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ABSTRACT
Recommender systems have many successful applications in e-
commerce and social media, including Amazon, Netflix, and Yelp.
Matrix Factorization (MF) is one of the most popular recommen-
dation approaches; the original user-product rating matrix R with
millions of rows and columns is decomposed into a user matrix Q
and an item matrix P, such that the product QTP approximates
R. Each column q (p) of Q (P) holds the latent factors of the
corresponding user (item), and qTp is a prediction of the rating
to item p by user q. Recommender systems based on MF sug-
gest to a user in q the items with the top-k scores in qTP. For
this problem, we propose a Fast and EXact Inner PROduct retrieval
(FEXIPRO) framework, based on sequential scan, which includes
three elements. First, FEXIPRO applies an SVD transformation to
P, after which the first several dimensions capture a large percent-
age of the inner products. This enables us to prune item vectors
by only computing their partial inner products with q. Second, we
construct an integer approximation version of P, which can be used
to compute fast upper bounds for the inner products that can prune
item vectors. Finally, we apply a lossless transformation to P, such
that the resulting matrix has only positive values, allowing for the
inner products to be monotonically increasing with dimensionality.
Experiments on real data demonstrate that our framework outper-
forms alternative approaches typically by an order of magnitude.

1. INTRODUCTION
Recommender systems have become de facto tools for suggest-

ing items that are of potential interest to users. Real applications
include product recommendation (Amazon), TV recommendation
(Netflix) and restaurant recommendation (Yelp). A fundamen-
tal task in modern recommender systems is top-k recommenda-
tion [14], which suggests to a user the top-k predicted ratings on
items that she has not rated yet. Top-k recommendation is typically
performed in two phases: learning and retrieval [7] (see Figure 1).

Specifically, consider a set of users and a set of items: each user
can rate any item. In the learning phase, the missing ratings of
the not-yet-rated items are estimated using methods from machine
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learning, approximation theory, and various heuristics [2]. Exam-
ple techniques include collaborative filtering [33], user-item graph
models [4], regression based models [37] and matrix factorization
(MF) [26]. In this paper, we focus on MF, due to its prevalence in
dealing with large user-item rating matrices. Let R be a m × n
matrix with the ratings of m users on n items. MF approximately
factorizes R and computes the mapping of each user and item to a
d-dimensional factor vector, where d � min{m,n}. The output
of the learning phase based on MF is a user matrix Q ∈ Rd×m,
where the i-th column is the factor vector of the i-th user, and an
item matrix P ∈ Rd×n, where the i-th column is the factor vec-
tor of the i-th item. Given a user vector q and an item vector p,
their inner product qTp is the predicted rating of the correspond-
ing user to the corresponding item. A higher inner product implies
a higher chance of the user to be satisfied by the item. The power
of MF has been proved in the Netflix Prize [10]. Besides its supe-
rior performance, another strength of MF, making it widely used,
is that additional information besides the existing ratings can easily
be integrated into the model to further increase its accuracy. Such
information includes social network data [27], locations of users
and items [28] and visual appearance [20].

Given the output from the learning phase, the task of the retrieval
phase is to generate a top-k recommendation list for any target user.
This task is challenging because the number of items n is typically
very large (e.g., millions). Materializing the entire ratings predic-
tion list for all users is practically infeasible [7, 18]. Thus, reducing
the online top-k retrieval cost becomes critical, especially when de-
signing a real-world large-scale recommender system that handles
tens of thousands of queries per second.

Most of the previous works focus on the learning phase of rec-
ommender systems; there are only a few studies about the retrieval
phase [7, 36, 35, 32]. LEMP [36, 35] is a sequential scan algorithm
designed to compute the top-k items for all users in Q. Besides,
the algorithm of [32] uses a tree structure to index Q, in order to
speed up retrieval. As pointed out in [7], such batch computational
approaches assume that Q is static; therefore, they may not be suit-
able for recommender systems (e.g., FindMe [13, 3] and Microsoft
Xbox [7, 31, 24]) where the target user’s vector q is updated online
by some ad-hoc contextual information (e.g., user behavior) before
computing qTP.

In this paper, we propose FEXIPRO, a Fast and EXact Inner
PROduct retrieval framework, which takes as input a single user
vector q and finds the top-k item vectors p with the largest qTp.
FEXIPRO is orthogonal to how the learning phase (MF) is imple-
mented and does not assume a static Q, therefore, it does not af-
fect recommendation quality and can be applied even for dynami-
cally adjusted user vectors. Our framework is based on sequential
scan. Besides applying two popular heuristics (early termination
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Figure 1: Overview of Top-k IP Retrieval in Recommender Systems Based on Matrix Factorization (MF)

using Cauchy-Schwarz inequality, incremental pruning) [29, 36,
35], FEXIPRO uses three techniques to accelerate search:
SVD Transformation. We apply a lossless SVD transformation to
P in a preprocessing stage, which results in a new matrix P̄. Given
a query vector q, we convert q to a q̄, such that qTP=q̄T P̄. The
transformation introduces skew to the scalars of q̄, such that the ab-
solute value at each dimension is larger than the next one with high
probability. For a given q̄T p̄, the skew results in a large percentage
of the inner product after processing only few dimensions. This
leads to a tight upper bound that can facilitate pruning p̄ without
having to compute the entire product.
Integer Approximation. Arithmetic operations on integers are
much faster than those on floating-point numbers. FEXIPRO is
the first framework to exploit this opportunity. We generate an ap-
proximation of P that keeps the integral parts of the original values
after scaling them up (in order to minimize accuracy loss). The
fast-to-compute inner product between the integer approximations
of q and p can be converted to a tight upper bound of qTp that can
be used to prune p without computing the exact product.
Reduction for Monotonicity. We propose a reduction technique
that transforms all values of P (and q) to positive ones, hence ren-
dering inner products to monotonically increase as more dimen-
sions are processed. Monotonicity allows the application of tighter
pruning bounds derived from partially computed products and fur-
ther accelerates FEXIPRO.

After integrating all the above techniques into FEXIPRO, our
framework computes the top-k recommendations for a given user
vector q orders of magnitude faster compared to alternative tech-
niques, as shown by extensive experimentation on real datasets.

2. PRELIMINARIES
In this section, we first define the top-k inner product retrieval

problem in recommender systems and explain why it is a challeng-
ing one. Then, we review the sequential scan based approach also
adopted by [36]. The notation we are using throughout the paper is
summarized in Table 1.

2.1 Problem Definition
The problem of exact top-k Inner Product (IP) retrieval in rec-

ommender systems is to generate the top-k items list for a given
(target) user. The problem can be formally defined as follows:

PROBLEM 1 (IP). Given a d-dimensional vector q, find the k
d-dimensional vectors p ∈ P, for which the qTp values are the
largest in qTP. Ties are broken arbitrarily.

The IP problem is hard to solve in general, because the scor-
ing function qTp differs from common similarity measures used
for ranking in that it does not obey the triangular inequality; there-
fore pruning bounds that use it cannot be leveraged. Besides, due

Table 1: Notation
Symbols Description

q, p, Q, P original vectors and matrices
q̄, p̄ vectors after applying SVD transformation (Section 3)
q̂, p̂ scaled vectors for integer upper bound (Section 4)
ˆ̂q, ˆ̂p vectors after applying reduction (Section 5)
p(i) the i-th vector in P
ps the s-th scalar of vector p = (p1, p2, ..., pd)

T ∈ Rd

||p|| the length (magnitude/norm) of p:
√∑d

s=1(ps)2

m, n number of users/items
d number of dimensions
t threshold: the k-th inner product found so far
w checking dimension in incremental pruning
ρ parameter used for selecting w (Section 3)
e scaling parameter for integer upper bound (Section 4)

to the dimensionality curse [19], index-based similarity search ap-
proaches can easily become worse than naive sequential scan meth-
ods. Although matrix factorization reduces the original very high
dimensional space (millions of dimensions, i.e., the number of
items n) to a space of d dimensions (d is typically tens to hundreds
in order for MF to be effective) in the learning phase, d is still too
large for index-based similarity search. What is worse, large inner
products do not necessarily correspond to nearby vectors by any
metric in the vector space. Thus metric space techniques cannot
directly be used [5]. In summary, it is difficult to solve the IP re-
trieval problem efficiently without special assumptions about the
data. The factor vectors in recommender systems have some addi-
tional properties that introduce challenges:
• Vectors in Q and P are dense with few zeros in each dimen-

sion. Thus, similarity search approaches for sparse vectors
based on inverted indexes [9, 6] are not effective.

• The lengths of the vectors can be different, i.e., the vectors
are not normalized.

• Vectors may include negative values; hence partially com-
puted inner products may not be effective in deriving tight
pruning bounds [17].

2.2 Sequential Scan
Sequential Scan (SS) was adopted and optimized in previous

work on IP retrieval in recommender systems [36, 35] and search
engines (i.e., find relevant documents to a keyword query) [29]. Al-
though there are different details in each method, the core of SS is
common, as illustrated by Figure 2 and Algorithm 1.

