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Abstract—The problem of k-nearest neighbor (k-NN) search
is fundamental in graph databases, which has numerous real-
world applications, such as bioinformatics, computer vision, and
software engineering. Graph edit distance (GED) and maximum
common subgraph (MCS)-based distance are the most widely
used distance measures in k-NN search. However, computing
the exact k-NNs of a query graph Q using these measures
is prohibitively time-consuming, as a large number of graph
distance computations is needed, and computing GED and MCS
are both NP-hard. In this paper, we study the approximate
k-nearest neighbor (k-ANN) search with the aim of trading
efficiency with a slight decrease in accuracy. Greedy routing
on the proximity graph (PG) index is a state-of-the-art method
for k-ANN search. However, such routing algorithms are not
designed for graph databases, and simple adoption is inefficient.
The core reason is that the exhaustive neighbor exploration at
each routing step incurs a large number of distance computations
(NDC). In this paper, we propose a learning-based k-ANN search
method to reduce NDC. First, we propose to prune unpromising
neighbors from distance computations. We use a graph learning
model to rank the neighbors at each routing step and explore
only the top neighbors. For the accuracy of rank prediction,
we propose a neighbor ranking model that works only in the
neighborhood of Q. Second, we propose a learning-based method
to select the initial node for the routing. The initial node selected
has a high probability of being in the neighborhood of Q,
such that the neighbor ranking model can be used. Third, we
propose a compressed GNN-graph to accelerate the neighbor
ranking model and the initial node selection model. We prove that
learning efficiency is improved without degrading the accuracy.
Our extensive experiments show that our method is about 3.6x
to 18.6x faster than the state-of-the-art methods on real-world
datasets.

Index Terms—Graph database, Approximate k-NN search,
Proximity graph, Learning to route, GNN acceleration

I. INTRODUCTION

The fundamental problem of k-nearest neighbor (k-NN)
search in graph databases, which finds the k most similar
graphs to a query graph Q, has many applications, such as
in cheminformatics [1]–[3], bioinformatics [4], [5], pattern
recognition [6]–[8], and software engineering [9]–[11]. For
example, in cheminformatics, chemists can use k-NN search
to find the molecules with similar structures as the query
molecule, as molecules with similar graph structures have sim-
ilar functions [2]. In software engineering, since the control-
flow of a code fragment can be modeled as a graph, software
engineers can use k-NN search in a database of control-flow
graphs to find code plagiarism issues [10]. Many similarity
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Fig. 1: Examples of routing on the proximity graph of a graph
database D = {G0, G1, ..., G18} to find the 1-NN G17 of Q
(The numbers in circles are the distances to Q. The routings
are marked by bold arrows. The dashed line marks the ground
truth of the neighborhood of Q.)

measures have been proposed to quantify the distance between
two graphs, where graph edit distance (GED) and maximum
common subgraph (MCS)-based distance are the most widely
used measures in k-NN search in graph databases (e.g., [3],
[6], [12], [13]). However, computing GED and MCS are both
NP-hard [6], [14]. It is impractical to use these measures
to find the exact k-NNs. For example, in our preliminary
experiments, we use the latest graph similarity search method
[15] to find the exact 20-NNs of a randomly selected Q
from a dataset AIDS that has 42,687 molecule graphs. This
method does not finish after 10 hours. Therefore, this paper
considers k-approximate nearest neighbor (k-ANN) search in
graph databases. To the best of our knowledge, this paper is
the first work on k-ANN search in graph databases.

The most state-of-the-art index for k-ANN search to date is
the proximity graph (PG) [16]–[20]. It supports k-ANN search
in a metric space, but it has not previously been studied with
graph databases before. The general idea of PG is as follows.
Given a database D, the nodes of PG are the objects in D
and two nodes have an edge if they fulfill a certain proximity
property (e.g., navigable small world property [17]). k-ANN
search is evaluated through greedy routing on PG. At each
routing step, a router computes the distances between the
query object Q and all neighbors of the current node of the
router and routes to the neighbor that is the closest to Q. The
router backtracks if the current node has no neighbor that is
closer to Q than itself.

A baseline using PG and existing routing methods for k-
ANN search in graph databases is, however, inefficient. The
core reason for this inefficiency is that at each routing step,



the router exhaustively computes distances for all neighbors
of the current node of the router. Since each node in PG
has many neighbors, this kind of exhaustive neighbor explo-
ration incurs a large number of distance computations (NDC),
which is incredibly time-consuming, especially considering
that computing GED and MCS are both NP-hard. For example,
in Fig. 1(a), the routing from G3 to G17 needs to compute
distances for all neighbors of G3, G8, G14, and G17. The
NDC is 13, which is 3.25x of the routing length 4. In our
preliminary experiments on the AIDS dataset, the NDC can
be 20x of the routing length.

In this paper, we propose a learning-based routing method
to address k-ANN search in graph databases. Our overall ap-
proach is to use graph learning to prune unnecessary distance
computations. This approach has three main technical issues,
and our solutions can be summarized as follows.

First, we propose routing on PG with neighbor pruning.
At each routing step, we prune the neighbors of the current
node that are far from the query graph Q from computing the
distances. It is motivated by the experimental observation that
the routing seldom routes to the neighbors that are far from
Q. For example, on the AIDS dataset, at each routing step, we
rank the neighbors of the current node by their distances to
Q and prune the last 80% of the neighbors; NDC is reduced
by 5.7x as a result, while the recall of the search results does
not decline. We have proved that if we have an oracle to rank
neighbors by their distances to Q, the routing with neighbor
pruning uses a smaller NDC than the baseline, but produces
the same search results. We train a graph learning model Mrk

to approximate the oracle. At each routing step, suppose G is
the current node of the router. We use Mrk(x) to predict the
top x% of the neighbors of G. If the prediction of a neighbor
G′ of G is false, G′ is pruned from distance computation. For
an efficient training of Mrk, we restrict to use Mrk only when
the router has entered the neighborhood of Q. For the example
in Fig. 1(a), the router can use Mrk(30) at G8 to prune G6

and G9 from distance computations, as G6 and G9 are not
among the top 30% of the neighbors of G8. Similarly, at G14,
G13 and G15 can be pruned. At G17, G18 can be pruned. The
NDC is reduced from 13 to 8 as a result. Our experiments
show that the efficiency of routing with our learning-based
neighbor pruning is ∼2.9x higher than that of the baseline on
the AIDS dataset.

Second, we propose a learning-based method to select the
initial node for the routing. The aim is to ensure that the
initial node selected is in the neighborhood NQ of Q, s.t. the
neighbor pruning model can be used in most routing steps.
Specifically, we train a graph learning model Mnh to predict
if a graph G ∈ D is in NQ. In the predicted neighborhood N̂Q,
we randomly sample s graphs and compute their distances to
Q. The top samples are used as the initial nodes. We have
proved that the initial node found has a high probability of
being in NQ. To reduce the time complexity of initial node
selection, we further propose a cluster-based method to prune
unpromising graphs in D. For the example in Fig. 1(a), if
G8 is selected as the initial node instead of G3, the NDC is

reduced from 8 to 4. Our experiments show that our initial
node selection method can speed up the routing by ∼2x when
compared with randomly selecting a node as the initial node
on the AIDS dataset.

