost as compared to our ADA-L. If we can select the
fast combination of LB and UB for (q,p) with the validation
condition Emax(`, u) ≤ ε is fulfilled, then the response time
can be further reduced. The question is which bound functions in
SetLB and SetUB should be picked.

In this work, we propose another control method ADA-
H which picks the sequence of bound functions (from SetLB and
SetUB) based on ε and the historical workload Γ in the offline
training stage. After that, the chosen sequence of bounds will be
used to handle the online computation.

5.3.1 Offline training stage
This stage requires historical workload data, which is defined as
the collection Γ of pairs (q,p). We first build the following tables
for Γ.

Definition 3 (Vε-Table). Vε(LB,UB) denotes the set of (q,p)
pairs where their estimated results (using LB and UB) pass the
validation stage subject to the error threshold ε.

Vε(LB,UB) = {(q,p) ∈ Γ|Emax(LB(q,p), UB(q,p)) ≤ ε}

Definition 4 (T-Table). T-Table records the response time
T(LB(q,p), UB(q,p)) of different bound functions LB ∈
SetLB and UB ∈ SetUB for every (q,p) pair.

Given the Vε-Table and the T-Table of a workload set Γ, we
want to find a sequence of bounds (from SetLB and SetUB) such
that the response time of evaluating these bounds is minimized
subject to a constraint that all estimated result R of (q,p) ∈ Γ
satisfies the validation condition Eq,p(R) ≤ ε.

...

SetLB

SetUB ub1 ub2 … ubi … ubx … ubn

lb1 lb2 … lbj … lby … lbk

low highcomplexity

lbj ubi lby ubx ADA-L

F1 F2

Fig. 10: Picking a sequence of bounds in the offline training stage

Our idea, as shown in Figure 10, is to iteratively partition the
workload Γ into subsets by using a sequence of validations. We
denote Γi and Fi to be the set of remaining and filtered pairs after
the ith validation. A feasible sequence of bounds in this example
is {(lbj , ubi), (lby, ubx), ...}. These bounds secure that every pair
in Γ fulfills the error threshold ε, which is verified by the validator
(based on the information in Vε-Table). Note that we need ADA-L
at the last step to secure the feasibility (since ADA-L is an adaptive
method so it always finds a result fulfilling Eq,p(R) ≤ ε).

Among all feasible sequences of bounds, we want to find
the best sequence of bounds that minimizes the response time
(based on the information in T-Table). However, finding the best
sequence of bounds that optimizes the objective and fulfills the
constraint is a combinatorial problem. For the sake of processing,
we simplify the problem and use a greedy method to find the
sequence of bounds.

1) We sort the bounds of SetLB and SetUB based on their
running time.

2) Pick the fastest pair of bounds into the suggested se-
quence S and call the validator to partition Γ into Γ1

and F1.
3) Get the next pair (LB,UB) of bounds and call the

validator to partition Γi into Γi+1 and Fi+1 in which
the estimated response time (cf. Eq. 4) is minimized.∑

(q,p)∈Γi

T(LB(q,p), UB(q,p))+
∑

(q,p)∈Γi+1

T(ADA-L(q,p))

(4)
4) If Eq. 4 is smaller than

∑
(q,p)∈Γi

T(ADA-L(q,p)), we
pick this pair of bounds into the suggested sequence S.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 8

Otherwise, we choose ADA-L into S, then report S as the
final sequence and terminate this algorithm.

5) Repeat Step (3) until the Γi becomes ∅.

5.3.2 Online stage

When processing a new pair (q,p) (of the same application
domain), our controller only evaluates those picked sequence of
bounds in S (cf. Algorithm 4). This chosen sequence S offers
very good performance in practice since the validator skips to
check many ineffective bound pairs. We will show the detailed
performance in the experimental section.

Algorithm 4 ADA-H (Online)
1: procedure ADA-H ONLINE(histogram q, histogram p, sequence of

bounds S, cost matrix c, error threshold ε)
2: for each (LB,UB) ∈ S do
3: `← LB(q,p), u← UB(q,p)
4: if Emax(`, u) ≤ ε then . Theorem 1
5: return R = 2`u

`+u

6: Return ADA-L(q,p, c, ε)

6 EXPERIMENTAL EVALUATION

We introduce the experimental setting in Section 6.1. Then, we
evaluate the effectiveness of different bound functions in Section
6.2. Next, we present the experiments for approximate EMD com-
putation in Section 6.3. Then, we demonstrate the effectiveness
and the efficiency of our methods on k-NN content-based image
retrieval in Section 6.4. We implemented all algorithms in C++
and conducted experiments on an Intel i7 3.4GHz PC running
Ubuntu.