Algorithm 1 uses the Cauchy-Schwarz inequality (i.e., qTp ≤
||q|| ||p||) to derive a fast-to-compute upper bound for the inner
products. SS sorts the columns of P before the scan (Line 4), in
decreasing order of their lengths (i.e., their ||·|| norms). Sorting is



independent of the query vector q, therefore it is performed only
once in a preprocessing phase (then, SS can be applied multiple
times for different query vectors). Thus, SS scans the vectors of P
in decreasing order of ||p||. When SS reaches a vector p, it first
checks whether ||q|| ||p|| is less than or equal to the k-th largest
inner product computed so far (i.e., t). If ||q|| ||p|| ≤ t, scan stops
and the current top-k items are reported as the results, since it is
impossible for p or any item vector that follows in the scan order to
enter the results. Cauchy-Schwarz inequality is also used in cosine
similarity search problems [6], since the lengths of the vectors can
be precomputed at a preprocessing phase and ||q|| can be computed
very fast (and only once) when a query q is given.
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Figure 2: Sequential Scan

Algorithm 1 Basic Sequential Scan for Inner Product Retrieval

1: procedure RETRIEVAL(q,P, k)
2: Priority Queue r ← ∅ . maintain top-k results
3: t← −∞ . smallest IP in r
4: Sort P by length in a descending order
5: for each p ∈ P do . vector scan
6: if ||q|| ||p|| ≤ t then . termination condition
7: return r
8: else
9: v ← CoordinateScan(q, p, t) . incremental prune

10: if v > t then
11: Push p into r and update t
12: return r

LEMP [36, 35] is the state-of-the-art exact IP retrieval method,
which adapts SS. LEMP groups the vectors of P into buckets. To
form the buckets, first P is sorted so that the vectors are in decreas-
ing order of their lengths, and then consecutive vectors are packed
into disjoint buckets, so that each bucket can fit into the L2 cache.
The original task of LEMP is to find all pairs (q,p), such that
q ∈ Q, p ∈ P, and qTp ≥ t (i.e., the above-t problem). For the
top-k IP retrieval problem, LEMP uses for each q the current k-th
largest entry in the top-k list of q as t. LEMP retrieves the result
list by finding all p′ with a cosine similarity to q′ at least t

||q|| ||p|| ,
where q′ and p′ are the normalized versions of vectors q and p,
respectively, since:

qTp ≥ t⇔ cos(q,p) ≥ t

||q|| ||p|| ⇔ q′ Tp′ ≥ t

||q|| ||p|| .

From the above equation, we can see that what LEMP uses is
actually ||q|| ||p|| ≥ t

q′ Tp′ , which is similar to the pruning by
SS using Cauchy-Schwarz inequality: qTp ≤ ||q|| ||p||. After
bucketizing P, LEMP applies SS by accessing the buckets of P
one-by-one.1 After accessing a vector p, scan can terminate if
1Bucketization can help to reduce CPU cache misses, in the case where
multiple queries are to be executed together (i.e., the original task of
LEMP). For our top-k IP retrieval problem taking a single query q as input,
bucketization is not necessary and LEMP reduces to SS, with the differ-
ences being the normalization of vectors and cosine similarity computation.

||q|| ||p|| < t; i.e., for a single query q, LEMP can use the same
termination condition as SS.

2.2.1 Incremental Pruning
When scan reaches vector p and ||q|| ||p|| > t, the exact in-

ner product of qTp should be calculated (denoted as coordinate
scan in Figure 2). LEMP uses an incremental pruning technique,
which can potentially reduce the number of coordinates that need
to be scanned for each p. Let w be a selected checking dimension,
where 1 ≤ w < d. Let q`

T
= (q1, ..., qw) be the partial vector

comprising the first w coordinates of q and qh
T

= (qw+1, ..., qd)
be the residue vector comprising the remaining coordinates. The
partial and residue vectors p` and ph for p are similarly defined.
Then:

qTp ≤ q`
T
p` + ||qh|| ||ph||, (1)

due to qTp = q`
T
p` + qh

T
ph and qh

T
ph ≤ ||qh|| ||ph||. In

addition, since q`
T
p` + ||qh|| ||ph|| ≤ ||q|| ||p||, the right side

of Equation 1 is a tighter bound compared to the Cauchy-Schwarz
inequality. Therefore, after computing q`

T
p` using the first w di-

mensions only, we can check whether q`
T
p` + ||qh|| ||ph|| ≤ t

and terminate the IP computation if the condition is true.
Algorithm 2 shows how this incremental pruning is integrated

into the procedure that scans q and p to compute qTp. After scan-
ning the first w coordinates and computing the bound, coordinate
scan terminates if p cannot make it to the top-k results. In order for
this approach to be effective, the ||ph|| norms for all vectors should
be precomputed and stored together with them (i.e., as we do for
the ||p|| norms). Thus, w should be determined and fixed before
query time.2

Algorithm 2 Incremental Pruning

1: procedure COORDINATESCAN(q,p, t)
2: v ← 0 . IP accumulator
3: for s in 1 . . . w do
4: v ← v + qs · ps
5: if v + ||qh|| ||ph|| ≤ t then . pruning test
6: return −∞
7: else
8: for s in (w + 1) . . . d do
9: v ← v + qs · ps

10: return v

In order for the incremental pruning bound (Equation 1) to be
effective, we should set an appropriate value for w. Larger values
of w result in more effective pruning power as q`

T
p` is closer to

qTp, but they also increase the cost of accumulating the partial
IP for each item vector. In addition, the effectiveness of pruning
would change if the dimensions are considered in a different or-
der. Intuitively, putting the dimensions with the largest absolute
values first would maximize the exact part (q`

T
p`) and minimize

the uncertain part (||qh|| ||ph||) of the bound, making it more tight.
Still, the optimal order differs for different q and p. To determine
a good value for w and an ordering of dimensions for each bucket
of P, LEMP [36, 35] applies a small number of sample queries, in
a preprocessing phase.

Our proposal adopts the basic framework of SS as shown in Fig-
ure 2 and Algorithms 1 and 2. In the following sections, we pro-

2The overhead of attempting incremental pruning multiple times, i.e., at
different values of w, outweighs the pruning effectiveness. In addition,
there is additional space overhead for the partial norms.



pose three techniques that progressively improve the efficiency of
SS, resulting in our FEXIPRO framework.

3. SVD TRANSFORMATION
A natural question is whether we can come up with a global re-

ordering of the dimensions, which would maximize the power of
incremental pruning (Equation 1) for every query. In this case, we
could reorder P at a preprocessing stage and perform coordinate
scans sequentially, after simply reordering q only once. An effec-
tive global reordering would put the dimensions with the largest
absolute values first for every p ∈ P. However, this approach
seems hard to apply on the original P, since the values in the same
dimension may vary a lot for different q and p and it is hard to find
a global order which can fit every vector well.

To solve this problem, we propose to apply a transformation on
matrix P using singular value decomposition (SVD). The goal of
the transformation is to change the value distributions in the vectors
such that the first dimensions would have higher absolute values
compared to the ones that follow. The transformation only needs to
be performed once, before the application of any query. Each time
a query q comes, it is transformed accordingly at a very low cost.
Although the matrix P and vector q have been changed, the top-k
inner product result for a given query is the same as the result for
the original P and q. The use of SVD transformation to facilitate
top-k IP retrieval was first proposed in [7], however, not for the
purpose of improving the effectiveness of incremental pruning. In-
stead, the few most important components of the transformed vec-
tors are used to create a PCATree that supports approximate top-k
IP retrieval accurately and efficiently.

In details, our FEXIPRO framework applies SVD on the items
matrix P ∈ Rd×n to obtain three matrices U, Σ and V, such that
P = UΣVT . U is a d × d unitary matrix, Σ is a d × n matrix
with non-negative real numbers on the diagonal and V is a n × n
unitary matrix. Σ and V can be further divided into two parts,
respectively:

Σ = [Σd|O], V = [V1|V2], (2)

where Σd is the d × d diagonal matrix with singular values σ1 ≥
σ2 ≥ ... ≥ σd, O is the d× (n− d) zero matrix, and V1 and V2

are the n × d and n × (n − d) matrices respectively. FEXIPRO
transfers q and P from the original space to a new space which can
give us a much tighter bound for incremental pruning:

THEOREM 1. The inner product of q and P in the original
space is completely preserved in a new space obtained by SVD
with the same dimensionality. That is, qTP = q̄T P̄, where
q̄ = ΣdUTq and P̄ = V1

T .

PROOF. Given the definition of SVD, Equation 2 and a vector
q, we have: qTP = qTUΣVT = qTU[Σd|O][V1|V2]T

= qTUΣdV1
T = [ΣdUTq]

T
V1

T = q̄T P̄.

Therefore, for P̄ = V1
T and q̄ = ΣdUTq, FEXIPRO con-

verts the original goal, which is to find the top-k maximum values
in qTP, to the task of finding the top-k maximum values in q̄T P̄.
The fact that σ1 ≥ σ2 ≥ · · · ≥ σd increases the chance that
|q̄i| > |q̄j | for i < j. Therefore, we can expect that in the compu-
tation of q̄T p̄ the first accumulated products will be larger than the
remaining ones; in other words, the partial inner product q̄`

T
p̄` is

expected to be a large percentage of the overall inner product q̄T p̄.3

This makes incremental pruning much more effective, compared to
3We show the effectiveness of our SVD transformation in Appendix B -
Effectiveness of SVD.

the case where the values in the vectors are more uniform. More
importantly, the order of dimensions is fixed, i.e., the same for any
query. Thus, the transformation of P to P̄ only needs to be done
once at preprocessing and can be used for any query. For a query
vector q, the time complexity of transformation is O(d2). Since d
is relatively small, the actual cost is not high; in addition, the con-
version is done only once for the given query before the sequential
scan. The SVD transformation does not physically ‘reorder’ the
dimensions, but it achieves the same goal (i.e, a global scanning
order for any query by decreasing absolute values).

When applying the SVD transformation to P, we should con-
sider that standard SVD would be slow when P is large. Although
the decomposition of d × n matrix P is much faster than factor-
izing the initial m × n ratings matrix R in the learning phase, the
overhead is still high as the complexity of performing SVD on P is
O(dn2). Fortunately, the transformation has a nice property which
can reduce the complexity significantly. Observe from the Proof
of Theorem 1 that only the n × d matrix V1 is used in the final
transformation, while the n × (n − d) matrix V2 which occupies
the most of V is abandoned. Similarly, only Σd is needed and the
majority of matrix Σ is not used. Thus, we can perform a thin SVD
(i.e., P = UΣdV1

T ) instead of the complete SVD. Thin SVD is
commonly used in practice and it is significantly faster than SVD
if n � d; the complexity is reduced from O(dn2) to O(d2n) [21,
11]. As demonstrated in our experiments, thin SVD is fast even
when handling a very large P.

