
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. 1

Detail-Preserving Multi-Exposure Fusion with
Edge-Preserving Structural Patch Decomposition
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Abstract—The multi-exposure fusion (MEF) methods have
received much attention in recent years due to the importance
of constructing high dynamic range images. Among most of
the existing studies, multi-scale structural-patch-decomposition-
based MEF (MSPD-MEF) has achieved state-of-the-art fusion
quality and the fastest running time. However, this method still
suffers from detail loss in the fused images. To tackle this issue,
we first incorporate the edge-preserving factors into this method
to preserve the details in the fused images in a single-scale setting.
Then, we develop the novel and flexible bell curve function, which
can further preserve the details in both bright and dark regions.
After that, we also show that our method can seamlessly plug
in to this multi-scale framework. Extensive experimental results
indicate that the proposed method can produce pleasing fusion
results with little artifacts and low computational cost in both
static and dynamic scenes.

Index Terms—Multi-exposure fusion, high dynamic range
imaging, edge-preserving, structural patch decomposition

I. INTRODUCTION

THE dynamic range of a natural scene is much higher than
that of the image which generic digital cameras can cap-

ture within one single shot. As a consequence, over-exposure
or under-exposure effect occurs frequently in the general
photo-taking experience, leading to unpleasing imaging results
with severe information loss. High dynamic range (HDR)
imaging can effectively address this issue with a sequence of
differently exposed low dynamic range (LDR) images. There
are usually two strategies to get an HDR-like image: the multi-
exposure fusion (MEF) [1]–[4] in image domain, and HDR
content reconstruction via camera response function (CRF)
and then tone reproduction [5] in radiance domain. Due to the
complexity of recovering CRF and designing tone mappers [5],
[6], MEF has been widely applied to HDR imaging in mobile
devices, as a direct and simple approach. Besides, MEF has
also been used for low-light image enhancement [7], [8],
dehazing [9] and saliency detection [10] by fusing generative
pseudo exposure sequences.

A good MEF method should work robustly in both static
and dynamic scenes with good visual quality, and consume
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low computational resources especially when high-resolution
images are captured via cameras or mobile phones. Recently,
Zhang et al. [11] and Ma et al. [3] successfully applied
the structure path decomposition (SPD) method to MEF (we
term this MEF solution as SPD-MEF), which can achieve
the state-of-the-art results in both static and dynamic scenes.
Due to the superior performance of SPD-MEF in practice, this
method has also been applied to other applications in the past
few years, e.g., medical image fusion [12], and infrared and
visible image fusion [13]. The general idea of SPD-MEF is to
first decompose each overlapped patch into three components:
signal strength, signal structure and mean intensity. Then,
it produces each fused patch by setting different rules on
the three components, and the final result is acquired via
aggregation.

However, SPD-MEF suffers from high computational cost,
halo effect and detail loss. As such, we proposed the method,
called multi-scale structure path decomposition (MSPD), in
our preliminary work [4] to significantly alleviate the halo ef-
fect for MEF (we call this MEF solution as MSPD-MEF). With
a fast approximation algorithm, we illustrated that MSPD-
MEF can significantly improve the efficiency over the SPD-
MEF method. Nevertheless, since the method MSPD-MEF
adopted the multi-scale approach, the fused images can suffer
from apparent detail loss, especially for the increased scale,
which is a common issue for this type of methods [14].

To tackle this issue, one possible idea is to integrate the
edge-preserving-based methods [15]–[17] into our preliminary
solution [4], which can simultaneously preserve the detail
information, suppress the halo effect and achieve the low com-
putational cost. Based on this idea, we develop the method,
called multi-scale edge-preserving structural patch decomposi-
tion (MESPD), for MEF, which we term this MEF solution as
MESPD-MEF. Fig. 1 shows the results of different solutions,
including SPD-MEF [3], MSPD-MEF [4], and our proposed
method MESPD-MEF, in the image sequences “Tower” on
a static scene. Observe that our method MESPD-MEF can
retain more detail information in bright and dark regions
than SPD-MEF and MSPD-MEF. Our main contributions are
summarized as follows:
• This is the first work that incorporates the edge-

preserving factors into the currently state-of-the-art
method MSPD [4], which can simultaneously reduce the
halo effect and preserve the details in the fused images.