6.1 Experimental Setting

6.1.1 Datasets

We have collected five raw datasets of images as listed in Table 3.
These datasets have been used extensively in the computer vision
and the information retrieval areas. For each raw image, we apply
a histogram extraction method to obtain a color histogram p.

We consider two representative methods for extracting color
histograms, as shown in Table 4. RGB color histogram is the
traditional representation method since 1990s [38], [15], [37]. It
is still effective for content-based image retrieval [12] and EMD-
based applications [46]. Lab color histogram is extensively used
in computer vision and image retrieval applications [33], [36],
[30], [43]. We follow the setting of [12], [33] to extract these two
types of color histograms. Specifically, we divide the color space
uniformly into 4 × 4 × 4 partitions and 4 × 8 × 8 partitions, for
RGB and Lab respectively. According to [33], [39], we compute
the cost matrix c by setting ci,j to the Euclidean distance between
the centers of partitions i and j in the color space.

TABLE 3: Raw datasets of images

Raw dataset # of images Used in
UW 1,109 [12]
VOC 5,011 [13]

COR (Corel) 10,800 [41]
CAL (Caltech) 30,609 [14]

FL (Flickr) 1,000,000 [18]

TABLE 4: Methods for extracting color histograms

Histogram name Dimensionality Used in
RGB 64 [12]
Lab 256 [33]

By using each histogram extraction method on each raw
dataset, we obtain ten datasets: UW-RGB, VOC-RGB, COR-
RGB, CAL-RGB, FL-RGB, UW-Lab, VOC-Lab, COR-Lab, CAL-
Lab, FL-Lab. We name each dataset by the format [raw dataset]-
[histogram name].

6.1.2 Exact EMD computation
For the sake of fairness, we consider representative methods for
computing exact EMD and attempt to identify the fastest one
on our datasets. These methods include: (i) two algorithms CAP
and NET from the Lemon Graph Library1, (ii) SIA [39] and (iii)
TRA [33].

In this experiment, we randomly sample 1000 pairs of his-
tograms from a dataset, and measure the throughput (number
of processed pairs/sec) of each method. Figure 11 shows the
throughput on two datasets: CAL-RGB and CAL-Lab. Observe
that TRA performs the best on both datasets. We obtain similar
trends on other datasets. Therefore, we use TRA for exact EMD
computation in the remaining experimental study.

102

103

104

TRA CAP NET SIA

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Exact Methods

100

101

102

103

TRA CAP NET SIA

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)
Exact Methods

(a) CAL-RGB (b) CAL-Lab

Fig. 11: Throughput of exact EMD computation methods

6.1.3 Oracle
In order to demonstrate the usefulness of different control algo-
rithms in our approximation framework, we define the following
omniscient method Oracle.

Definition 5. Given histograms q,p, we define the optimal pair
of lower and upper bound functions as follows:

Oracle(q,p) = argmin
(LB,UB)

{T(LB(q,p), UB(q,p))

: LB ∈ SetLB , UB ∈ SetUB ,
Emax(LB(q,p), UB(q,p)) ≤ ε} (5)

For each (q,p) pair, Oracle pre-knows the fastest pair of
(`, u) which fulfills the validation condition Emax(`, u) ≤ ε.
As such, it acts as the most efficient solution for all control
methods in our approximation framework. In later sections, we
will demonstrate how efficient of our solutions compare with
Oracle.

1. http://lemon.cs.elte.hu/trac/lemon

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 9

6.2 Are Parametric Dual Bound Functions Useful?
In this section, we compare the effectiveness of our derived
parametric dual bound functions with existing bounds. Recall from
Section 6.1.3, Oracle(q,p) is denoted by the best lower and upper
bound pair for (q,p) pair. Therefore, if the bound is frequently
selected by Oracle, that bound is more useful.