We now turn to the question of how to set the parameterw, which
is used to determine the portion q`

T
p` of the IP that will be com-

puted before attempting incremental pruning (see Section 2.2.1).
To determine a good value for w, LEMP [36, 35] applies a small
number of sample queries, testing different w values, in the pre-
processing phase. Besides the extra cost in sampling and testing
queries, this approach is problematic in the case where the queries
that are eventually issued for recommendation are dynamically ad-
justed. As discussed in Section 1, this is common in recommender
systems like FindMe [13, 3] and Microsoft Xbox [7, 31, 24]. FEX-
IPRO uses a different strategy to determine w: we set w to the
smallest value such that the fraction

∑w
s=1 σs∑d
s=1 σs

accumulates to a cer-
tain ratio ρ of the total sum (we observed the best performance is
obtained when ρ = 0.7). The rationale behind this approach is that
FEXIPRO incorporates σ into q, so that the values of q̄ have a sim-
ilar distribution to σ (i.e., the first σ values are a large percentage of
the total sum). Intuitively, the partial inner product becomes large
and effective for pruning when ρ is large enough. The computed w
by this strategy is the same for all queries, since Σd is determined
only by P.

4. INTEGER-BASED PRUNING
Floating-point operations invoke more CPU cycles and are usu-

ally much slower than integer computations. If the scalars in the
vectors were integers instead of floating numbers, the cost of top-k
retrieval would be significantly lower. Besides, using integers can
help us reduce the CPU cache miss rate; floating numbers occupy
much more space compared to integers, so it is more likely that the
data to be accessed are already in cache when using integers. How-
ever, simply truncating floating numbers to integers results in loss
of accuracy and potentially incorrect results. In this section, we
show how FEXIPRO uses integer approximations without losing
any information during top-k IP retrieval.

4.1 Integer Upper Bound
By using only the integer part of the scalars in two vectors q and
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p, we can define an upper bound for qTp as follows:

THEOREM 2. The inner product of q and p has an integer up-
per bound IU (q,p) =

∑d
s=1

(
bqsc · bpsc+

∣∣bqsc∣∣+ ∣∣bpsc∣∣+1
)

,

where bqsc is the integer part of qs (i.e., the largest integer less
than or equal to qs) and

∣∣bqsc∣∣ is the absolute value of bqsc.

PROOF. Let bqsc and ∆qs = qs − bqsc be the integer and frac-
tional parts of a scalar qs, respectively. Due to ∆qs ≤ 1, we have:

q
T
p =

d∑
s=1

qsps =

d∑
s=1

(bqsc+ ∆qs)(bpsc+ ∆ps)

=

d∑
s=1

(
bqsc · bpsc+ ∆qs · bpsc+ ∆ps · bqsc+ ∆ps ·∆qs

)

≤
d∑

s=1

(
bqsc · bpsc+

∣∣bqsc∣∣+
∣∣bpsc

∣∣+ 1
)
.

(3)

Recall that, during SS, if ||q|| ||p|| > t for the next vector p,
then FEXIPRO computes the inner product qTp, attempting incre-
mental pruning after w dimensions. Before computing qTp, we
can calculate the integer upper bound IU (q,p), which may pos-
sibly help us to prune p. Because all calculations in IU (q,p) are
applied on integers, computing it is much faster compared to the
exact IP qTp. If IU (q,p) ≤ t, there is no chance that qTp can
be in the top-k IPs, so we can avoid the more expensive exact qTp
computation. Thus, together with each vector p ∈ P, we can store
an integer vector approximation and apply the integer bound check
before computing the exact qTp.

However, the integer upper bound will be very loose, if the
scalars in each dimension are within a small range, which is com-
mon in recommender systems. We illustrate this by extracting
statistics from the Netflix dataset4, which comes from a well-known
movie recommendation system. After applying the matrix factor-
ization method of [41] with d = 50, there are in total 24,897,950
values in Q and P. Figure 3 shows the distribution of all these val-
ues. Observe that most of the values in q and p are in the range
[−1, 1]. This can be explained by the principle of low-rank ma-
trix factorization, which tries to minimize the root-mean-square er-
ror (RMSE =

√
1
mn

∑
rij∈R(rij − q(i)

Tp(j))
2) between real (rij)

and predicted ratings (q(i)
Tp(j)) during the learning phase. Since

the maximum rating (5 in this example) is typically much smaller
than the dimensionality d, the values of qs and ps tend to be in a
narrow range around 0 after the iterative optimization that mini-
mizes RMSE . Another reason is the regularization term, which is

4The statistics are similar for the other three datasets that we use. In order
to save space, we show these in Appendix B - Value Distributions.
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Figure 4: An Example of Integer Upper Bound

commonly used for low-rank matrix factorization, to penalize large
parameters (i.e., qs and ps) and avoid over-fitting during training.

Figure 4 shows via an example how loose the integer upper
bound can be on vectors containing scalars with values from such
a narrow range. q and p are two randomly chosen vector instances
in Netflix. For simplicity, we only show the values of first 5 dimen-
sions. The inner product is 0.603, while the integer upper bound is
IU (q,p) = 12 (� 0.603). The integer upper bound remains very
loose when all dimensions are considered.

4.2 Scaled Integer Upper Bound
In order to make the upper bound tighter, we scale the original

scalars (floating numbers) to numbers within a range [−e, e]. The
scaling is done by first normalizing each scalar ps (resp. qs) by
dividing it by the largest absolute value maxP (resp. maxq) of
the scalars in P (resp. q) and then multiplying it by e, as shown in
Equation 4:

p̂T =
( e · p1
maxP

, ...,
e · pd
maxP

)
, q̂T =

( e · q1
maxq

, ...,
e · qd
maxq

)
(4)

Recall that P is known in advance, thus we can get the maximum
absolute value in P (denoted by maxp) during the preprocessing
phase. For q, the maximum absolute value maxq is obtained on-
line very fast. The transformation of vectors by Equation 4 pre-
serves the order of top-k IP results for any query q, since:

q̂T p̂ =

d∑
s=1

e2 · qs · ps
maxq ·maxP

=
e2

maxq ·maxP
qTp (5)

As the example of Figure 5 illustrates, for the same vectors as in
Figure 4 and e = 100, scaling can result in a much tighter integer
upper bound. The ratio of new upper bound (IU (q̂, p̂) = 5, 726)
to the exact IP value (5,206.28) on the scaled vectors is only 1.1,
while the ratio before scaling is 19.9 (=12/0.603).

1.21 0.85 -1.2 0.2 -1.1

0.25 1.13 0.42 -0.23 0.1

100 70.25 -99.17 16.53 -90.91

22.12 100 37.17 -20.35 0.09

100 + 0 70 + 0.25 (-100) + 0.83 16 + 0.53 (-91) + 0.09

22  + 0.12 100 + 0 37 + 0.17 (-21) + 0.65 0 + 0.09

  q̂q̂ 

  p̂p̂ 

6030.pq T

28.5206ˆˆ pq
T

5726)ˆˆ(ˆˆ  pqpq ，IUT

T
q

T
p

T
q̂

T
p̂

Figure 5: Integer Upper Bound After Scaling



The proposed integer upper bound becomes more accurate when
e increases, as shown in Theorem 5 (in Appendix A). In particular,
the error is inversely proportional to e.

5. MONOTONICITY
SVD based global reordering benefits incremental pruning, since

the value distribution becomes more skewed, i.e., the first dimen-
sions have larger absolute values than the latter ones. Another
problem that previous studies have not addressed is the monotonic-
ity. MF results in matrices with both negative and positive values.
Thus, large absolute values in the first dimensions do not necessar-
ily mean that the partial inner product q`

T
p` before incremental

pruning is attempted occupies a large percentage of the exact inner
product (i.e., qTp). In order to alleviate this problem, we present
a reduction that converts all vectors in P to ones that have positive
values only. The reduction is also applied on q. We show that af-
ter the reduction, the order of p vectors with respect to their inner
products with the reduced query vector are preserved. This means
that we can apply IP retrieval in the reduced space and obtain the
exact top-k results as we would in the original space. By applying
IP retrieval on vectors having only positive values, we can take ad-
vantage of the monotonically increasing IP during coordinate scan
to obtain tighter bounds for incremental pruning. In Section 5.1,
we first present an approach from previous work that reduces IP
retrieval to k-NN search and motivates our approach. Our novel
reduction is described in Section 5.2.

5.1 Existing Reduction of IP to Previous
Problems

Bachrach et al. [7] propose an order preserving transformation
to reduce IP retrieval to k-NN search using Euclidean distance and
cosine similarity search (CSS):

THEOREM 3. Top-k IP retrieval in the d-dimensional space
can be reduced to k-NN retrieval or CSS problem in the (d + 1)-
dimensional space, by adding one dimension to each qT and pT :
q̃T = (0, q1, q2, ..., qd) and p̃T = (

√
b2 − ||p||2, p1, p2, ..., pd)

in preprocessing, where b = maxp∈P||p||.
PROOF. Proved in [7].

Based on this transformation, Bachrach et al. [7] reduce top-k IP
retrieval to a k-NN problem and use a PCATree data structure to
retrieve the approximate top-k results for any query q.

5.2 Reduction for Monotonicity
The problem of the transformation by Theorem 3 is that when

we change the top-k IP retrieval problem to a k-NN search in the
Euclidean space, we lose the opportunity to use the low-overhead
Cauchy-Schwarz termination check for SS (i.e., Line 6 of Algo-
rithm 1). Thus, we consider how to transform the data so that top-k
IP retrieval is still based on SS and monotonicity holds during IP
computations by coordinate scan. By doing so, the retrieval process
can benefit from both the Cauchy-Schwarz based early termination
and monotonicity in incremental pruning. In the following, we will
use ≡ to denote that the order of results after some operations is
preserved. For instance, we use min ||q̃ − p̃||2 ≡ max qTp to
indicate that the order of IPs of p and q by maximum values is
preserved by the order of Euclidean distances by minimum values
between q̃ and p̃ after using Theorem 3.