Third, we propose accelerating the graph learning used in
the neighbor pruning and initial node selection. Both Mrk and
Mnh take cross-graph learning between a data graph G and a
query graph Q as the core module, as it is the latest method for
graph distance learning [21], [22]. In the cross-graph learning,
a node of G not only aggregates embeddings of its neighbors
in G but also pays attention to the embeddings of all nodes
in Q. Since many nodes have the same embedding, there are
many redundant computations in the cross-graph learning. We
propose a compressed GNN-graph (CG) to group together the
nodes with the same embedding. We have proved that cross-
learning on the CGs of G and Q is more efficient than that
on G and Q without degrading the learning accuracy. Our
experiments show that the k-ANN search is ∼1.17x faster
when using our cross-graph learning acceleration on the AIDS
dataset. By using these techniques, the 20-ANN queries on the
AIDS dataset take ∼40 seconds on average.
Contributions. The contributions of this paper are as follows.
• We propose a learning-based neighbor pruning method to

reduce the number of distance computations in the routing
on the PG of a graph database.

• We propose a learning-based initial node selection
method. The initial node selected has a high probability
of being in the neighborhood of Q.

• We propose a novel compressed GNN-graph (CG). Cross-
learning on the CGs of G and Q is equivalent to but faster
than that on G and Q.

• Our extensive experiments verify the effectiveness and
efficiency of our proposed techniques.

Organizations. The rest of this paper is organized as follows.
Sec. II discusses related work. Preliminaries and problem
definition are presented in Sec. III. Sec. IV presents the
techniques of routing with neighbor pruning. The learning-
based initial node selection is presented in Sec. V. Sec. VI
presents the graph learning acceleration method. Our experi-
mental evaluation is presented in Sec. VII. Sec. VIII concludes
this paper. All proofs are given in Appendix.

II. RELATED WORK

In this section, we summarize existing work that is closely
related to this paper.

A. Proximity graphs

Proximity graphs (PGs) are the state-of-the-art indexes
for k-ANN search (e.g., [16]–[18], [20], [23]–[29]). Existing
works on k-ANN search using PGs can be categorized into two
classes. The first class focuses on the proximity properties of
PGs. For example, the navigable small world properties are
studied in [17] and the relative neighborhood relationships are
studied in [18]. The second class focuses on the query evalua-
tions on PGs, which include improving routing efficiency and
selecting high-quality initial nodes for routing.



To efficiently route on PGs, Muñoz et al. [30] propose a
quadrant-based method to prune unpromising neighbors from
distance computations at each routing step. However, this
method cannot be used with graph data as graph data have no
concept of quadrants. Baranchuk et al. [28] propose a learning-
based routing method. However, it is tailor-made for 1-ANN
search, and it is not clear how to extend it to efficiently support
k-ANN search.

In terms of initial node selection, several works [19], [31]
randomly sample a node in a PG as the initial node. DLG [32]
and HNSW [17] construct a hierarchy of PGs and use the k-ANN
search on the higher level PG to find the initial node for the
lower level. However, these methods cannot bound the distance
between Q and the initial node selected. Qin et al. [9] propose
a learning-based approximate range query method in graph
databases. However, if the range threshold is not small, it will
take a large NDC, as it can be observed from our experiments.

There are also many indexes for k-ANN search not based on
PGs, such as LSH [33] and inverted file index [16]. However,
recent studies [20], [34], [35] report that PGs outperform these
indexes. Therefore, we omit their details from this subsection.

B. Graph distance learning

Several recent works use graph neural networks (GNNs) to
learn the distance between two graphs. A common approach
involves first learning the cross-graph embedding of G and
Q and then feeding the cross-graph embedding to multilayer
perceptrons (MLPs) or convolutional neural networks (CNNs)
to predict the distance between G and Q. For example, Li
et al. [22] propose a cross-graph attention network GMN. Each
node of G aggregates information from both its neighbors in G
and all nodes of Q in cross-graph convolution. Bai et al. [36]
use the matrix of the inner products of the embeddings of the
nodes in G and Q as the cross-graph embedding. Peng et al.
[37] propose using a GNN on the association graph of G and
Q to learn the cross-graph embedding of the two graphs. A
recent work [21] integrates the idea of GMN in the A* search of
GED computation. Peng et al. [38] survey the learning-based
graph combinatorial optimization methods.

C. Graph neural network acceleration

Many recent works study GNN acceleration. For example,
GraphSAGE [39], FastGCN [40], and Adapt [41] sample a
subset of neighbors in graph convolution. SGCN [42] removes
the non-linear activation functions. Ye and Ji [43] propose
a sparse attention technique to accelerate the graph attention
network. DegreeQuant [44] and #GNN [45] quantize the node
embeddings as integer vectors and binary vectors, respectively.
However, these methods do not guarantee that the learning
accuracy is preserved after acceleration.

The work that is most closely related to this paper is
HAG [46], which accelerates GNN while preserving learning
accuracy. HAG aggregates the redundant sum operations in
GNN learning. However, HAG cannot reduce the number of
matrix multiplications, which is a bottleneck in cross-graph
learning.
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Fig. 2: An example of two graphs and their GNN-graphs (A
and B are node labels)

There are also works that accelerate GNN by taking advan-
tage of the optimized graph primitives of certain platforms
(e.g., G3 [47]) or optimizing GPU kernels (e.g., fuseGNN

[48]). These works are orthogonal to this paper, as we focus
on reducing redundant computations in GNN learning.

III. PRELIMINARIES AND PROBLEM DEFINITION

This paper studies undirected graphs with node labels. A
graph is denoted as G = (VG, EG, `G), where VG and EG are
the node set and the edge set of G, respectively, and `G(v) is
the label of node v. The set of neighbors of a node v ∈ G is
denoted by NG(v). The subscript may be omitted if it is clear
from the context.

A. Search semantics

We focus on GED in this paper, as MCS is a special case of
GED [49]. A graph G can be transformed into another graph
G′ through five edit operations: node insertion, edge insertion,
node deletion, edge deletion, and node relabeling. The GED
of G and G′, denoted by d(G,G′), is the smallest number of
edit operations that transform G to G′.

Example 1. Fig. 2(a) and (b) show a data graph G and a
query graph Q, respectively. d(G,Q) = 5.

Approximate k-Nearest Neighbor Search Problem. Given a
graph database D, a query graph Q, and a parameter k � |D|,
the approximate k-nearest neighbor (k-ANN) search aims to
find the k graphs from D with the smallest distances to Q.

B. Routing on proximity graphs

Given a graph database D, the nodes of PG are the graphs
in D and two nodes have an edge if they fulfill a certain
proximity property (e.g., the navigable small world property
[17]). Algorithm 1 presents the logic of a router with which to
answer a k-ANN search. Algorithm 1 simply adopts the beam
search method of existing PG-based k-ANN search works
(e.g., [18]–[20], [27], [31], [34], [35], [50]). Line 1 initializes a
priority queue W to store candidates, which is ordered by the
distances of the candidates from Q. The binary flag G.explored
marks if the router has computed distances for the neighbors
of G. Line 3 selects the initial node for the routing. Lines 5-
10 perform the routing steps. At each routing step, the router
picks the unexplored node in W with the smallest distance to
Q as the current node. When there is a tie, the node ID is



Algorithm 1 Greedy routing on proximity graph (baseline)
Input: PG G, query Q, beam size b, parameter k
Output: k-ANNs of Q
1: initialize a priority queue W = ∅ as the pool to store candidates
2: G.explored is false by default for each node G in G
3: Ginit = select an initial node in G
4: W .add((d(Ginit, Q), Ginit)) . W is in ascending order of d
5: while W has unexplored nodes do
6: G = the unexplored node in W with the smallest GED to Q
7: neigh explore(G, G, Q)
8: G.explored = true
9: resize W to size b

10: end while
11: Rbs = top-k in W
12: return Rbs

13: function neigh explore(G, G, Q)
14: for each neighbor G′ of G in G do
15: add (d(G′, Q), G′) into W
16: end for

used to break the tie. Then, the router computes distances for
all neighbors of the current node and adds all of them to W
(Line 7). Then, W is resized to b (Line 9). During the resizing
of W , for two nodes in W that have the same distance to Q,
the unexplored one has a higher priority; if both are explored,
the most recently explored one has a higher priority; and if
both are unexplored, the one with a smaller node ID has a
higher priority. The routing stops if all nodes in W have been
explored and the top-k graphs in W are returned.