We first randomly sample 1000 (q,p) pairs of histogram
from the dataset CAL-Lab. For a given error threshold ε, we
count the number of lower and upper bound functions selected by
Oracle in these histogram pairs. Observe from Figures 12a and
c, Exact are frequently chosen at small ε (e.g., 0.01 and 0.02).
Therefore, existing bound functions are not useful for small ε case
in which LBskew and UBskew are widely applicable for these
cases (cf. Figures 12b and d). Moreover, LBskew and UBskew
are frequently selected compared with other bound functions in
small to moderate ε values (0.01-0.2) by Oracle.

 0

 200

 400

 600

 800

 1000

0.01 0.02 0.05 0.1 0.15 0.2

#
 o

f
Se

le
ct

io
ns

ɛ

Exact
LBProj

LBIM
LBRed

 0

 200

 400

 600

 800

 1000

0.01 0.02 0.05 0.1 0.15 0.2

#
 o

f
Se

le
ct

io
ns

ɛ

Exact
LBProj
LBIM

LBRed
LBskew

(a) LB Selections (b) LB Selections (with LBskew)

 0

 200

 400

 600

 800

 1000

0.01 0.02 0.05 0.1 0.15 0.2

#
 o

f
Se

le
ct

io
ns

ɛ

Exact
UBH

UBG

 0

 200

 400

 600

 800

 1000

0.01 0.02 0.05 0.1 0.15 0.2

#
 o

f
Se

le
ct

io
ns

ɛ

Exact
UBH

UBG
UBskew

(c) UB Selections (d) UB Selections (with UBskew)

Fig. 12: Number of lower and upper bound functions selected by
Oracle in CAL-Lab dataset

6.3 Approximate EMD Computation
In this section, we test the throughput and the error of various
approximate EMD computation methods. Our competitors are
lower/upper bound functions LBIM , LBProj , LBRed, UBG,
UBH [6], [34], [42], [39], [20] and an approximate method in
the computer vision area FEMD2 [30]. Our proposed methods are
ADA, ADA-L and ADA-H. Note that our methods offer guarantee
on error threshold ε, but our competitors do not provide such
guarantee. By default, we set ε = 0.2.

In each dataset, we randomly sample 1000 testing pairs of
histograms, and measure the throughput (pairs/sec) of all methods.

6.3.1 Effect of pre-processing in ADA-H
The performance of our ADA-H method depends on the number
of pairs in the pre-processing steps. For fairness, we make sure

2. Implementation at http://www.ariel.ac.il/sites/ofirpele/FastEMD/

 0

 20000

 40000

 60000

 80000

 100000

 120000

10 100 1000 10000

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Number of Preprocessing Pairs

ε=0.2
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

10 100 1000 10000

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Number of Preprocessing Pairs

(a) COR-RGB (b) COR-Lab

Fig. 13: Throughput vs. number of pre-processing pairs in ADA-H,
fixing ε = 0.2

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

10 100 1000 10000

Pr
ep

ro
ce

ss
in

g
tim

e
(s

ec
)

Number of Preprocessing Pairs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

10 100 1000 10000

Pr
ep

ro
ce

ss
in

g
tim

e
(s

ec
)

Number of Preprocessing Pairs

(a) COR-RGB (b) COR-Lab

Fig. 14: Preprocessing time in ADA-H

that pre-processing pairs are different from testing pairs. In this
experiment, we vary the number of pre-processing pairs and plot
the throughput in Figure 13. Observe that the throughput becomes
stable when the numbers of preprocessing pairs are 100, 1000 and
10000. By default, we use 100 pre-processing pairs for ADA-H in
subsequent experiments.

Figure 14 shows the preprocessing time in COR-RGB and
COR-Lab datasets. The preprocessing time is proportional to the
number of pairs used for training. However, using 100 training-
pairs leads to stable performance in the online stage, as shown
in Figure 13. Therefore, the training time is not the bottleneck in
general.

6.3.2 Comparisons among our methods
In order to conduct meaningful comparisons, we compare our
methods with three benchmarks.

• Exact: the fastest exact EMD computation method (TRA),
according to Figure 11.

• ADA-Opt: an optimal skew method that knows the optimal
λ value in advance. Its throughput serves as the upper
bound of our skew-based methods ADA and ADA-L.

• Oracle: the theoretically optimal method, which knows
the optimal pair of bound functions in advance (Section
6.1.3).

Figure 15 plots the throughput of ADA-Opt and our adaptive
methods (ADA and ADA-L). Observe that ADA-L can achieve a
similar throughput compared to ADA-Opt. Since ADA-L performs
better than ADA in practice, we exclude ADA for subsequent
experiments.