While our goal is not to apply k-NN techniques for solving top-
k IP retrieval, Theorem 3 inspired us to convert the values in P to
positive ones (which is not something that Theorem 3 does). Eu-
clidean distance has a property: after adding the same value to the

same dimensions of two vectors the distance between them remains
unchanged; i.e., the distance between vectors q and p equals the
distance between vectors q + c and p + c, where c is a vector
of constants with the same number of dimensions as q and p and
notation + indicates vector addition. Accordingly, we change The-
orem 3 so that all the values in vectors are positive, as follows:

LEMMA 1. Top-k IP retrieval in the d-dimensional space
can be reduced to k-NN retrieval in the (d + 1)-dimensional
space, by adding one dimension to q and p as follows: ṕT =
(
√
b2 − ||p||2, p1 + c1, p2 + c2, ..., pd + cd), where b =

maxp∈P||p|| and cs ≥ max {1, |pmin|}, ∀s ∈ {1, 2, ..., d}.
|pmin| is the absolute value of the minimum value in P. At query
time, q́T = (0, q1

||q|| + c1,
q2
||q|| + c2, ...,

qd
||q|| + cd). Values in each

dimension of q́ and ṕ are positive.

PROOF. ||q́−ṕ||2 = || q̃
||q||−p̃||2. By Theorem 3, min || q̃

||q||−
p̃||2 ≡ max ( q

||q|| )
Tp and hence we have min ||q́ − ṕ||2 ≡

max ( q
||q|| )

Tp. For a query q, ||q|| does not affect the order of
inner product qTp, thus min ||q́ − ṕ||2 ≡ max (qTp). Since
ps ≥ −|pmin|, we have ps + cs ≥ 0 and the values of ṕ are non-
negative. Given −1 ≤ qs

||q|| ≤ 1 and cs ≥ 1 for 1 ≤ s ≤ d, we
have qs

||q|| + cs ≥ 0 and values of q́ are nonnegative.

Now the problem is how to convert k-NN retrieval to top-k IP
retrieval, while keeping the nonnegativity of all scalars. Based
on Lemma 1, FEXIPRO maps the original d-dimensional p and
q vectors to (d + 2)-dimensional vectors ˆ̂p and ˆ̂q using the fol-
lowing new Theorem 4. Vectors ˆ̂p and ˆ̂q have three properties:
(1) all values in ˆ̂p are nonnegative, while the first dimension in
ˆ̂q is negative and the remaining (d + 1) dimensions are nonneg-
ative; (2) max ˆ̂q

T ˆ̂p ≡ max qTp; (3) ˆ̂p and ˆ̂q support Cauchy-
Schwarz based pruning. By using the new transformation, FEX-
IPRO can benefit from both early termination during SS and incre-
mental pruning in coordinate scans.

THEOREM 4. Monotonicity holds in IP computation, after
adding two dimensions to p and q and transforming them to:
ˆ̂p
T

= (||ṕ||2, ṕ1, ..., ṕd+1), ˆ̂q
T

= (−1, 2q́1, ..., 2q́d+1). The or-
der of the IPs in the original d-dimensional space (i.e., in qTP) is
preserved by the inner products ˆ̂qi

T ˆ̂pj in the (d+ 2)-dimensional
space: i.e., max ˆ̂q

T ˆ̂p ≡ max qTp.

PROOF. ˆ̂q
T ˆ̂p = −||ṕ||2 + 2q́T ṕ. For a given query q, ||q́||

is fixed. Thus −||ṕ||2 + 2q́T ṕ ≡ −||ṕ||2 + 2q́T ṕ − ||q́||2. We
have ||q́− ṕ||2 = ||ṕ||2 − 2q́T ṕ + ||q́||2. Thus finding the top-k
maximum ˆ̂q

T ˆ̂p is equivalent to finding the top-k minimum ||q́ −
ṕ||2. From Lemma 1 we have max ˆ̂q

T ˆ̂p ≡ min ||q́ − ṕ||2 ≡
max qTp. In addition, all ṕs and q́s are nonnegative, where 1 ≤
s ≤ d + 1. Thus all the values in ˆ̂q and ˆ̂p are nonnegative, except
ˆ̂q1 which is −1.

Theorem 4 can also be used to reduce the k-NN search prob-
lem to a top-k IP retrieval problem. Although Bachrach et al. [7]
provide a transformation that reduces k-NN search to top-k IP re-
trieval, it does not guarantee monotonicity.

Data distribution (i.e., the existence of skew) is determined
by q, p, and c. We can set c in any way such that cs ≥
max (1, |pmin|), ∀cs ∈ {c1, c2, ..., cd}. Recall that the distribu-
tions of q vectors after using SVD based reordering (Section 3)
follow the distribution of Σd to some extent; therefore, here we use
a similar way to set c, i.e., cs = max (1, |pmin|)+ σs

σd
, 1 ≤ s ≤ d.

Our experimental results suggest that this simple approach gives



promising results, even though more elaborate methods for setting
c are possible. By using the reduction of Theorem 4 after using
SVD based global reordering, incremental pruning should be more
effective since the values are nonnegative and the data distributions
are more skewed compared to the original vectors.

6. FEXIPRO: PUTTING ALL TOGETHER
In this section, we will illustrate how FEXIPRO uses the tech-

niques (i.e., SVD transformation, integer upper bound, and mono-
tonicity reduction) introduced in the previous sections together for
fast and exact inner product retrieval in recommender systems.
Three key problems when combining these techniques are (1) how
to integrate the integer upper bound with incremental pruning; (2)
how to switch between the different inner product spaces; (3) the
order of applying the three techniques.

Integer Based Incremental Pruning. Recall that we use ||q|| ||p||
(i.e., Cauchy-Schwarz inequality) and

∑d
s=1

(
bqsc·bpsc+

∣∣bqsc∣∣+∣∣bpsc∣∣ + 1
)

(i.e., Equation 3) as upper bounds for the inner prod-
uct between q and p. There is no guarantee which one is tighter,
however, ||q|| ||p|| is faster to compute and should be used first in
general. While computing the integer upper bound for q and p, we
can apply incremental pruning as follows:

qTp ≤
w∑
s=1

(
bq`sc·bp`sc+

∣∣bq`sc∣∣+∣∣bp`sc∣∣+1
)

+||qh|| ||ph|| (6)

In other words, we can compute the integer IP only partially us-
ing the integral parts of the first w dimensions and then use Equa-
tion 6 to prune p if the right part of the equation is not greater than
the k-th product so far (i.e., t). If p is not pruned, we compute the
integer IP for the remaining d−w dimensions and use the complete
integer upper bound (i.e., Equation 3) to attempt pruning p.

To apply the integer upper bound, we should first scale the values
of the vectors, as discussed in Section 4.2. In order to make the
bounds tighter and pruning more effective, instead of only using
maxP and maxq as in Equation 4, we use different maximum
absolute values for the scaling of the first w and the last d − w
dimensions of each vector as follows:

q̂`
T

=
( e · q1
maxq`

, ...,
e · qw
maxq`

)
, p̂`

T
=
( e · p1
maxP`

, ...,
e · pw
maxP`

)
q̂h

T
=
(e · qw+1

maxqh

, ...,
e · qd
maxqh

)
, p̂h

T
=
(e · pw+1

maxPh

, ...,
e · pd
maxPh

)
(7)

The reason for using different maximum absolute values is that
the value distributions after the SVD transformation become more
skewed. Scaling helps to avoid small values, as illustrated in Fig-
ures 4 and 5, and makes the integer upper bound tight. However,
after the SVD transformation, the first few dimensions tend to have
much higher values (e.g., 20) than the dimensions at the tails of
the vectors (e.g., 0.01).5 Therefore, scaling using the maximum
absolute values of P and q is not effective for the smaller values
of the vectors and may result in them having small or 0 integral
parts, which makes the integer upper bound loose. By using differ-
ent scaling for the two parts of P and q, the upper bound for the
residue vectors becomes much tighter.

Switching between Different Inner Product Spaces. For a given
pair (q,p) of vectors FEXIPRO considers four inner products: the
5Recall that making the first several dimensions larger than the others is the
rationale behind our SVD transformation.

original inner product qTp, the inner product q̄T p̄ after apply-
ing SVD transformation, the scaled inner product q̂T p̂ for integer-
based pruning, and the monotonic inner product ˆ̂q

T ˆ̂p. Incremental
pruning can be attempted in all these representations. Since qTp
equals q̄T p̄, we only need to consider how to switch between the
last three inner products.

The scaled inner product q̂`
T
p̂` (q̂hT p̂h) can be computed

based on q`
T
p` (qhTph) using Equation 7. From Lemma 1 and

Theorem 4, we can find that we can derive ˆ̂q
T ˆ̂p fast if we have

already computed qTp:

ˆ̂q
T ˆ̂p =

2qTp

||q|| + 2

d∑
s=1

(cs · qs
||q|| + cs · ps + c2s

)
− ||ṕ||2, (8)

where 2
∑d
s=1

(
cs ·ps+ c2s

)
−||ṕ||2 can be computed during pre-

processing and 2
∑d
s=1

cs·qs
||q|| can be obtained online while com-

puting ||q||. Similarly, we can get ˆ̂q`
T ˆ̂p` from q`

T
p`.

Workflow of FEXIPRO. The SVD transformation (abbreviated as
S) helps making the values of the first several dimensions larger,
making incremental pruning more effective. Therefore, it should be
applied before integer based incremental pruning (abbreviated as I)
in order to improve the effectiveness of I. In addition, the rationale
behind our reduction approach (abbreviated as R), introduced in
Section 5, is to transform the original data so that the values become
positive. Since performing SVD over positive values could make
part of the data negative again and cancel the effect of R, S should
be performed before R. In summary, the most promising orders of
the three techniques are SIR and SRI. Experimentally, we found
that in most cases the SIR order is superior to SRI, so we adopted
it in the standard workflow of FEXIPRO.

Our framework FEXIPRO is described by Algorithms 3, 4 and 5.
Algorithm 3 illustrates the preprocessing phase of FEXIPRO (i.e.,
SVD transformation, scaling for deriving integer upper bounds, and
reduction). For each vector p of P, FEXIPRO computes and stores
together (1) the corresponding scaled vector p̂ = p̂`|p̂h (i.e., dif-
ferent scaling) and its integral approximation bp̂c and (2) the corre-
sponding reduced vector ˆ̂p having positive values only. Together,
FEXIPRO precomputes and stores the length of the original vector
and the lengths of the residue vectors used in incremental pruning
(||p̄h|| and ||ˆ̂ph||).