C. Graph neural network

The main idea of Graph neural networks (GNNs) is to use
graph convolutions to learn the embeddings of graphs. In this
paper, we adopt the well-known GIN model [51]. Given a
graph G, the graph convolution of GIN is as follows.1 For
a node u of G,

hl
u = ReLU(Wl(hl−1

u +
∑

v∈N(u)

hl−1
v )) (1)

where l denotes the layer ID, hl
u is the embedding of u at

the l-th layer, v is a neighbor of u, and Wl is the trainable
parameter matrix, respectively. h0

u is the input feature of u
(e.g., the one-hot encoding of `(u)). If there are L layers, the
embedding of G is hG = meanu∈Gh

L
u .

The work [51] has proved that GIN is equivalent to the
Weisfeiler-Lehman (WL) labeling, which is a well-known
technique used to test graph isomorphism. Given a graph
G = (V,E, `), WL labeling iteratively computes the WL
labels of the nodes in G. The WL label of a node u ∈ G
at the l-th iteration, denoted by wll(u), is as below.

wll(u) = wll−1(u), {{wll−1(v)|v ∈ N(u)}}, and (2)

wl0(u) = `(u), (3)

where {{}} denotes a multi-set.

1The coefficient 1− ε of hl−1
u is omitted for the sake of simplicity, which

does not affect the results of this paper.
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Fig. 3: Overview of our learning-based k-ANN search

The nodes in G with the same WL label at the l-th iteration
of WL labeling must have the same embedding at the l-th
layer of GIN.

D. GNN-graph

The work [46] represents the computation of graph con-
volutions of a GNN using a GNN-graph. Given a graph
G and a GNN with L graph convolution layers, the GNN-
graph of G is an L + 1-level directed acyclic graph HG,L =
(V0, V1, ..., VL, E), where Vl = {hl

u|u ∈ G}.2 For two nodes
hl
u and hl−1

v , (hl−1
v ,hl

u) ∈ HG,L if (u, v) ∈ G. For each
u ∈ G, (hl−1

u ,hl
u) is in HG,L. Since many nodes of G have the

same label, many nodes in HG,L have identical embeddings.

Example 2. For the graphs G and Q in Fig. 2(a) and (b),
Fig. 2(c) and (d) shows the GNN-graphs HG,2 and HQ,2,
respectively. Since `(v1) = `(v2) = `(v3) and `(u0) = `(u2),
hl
v1 = hl

v2
= hl

v3 and hl
u0

= hl
u2

, for l = 0, 1, 2.

E. Cross-graph learning

Cross-graph learning is the state-of-the-art technique for
graph distance learning [21], [22]. Given two graphs G and
Q, each node u of G not only aggregates embeddings from its
neighbors in G but also pays attention to the embeddings of
all nodes in Q. The cross-graph learning is defined as below.

Definition 1. Given two graphs G and Q, for each node u ∈
G, the embedding of u at the l-th layer, l ≥ 1, is computed as
follows.

hl
u = ReLU(Wl(hl−1

u + (
∑

u′∈N(u)

hl−1
u′ ) + µl

u), (4)

µl
u =

∑
v∈Q

αu,vh
l−1
v , and (5)

αu,v =
exp(a · (hl−1

u ||hl−1
v ))∑

v′∈Q exp(a · (h
l−1
u ||hl−1

v′ ))
, (6)

where || denotes concatenation, a is a trainable parameter
vector, · denotes the inner product, and α is attention weight.
h0
u is the input feature of u (e.g., the one-hot encoding of
`(u)). If there are L layers, hG = meanu∈Gh

L
G. The cross-

graph embedding of G and Q is hG,Q = hG||hQ.

2We slightly abuse the symbol hl
u to denote an embedding vector and a

node in Vl of H .



Algorithm 2 Routing with neighbor pruning (np route)
Input: PG G, query Q, beam size b, answer count k, oracle O, step size ds
Output: k-ANNs of Q
1: initialize a priority queue W = ∅ as the pool to store candidates
2: G.explored is false by default for each node G in G
3: Ginit = select a node in G as the initial node
4: W .add((d(Ginit, Q), Ginit)) . W is in ascending order of d
5: G = the node in W with the smallest GED to Q
6: while G.explored = false do
7: rank expl(G, G, Q, W , d(G,Q), O)
8: G.explored = true
9: resize W to b

10: G = the node in W with the smallest d
11: end while
12: Gflo = the node in W with the smallest d . first local optimal
13: γ = d(Gflo, Q) + ds
14: while true do
15: for each G that is explored do
16: all quali neigh(G, G, Q, W , γ, O)
17: end for
18: resize W to b
19: if all nodes in W have been explored then
20: break . stop condition of routing
21: end if
22: while W has unexplored nodes with d ≤ γ do
23: G = the unexplored node in W with the smallest d
24: rank expl(G, G, Q, W , γ, O)
25: G.explored = true
26: resize W to b
27: end while
28: γ = γ + ds
29: end while
30: Rnp = top-k in W
31: return Rnp

F. Solution overview

Fig. 3 shows the overview of our learning-based k-ANN
search. Given a graph database D and a PG G of D, we
propose a learning-based routing on G to efficiently find the k-
ANNs of Q. The key is using graph learning models to prune
unnecessary distance computations. Given a query graph Q,
we maintain a priority queue W to store the candidates. I©
We use a model Mnh to predict the neighborhood NQ of Q.
From the predicted neighborhood N̂Q, we randomly sample s
graphs and compute their distances from Q. The top sample is
used as the initial node Ginit for the routing on G and Ginit is
added to W . II© At each routing step, let G be the current node
of the router. If G is not in NQ, we simply compute distances
for all neighbors of G. If G is in NQ, we use a model Mrk

to rank the neighbors of G and only compute distances for
the top x% of neighbors. The x% is controlled by a distance
threshold γ, which can be updated as the routing progresses, if
needed. The neighbors whose distances from Q are computed
are added to W . If the stopping condition is met, the routing
stops and the top-k of W is returned as the search results R.
The construction of G and training of the models Mnh and
Mrk take place offline.

IV. ROUTING WITH NEIGHBOR PRUNING

The main idea of routing with neighbor pruning is that when
the router reaches a node G in the PG, we do not compute
distances for all neighbors of G at once. We rank the neighbors
and only compute distances for the top x% neighbors of G.