In Figure 16, we study the effect of the error threshold ε
on the throughput of our methods ADA-H and ADA-L. We also

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

UW-RGB VOC-RGB COR-RGB CAL-RGB UW-Lab VOC-Lab COR-Lab CAL-Lab

Th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

Datasets

ADA-Opt

ADA

ADA-L

Fig. 15: Throughput between our methods and ADA-Opt method,
fixing ε = 0.2

report the throughput of Oracle and Exact in this experiment.
In general, our methods achieve higher throughput than Exact.
Our best method ADA-H can achieve significant speed-up (e.g.,
by an order of magnitude) on various datasets. Even though
Exact can also achieve 1600-7000 pairs/sec in all datasets, which
are not slow in general, some applications, for example: kNN-
image retrieval and classification [33] or EMD similarity join
[17] involve many EMD computations, especially for large-scale
datasets, which make Exact inefficient for these applications. We
will discuss in detail in our case study (cf. Section 6.4).

In the next experiment, we vary the dimensionality d of
the dataset by using RGB color histogram with d = m3 bins.
Figure 17 shows the throughput of Exact, ADA-L and ADA-H
as a function of the dimensionality. As expected, the throughput
decreases when the dimensionality d increases. Our best method
ADA-H consistently outperforms Exact by an order of magnitude.

To demonstrate the stability of our best method ADA-H, we
sort the response time (in increasing order) for all those 1000
sample pairs in CAL-RGB and CAL-Lab datasets and then plot
the percentile statistics in Figure 18. Observe that the response
time is stable for the method ADA-H for 80% of sample pairs,
whereas the remaining 20% of sample pairs may take longer time
to evaluate.

6.3.3 Comparisons with competitors
We proceed to compare our best method ADA-H with other
approximation methods. We classify our competitors into two
types:

• non-parametric approximation methods whose throughput
cannot be tuned (i.e., LBIM , LBProj , UBG, UBH [6],
[34], [39], [20]),

• parametric approximation methods whose throughput can
be tuned via a parameter (i.e., LBRed [42], FEMD [30],
SIAB [39], Sinkhorn [3]).

Table 5 shows how we choose the parameter for each paramet-
ric approximation method. LBRed [42] is the dimension reduction
technique for EMD, we choose different reduced dimensions, dred
for conducting this experiment. FEMD [30] utilizes the threshold
to truncate the edges (i, j) which costs cij exceed the threshold
in the bipartite flow network of EMD(q,p). Tang et al. [39]
develop the progressive lower bound function and apply UBG for
upper bound function, SIAB combines these bounding functions

with our approximation framework (cf. Section 5). Since SIAB
utilizes our approximation framework, this is the only existing
parametric approximate method which can provide the relative
error guarantee of the returned result. Altschuler et al. [3] utilize
Sinkhorn iterative projection algorithm to obtain the approximate
EMD value in which they provide the δ-additive error guarantee
of the returned result. To provide reasonable setting of δ, we set
seven values (cf. Table 5) for each (q,p) pair based on its own
EMD value e = emdc(q,p).

TABLE 5: Parameter tuning

Method para. RGB Lab
LBRed dred [42] {12,18,24,...,60} {24,56,88,...,248}
FEMD Threshold [30] {50,100,150,...,350} {12,24,36,...,84}

SIAB , ADA-H ε {0.01,0.05,0.1,0.15,...,0.3}
Sinkhorn δ {0.01e,0.05e,0.1e,0.15e,...,0.3e}

In order to obtain a holistic view, we plot the throughput and
the error of a method as a point. The error of a method is taken as
the average relative error (per tested pair). The performance of all
methods are shown in Figure 19.

First, we compare the performance of ADA-H with nonpara-
metric approximation methods. Since LBProj , UBH , LBIM and
UBG take at mostO(d2) time, they are normally faster than ADA-
H (especially for the points with small error) but incur high error.
Next, we consider the parametric approximation methods, ADA-H
obtains better performance in terms of both throughput and error
in most of the tested cases.

6.4 Case Study on kNN Content-based Image Retrieval

We conduct case study to demonstrate the effectiveness and the
efficiency of methods on kNN content-based image retrieval. Our
competitor, denoted by Exact-kNN, is the fastest known method
for exact kNN search with EMD [39]. Our kNN search method
is the same as Exact-kNN, except that we replace the refinement
stage by our approximate method ADA-H.