Algorithms 4 and 5 show how FEXIPRO conducts top-k IP re-
trieval. No matter whether the current task is to compute a whole
inner product (i.e., qTp) or a partial inner product (i.e., q`

T
p` and

qh
T
ph), FEXIPRO first tries the length upper bound ||q|| ||p||;

this is a cheap test because the length of each p is pre-computed and
the length of each query q can be calculated online in a short time.
In coordinate scan (Algorithm 5), FEXIPRO first computes the in-
teger upper bound and tries to use it to prune the candidate vector
p (Lines 2-8). If pruning based on the integer upper bound fails,
the exact inner product q`

T
p` for the first w dimensions is com-

puted (Lines 9-11). Incremental pruning is then attempted using
Equation 1 (Lines 12-13). Then, the more costly incremental prun-
ing based on monotonicity reduction is attempted (Lines 14-17 in
Algorithm 5), before computing the exact IP for the residue of the
vectors (Lines 18-20 in Algorithm 3). By using SVD transforma-
tion, the integer upper bound, and the reduced vectors alternately,
FEXIPRO manages to prune a large number of candidates, and this
results in a significant drop of the processing cost, as shown in the
next section.



Algorithm 3 Preprocessing in FEXIPRO

1: procedure PREPROCESS(ρ, e, P)
2: Sort P by length in a descending order
3: U,Σd,V1 ← SV D (P) . Thin SVD
4: Calculate w according to ρ
5: i← 0
6: for each p ∈ P do
7: p̄← V1i . i-th column of V1, Theorem 1
8: Compute p̂`, p̂h and bp̂c for p̄ . Equation 7
9: Calculate ˆ̂p . Theorem 4

10: p.length← ||p|| . length of original vector
11: p̄.rightLength← ||p̄h||
12: ˆ̂p.rightLength← ||ˆ̂ph||
13: i← i+ 1
14: return w,U,Σd,P

Algorithm 4 Retrieval in FEXIPRO

1: procedure RETRIEVAL(w, e, U, Σd, q, P, k)
2: Priority Queue r ← ∅ . maintain top-k results
3: t← −∞ . threshold for current top-k qTp

4: t′ ← −∞ . threshold for current top-k ˆ̂q
T ˆ̂p

5: q̄← ΣdUTq . Theorem 1
6: Compute ˆ̂q, q̂`, q̂h and bq̂c for q̄ . Theorem 4 and Equation 7
7: q.length← ||q||
8: q̄.rightLength← ||q̄h||
9: ˆ̂q.rightLength← ||ˆ̂qh||

10: for each p ∈ P do . descending order of p’s length
11: if q.length · p.length ≤ t then
12: return r
13: else
14: v ← CoordinateScan(p, q, w, e, t, t′)
15: if v > t then
16: Push p into r and update t
17: Calculate t′ based on t . Equation 8 for ˆ̂q

T ˆ̂p

18: return r

Algorithm 5 Coordinate Scan in FEXIPRO

1: procedure COORDINATESCAN(p, q, w, e, t, t′)

2: b` ← IU (q̂`,p̂`)·max q̄`·max P̄`

e2
. Equation 7

3: ub1 ← p̄.rightLength · q̄.rightLength
4: if b` + ub1 < t then . Equation 6
5: return −∞
6: bh ← IU (q̂h,p̂h)·max q̄h·max P̄h

e2
. Equation 7

7: if b` + bh < t then . Equation 3
8: return −∞
9: v ← 0

10: for s in 1 . . . w do
11: v ← v + p̄s · q̄s
12: if v + ub1 < t then . Equation 1
13: return −∞
14: Obtain ˆ̂q`

T ˆ̂p` based on v . Equation 8 for ˆ̂q`
T ˆ̂p`

15: ub2 ← ˆ̂p.rightLength · ˆ̂q.rightLength
16: if ˆ̂q`

T ˆ̂p` + ub2 < t′ then . Lemma 1 and Theorem 4
17: return −∞
18: for s in (w + 1) . . . d do
19: v ← v + p̄s · q̄s
20: return v

7. EXPERIMENTS
We compared FEXIPRO with several previous approaches for

top-k IP retrieval in recommender systems. All methods were im-
plemented in C++ using standard libraries and -O3 optimization

flag. To implement thin SVD, we used Armadillo6, a C++ linear
algebra library. The experiments were conducted on a Intel(R)
Core(TM) CPU i5-4590 @ 3.30 GHz machine running Ubuntu
16.04, with 16 GB of main memory.

7.1 Experimental Setup
We compare FEXIPRO with four competitors: Naive, Ball-

Tree, FastMKS and SS-L. The Naive method sequentially scans the
columns of P and computes all qTp; while doing so it keeps track
of the top-k products with the help of a priority queue. The Ball-
Tree method [32] uses a space-partitioning tree, which is optimized
for top-k IP search. We set the maximum capacity of leaf nodes in
the BallTree to 20, as suggested in [32]. We did not implement
its advanced version, DualTree, as it was reported to be not better
than BallTree in previous studies [32, 36]. FastMKS [16, 15] uses
another tree, called CoverTree, for efficient top-k IP retrieval. The
base parameter of CoverTree is set to 1.3, as suggested in [16]. SS-
L is a version of SS (Section 2.2) that applies the optimizations of
LEMP that were found to be the most effective ones in [36, 35] for
the problem studied there (i.e., the computation of top-k IP results
for all q ∈ Q). In particular, IP computation in SS-L applies on
the normalized vectors q and p and SS-L applies coordinate-based
pruning before incremental pruning. We used publicly available
source codes for FastMKS7 and LEMP8 (for the implementation of
IP computation and pruning in SS-L).

We ran five versions of FEXIPRO: F-S, F-I, F-SI, F-SR, and F-
SIR where S, I and R represent SVD transformation, integer upper
bound, and monotonicity reduction respectively. F-S only adopts
SVD based transformation and performs incremental pruning, as
discussed in Sections 2.2.1 and 3. F-I uses the scaled integer upper
bound described in Section 4.2 and integer-based incremental prun-
ing (i.e., Equation 6), before calculating the exact inner products.
F-SI is a combined version of F-S and F-I, which applies Algorithm
5 for coordinate scan, excluding Lines 14-17. F-SR uses mono-
tonicity reduction after SVD reordering, as shown in Section 5.2;
i.e., it only applies Lines 9-11 and 14-19 of Algorithm 5. F-SIR
uses all three methods, as described in Section 6. The default val-
ues of the parameters used for integer scaling and for determining
the checking dimension w are e = 100 and ρ = 0.7, respectively.

Table 2 summarizes the four datasets that we have used, taken
from real applications and widely used by previous research on
recommender systems. MovieLens9, Yelp10 and Netflix11 include
5-point ratings. Yahoo! Music12 uses a 100-point scale; we map
all ratings in it to a 5-point scale, in order to be able to compare
performance using the same scaling values e and RMSE standard
as other datasets. To facilitate the repeatability of our experiments,
we used the open-source MF library LIBPMF13 to factorize each
dataset into 50-dimensional vectors with the same factorization pa-
rameters as those reported in [41]. We put results over other values
of d in Appendix B - Performance with Different Values of d. The
original training/test split in the datasets is used in MF.

7.2 Results And Analysis
Overall Performance. Table 4 shows the total wall-clock time (in

6http://arma.sourceforge.net
7http://mlpack.org
8http://dws.informatik.uni-mannheim.de/en/resources/software/lemp
9MovieLens latest dataset (April 2016): http://grouplens.org/datasets/movielens

10Round 7 of Yelp Data Challenge: http://www.yelp.com/dataset_challenge
11Netflix Prize: http://netflixprize.com
12Yahoo! Music: http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
13http://www.cs.utexas.edu/~rofuyu/libpmf

http://arma.sourceforge.net
http://mlpack.org
http://dws.informatik.uni-mannheim.de/en/resources/software/lemp
http://grouplens.org/datasets/movielens
http://www.yelp.com/dataset_challenge
http://netflixprize.com
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://www.cs.utexas.edu/~rofuyu/libpmf


Table 2: Statistics of the Four Real Datasets
Dataset m n # of ratings

MovieLens 247,753 33,670 22,884,377
Yelp 552,339 77,079 2,155,421

Netflix 480,189 17,770 100,480,507
Yahoo! Music 1,000,990 624,961 256,804,235

Table 3: Average Number of Entire qTp Computations (k = 1)
BallTree SS-L F-S F-SI F-SIR

MovieLens 6570.50 1212.45 152.85 56.39 6.84
Yelp 18419.74 8191.13 1180.53 50.08 1.94

Netflix 12795.68 7813.12 5427.29 1776.34 12.70
Yahoo! Music 78659.87 32011.48 10180.79 3697.55 8.22

seconds) spent by each method to compute the top-1 inner product
of all queries in Q. The numbers in brackets indicate the costs for
preprocessing (e.g., applying thin SVD, scaling numbers, comput-
ing vector lengths). Results for other values of k can be found in
Table 8 in Appendix B. Figure 6 demonstrates the speedup of F-
SIR (in total time including both retrieval and preprocessing) over
other methods. Overall, the sequential scan based methods SS-L
and FEXIPRO are much faster than the tree based methods (i.e.,
BallTree and FastMKS) using different values of k. The tree based
methods are sometimes even slower than Naive, due to the curse
of dimensionality. F-SIR is the fastest among all the approaches
regardless of k, outperforming BallTree, FastMKS, and SS-L, typ-
ically by an order of magnitude. In Netflix, the gap between the
approaches is not significant as in the other three datasets. Specif-
ically, SS-L only achieves a two-fold runtime reduction compared
to Naive and the speedup of F-SIR over SS-L is about 4. We will
explain the different behavior on Netflix later, when analyzing sen-
sitivity to k and retrieval time for individual queries.

The preprocessing cost of all methods is affordable. Compared
to other methods (except FastMKS), F-S, F-SI, F-SR and F-SIR
have higher preprocessing cost because of the SVD transformation
they apply. Still, this extra cost is not excessive, considering that
preprocessing only needs to be conducted once. The low cost for
preprocessing also demonstrates the benefit of using thin SVD, due
to the property brought by Theorem 1. When comparing different
versions of FEXIPRO, we can find that each version has a better
performance than its simple version (e.g., F-SIR is better than F-SI
and F-SI is better than F-S), which demonstrates that the different
parts of FEXIPRO (i.e., SVD reordering, integer upper bound and
monotonicity reduction) complement each other.

