
The Power of Bounds: Answering Approximate
Earth Mover’s Distance with Parametric Bounds

(Extended abstract)
Tsz Nam Chan∗†, Man Lung Yiu†, Leong Hou U‡

∗Department of Computer Science, The University of Hong Kong
tnchan@cs.hku.hk

†Department of Computing, Hong Kong Polytechnic University
{cstnchan,csmlyiu}@comp.polyu.edu.hk

‡State Key Laboratory of Internet of Things for Smart City
‡Department of Computer and Information Science, University of Macau

ryanlhu@umac.mo

Abstract—The Earth Mover’s Distance (EMD) is a robust
similarity measure between two histograms (e.g., probability
distributions). It has been extensively used in a wide range
of applications, e.g., multimedia, data mining, computer vision,
etc. As EMD is a computationally intensive operation, many
efficient lower and upper bound functions of EMD have been
developed. However, they provide no guarantee on the error.
In this work, we study how to compute approximate EMD
value with bounded error, using these bound functions. First, we
propose an approximation framework that leverages on lower
and upper bound functions to compute approximate EMD with
error guarantee. Then, we present three solutions to solve our
problem. Experimental results on real data demonstrate the
efficiency of our proposed solutions.

I. INTRODUCTION

The Earth Mover’s Distance (EMD) is a robust similar-
ity measure between two d-dimensional histograms q and
p, which has been extensively used in many applications,
including multimedia databases [7], computer vision [5] etc.
Formally, we define emdc(q,p) as the following linear pro-
gramming problem, given the d× d cost matrix c.

emdc(q,p) = minimize
f

d∑
i=1

d∑
j=1

ci,jfi,j

such that ∀i, j ∈ [1..d] : fi,j ≥ 0

∀i ∈ [1..d] :

d∑
j=1

fi,j = qi

∀j ∈ [1..d] :

d∑
i=1

fi,j = pj

However, EMD is the computationally expensive operation,
which takes O(d3 log d) time to obtain the exact value, even
with the state-of-the-art solution [4]. On the other hand, many
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applications [7], e.g., image retrieval, require EMD computa-
tions on a massive amount of objects. Therefore, it motivates
us for developing the rapid solutions to EMD operation.

In our work [2], our objective is to develop efficient al-
gorithms for obtaining the approximate EMD value R with
bounded error (cf. Problem 1).

Problem 1 (Error-Bounded EMD). Given an error threshold
ε, this problem returns a value R such that Eq,p(R) ≤ ε,
where the relative error of R is defined as:

Eq,p(R) =
|R− emdc(q,p)|
emdc(q,p)

(1)

Even though many studies have developed different lower
and upper bound functions (cf. Table I) for EMD, simply using
the bound value as R cannot fulfill the bounded error guaran-
tee. As a remark, both LBRed,dr , LBskew,λ and UBskew,λ are
the parametric bound functions. Each of these bound functions
accepts the additional parameter (e.g., dr and λ) to control its
running time and tightness.

TABLE I: Summary of lower and upper bound functions
Name Type Time Complexity Reference Parametric
LBIM lower O(d2) [1] no
LBProj lower O(d) [6] no
LBRed,dr lower O(d2 + dr

3 log dr) [8] yes
UBG upper O(d2) [7] no
UBH upper O(d) [3] no

LBskew,λ lower O((d− λ)d+ λ3 log λ) [2] yes
LBskew,λ upper O((d− λ)d+ λ3 log λ) [2] yes

II. APPROXIMATION FRAMEWORK

In this work, we develop the approximation framework (cf.
Figure 1), which is composed of two components, controller
and validator.

• The controller selects a lower bound function and an
upper bound function. Then it computes a lower bound
`, an upper bound u, and an approximate result R which
is the value between ` and u.



• The validator receives information (e.g., `, u,R) from
the controller, and then checks whether the relative error
definitely satisfies Eq,p(R) ≤ ε.

If the validator returns true, then the controller reports R to the
user. Otherwise, the controller needs to obtain tighter bounds
for ` and u, and repeats the above procedure.

Fig. 1: Framework
A. Validator

In order to secure the correctness of our framework, we
specify the following requirements for the validator:
• If it returns true, then it guarantees that the approximate

result R must satisfy Eq,p(R) ≤ ε.
• Otherwise, it does not provide any guarantee for R.
Theorem 1 illustrates how the lower and upper bound

values, ` and u respectively, can be used to construct R such
that it satisfies Eq,p(R) ≤ ε.
Theorem 1. Given the lower and upper bound values, ` and
u respectively, if u−`u+` ≤ ε, then Eq,p(R) ≤ ε, where R = 2`u

`+u .

B. Adaptive Controller (ADA)
In our work [2], we have developed parametric dual bound

functions, LBskew,λ and UBskew,λ (cf. Table I). ADA grad-
ually applies tighter bounds, by setting larger λ, until passing
the validation test (cf. Theorem 1). Theoretically, we show
that ADA can be worse than the ADA-Opt (which knows the
optimal λ value in advance for each (q,p) pair) by only a
constant factor 5.18 if we select the suitable sequence of λ
[2].

C. Lightweight Adaptive Controller (ADA-L)
ADA may examine several λ and compute exact EMD

operations multiple times (in the adaptive phase). Thus, ADA
can be expensive when ε is small. To avoid such overhead,
we propose a lightweight version of the adaptive method,
called ADA-L, such that it computes emdc(q′,p′) exactly once
(cf. Figure 2). Even though ADA-L does not have theoretical
performance guarantee as ADA [2], the practical efficiency
performance is better than ADA.

q’ 

p’ emdc(q’,p’) 

Fig. 2: Lightweight adaptive approach

D. Training-based Controller (ADA-H)
Some applications, e.g., image retrieval and image classi-

fication, might have huge historical workload data Γ. Such
rich information can help to pick the bounds such that the
framework can find a good approximate result R at lower cost,
compared to ADA-L and ADA. In this controller, we propose
the greedy stretagy [2], based on the statistics of historical
workload data, to pick the sequence of bounds in the offline
stage, as shown in Figure 3. Then, we adopt this sequence of
bounds in the online stage.

...      
 

SetLB

SetUB ub1  ub2     …    ubi     …    ubx     …      ubn

lb1  lb2     …      lbj     …    lby      …       lbk

low highcomplexity

lbj ubi lby ubx ADA-L

F1 F2

Fig. 3: Picking a sequence of bounds in the offline stage
III. EXPERIMENT

In the following, we test the efficiency performance with
four methods, EXACT, ADA-L, ADA-H and Oracle, where
EXACT is the exact EMD method and Oracle is the om-
niscient method, which pre-knows the fastest pair of (`, u)
which fulfills the validation condition u−`

u+` ≤ ε. As such, it
acts as the most efficient solution for all control methods in
our approximation framework. We report the result in Caltech
dataset (30,609 images) with RGB and Lab histogram extrac-
tion methods. Observe from Figure 4, our best method ADA-H
outperforms EXACT by at least one-order-of-magnitude.

Oracle × Exact 4 ADA-L © ADA-H �
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Fig. 4: Effect of the error threshold ε on Caltech dataset
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