Algorithm 3 Get all qualified neighbors (all quali neigh)
Input: PG G, node G of G, query Q, pool W , threshold γ, oracle O
1: suppose G’s neighbors are ranked byO and partitioned to B0, B1, ..., Bn

2: suppose B0, B1, ..., Bi have been opened
3: for j = 0 to i do
4: for each G′ in Bj that is unexplored do
5: add (d(G′, Q), G′) into W
6: end for
7: if Line 5 adds a neighbor G′ in Bj to W and d(Q,G′) ≥ γ then
8: return
9: end if

10: end for
11: for j = i+ 1 to n do
12: for each neighbor G′ in Bj do . open the batch Bj

13: compute d(G′, Q) and add (d(G′, Q), G′) into W
14: end for
15: if Line 13 adds a neighbor G′ in Bj to W and d(Q,G′) ≥ γ then
16: return
17: end if
18: end for
19: return

Algorithm 4 Neighbor ranking and exploration (rank expl)
Input: PG G, node G of G, query Q, pool W , threshold γ, oracle O
1: suppose G’s neighbors are ranked byO and partitioned to B0, B1, ..., Bn

2: suppose B0, B1, ..., Bi have been opened
3: G′ is the neighbor farthest from Q in the opened batches of G’s neighbors
4: if d(Q,G′) ≥ γ then
5: return
6: end if
7: for j = i+ 1 to n do
8: for each neighbor G′ in Bj do . open the batch Bj

9: compute d(G′, Q) and add (d(G′, Q), G′) into W
10: end for
11: if Bj contains a neighbor G′ satisfying d(Q,G′) ≥ γ then
12: return
13: end if
14: end for

The x% is controlled by a distance threshold, which can be
updated as the routing progresses.

In the following, we first present the algorithm of routing
with neighbor pruning under the assumption of an oracle
for neighbor ranking. Then, we remove the assumption by
proposing a graph learning model to approximate the oracle.

A. Algorithm of routing with neighbor pruning

Assume we have an oracle that can rank the neighbors of
G in a negligible amount of time. Then, we can use the oracle
to partition the neighbors of G into batches B0, B1, ..., Bn

of equal size in order to control the percentage of neighbors
in distance computation. Each batch has y% neighbors of G,
where y is a tunable parameter, and all neighbors in Bi are
farther from Q than all neighbors in Bi−1, for i = 1, ..., n.
Given a distance threshold γ, we sequentially open the batches
B0, B1, ..., Bi and compute distances for the neighbors in the
opened batches. If Bi has a neighbor G′ satisfying d(G′, Q) >
γ, we do not open the batches after Bi. We call G explored
(i.e., G.explored = true) if at least one batch of the neighbors
of G is opened.
np route (Algorithm 2) presents the algorithm of routing

with neighbor pruning using the oracle. The routing has two
stages. The first stage is routing without backtracking until the



first local optimal Gflo is reached (Lines 1-12). The second
stage is routing with backtracking (Lines 13-29).

In the first stage, at each routing step, let G be the current
node of the router, d(Q,G) is used as the GED threshold to
control the percentage of neighbor exploration at G (Line 7).

The second stage has several while-loops (Lines 14-29).
In each while-loop (Lines 14-29), there is a GED threshold
γ, and the routing is restricted in the nodes with GEDs to
Q that do not exceed γ (Lines 22-27). To avoid missing a
qualified node, for each explored node G, Lines 15-17 add all
the unexplored neighbors of G with distances to Q that are no
more than γ into W (note that G may not be in W ). If W has
no unexplored node within distance γ from Q, γ is increased
by ds (Line 28). The for-loop (Lines 15-17) adds all qualified
neighbors to W with regard to the new γ. The routing stops
if all nodes in W are explored (Line 19), and the top-k in W
is returned.

Example 3. Consider the example shown in Fig. 1(b). Suppose
y = 30, b = 2, k = 1, and ds = 1. The first stage involves
routing from the initial node G2 to G7 and the second stage
involves routing from G7 to G17.

The first stage: At G2, d(Q,G2) = 7 is used as the distance
threshold for neighbor exploration. Since y = 30, the batches
B0,G2

= {G6} and B1,G2
= {G3} of G2’s neighbors are

opened. W = [G6, G3]. Since G6 is the best in W , the router
explores G6. At G6, d(Q,G6) = 4 is used as the distance
threshold. The batches B0,G6 = {G7} and B1,G6 = {G8} of
G6’s neighbors are opened. W = [G7, G8]. Since G7 is the
best in W , the router explores G7. At G7, d(Q,G7) = 2 is
used as the distance threshold. The batch B0,G7

= {G13} of
G7’s neighbors is opened. W = [G7, G13]. Since d(Q,G13) >
d(Q,G7), G7 is the first local optimal.

The second stage: Since ds = 1, γ = d(Q,G7) + ds = 3,
which is used as the distance threshold (Line 13). The for-
loop (Lines 15-17) makes sure that no qualified neighbor
of the explored nodes is missed. Line 16 for G2 adds G3

into W and Line 16 for G6 adds G8 into W . At this point,
W = [G7, G13, G8, G3]. Line 18 updates W as [G7, G13].
Since G13 is unexplored and d(Q,G13) ≤ γ = 3, Line 24
explores the neighbors of G13. The batch B0,G13

= {G7, G14}
of G13’s neighbors is opened. W = [G14, G7, G13]. Line 26
updates W as [G14, G7]. Then, Line 24 explores G14. Since
γ = 3, the batches B0,G14 = {G17} and B1,G14 =
{G16, G13} of G14’s neighbors are opened. At this point W =
[G17, G16, G14, G7, G13]. Line 26 updates W as [G17, G16].
Then, Line 24 explores G17. At G17, since γ = 3, all batches of
G17’s neighbors are opened and W = [G17, G16, G14, G18].
Line 26 updates W as [G17, G16]. Since d(Q,G16) < γ = 3,
Line 24 explores G16. Since γ = 3, all batches of G16’s
neighbors are opened and W = [G17, G16, G14, G15]. Line 26
updates W as [G17, G16]. Since W has no unexplored node,
Line 28 increases γ = 3 + ds = 4. The for-loop (Lines 15-
17) adds G3, G8, G12, G15, and G18 into W . At this point
W = [G17, G16, G18, G8, G15, G12, G3]. Line 18 updates W
as [G17, G16]. Since all nodes in W have been explored,

Line 19 stops the routing and G17 is returned.

B. Analysis of np route with an oracle neighbor ranker

We analyze the performance of np route using the oracle
neighbor ranker (Algorithm 2) by comparing the search results
and the NDC with baseline (Algorithm 1).

Lemma 1. Given the same initial node Ginit and beam size
b, the sequence of nodes explored by np route is the same
as that of baseline, where for a node G, the time when G
is explored is the time when G.explored is set to true.

Theorem 1. Let Rnp and Rbs denote the sets of graphs
returned by np route and baseline, respectively. Given the
same initial node Ginit and beam size b, Rnp = Rbs. The
NDC used by np route is no more than that of basline.
The space cost of np route is at most two times of that of
baseline.

As presented in a recent survey [50] there are some variants
of baseline. Their space complexities are the same as that
of np route in the worst case.

C. Learning-based neighbor ranking

One may attempt to directly train a model to rank the
neighbors of G. However, it is technically challenging to
obtain such a model to fully rank the neighbors of G. Since
each batch has y% of G’s neighbors, we propose training
100/y binary rankers and the i-th ranker M i

rk partially ranks
the neighbors of G. Specifically, M i

rk classifies G’s neighbors
into two classes: the positive class consisting of the top iy%
neighbors and the negative class consisting of the remaining
neighbors.

1) Model design: For a node G and a query Q, for each
neighbor G′ of G, M i

rk first learns the cross-graph embedding
hG′,Q of G′ and Q (Sec. III-E) and then feeds the concate-
nation of hG′,Q and hG into a multilayer perceptron (MLP)
to make a binary classification. The binary cross-entropy with
the regularizer in [37] is used as the loss function.