Pruning Power. Table 3 averages for each query vector q the num-
ber of p vectors for which the entire exact inner product qTp is
computed (for k = 1). The distribution is shown in Appendix B -
Number of Entire qTp Computations. We compare BallTree, SS-L
and three versions of FEXIPRO. For other values of k, the results
are shown in Table 7 in Appendix B. Observe the significant drop
in the number of entire product computations by the different ver-
sions of FEXIPRO, compared to previous approaches; this explains
why FEXIPRO is much faster than previous work. F-SIR ends up
with a much smaller number of products to compute entirely, com-
pared to F-S and F-SI, at the cost of partial IP computations and
more operations for pruning checks. As a result, the gap between
the retrieval time of F-SIR and those of F-S and F-SI is not as large
as their differences in Table 3.

Sensitivity to k. Figure 7 illustrates the performance of SS-L and
F-SIR using different k. The performance of the two sequential
scan based methods FEXIPRO and SS-L degrades with k. In order
to explain the behaviors of FEXIPRO and SS-L, we conduct an

analysis of the data. We calculate the average inner product for the
k-th returned item, as a function of k (see Figure 8). We found that
when k is small, the difference between the smallest inner products
in the top-k sets is quite large. As k gets larger, the differences
between the smallest inner products in the result become smaller
(e.g., notice the small gap between the 40-th and the 50-th largest
product). Therefore, as k increases it becomes harder for FEXIPRO
and SS-L to prune p vectors using length products and incremental
pruning, as their differences to the ones in the top-k set becomes
smaller. From Figure 8 we can also see that for dataset Netflix the
top-k inner products show a slower rate of decay: the average inner
product decreases by only 0.45 when k increases from 1 to 50. This
indicates that the differences between the IPs in Netflix are smaller;
therefore, top-k IP retrieval is harder for this dataset. In practice,
recommender systems use a small value of k (e.g., around 5) in
order not to overwhelm the users.

Costs of Individual Queries. Figure 9 shows the distribution of the
costs of individual queries q (the shadowed area of each plot is the
total retrieval cost for all queries). For datasets MovieLens, Yelp
and Yahoo! Music, the great majority of queries have a very low
cost, therefore the overall cost shown in Table 4 is not dominated
by queries which need long retrieval times. On the other hand, on
Netflix, queries have a more uniform cost and most of them need
moderate retrieval time. This explains the less significant average
improvement of FEXIPRO over Naive on Netflix (about 6x), com-
pared to other datasets (75x-300x).

Performance Using Different Parameters. FEXIPRO requires
two parameters ρ (for choosing the checking dimension w in incre-
mental pruning) and e (for the scaling of scalars in order to apply
the integer upper bound). Figure 10 illustrates the performance of
SS-L, F-S and F-SIR as well as the value of selectedw for different
ρ. Observe that the best performance is achieved when ρ = 0.7
or ρ = 0.8. When ρ = 0.7, the corresponding value of w is be-
tween 6 and 15 which is relatively small compared to the number
of dimensions (d = 50 in our experiments). Therefore, FEXIPRO
can prune the great majority of vectors by only scanning 10%-30%
of their coordinates. The retrieval cost is not very sensitive to ρ,
as it remains within a narrow margin for different ρ values. Fig-
ure 11 shows how the value of e affects the performance. Observe
that when e gets larger than 100 the cost converges. Therefore, it
suffices to set e = 100 in order to achieve good performance while
also scaling the values to relatively small integers (which require
less space). This indicates the potential of FEXIPRO to benefit
more from the computational power of modern hardware architec-
tures, by using SIMD (Single Instruction Multiple Data) instruction
set. Integer approximations in a small range (e.g, [−128, 127]) can
fit in small integer types (e.g., int8), and the registers can accommo-
date more data, while the pruning power remains the same as when
using large integer types. Hence, performance can further be im-
proved by processing the products of multiple integers in parallel.
We plan to explore this direction of further accelerating FEXIPRO
in our future work.

Batch Query Processing. In our problem setting, we consider the
efficient top-k IP retrieval for a single user vector q. Therefore,
in our experiments so far, we assumed that multiple user vectors
are considered independently. However, a real recommender sys-
tem should be able to handle multiple query requests simultane-
ously in order to improve its performance. Toward this direction,
we first consider the possibility of using high-performance matrix
kernel libraries (e.g., Armadillo, BLAS, and Intel MKL) to process
multiple top-k IP queries in batch, with the potential use of multi-
threading. For this purpose, we use the dgemm routine with cBLAS



Table 4: Total Retrieval and Preprocessing Times (in seconds) for All Top-1 IP Queries
MovieLens Yelp Netflix Yahoo! Music

Retrieve Preprocess Retrieve Preprocess Retrieve Preprocess Retrieve Preprocess

Naive 441.53 - 2203.27 - 443.99 - 31706.75 -
BallTree 222.62 (0.23) 1961.13 (0.55) 868.52 (0.09) 21096.32 (5.10)
FastMKS 338.15 (0.23) 2695.58 (4.92) 973.00 (0.90) 16340.25 (51.14)

SS-L 68.22 (0.12) 273.97 (0.29) 251.77 (0.12) 4990.64 (1.92)
F-S 1.91 (0.31) 23.75 (0.64) 109.18 (0.17) 714.57 (4.87)
F-I 0.95 (0.10) 24.79 (0.23) 149.28 (0.05) 731.61 (1.88)

F-SI 1.53 (0.29) 16.79 (0.75) 138.17 (0.12) 600.53 (6.74)
F-SR 1.66 (0.34) 21.06 (0.66) 85.57 (0.17) 599.32 (5.03)
F-SIR 1.47 (0.44) 13.14 (0.89) 69.56 (0.25) 420.11 (8.30)
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Figure 6: Total Cost (k=1)
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in Intel MKL for matrix multiplication14 to implement a MiniBatch
version of the Naive method. In particular, we process the entire
Q workload of users, by taking a batch of user vectors at a time,
computing the top k results for all user vectors in the batch by mul-
tiplying them with the item matrix P, and then proceeding to pro-
cess the next batch in the same way. By default, MKL uses one
thread for one physical core and the machine we use has four cores
(four threads in total). Table 5 shows the results for k = 1 (due
to memory constraints, we did not test Yahoo! Music with batch
size of 10,000). By comparison to Table 4, we can observe that
when using highly optimized matrix kernel libraries, MiniBatch
can achieve quite a good performance. However, FEXIPRO as
well as all its competitors in our previous experiments were imple-
mented using single threading and the standard C++ library. Given
that Intel MKL is highly optimized on Intel’s microprocessor plat-
forms and the block matrix multiplication method further improves
cache locality (FEXIPRO only processes one query each time due
to our problem setting), these significant performance gains are ex-
pected. Even though we have not employed any hardware-aware
optimizations (e.g., SIMD, CPU cache locality) and multithread-
ing, FEXIPRO still outperforms MiniBatch by 10, 6, 2.5 times
on MovieLens, Yelp and Yahoo! Music, respectively. Netflix is
a data set with different distribution and all pruning based meth-
ods perform poorly as shown in Table 4. Therefore, FEXIPRO
does not outperform Intel MKL on Netflix, but it has a compara-
ble performance to multi-threaded MiniBatch (BatchSize=1). The
performance of FEXIPRO is expected to improve if we incorporate
optimized matrix kernel libraries into it.

Table 5: MiniBatch Using Intel MKL (in seconds)
Dataset batch size=1 batch size=100 batch size=10000

single-
threaded

multi-
threaded

single-
threaded

multi-
threaded

single-
threaded

multi-
threaded

MovieLens 209.06 127.41 30.45 17.43 25.36 15.42
Yelp 1106.5 791.69 157.82 85.15 129.37 75.38

Netflix 157.57 68.83 31.60 16.55 26.06 15.37
Yahoo! Music 21478.3 18677.2 2299.22 1250.37 - -

We also show the performance of LEMP [36] (i.e., LEMP-LI
in original implementation), which is the state-of-the-art algorithm
for batch top-k IP evaluation (i.e., the top-k inner product join prob-
lem). We apply LEMP to obtain the top-k IP results of all queries
in Q, using the original LEMP implementation, which applies sev-
eral optimizations (i.e., sampling for tuning w dynamically, pro-
cessing queries in batches, using a cache-friendly bucketization).
Table 6 shows the retrieval time of LEMP for different values of
k. By comparison to Table 4 (and Table 8 in Appendix B), note
that FEXIPRO is much faster than LEMP in all datasets (except
Netflix), although FEXIPRO processes the queries one-by-one in
a for-loop without employing any batch-processing optimizations.
Since sampling and bucketization used by LEMP are orthogonal to
our framework, we plan to embed these approaches into FEXIPRO

14https://software.intel.com/en-us/node/529735

in the future and develop a unified framework for both single and
batch inner product retrieval tasks in recommender systems.

Table 6: Batch Query Processing by LEMP (in seconds)
Dataset k=1 k=2 k=5 k=10 k=50

MovieLens 45.32 47.66 52.18 54.98 62.52
Yelp 124.56 145.22 196.47 212.11 278.15

Netflix 78.45 96.12 114.63 137.23 221.16
Yahoo! Music 2589.11 3417.65 5178.01 6289.18 8561.09

8. RELATED WORK
Top-k IP retrieval is related to, but not equivalent to, two well-

known problems: k nearest neighbor search (KNN) and cosine sim-
ilarity search (CSS) in vector spaces. The three problems are equiv-
alent if all vectors have the same length, which is not true in MF-
based recommender systems. Thus, many previous techniques for
KNN [40] and CSS [9, 6, 44, 39] cannot directly be used to solve
the top-k IP retrieval problem. Top-k IP retrieval over normalized
vectors (i.e., CSS) is well studied in document retrieval using key-
word queries [29, 12]. Besides the normalization of the lengths,
another important difference between document vectors and MF-
based item vectors is that the former are very sparse, having a very
small percentage of non-zero values. This allows for their effective
indexing using inverted files.