We use the largest datasets (FL-RGB, FL-Lab) for testing.
In each dataset, we randomly sample 100 query histograms. For
each method, we measure its efficiency as the query throughput
(queries/sec), and measure its effectiveness as the average preci-
sion per query, where the precision is defined as the fraction of the
retrieved results in the exact kNN results.

We investigate the effect of ε on the kNN retrieval performance
in terms of both precision and efficiency. In this experiment,
we set k = 100 by default and vary ε from 0.05 to 0.3.
Figure 20 shows the precision and the throughput of ADA-H
compared with Exact-kNN. Observe that the precision remains
above 0.8 (in Figures 20(a) and (b)) when ε is relatively large
(e.g., ε = 0.3). Figures 20(c) and (d) demonstrate that ADA-H
outperforms Exact-kNN by 3-5x and 3.5-7x on FL-RGB and FL-
Lab, respectively.

Next, we test the effect of k on the kNN retrieval performance
in terms of both precision and efficiency. Figures 21(a) and (b)
show the precision of ADA-H as a function of k. The precision of
ADA-H is high and it is independent of k. In Figures 21(c) and
(d), we observe that the throughput of ADA-H is not sensitive to
k. On the other hand, the throughput of Exact-kNN is linearly
proportional to k. Overall, ADA-H outperforms Exact-kNN by
2.38-5x and 3.38-7.26x on FL-RGB and FL-Lab, respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 11

Oracle × Exact 4 ADA-L© ADA-H �

103

104

105

106

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

103

104

105

106

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

103

104

105

106

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

103

104

105

106

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

(a) UW-RGB (b) VOC-RGB (c) COR-RGB (d) CAL-RGB

103

104

105

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

103

104

105

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

103

104

105

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

103

104

105

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

ε

(e) UW-Lab (f) VOC-Lab (g) COR-Lab (h) CAL-Lab

Fig. 16: Effect of the error threshold ε on different datasets

Exact 4 ADA-L© ADA-H �

101

102

103

104

105

106

64 125 216 343 512

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

dimensionality

101

102

103

104

105

64 125 216 343 512

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

dimensionality

101

102

103

104

105

64 125 216 343 512

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

dimensionality

101

102

103

104

105

106

64 125 216 343 512
Th

ro
ug

hp
ut

 (
pa

irs
/s

ec
)

dimensionality

(a) UW-RGB (b) VOC-RGB (c) COR-RGB (d) CAL-RGB

Fig. 17: Effect of the dimensionality d on different datasets

10-6

10-5

10-4

10-3

 0 20 40 60 80 100

Ti
m

e
(s

ec
)

percentile

10-5

10-4

10-3

10-2

 0 20 40 60 80 100

Ti
m

e
(s

ec
)

percentile
(a) CAL-RGB (b) CAL-Lab

Fig. 18: Response time (sec) vs. percentile of ADA-H, fixing ε =
0.2

7 CONCLUSION

This paper studies the computation of approximate EMD value
with bounded error. Specifically, we guarantee to return an ap-
proximate EMD value that is within 1 ± ε times the exact EMD
value. We have presented an adaptive approach for our problem.

In our experimental evaluation, we have used five raw image
datasets with two histogram extraction methods. Our best method,
ADA-H, yields up to an order of magnitude speedup over the
fastest exact computation algorithm. We have also evaluated the
effectiveness of ADA-H on the kNN content-based image retrieval
application. In the future, we plan to investigate how to extend
our approximation framework to other applications, e.g., EMD
similarity join, and other similarity functions, e.g., edit distance.

ACKNOWLEDGEMENT

This work was supported by grant GRF152201/14E from the Hong
Kong RGC. Leong Hou U was supported by MYRG-2016-00182-
FST from UMAC RC.