2) Model training: Assume we have a query workload
Q, which can be historical queries or be sampled from the
database D [9]. A basic method to train M i

rk is that for each
Q ∈ Q, we use each node G in G and G’s neighbors as the
training data. Formally, the training data are {(Q,G′, G)|Q ∈
Q, G′ ∈ NG(G), G ∈ G}. The class label of (Q,G′, G)
is positive if G′ is among the top iy% of G’s neighbors;
otherwise, it is negative. However, the training data can be
huge. It may take a long time to train M i

rk.
Recent studies [26], [35] find that most routing steps

are in the neighborhood NQ of Q. NQ can be defined as
{G|d(Q,G) < γ∗, G ∈ G}, where γ∗ is a tunable parameter.
Motivated by this observation, we propose using M i

rk only
after the router enters the neighborhood of Q. This means that
we only need to use {(Q,G′, G)|Q ∈ Q, G′ ∈ NG(G), G ∈
NQ} as the training data to train M i

rk. Since |NQ| � |G|, the
size of training data is significantly reduced, and hence M i

rk

can be efficiently trained.



3) Routing with learning-based neighbor ranking: A flow
chart of the routing with learning-based neighbor ranking is
shown in Fig. 3. Specifically, in Algorithms 3 and 4, suppose
we need to open the batch Bj of the neighbors of G. If G 6∈
NQ, we directly compute d(G′, Q) for each neighbor G′ of G;
otherwise, we use the j-th model M j

rk to make a prediction
for each neighbor G′ of G, and compute d(G′, Q) only for
the neighbors with positive predictions. For each prediction,
if we use the existing cross-graph learning method (Def. 1), the
time complexity is O(|VQ||VG′ |). In Sec. VI, we will propose
a cross-graph learning acceleration technique.

V. LEARNING-BASED INITIAL NODE SELECTION

Since the neighbor ranking models work only in the neigh-
borhood NQ of Q, the initial node of the routing should be
in NQ in order to use the neighbor pruning technique in most
routing steps. In the following, we first present the initial node
selection method given a neighborhood prediction model Mnh.
Then, we present the design of Mnh.

A. Initial node selection method

Suppose we have trained a model Mnh using the query
workload Q, such that for each graph G in D, Mnh can predict
if G is in the neighborhood of Q. Then, we randomly sample
s graphs in the predicted neighborhood N̂Q and compute the
GEDs to Q for the samples. The samples with the smallest
GEDs to Q are used as the initial nodes. This method has a
high probability of finding a graph in NQ.

Lemma 2. Suppose the precision of the prediction of Mnh

is p (i.e., p = |N̂Q ∩ NQ|/|N̂Q|). The probability that the s
samples have at least a graph in NQ is 1− (1− p)s.

B. Neighborhood prediction model

We first present a basic design of the neighborhood predic-
tion model. Then, we propose an optimized design.

1) Basic design of Mnh: Given a data graph G and a
query Q, Mnh first learns the cross-graph embedding hG,Q

(Sec. III-E) and then feeds hG,Q to an MLP to make a binary
prediction. If G is in NQ, it is positive; otherwise, it is
negative. The binary cross entropy with the regularizer [37]
is used as the loss function. Since the number of negative
samples is much larger than that of positive samples, the
negative class downsampling technique [52] is used to train
Mnh.

This design of Mnh has a shortcoming. To predict NQ, we
need to make a prediction for each graph in D. The number
of predictions is O(|D|), which is inefficient when D is large.

2) Optimized design of Mnh: We adopt the cluster-based
learning framework [53] to reduce the number of predictions.
The main idea is to cluster the graphs in D into a set of clusters
C. We train a model Mc to predict the size of the intersection
between each cluster C in C and NQ for each query Q in Q.
The distribution of the intersection size between NQ and the
clusters is skewed. Hence, we use a neural network to learn
the distribution.

The number of predictions is reduced by using Mc. Specifi-
cally, for a query Q, we use Mc to make a prediction for each
cluster. The top clusters are selected. For each selected cluster
C, we use Mnh to make a prediction for each graph in C.
The total number of predictions is reduced to |C|+

∑
C∈C′ |C|,

where C′ denotes the selected clusters.
To cluster the graphs in D, we can use existing graph

embedding techniques (e.g., [54]) to compute the embeddings
of the graphs in D and then use KMeans for clustering.

VI. CROSS-GRAPH LEARNING ACCELERATION BASED ON
GNN-GRAPH COMPRESSION

The cross-graph learning in Definition 1 has many re-
dundant computations because many nodes in a graph have
identical embedding (see Example 2). To eliminate the redun-
dancy, in this section, we first propose a compressed GNN-
graph (CG), where the nodes with the same embedding are
grouped together. Then, we present the cross-graph learning
method using two CGs. After that, we present the optimum
CG construction method.

A. Compressed GNN-graph

Definition 2. Given an L + 1-level GNN-graph HG,L =
(V0, V1, ..., VL, E) of a graph G, the compressed GNN-graph
(CG) of G is an edge weighted L + 1-level directed acyclic
graph H∗G,L = (V0, V1, ..., VL, E, w).
• For the l-th level, l = 0, ..., L, suppose the nodes in
Vl(HG,L) can be grouped into a set of groups, such that
for any two nodes hl

u and hl
v in a group, the embedding

vectors hl
u and hl

v are equal. Vl(H∗G,L) has a node for
each group. |g| denotes the size of a group g.3

• For two nodes gl−1,i ∈ Vl−1(H∗G,L) and gl,j ∈ Vl(H∗G,L),
(gl−1,i, gl,j) ∈ E(H∗G,L) if HG,L has edges crossing
gl−1,i and gl,j .

• Let hl
u be any node in the group gl,j . The weight w of

(gl−1,i, gl,j) is the number of incoming neighbors of hl
u

in the group gl−1,i in HG,L.

For presentation simplicity, in the following, we use g and
q to denote the nodes in the CGs of G and Q, respectively.

Example 4. Fig. 4(a) presents the CG H∗G,2 of the GNN-
graph HG,2 in Fig. 2(c). Since the embedding vectors h0

v1 =
h0
v2 = h0

v3 , the nodes of V0(HG,2) are grouped into two
groups g0,0 = {h0

v0} and g0,1 = {h0
v1 ,h

0
v2 ,h

0
v3}. Hence,

V0(H
∗
G,2) has two nodes g0,0 and g0,1. Similarly, V1(H∗G,2)

has two nodes g1,0 and g1,1, and V2(H∗G,2) has two nodes g2,0
and g2,1. The weighted edges are added based on Definition 2.
For instance, h1

v0 is in the group g1,0. h1
v0 has one and three

incoming neighbors in the groups g0,0 and g0,1 in HG,2,
respectively. Hence, w(g0,0, g1,0) = 1 and w(g0,1, g1,0) = 3.
For the GNN-graph HQ,2 in Fig. 2(d), the CG H∗Q,2 is shown
in Fig. 4(b).

3We slightly abuse the symbol g to denote a node in H∗G,L and a group
of nodes in HG,L.
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Fig. 4: CGs of G and Q in Fig. 2 (edge weight = 1 is omitted
for clarity)

h0 affects the compression. The more nodes with the same
h0, the better. In real datasets, many nodes have the same node
label. For instance, on the AIDS dataset with 42,687 graphs,
a graph has 25 nodes but only has 4 distinct node labels on
average. If the one-hot encoding of the node label is used to
compute h0, which is common in practice, many nodes have
the same h0.

B. Cross-graph learning on CGs

We define the cross-graph learning on the CGs of G and Q
as follows.