As a result, a number of specialized techniques have been pro-
posed for speeding up top-k IP retrieval. In Euclidean embedding
approaches [22, 23], users and items are embedded in the Euclidean
space; the top-k items to be recommended to a target user are then
the k nearest item vectors of the user vector. Along this line, Frac-
caro et al. [18] recently proposed an indexable probabilistic matrix
factorization approach that uses Geodesic Monte Carlo as infer-
ence procedure. KNN can directly be applied to the output of this
framework. Although these modified learning techniques reduce
the retrieval time, they deviate from the widely used inner product
based matrix factorization framework and they may not be consid-
ered equally effective. Besides, the resulting vector space also has
high dimensionality and it is resistant to indexing. The approach
we propose in this paper belongs to the class of methods that apply
top-k IP retrieval on the output of traditional MF. These methods
are orthogonal to the learning phase; therefore, existing systems
can use them without having to change their learning phase. Three
categories of top-k IP retrieval approaches have been proposed in
this direction.

Hash-based Retrieval. Techniques in the first category approx-
imate user and item vectors using hash codes in order to speed
up retrieval, albeit at the risk of reducing the quality of recom-
mendations. Some approaches apply Locality Sensitive Hashing
(LSH) [19], which has been shown effective in solving nearest
neighbor search problems. LSH based methods [34, 30, 5] are in-
dependent of the dimensionality d of the user and item vectors, but

https://software.intel.com/en-us/node/529735


they usually require long hash bits and multiple hash tables with
high storage overhead that may hinder their applicability. Other ap-
proaches [43, 42] apply learning to hash to convert user and item
vectors into binary hash codes. Top-k IP retrieval is then trans-
formed to searching for item hash codes with a small Hamming
distance to the user code. Zhou et al. [43] construct binary codes
such that the inner product of user and item vectors can be pre-
served by the Hamming distance between their respective binary
codes. Zhang et al. [42] argue that the IP between two vectors
is fundamentally different from the similarity between them. They
improve the approach of [43] by constructing binary codes that pre-
serve the ranking order of IPs instead of the similarity between vec-
tors. Learning to hash methods, in addition being approximate, are
not suitable for recommender systems which modify query vec-
tors online using contextual information, since the corresponding
binary codes cannot be updated dynamically.

Tree-based Methods. Tree based approaches usually suffer from
the cost of random accesses and from the curse of dimensional-
ity. The performance of tree based methods degrades fast and they
eventually become worse than sequential scan as the dimension-
ality increases to a few tens of dimensions [38]. The metric-tree
based approach [25] indexes the item vectors and uses a simple
branch-and-bound algorithm to retrieve the top-k items. However,
this method shows no improvement over the naive approach as k
getting larger. Thus, Koenigstein et al. [25] also propose a method
which clusters users and uses the top-k results of cluster centers as
approximation. DualTree based methods [32, 16, 15] use space-
partitioning trees to index Q and P and branch-and-bound algo-
rithms in order to boost the efficiency. [7] applies an SVD based
transformation to the vectors and indexes the first few components
of the new vectors by a PCATree, in order to solve the top-k IP
retrieval problem approximately. While the motivation is similar
to our SVD transformation technique, SVD in [7] is applied for
creating the PCATree which is used for approximate search. In ad-
dition, [7] applies KNN search in the Euclidean space, while FEX-
IPRO searches in the original inner product space. As we show in
Appendix B - Comparsion with PCATree, our framework is faster
than the PCATree approach, although we find the exact top-k IPs.

Sequential Scan. LEMP [36, 35] is a sequential scan based ap-
proach which solves the top-k IP retrieval problem exactly. Our
framework shares some common modules with LEMP (i.e., early
termination using Cauchy-Schwarz inequality, incremental prun-
ing), but it also has significant differences. First of all, LEMP
focuses on a different problem; that of retrieving all IP values in
QTP above a threshold t; therefore LEMP uses a bucketization
approach for P and Q, which does not offer any benefit to top-k
IP retrieval for an individual q. In contrast, our FEXIPRO frame-
work focuses on individual top-k IP retrieval and our techniques are
also useful to recommenders which dynamically change q before
search, like Microsoft Xbox [7]. Second, LEMP reduces IP com-
putation to CSS computation and uses the directions of the vectors
for indexing and pruning; however, these techniques are not proved
to be as effective as incremental pruning. FEXIPRO focuses on
optimizing incremental pruning with the help of three approaches
not employed by LEMP, i.e., SVD-based transformation, integer-
based pruning, and reduction to monotonic IP computation. These
approaches were shown in our experiments to be very effective in
practice.

In summary, none of the previous approaches are designed to
efficiently solve the exact top-k inner product retrieval problem in
recommender systems, for individual user vectors q, which can po-
tentially be changed online.

Related Problems. There is a variant of the top-k IP retrieval prob-
lem called top-k all-pairs inner product search (AIP) [8]. AIP aims
at finding the top-k largest values in QTP. To avoid direct com-
putation of inner products for all pairs, a sampling approach which
selects diamonds from the weighted tripartite representations of Q
and P is proposed in [8]. Since AIP targets a different objective,
the solutions proposed for AIP are not tailored to our problem.

9. CONCLUSION AND DISCUSSION
In this paper, we proposed a framework FEXIPRO for fast top-

k inner product (IP) retrieval in recommender systems based on
matrix factorization, which builds upon a basic sequential scan ap-
proach. Besides applying two popular heuristics (early termina-
tion using Cauchy-Schwarz inequality, incremental pruning), we
propose three approaches for improving the pruning effectiveness.
Our framework, is significantly faster than alternative approaches,
typically by an order of magnitude.

Although FEXIPRO is designed for MF based recommender sys-
tems, its three techniques can be adopted by other applications of
retrieval based on inner products. Note that FEXIPRO is suited for
IP retrieval over dense vectors; for sparse vectors, inverted index
based methods can be a better choice. We now briefly discuss the
conditions under which we expect these techniques to be effective
for general inner product retrieval tasks.

• SVD transformation introduces skew to the vectors, making
it easier to prune item vectors after computing their partial in-
ner products and applying incremental pruning. However, if
the differences between the eigenvalues are small, SVD will
not give much speedup. For example, if P has high entropy
(i.e., the distribution of values in P is close to uniform), then
the singular values (square roots of eigenvalues) are roughly
the same and our SVD transformation will not be effective.

• Integer approximation represents the scalars in the vectors
as integers after scaling them up. This method is effective
when the values are within a small range, which is common
for MF based recommender systems. If the values vary a
lot, we do not expect the technique to be very effective. Op-
erations on integers are typically faster compared to opera-
tions on floating-point numbers. Besides, using small inte-
gers (e.g., int8) can take advantage of SIMD instructions in
modern CPUs (e.g., by performing multiple int8 operations
per cycle).

• Monotonicity reduction transforms the search space to a new
space where vectors only have positive values; this allows the
derivation of tighter bounds from the partial IP by exploit-
ing the monotonicity in IP computation. This technique can
be used to accelerate general inner product retrieval tasks,
where the percentage of negative values is high. We have
such distributions in MF-based recommender systems (e.g.,
see Figure 3). In applications (e.g., social link prediction and
document similarity search), where values are already pos-
itive after a specific factorization (e.g., non-negative matrix
factorization), the reduction is not expected to speedup the
retrieval phase.

In the future, we plan to study the effectiveness of our frame-
work on other top-k IP computation problems, such as computing
the above-t [36] or the top-k largest values in QTP [8]. Our pro-
posed transformations can also be used by other retrieval methods
and thus we also plan to explore the direction of using the output
of our transformations as input to alternative methods (including
approximate methods [35]) in order to improve their efficiency.
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APPENDIX
A. TIGHTNESS OF INTEGER BOUND

THEOREM 5. lim
e→∞

maxq·maxP
e2

IU (q̂, p̂) = qTp.

PROOF. Since q̂s − 1 ≤ bq̂sc ≤ q̂s + 1, we have e·qs
maxq

− 1 ≤
bq̂sc ≤ e·qs

maxq
+ 1. By dividing both sides by e and applying limit,

we get lim
e→∞

( qs
maxq

− 1
e

)
≤ lim
e→∞

bq̂sc
e
≤ lim
e→∞

( qs
maxq

+ 1
e

)
. Using

Squeeze Theorem [1], we have lim
e→∞

bq̂sc
e

= qs
maxq

. Similarly, we

can get lim
e→∞

|bq̂sc|
e2

= 0, lim
e→∞

bp̂sc
e

= ps
maxP

and lim
e→∞

|bp̂sc|
e2

= 0.

Then:

lim
e→∞

maxq ·maxP

e2

d∑
s=1

(
bq̂sc · bp̂sc+

∣∣bq̂sc∣∣+
∣∣bp̂sc

∣∣+ 1
)

= lim
e→∞

maxq ·maxP

d∑
s=1

(
(
bq̂sc
e

)(
bp̂sc
e

) +
|bq̂sc|
e2

+
|bp̂sc|
e2

+
1

e2

)

= lim
e→∞

maxq ·maxP

( d∑
s=1

(
qs

maxq

ps

maxP
+ 0 + 0 + 0)

)
=

d∑
s=1

qs · ps

= q
T
p.

Theorem 5 implies that the integer based upper bound becomes
tighter as e increases. This effect is also demonstrated in Figure 11.
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Figure 12: Number of Entire qTp Computations in F-SIR (k = 1)

B. ADDITIONAL EXPERIMENTS
Value Distributions. Figure 14 illustrates the histogram of original
values in q and p. The original values are within a small range and
close to each other, which supports our argument in Section 4.1 that
the value distributions in the original MF matrices are not suitable
for applying the integer upper bound.

Number of Entire qTp Computations. Figure 12 shows the dis-
tribution of the number of entire qTp computations per query when
k = 1 and F-SIR is adopted, of which the average numbers have
already been shown in Table 3.