REFERENCES

[1] P. K. Agarwal and R. Sharathkumar. Approximation algorithms for
bipartite matching with metric and geometric costs. In STOC, pages
555–564, 2014.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

[3] J. Altschuler, J. Weed, and P. Rigollet. Near-linear time approximation
algorithms for optimal transport via sinkhorn iteration. In NIPS, pages
1961–1971, 2017.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 12

LBProj N LBIM H UBH ∗ UBG � ADA-H � SIAB + LBRed ♦ FEMD × Sinkhorn O

103

104

105

106

107

108

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

103

104

105

106

107

108

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

103

104

105

106

107

108

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

103

104

105

106

107

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

(a) UW-RGB (b) VOC-RGB (c) COR-RGB (d) CAL-RGB

103

104

105

106

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

103

104

105

106

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

103

104

105

106

107

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

103

104

105

106

 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (

pa
irs

/s
ec

)

Relative Error

(e) UW-Lab (f) VOC-Lab (g) COR-Lab (h) CAL-Lab

Fig. 19: Comparisons with all approximation methods on different datasets

[4] A. Andoni, P. Indyk, and R. Krauthgamer. Earth mover distance over
high-dimensional spaces. In SODA, pages 343–352, 2008.

[5] D. Applegate, T. Dasu, S. Krishnan, and S. Urbanek. Unsupervised
clustering of multidimensional distributions using earth mover distance.
In SIGKDD, pages 636–644, 2011.

[6] I. Assent, A. Wenning, and T. Seidl. Approximation techniques for
indexing the earth mover’s distance in multimedia databases. In ICDE,
page 11, 2006.

[7] I. Assent, M. Wichterich, T. Meisen, and T. Seidl. Efficient similarity
search using the earth mover’s distance for large multimedia databases.
In ICDE, pages 307–316, 2008.

[8] J. Blanchet, A. Jambulapati, C. Kent, and A. Sidford. Towards optimal
running times for optimal transport. CoRR, abs/1810.07717, 2018.

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Berichte über
verteilte messysteme. Cambridge University Press, 2004.

[10] M. H. Coen, M. H. Ansari, and N. Fillmore. Comparing clusterings in
space. In ICML, pages 231–238, 2010.

[11] S. D. Cohen and L. J. Guibas. The earth mover’s distance: Lower bounds
and invariance under translation technical report. 1997.

[12] T. Deselaers, D. Keysers, and H. Ney. Features for image retrieval: an
experimental comparison. Inf. Retr., 11(2):77–107, 2008.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[14] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset.
technical report 7694, caltech. 2007.

[15] J. L. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and W. Niblack.
Efficient color histogram indexing for quadratic form distance functions.
IEEE Trans. Pattern Anal. Mach. Intell., 17(7):729–736, 1995.

[16] J. Huang, R. Zhang, R. Buyya, and J. Chen. MELODY-JOIN: efficient
earth mover’s distance similarity joins using mapreduce. In ICDE, pages
808–819, 2014.

[17] J. Huang, R. Zhang, R. Buyya, J. Chen, and Y. Wu. Heads-join: Efficient
earth mover’s distance similarity joins on hadoop. IEEE Trans. Parallel
Distrib. Syst., 27(6):1660–1673, 2016.

[18] M. J. Huiskes and M. S. Lew. The MIR flickr retrieval evaluation. In
SIGMM, pages 39–43, 2008.

[19] P. Indyk. A near linear time constant factor approximation for euclidean
bichromatic matching (cost). In SODA, pages 39–42, 2007.

[20] M. Jang, S. Kim, C. Faloutsos, and S. Park. A linear-time approximation
of the earth mover’s distance. In CIKM, pages 505–514, 2011.

[21] M. Jang, S. Kim, C. Faloutsos, and S. Park. Accurate approximation
of the earth mover’s distance in linear time. J. Comput. Sci. Technol.,
29(1):142–154, 2014.

[22] F. Jing, M. Li, H. Zhang, and B. Zhang. An efficient and effective
region-based image retrieval framework. IEEE Trans. Image Processing,
13(5):699–709, 2004.

[23] F. Jing, M. Li, H. Zhang, and B. Zhang. Relevance feedback in
region-based image retrieval. IEEE Trans. Circuits Syst. Video Techn.,
14(5):672–681, 2004.

[24] M. Kapralov and R. Panigrahy. NNS lower bounds via metric expansion
for l∞ and EMD. In ICALP, pages 545–556, 2012.

[25] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger. From word
embeddings to document distances. In ICML, pages 957–966, 2015.

[26] V. Ljosa, A. Bhattacharya, and A. K. Singh. Indexing spatially sensitive
distance measures using multi-resolution lower bounds. In EDBT, pages
865–883, 2006.

[27] Y. Nesterov. Smooth minimization of non-smooth functions. Math.
Program., 103(1):127–152, 2005.

[28] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis. Matching node
embeddings for graph similarity. In AAAI, pages 2429–2435, 2017.