Definition 3. Given the CGs H∗G,L and H∗Q,L of G and Q,
respectively, cross-graph learning computes the embedding
hgl,i of each node gl,i in the l-th level of H∗G,L, l = 1, ..., L,
as follows:

hgl,i = ReLU(Wl(tgl,i + µgl,i
)), (7)

tgl,i =
∑

g∈Nin
H∗

G,L
(gl,i)

w(g, gl,i)hg, (8)

µgl,i
=

∑
q∈Vl(H∗Q,L)

|q|αgl,i,qhq, and (9)

αgl,i,q =
exp(a · (tgl,i ||hq))∑

q′∈Vl(H∗G,L) |q′|exp(a · (tgl,i ||hq′))
, (10)

where N in denotes the incoming neighbors. For each node
g0,i in the 0-th level of H∗G,L, hg0,i = h0

u for any h0
u in the

group g0,i. The embedding of H∗G,L is the weighted average
of the embeddings of the nodes in the L-th level of H∗G,L,
i.e., hH∗G,L

= (
∑

g∈VL(H∗G,L) |g|hg)/(
∑

g∈VL(H∗G,L) |g|). The
cross-graph embedding of G and Q is hH∗G,L

||hH∗Q,L
.

Example 5. Continue with Example 4, tg1,0 = hg0,0 + 3 ×
hg0,1 . µg1,0 = 2 × αg1,0,q1,0hq1,0 + αg1,0,q1,1hq1,1 . hg1,0 =

ReLU(W1(tg1,0 + µg1,0)). hH∗G,L
= (hg2,0 + 3 × hg2,1)/4.

Similarly, hH∗Q,2
= (2×hq2,0 +hq2,1)/3. hH∗G,2

||hH∗Q,2
is the

cross-graph embedding.

Theorem 2. Given two graphs G and Q, hH∗G,L
||hH∗Q,L

computed by the cross-graph learning on the CGs H∗G,L and
H∗Q,L (Definition 3) equals to hG||hQ computed by the cross-
graph learning on G and Q (Definition 1).

Algorithm 5 CG construction
Input: graph G and layer number L
Output: the CG H∗G,L of G
1: initialize H∗G,L = (V0, V1, ..., VL, E, w), Vl = ∅, E = ∅
2: perform L iterations of WL labeling
3: for each l = 0 to L do
4: group the nodes of G by wll and Vl has a node for each group
5: end for
6: for each node gl,j ∈ Vl and each node gl−1,i ∈ Vl−1 do
7: let u be a node of G in the group gl,j
8: the weight of the edge w(gl−1,i, gl,j) = |NG(u) ∩ gl−1,i|
9: w(gl−1,i, gl,j) += 1 if u is also in the group gl−1,i

10: end for
11: return H∗G,L

Dataset #graphs avg |V | avg |E| #nlabel
AIDS 42,687 25.6 27.5 51
LINUX 47,239 35.5 37.7 36
PUBCHEM 22,794 48.2 50.8 10
SYN 1,000,000 10.1 15.9 5

TABLE I: Statistics of datasets

Theorem 3. The time complexity of cross-graph learning on
two CGs H∗G,L and H∗Q,L is O((|V (H∗G,L)|+ |V (H∗Q,L)|) +
(|E(H∗G,L)|+ |E(H∗Q,L)|) +

∑L
l=1 |Vl(H∗G,L)||Vl(H∗Q,L)|).

Corollary 1. Given two graphs G and Q, the time complexity
of the cross-graph learning on the CGs of G and Q (Defini-
tion 3) is no larger than that on G and Q (Definition 1).

C. Construction of CG

In this subsection, we propose an algorithm with which to
construct the optimum CG of G. Since there is equivalence
between the embedding of a node u at the l-th layer of
GIN learning and the WL label of u at the l-th iteration of
WL labeling (Sec. III-C), our idea is to use the WL label
to group the nodes of G. The CG construction algorithm is
shown in Algorithm 5. The time complexity of Algorithm 5
is O(L(|V (G)|+ |E(G)|)).

Theorem 4. The CG constructed by Algorithm 5 is the
optimum to minimize the time complexity in Theorem 3.

For the data graph G in D, the CG of G can be precomputed.
Although the CG of Q is computed on-the-fly, it is a one-off
cost, as we need to perform cross-graph learning between Q
and many data graphs in D.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
techniques.4

Datasets and query workload. We conduct the experiments
on three real-world datasets that are widely used for graph
similarity search [3], [9], [11], [15], [55]–[57]. AIDS is an
antivirus screen compound graph dataset [3], [9], [15], [55].
LINUX is a set of control-flow graphs [9], [11], [56]. PUB-
CHEM is a set of chemical molecule graphs [15], [55], [57].

4The source code is available at the project website
https://github.com/csypeng/LAN



Following [3], [15], [55], [56], we also use a synthetic data
SYN for a scalability test. SYN is generated by the generator.5

20% of SYN is used by default, and 20%, 40%, 60%, 80%, and
100% of SYN are used in the scalability test. Table I shows
the statistics of the datasets. Following [9], for each dataset,
we sample 4,000 graphs as the query workload, which is split
into training, validation and test data by 6:2:2.

For the ground-truth GED, we first compute the exact GED
using the latest method [55]. If it does not finish in 10 seconds,
following the approach of [9], [21], we use the best result of
three approximate GED algorithms VJ [58], Hung [59], and
Beam [60] as the ground-truth GED.
Metrics. The performance metrics follow the previous works
[18], [19], [50]. Specifically, we use the recall at k (recall@k)
to measure the search accuracy. recall@k = |R∩R′|/k, where
R is the result set of the k-ANN search algorithm and R′ is
the true result set. Following [18], [19], [27], [34], [50], we
use queries per second (QPS) to measure search efficiency.
QPS is the number of queries finished in a second. We focus
on search performance in high recall region.
Baseline methods. We compare our method LAN with HNSW

[17], which is the latest method supporting k-ANN search in
a metric space and L2route [28], which is the latest learning-
based routing method on PG. HNSW is used directly on graph
databases. HNSW builds a hierarchy of PGs, the bottom level of
which is used as the PG of LAN. Since L2route is designed for
high-dimensional data, we first convert graphs into embedding
vectors using Node2vec [54] and then use L2route on the
embedding vectors for the k-ANN search. We use LAN IS

and HNSW IS to denote the initial node selection methods
of LAN and HNSW, respectively. Rand IS denotes the method
of randomly selecting a node as the initial node. We use
LAN Route and HNSW Route to denote the routing methods
of LAN and HNSW, respectively. We compare the cross-graph
learning acceleration with HAG [46], which is the latest method
that can accelerate GNN learning without reducing accuracy.
Experimental settings. The experiments are conducted using
PyTorch on a server with a Quad-Core AMD Opteron CPU,
800G RAM, and a GPU card NVIDIA Tesla V100S with 32G
of memory. The embedding dimensions are 128. We use the
Adam optimizer. We set the initial learning rate to 0.005 and
reduce it by 0.96 for every 5 epochs. We set the number of
epochs to 1,000, and select the best model on validation data
for testing. The neighborhood size parameter γ∗ is set such
that for 90% training queries, NQ can contain the 200-NNs
of Q and the batch size parameter y is 20. We focus on the
performance for k = 50. The beam size b is no smaller than k.
The larger the b, the higher the recall, but the higher the query
latency. Following recent works [16], [20], [50], we increase
b until the target recall is achieved.