Effectiveness of SVD. As explained in Section 3, the desirable
effect of SVD transformation is that the query vectors become
skewed and that the first few dimensions have the largest maximum
absolute values. The ultimate goal is that the partial product q̄`

T
p̄`

becomes large and incremental pruning becomes more effective.
Accordingly, we conduct an analysis on the four datasets that shows
the effect of the transformation. Specifically, we compute all inner
products in QTP and we average the cumulative IP after having
processed each dimension. We repeat this experiment before (i.e.,
Naive method) and after the SVD transformation (i.e., F-S). Fig-
ure 15 shows the results. Observe that before the transformation,
the IP is distributed evenly to all dimensions, whereas in F-S the
first few dimensions accumulate a large percentage of the IP. We
also analyze the value distributions before and after SVD transfor-
mation to show the effectiveness of the transformation. Figures 16
and 17 show for each dimension the average absolute scalars in the
q and p vectors, respectively, before and after SVD transformation.
From Figure 16 observe that the distribution of q values becomes
very skewed after the SVD transformation. Besides, the resulting
dimensions are naturally ordered by decreasing average absolute
value; hence the partial inner products q`

T
p` using the first dimen-

sions can be used to derive tight bounds for the entire products. In
addition, note that the p values are converted to smaller ones in
a narrow range as shown in Figure 17; therefore for an IP which
is gradually computed by cumulating the products at each dimen-
sion, the fluctuation during the last computations is expected to be
small. Figures 18 and 19 show the average skew in the absolute
values of the original vectors, in P and Q, respectively, after re-
ordering their dimensions by decreasing absolute value. For exam-
ple, two vectors (−1, 2,−4) and (3,−1,−2) will become (4, 2, 1)
and (3, 2, 1) respectively after changing their values to absolute
ones and sorting. The average vectors shown in the figures have
the mean in each dimension (e.g., (3.5, 2, 1) if the original vectors
are (−1, 2,−4) and (3,−1,−2)). Intuitively, these values show
the best ordering we could get for incremental pruning on the orig-
inal vectors (e.g., by a dynamic reordering of dimensions for each
individual query [17, 36]). Note that the value distributions in these
average vectors are not as skewed as the distributions we get after
our SVD transformation (note that Figure 16 is in log-scale), a fact

that justifies the superior performance of FEXIPRO over previous
work that also applies incremental pruning (i.e., [36]).

Performance with Different Values of k. Table 7 demonstrates
the pruning power of the different approaches in terms of exact IP
computations that need to be performed. Table 8 shows the per-
formance of all tested methods on the four datasets, when different
values of k are used. From Tables 7 and 8 we can see that FEX-
IPRO outperforms all other methods for different values of k.

Table 7: Average Number of Entire qTp Computations
Dataset BallTree SS-L F-S F-SI F-SIR

MovieLens 6994.98 3014.11 263.66 102.24 16.20
k=2 Yelp 27883.71 10114.54 1925.00 105.57 3.63

Netflix 16790.02 11469.15 11068.29 3160.26 16.98
Yahoo! Music 109892.50 45125.53 30482.14 6383.33 15.73

MovieLens 9080.48 3870.12 437.47 163.88 24.63
k=5 Yelp 38061.82 13215.19 3260.06 276.95 9.30

Netflix 17030.21 12794.66 11753.46 3836.12 37.59
Yahoo! Music 129947.41 69806.65 43436.31 9793.95 33.58

MovieLens 8244.51 4997.16 596.26 216.20 31.40
k=10 Yelp 42214.07 19119.88 4482.94 519.19 21.55

Netflix 17069.63 14918.81 12314.32 4440.52 65.06
Yahoo! Music 164314.89 110157.22 55390.69 13158.15 62.00

MovieLens 14257.87 16921.11 2275.53 999.71 154.81
k=50 Yelp 57971.54 25762.11 8462.07 1910.11 110.51

Netflix 17407.25 15921.78 13838.04 6396.28 246.08
Yahoo! Music 220110.42 196771.99 94536.23 25467.89 266.71

Performance with Different Values of d. We investigate the im-
pact of d (i.e., the rank of the factorization) on SS-L and FEXIPRO.
Figure 20 shows the results on factorized matrices using different
values of d (i.e., d = 10, 50, 80, 100) and k = 1. Observe that
the performance gap between the two methods is not sensitive to d,
i.e., F-SIR consistently ourperforms SS-L.

Comparsion with PCATree. PCATree [7] is an approximate
method for IP retrieval. When k = 1, it needs 52.44 (0.16),
260.57 (0.36), 50.32 (0.28) and 3772.80 (0.98) seconds for Movie-
Lens, Yelp, Netflix, Yahoo! Music, respectively. The num-
bers in brackets are the preprocessing time. Though FEXIPRO
is an exact retrieval method, it is much faster than the approxi-
mate PCATree approach in three out of the four datasets (it loses
marginally by PCATree in Netflix). To measure the accuracy
of the top-k results by PCATree, we use root-mean-square error:

RMSE@k =

√
1
mk

∑m
i=1

∑k
s=1

(
Lrec(i, s)− Lopt(i, s)

)2
, where

Lrec(i, s) and Lopt(i, s) are the scores (predicted ratings) of the
s-th recommended item in the approximated list and the optimal
list for user i, respectively. The optimal list can be obtained by
any exact method (e.g., Naive or FEXIPRO). Figure 13 shows the
RMSE@k of PCATree. The parameters of PCATree can be tuned
to achieve a better trade-off between accuracy and speedup. Still,
PCATree is an approximate method of lower recommendation qual-
ity compared to our exact FEXIPRO framework.
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Figure 14: Value Distributions
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Figure 15: Partial Inner Product Before and After SVD Transformation
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Figure 16: Value Distributions of q Before and After SVD Transformation
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Figure 17: Value Distributions of p Before and After SVD Transformation
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Figure 18: Value Distributions of Reordered q
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Figure 19: Value Distributions of Reordered p
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Figure 20: Total Retrieval Times for All Queries (Varying d)

Table 8: Total Retrieval and Preprocessing Times (in seconds) for All Top-k IP Queries
MovieLens Yelp Netflix Yahoo! Music

Retrieve Preprocess Retrieve Preprocess Retrieve Preprocess Retrieve Preprocess

Naive 441.91 - 2213.27 - 445.65 - 31504.95 -
BallTree 267.92 (0.23) 2198.93 (0.55) 878.12 (0.09) 21396.32 (5.10)
FastMKS 343.25 (0.23) 2745.58 (4.92) 985.00 (0.90) 16571.12 (50.94)

SS-L 70.69 (0.12) 298.06 (0.29) 267.64 (0.12) 6861.29 (1.92)
k=2 F-S 2.31 (0.31) 39.94 (0.64) 114.31 (0.17) 924.61 (4.87)

F-I 1.65 (0.11) 36.91 (0.23) 154.98 (0.05) 949.91 (1.98)
F-SI 2.06 (0.29) 33.13 (0.75) 149.11 (0.12) 969.51 (6.74)
F-SR 2.16 (0.34) 31.06 (0.66) 145.57 (0.17) 899.32 (5.03)
F-SIR 2.10 (0.44) 23.20 (0.89) 101.12 (0.25) 712.21 (8.23)

Naive 441.85 - 2204.32 - 443.61 - 30955.50 -
BallTree 275.44 (0.24) 2984.92 (0.55) 883.32 (0.08) 21940.22 (5.05)
FastMKS 429.21 (0.32) 3897.32 (4.95) 1049.24 (0.90) 25329.27 (50.95)

SS-L 72.59 (0.13) 334.05 (0.29) 284.46 (0.12) 8783.39 (1.93)
k=5 F-S 4.29 (0.31) 63.87 (0.65) 266.19 (0.17) 1556.08 (4.89)

F-I 2.85 (0.10) 68.21 (0.23) 168.54 (0.05) 1686.53 (1.89)
F-SI 3.21 (0.30) 48.70 (0.75) 184.36 (0.13) 1412.43 (6.62)
F-SR 3.58 (0.31) 56.88 (0.66) 168.46 (0.17) 1317.25 (5.03)
F-SIR 3.11 (0.44) 41.21 (0.88) 112.78 (0.24) 1134.56 (8.27)

Naive 440.00 - 2209.33 - 444.81 - 31093.85 -
BallTree 311.07 (0.23) 3474.89 (0.54) 889.17 (0.09) 23999.29 (5.12)
FastMKS 471.41 (0.29) 4489.99 (4.92) 1090.32 (0.91) 28867.93 (51.02)

SS-L 73.35 (0.13) 368.99 (0.30) 299.12 (0.12) 10112.80 (1.95)
k=10 F-S 5.55 (0.34) 88.99 (0.64) 283.24 (0.17) 2004.00 (4.87)

F-I 4.38 (0.10) 94.88 (0.23) 179.96 (0.05) 2163.86 (1.89)
F-SI 4.17 (0.30) 70.28 (0.75) 203.40 (0.12) 1858.92 (6.81)
F-SR 4.67 (0.35) 76.95 (0.65) 175.17 (0.17) 1736.03 (5.04)
F-SIR 3.82 (0.44) 51.13 (0.88) 114.12 (0.25) 1429.16 (8.43)

Naive 443.24 - 2223.56 - 454.55 - 31189.81 -
BallTree 413.08 (0.23) 4639.86 (0.52) 908.78 (0.09) 30827.95 (5.22)
FastMKS 636.15 (0.34) 5625.83 (4.94) 1168.01 (0.89) 37518.79 (51.02)

SS-L 96.77 (0.14) 479.79 (0.33) 341.49 (0.16) 14132.80 (1.95)
k=50 F-S 23.13 (0.34) 180.89 (0.66) 357.33 (0.17) 3519.14 (4.88)

F-I 18.09 (0.10) 178.80 (0.23) 225.41 (0.05) 3746.08 (1.88)
F-SI 16.38 (0.29) 155.33 (0.77) 271.73 (0.12) 3314.83 (6.58)
F-SR 17.44 (0.31) 148.91 (0.67) 219.11 (0.17) 3039.67 (5.04)
F-SIR 14.23 (0.44) 121.11 (0.87) 127.34 (0.25) 2232.19 (8.31)
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