[29] J. B. Orlin. A faster strongly polynominal minimum cost flow algorithm.
In STOC, pages 377–387, 1988.

[30] O. Pele and M. Werman. Fast and robust earth mover’s distances. In
ICCV, pages 460–467, 2009.

[31] K. Quanrud. Approximating optimal transport with linear programs. In
SOSA@SODA, pages 6:1–6:9, 2019.

[32] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with
applications to image databases. In ICCV, pages 59–66, 1998.

[33] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as
a metric for image retrieval. International Journal of Computer Vision,
40(2):99–121, 2000.

[34] B. E. Ruttenberg and A. K. Singh. Indexing the earth mover’s distance
using normal distributions. PVLDB, 5(3):205–216, 2011.

[35] J. Sherman. Generalized preconditioning and undirected minimum-cost
flow. In SODA, pages 772–780, 2017.

[36] S. Shirdhonkar and D. W. Jacobs. Approximate earth mover’s distance
in linear time. In CVPR, 2008.

[37] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. C. Jain.
Content-based image retrieval at the end of the early years. IEEE Trans.
Pattern Anal. Mach. Intell., 22(12):1349–1380, 2000.

[38] M. J. Swain and D. H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11–32, 1991.

[39] Y. Tang, L. H. U, Y. Cai, N. Mamoulis, and R. Cheng. Earth mover’s
distance based similarity search at scale. PVLDB, 7(4):313–324, 2013.

[40] F. Wang and L. J. Guibas. Supervised earth mover’s distance learning
and its computer vision applications. In ECCV, pages 442–455, 2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 13

Exact-kNN 4 ADA-H �

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Pr
ec
is
io
n

ε

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Pr
ec
is
io
n

ε

10-1

100

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

ε

10-2

10-1

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

ε

(a) precision on FL-RGB (b) precision on FL-Lab (c) throughput on FL-RGB (d) throughput on FL-Lab

Fig. 20: Effect of the error threshold ε on the kNN content-based image retrieval, fixing k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 75 100

Pr
ec
is
io
n

k

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 75 100

Pr
ec
is
io
n

k

10-1

100

25 50 75 100

Th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

k

10-2

10-1

25 50 75 100

Th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

k

(a) precision on FL-RGB (b) precision on FL-Lab (c) throughput on FL-RGB (d) throughput on FL-Lab

Fig. 21: Effect of the result size k on the performance of kNN content-based image retrieval, fixing ε = 0.2

[41] J. Z. Wang, J. Li, and G. Wiederhold. Simplicity: Semantics-sensitive
integrated matching for picture libraries. IEEE Trans. Pattern Anal.
Mach. Intell., 23(9):947–963, 2001.

[42] M. Wichterich, I. Assent, P. Kranen, and T. Seidl. Efficient emd-based
similarity search in multimedia databases via flexible dimensionality
reduction. In SIGMOD, pages 199–212, 2008.

[43] J. Xu, B. Lei, Y. Gu, M. Winslett, G. Yu, and Z. Zhang. Efficient
similarity join based on earth mover’s distance using mapreduce. IEEE
Trans. Knowl. Data Eng., 27(8):2148–2162, 2015.

[44] J. Xu, Z. Zhang, A. K. H. Tung, and G. Yu. Efficient and effective
similarity search over probabilistic data based on earth mover’s distance.
PVLDB, 3(1):758–769, 2010.

[45] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features
and kernels for classification of texture and object categories: A compre-
hensive study. International Journal of Computer Vision, 73(2):213–238,
2007.

[46] Q. Zhao, Z. Yang, and H. Tao. Differential earth mover’s distance with its
applications to visual tracking. IEEE Trans. Pattern Anal. Mach. Intell.,
32(2):274–287, 2010.

Tsz Nam Chan received the bachelor’s degree
in electronic and information engineering and
the PhD degree in computer science from Hong
Kong Polytechnic University in 2014 and 2019
respectively. He is currently a research asso-
ciate in the University of Hong Kong. His re-
search interests include multidimensional simi-
larity search, pattern matching and kernel meth-
ods for machine learning.

Man Lung Yiu received the bachelor’s degree
in computer engineering and the PhD degree in
computer science from the University of Hong
Kong in 2002 and 2006, respectively. Prior to
his current post, he worked at Aalborg University
for three years starting in the Fall of 2006. He is
now an associate professor in the Department of
Computing, The Hong Kong Polytechnic Univer-
sity. His research focuses on the management of
complex data, in particular query processing top-
ics on spatiotemporal data and multidimensional

data.