A. Comparison with existing methods

In this experiment, we compare the performance of LAN,
HNSW, and L2route. LAN comprises LAN Route, LAN IS,

5https://www.cse.cuhk.edu.hk/∼jcheng/graphgen1.0.zip
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Fig. 5: Comparison with existing k-ANN search methods

and GNN acceleration. HNSW comprises HNSW Route and
HNSW IS. Fig. 5 shows the results on AIDS, LINUX, PUB-
CHEM, and SYN.

In Fig. 5, we can observe that LAN significantly outperforms
HNSW and L2route. In particular, at recall@50 = 0.95, the
QPSs of LAN are ∼4.2x, ∼3.9x, ∼3.6x, and ∼9x higher
than those of HNSW on AIDS, LINUX, PUBCHEM, and SYN,
respectively. At recall@50 = 0.95, the QPSs of LAN are
∼16.1x, ∼18.6x, ∼17x, and ∼73.2x higher than those of
L2route on AIDS, LINUX, PUBCHEM, and SYN, respectively.

In Fig. 5, we can also observe the margin of LAN decreases
with the growth of recall. On the one hand, this result is
reasonable, as the higher recall required, the fewer neighbors
can be pruned. On the other hand, when recall@50 is as high
as 0.98, the QPSs of LAN are still more than 3x higher than
those of HNSW on AIDS, LINUX, and PUBCHEM, respectively,
and more than 6x higher than that of HNSW on SYN.

We also examine GHash [9], a learning-based approximate
range query method in graph databases. We run the source
code of GHash and observe that on AIDS when the GED
threshold is 10, the number of GED computations is 42,585,
which is close to a scan of the entire dataset.

B. Routing performance with neighbor pruning

In this experiment, we compare the performances of
LAN Route and HNSW Route. LAN comprises LAN Route,
HNSW IS, and GNN acceleration. HNSW comprises
HNSW Route and HNSW IS. The results are shown in
Fig. 6.

In Fig. 6, we can observe that LAN Route significantly
outperforms HNSW Route. In particular, at recall@50 = 0.95,
the QPSs of LAN Route are ∼2.9x, ∼2.6x, ∼2.5x, and ∼5.5x
higher than those of HNSW Route on AIDS, LINUX, PUB-
CHEM, and SYN, respectively. The margin of LAN Route with
respect to HNSW Route reduces with the growth of recall.
However, when recall@50 is as high as 0.98, the QPSs of
LAN Route are still more than 2.5x higher than those of
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Fig. 6: Performance of routing with neighbor pruning
(HNSW IS is used for the initial node selection)
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Fig. 7: Performance of initial node selection (LAN Route is
used for routing)

HNSW Route on AIDS, LINUX, and PUBCHEM, respectively,
and more than 5x higher than that of HNSW Route on SYN.

We also examine the prediction accuracy of the neighbor
ranking models during routing. The prediction accuracies are
0.73, 0.72, 0.78, and 0.7 on AIDS, LINUX, PUBCHEM, and
SYN, respectively.

C. Performance of initial node selection

In this experiment, we compare the performances of
LAN IS, HNSW IS, and Rand IS. LAN comprises LAN Route,
LAN IS, and GNN acceleration. HNSW comprises LAN Route

and HNSW IS. The results are presented in Fig. 7. LAN IS uses
the optimized design of Mnh (Sec. V-B2) as it is faster than
the basic design (Sec. V-B1).

Fig. 7 shows that LAN IS outperforms HNSW IS and
Rand IS. In particular, at recall@50 = 0.95, the QPSs of

LAN IS are 1.4x, 1.3x, 1.3x, and 1.7x higher than those of
HNSW IS on AIDS, LINUX, PUBCHEM, and SYN, respectively.
At recall@50 = 0.95, the QPSs of LAN IS are ∼2x, ∼17.2x,
∼1.5x, and ∼1.9x higher than those of Rand IS on AIDS,
LINUX, PUBCHEM, and SYN, respectively.

From Fig. 7, we can also observe that the margin of LAN IS

reduces with the growth of recall. However, at recall@50 is
as high as 0.98, the QPSs of LAN IS are more than 1x higher
than those of HNSW IS on AIDS, LINUX, and PUBCHEM,
respectively, and more than 1.5x higher than that of HNSW IS

on SYN. At recall@50 = 0.98, the QPSs of LAN IS are 1.5x,
15.1x, 1.3x, and 1.7x higher than those of Rand IS on AIDS,
LINUX, PUBCHEM, and SYN, respectively.

The precision of our initial node prediction model is shown
in Fig. 8, where we can observe that the precisions exceed 0.7
on AIDS, LINUX, PUBCHEM, and SYN, respectively. Since
1 − (1 − 0.7)4 > 0.99, we only need to randomly sample
4 nodes from N̂Q, such that the probability that at least one
sample is in NQ is larger than 0.99.

We also compare the basic and optimized designs of the
neighborhood prediction model. The time costs of prediction
using the optimized design are only 3.3%, 4.1%, 3.6%, and
2.2% of the basic design on AIDS, LINUX, PUBCHEM, and
SYN, respectively.
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D. Scalability evaluation
In this experiment, we evaluate the scalability of LAN. We

focus on the SYN dataset. Fig. 9 presents the results. In Fig. 9,
the x-axis is the scale of the dataset and the y-axis is the
average running time of a query.

From Fig. 9, we can observe that LAN scales linearly with the
size of the dataset. The reason is that following the approach
of [18], [19], [50] to support a large dataset, we randomly
split the dataset into equal-size sub-datasets and sequentially
perform k-ANN search on each sub-dataset. The top-k in the
search results on all sub-datasets are returned as the final result
of the whole dataset. From Fig. 9, we can also observe that the
gap between recall@50 = 0.9 and recall@50 = 0.95 is much
smaller than the gap between recall@50 = 0.95 and recall@50
= 0.98. This finding is consistent with the observations in
previous experiments that the increase in running time is more
than a linear function of the increase in recall.

E. Performance of cross-graph learning acceleration
Fig. 10 presents the effects of cross-graph learning accelera-

tion on the efficiency of k-ANN search. From Fig. 10, we can
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Fig. 10: Performance of cross-graph learning acceleration

observe that the QPS is increased after using our cross-graph
learning acceleration technique. In particular, at recall@50 =
0.95, the QPSs are increased by ∼17%, ∼18%, ∼15%, and
∼17% on AIDS, LINUX, PUBCHEM, and SYN, respectively.

Fig. 11 shows the breakdown of the query time before using
our cross-graph learning acceleration technique. It is evident
that cross-graph learning accounts for ∼24%, ∼25%, ∼20%,
and ∼29% of the query time on AIDS, LINUX, PUBCHEM,
and SYN, respectively.

Fig. 12 shows the extent to which cross-graph learning is
speeded up using our acceleration technique. The speedup is
based on the original cross-graph learning technique. We can
see that cross-graph learning is speeded up by ∼4x, ∼4.2x,
∼5.3x, and ∼3.1x on AIDS, LINUX, PUBCHEM, and SYN,
respectively. In contrast, HAG cannot speedup the cross-graph
learning.

We remark that the GNN is only used to predict which
graphs should be pruned from GED computation; we need
to compute GEDs for the graphs that are not pruned. GED
computation dominates the overall query time, which can be
observed in the performance breakdown (Fig. 11). Therefore,
although the GNN on PUBCHEM has the largest speedup, the
improvement of QPS on PUBCHEM is not the largest.
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F. Index construction time

The PG of LAN is the bottom level PG in the PG hierarchy
of HNSW. Therefore, we use the time of HNSW for constructing

the bottom level PG as the index construction time of LAN.
We use 5 threads to process multiple GED computation tasks
concurrently. The index construction times of LAN on AIDS,
LINUX, PUBCHEM, and SYN are 6.8, 77.5, 120.2, and 7.8
hours, respectively.

VIII. CONCLUSION

In this paper, we propose a learning-based k-ANN search
method in graph databases. The core of our method uses graph
learning models to avoid unnecessary distance computations
during the routing on PG. First, we propose a routing algorithm
with neighbor pruning. At each routing step, a graph learning
model is used to rank the neighbors and only the top neighbors
are explored. Second, we propose a graph learning model
for initial node selection, such that the initial node selected
has a high probability of being in the neighborhood of Q.
Third, we propose a compressed GNN-graph to accelerate the
cross-graph learning used in the neighbor ranking and initial
node selection. The efficiency of learning is improved without
degrading its accuracy. Our experiments show that our method
is effective and significantly outperforms the state-of-the-art k-
ANN search methods on real-world benchmark graph datasets.

In the future, we plan to study distributed k-ANN search
methods to support larger graph databases.

APPENDIX

This appendix contains the proofs of the theorems and
lemmas. Some detailed derivations are available on the project
website.

A. Proof of Lemma 1

To prove Lemma 1, we first prove the following two
Lemmas.

Lemma 3. For any routing step of np route, let S denote the
set of explored nodes so far and NG(S) denote the neighbors
of the nodes in S in G. The node G explored at this step must
be the node that is the closest to Q among all unexplored
nodes in NG(S).

Proof. It is trivial for the first stage of routing (i.e., the routing
steps from the initial node to the first local optimal; Lines 1-
12 of Algorithm 4). The reason is as follows. At each routing
step, suppose G is the current node. All neighbors of G with
distances to Q no more than d(Q,G) are added to W , and
the node in W that is the closest to Q is explored at the next
routing step.

For the second stage (i.e., the routing steps from the first lo-
cal optimal to the end of the routing), the while-loop (Lines 22-
27) performs the routing steps. Suppose the distance threshold
for the current routing step is γ (Line 22). Let Nue

G (S, γ)
denote the unexplored nodes in NG(S) with distances to Q
that are no more than γ. Lines 15-17 ensure that all nodes in
Nue
G (S, γ) are added to W . Line 18 may squeeze some nodes

in Nue
G (S, γ) out of W . If the node G in Nue

G (S, γ) that is the
closest to Q is squeezed out, the routing stops. Otherwise, G



must be the first to be explored in the while-loop (Lines 22-
27).

Lemma 4. For any routing step of baseline, let S denote the
set of explored nodes so far and NG(S) denote the neighbors
of the nodes in S in G. The node G explored at this step must
be the node that is the closest to Q among all unexplored
nodes in NG(S).

Proof. It is trivial as, at each routing step, let G be the current
node, all neighbors of G are added to W , and the node in W
that is the closest to Q is explored in the next routing step.

The proof sketch of Lemma 1 is as follows.

Proof. Let seqibs and seqinp denote the sequences of explored
nodes of baseline and np route from the 0-th step to the
i-th step, respectively. We prove this lemma by induction.

For the 0-th step, it is trivial as seq0bs = seq0np = [Ginit].
Suppose seqi−1bs = seqi−1np . Due to Lemma 3 and Lemma 4,

the nodes explored by baseline and np route at the i-th
step must be the same. Therefore, seqibs = seqinp.

B. Proof of Theorem 1

Proof. Since the sequences of nodes explored by np route

and baseline are the same, the search results Rnp returned
by np route must be the same as the search result Rbs of
baseline.

Since np route prunes some neighbors, the number of
distance computations must be no more than that of baseline.

The space cost of baseline is the linear to |S|+ |NG(S)|,
where S denotes the explored nodes and NG(S) denotes the
neighbors of the nodes S in G. Since np route needs to
record the batches, the space cost of np route is higher than
that of baseline. Extremely, the size of each batch is 1, where
space cost of np route is |S|+2× |NG(S)|, as the explored
nodes of np route are the same as that of baseline (see
Lemma 1). Therefore, the space cost of np route is at most
two times of that of baseline.

C. Proof of Lemma 2

Proof. If we randomly sample a graph G in NQ, G is in
NQ with a probability of p. Since the s samples are sampled
independently, the probability that all the s samples are not
in NQ is (1− p)s. Therefore, the probability that at least one
sample is in NQ is 1− (1− p)s.

D. Proof of Theorem 2

Proof. To prove hH∗G,L
||hH∗Q,L

= hG||hQ, we only need to
prove hH∗G,L

= hG and hH∗Q,L
= hQ. In the following, we

only prove that hH∗G,L
= hG as hH∗Q,L

= hQ can be proved
in the same way.

In proving hH∗G,L
= hG, the key is to prove that in each

layer of cross-graph learning, if a node is in a group, the
embedding of the node computed by the cross-graph learning
on G and Q equals to the embedding of the group computed
by the cross-graph learning on the CG of G and the CG of Q.

In the l-th layer of the cross-graph learning on G and Q, for
a node u of G, u needs to i) compute tlu (i.e., the aggregate
embeddings from its neighbors in G), ii) compute µl

u (i.e., the
aggregate weighted embeddings from all nodes in Q), and iii)
multiply Wl.

In the l-th layer of the cross-graph learning on the CG of
G and the CG of Q, a node g at the l-th level of the CG
of G needs to i) compute tlg (i.e., the aggregate weighted
embeddings from its incoming neighbors in the l− 1-th level
of the CG of G), ii) compute µl

g (i.e., the aggregate weighted
embeddings from all nodes at the l-the level of the CG of Q),
and iii) multiply Wl.

By Definition 3, if the node u is in the group g, tlu = tlg
and µl

u = µl
g . Therefore, hl

u = hg .
In the L-th layer, since hG = meanu∈Gh

L
u , hH∗G,L

is the
weighted average of the embeddings of the nodes in the L-
th level of H∗G,L, where the weight is group size, and each
node u in G must belong to a node in the L-th level of H∗G,L,
hG = hH∗G,L

must hold.

E. Proof of Theorem 3

Proof. The cross-graph learning at the l-th level of H∗G,L,
l = 1, ..., L, has three steps: i) collect information from the
incoming neighbors in the l− 1-th level of H∗G,L, ii) compute
attention for the nodes in the l-th level of H∗Q,L, and iii)
multiply W. It is the same for the l-th level of H∗Q,L.

For i), the time cost is linear to the number of incom-
ing edges of the l-th level. The total time for L levels is
O(|E(H∗G,L)|+ |E(H∗Q,L)|).

For ii), the time cost is linear to the number of pairs
of the nodes in the l-th level of H∗G,L and the nodes in
the l-th level of H∗Q,L. The total time for L levels is
O(

∑L
l=1 |Vl(H∗G,L)||Vl(H∗Q,L)|). Note that we do not need to

compute the attention for the 0-th level.
For iii), the time cost is linear to the number of nodes.

Hence, the total time is O(|V (H∗Q,L)|+ |V (H∗G,L)|).

F. Proof of Corollary 1

Proof. It is trivial as, for a graph G, the number of edges
between two levels of the CG of G is no larger than E(G)
and the number of nodes in each level of the CG of G is no
larger than V (G).

G. Proof of Theorem 4

Proof. The key argument here is that the WL label of a node
is equivalent to the embedding of the node. If the nodes have
been grouped by their WL labels, it is impossible to further
reduce the number of groups while making sure that all nodes
in a group always have the same embedding.
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