Leong Hou U completed his B.Sc. in Computer
Science and Information Engineering at Taiwan
Chi Nan University, his M.Sc. in E-commerce
at University of Macau, and his Ph.D. in Com-
puter Science at University of Hong Kong. He
is now an Associate Professor in the State
Key Laboratory of Internet of Things for Smart
City and the Department of Computer and In-
formation Science, University of Macau. His
research interests include spatial and spatio-
temporal databases, advanced query process-

ing, crowdsourced query processing, information retrieval, data mining
and optimization problems.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 14

8 APPENDIX

8.1 The Exponential Sequence Λ in ADA
In the following, we compare the running time of ADA with
an ADA-Opt algorithm, which knows additional information in
advance. Specifically, ADA-Opt knows the best λ to be chosen for
a given (q,p)-pair.

According to the analysis below, by using the exponential
sequence with α = 1.2, the running time of ADA is bounded by a
constant multiple (i.e., 5.18) of the running time of ADA-Opt.

8.1.1 Analysis
For the sake of analysis, we model the running time as follows.

T(emdc(q,p)) = d3 log d (6)

T(LBskew,λ(q,p), UBskew,λ(q,p)) = λ3 log λ (7)

because the state-of-the-art EMD computation algorithm requires
O(d3 log d) time. We fix the hidden constant factor to 1 and the
log base to 2.

Our competitor is the ADA-Opt method, which knows in
advance the value d∗ as defined below:

d∗ = min{λ : Emax(LBskew,λ(q,p), UBskew,λ(q,p)) ≤ ε}
(8)

Therefore, ADA-Opt suffices to call the fastest LBskew,λ and
UBskew,λ once, then passes the validation test. Thus, we have:
T(ADA-Opt(q,p)) = d3

∗ log d∗.
We assume that Emax(LBskew,λ(q,p), UBskew,λ(q,p))

decreases when λ increases. Therefore, ADA terminates when
λ ∈ Λ is the smallest integer that satisfies λ ≥ d∗.

We define the ratio of the running time of ADA to ADA-Opt:

Ratio =
T(ADA(q,p))

T(ADA-Opt(q,p))
(9)

Theorem 3. Given the exponential sequence
Λ = 〈bαic : i ≥ 0, bαic < d〉, we have:

T(ADA(q,p))

T(ADA-Opt(q,p))
≤ α6(1 + log2 α)

α3 − 1

Proof. When d∗ = 1, the iteration i = 0 can directly handle it.
We have Ratio = 1 in this case. In the remaining discussion, we
assume that d∗ > 1.

Let n be the positive number such that

αn−1 < d∗ ≤ αn (10)

ADA terminates when it reaches the iteration n = dlogα d∗e.
Thus, we have:

T(ADA(q,p)) =
n∑
i=0

⌊
αi
⌋3

log
⌊
αi
⌋
≤

n∑
i=1

α3i logαi

Ratio ≤
∑n
i=1 α

3i logαi

d∗
3 log d∗

≤ n logα

d∗
3 log d∗

·
n∑
i=1

α3i

=
n logα

d∗
3 log d∗

· α
3(α3n − 1)

α3 − 1

Since n = dlogα d∗e, we have n ≤ logα d∗ + 1 and α3n ≤
α3(logα d∗+1) = d∗

3α3. Therefore:

Ratio ≤ (logα d∗ + 1) logα

d∗
3 log d∗

· α
3(d∗

3α3 − 1)

α3 − 1

=
α3(d∗

3α3 − 1)

d∗
3(α3 − 1)

·
(

log d∗
logα

+ 1

)
· logα

log d∗

=
α3(d∗

3α3 − 1)

d∗
3(α3 − 1)

· (1 + logd∗ α)

=
α3

α3 − 1
·
(
α3 − 1

d∗
3

)
(1 + logd∗ α)

Since logd∗ α ≤ log2 α and − 1
d∗
≤ 0, we have:

Ratio ≤ α6(1 + log2 α)

α3 − 1

Corollary 1. Given that α = 1.2, we have:

T(ADA(q,p))

T(ADA-Opt(q,p))
≤ 5.18

Proof. By finding the minimum value of α6(1+log2 α)
α3−1 with a

numerical solver.