• We further develop the novel and flexible bell curve
function for accurately estimate the weight function for
the mean intensity component, which can preserve the
details in both bright and dark regions.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. 2

• Extensive experiments demonstrate that our solution can
achieve significant improvement for visual quality in
the fused images over different types of state-of-the-art
methods in both static scene and dynamic scene settings
for a wide range of datasets, without incurring high
time overhead, compared with the fastest method MSPD-
MEF [4].

(a)

(b) SPD-MEF [3] (c) MSPD-MEF [4] (d) MESPD-MEF

Fig. 1. Fused results by three methods based on SPD. (a) Image sequence
“Tower”. (b) SPD-MEF [3]. (c) Fast multi-scale SPD-MEF [4]. (d) The
proposed method.

The rest of the paper is organized as follows. Section II
shows a brief overview of MEF algorithms in static and
dynamic scenes. Section III illustrates the state-of-the-art
approach for this task. Section IV presents our solution,
which includes ESPD-MEF and its fast multi-scale version.
Section V provides the experimental results and discussions for
comparing different types of MEF methods and our proposed
solution. Section VI concludes this paper.

II. RELATED WORK

Multi-exposure fusion (MEF) is a branch of image fu-
sion [18]–[22], which aims to blend a set of multiple exposure
images captured by bracketing into a single composite image.
Various kinds of MEF methods, which focus on weight cal-
culation, weight map smoothing, multi-scale implementation,
and detail enhancement, have been proposed in the past
decades, which can be divided into two main categories,
namely static MEF methods and dynamic MEF methods.

A. Static MEF methods

In this section, we review three commonly used approaches
for static MEF, which are multi-scale-fusion-framework-based

approach, optimization-based approach, and deep-learning-
based approach.

Multi-scale-fusion-framework-based approach: Mertens
et al. [1] proposed the pioneer multi-scale fusion frame-
work, which first computes the (normalized) weight map
using contrast, color saturation and well-exposedness, and
then multiplies the Gaussian pyramid of this weight map
with the Laplacian pyramid of the multi-exposure images in
order to provide the fused image. Based on this framework,
many research studies have been proposed to further improve
the fusion performance. Shen et al. [23] adopted a sigmoid
shape curve to enhance the texture details of fused images.
Kou et al. [15], [16] replaced the Gaussian smoothing in
the multi-scale fusion framework by the gradient domain
edge-preserving smoothing to suppress the halo effect. Li
et al. [24], [25] enhanced the details by incorporating the
extracted gradient into the multi-scale fusion framework. Li et
al. [26] utilized the guided filtering method [27] to construct
the saliency-based weight map in order to further enhance the
details. Even though the above methods [15], [16], [23]–[26]
can either enhance the details or supress the halo effect, they
suffer from high computational cost. As such, many methods
have been developed in the literature to further boost the
efficiency by sacrificing the fusion quality. Ancuti et al. [14]
only adopted the single-scale in this fusion framework, by
filtering the weight map with a larger Gaussian kernel size
and retaining the details with the second-order Laplacian filter.
Wang et al. [28] further incorporated the edge details with this
method [14] in the YUV color space to improve the fusion
results without incurring high computational cost.

Optimization-based approach: Some optimization-based
methods for MEF have been also developed in the literature.
Gu et al. [29] obtained the fused gradient field based on
Riemannian geometry metric, then attained the fused im-
age via Poisson solver. Song et al. [30] approximated the
ideal luminance image to max-contrast image with gradient
constraint under a maximum a posteriori framework. Ma et
al. [31] obtained the fusion results by globally optimizing
the structural similarity index. However, all these methods
suffer from obvious artifacts, e.g., ringing effect, detail loss
and distortion, which provide inferior fusion results.

Deep-learning-based approach: Prabhakar et al. [32]
developed the first end-to-end deep learning solution for MEF,
in which they defined the ground truth, based on optimizing
a non-reference image quality metric [33]. Xu et al. [34]
adopted the generative adversarial network (GAN) to support
MEF. However, instead of fusing multiple images, both meth-
ods [32], [34] can only fuse two images. To tackle this issue,
Ma et al. [35] developed the MEF-NET, which can support
fusing multiple images with different sizes. Zhang et al. [36]
further proposed a general deep learning framework for all
kinds of image fusion tasks. However, there are two main
drawbacks for this approach. First, the lack of large amount
of available data restricts the generalization ability of these
deep-learning-based methods. Second, it is hard to define the
meaningful ground truth for this task.
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B. Dynamic MEF methods
Most of the static MEF methods assume that the objects

are static, which may not be true in practice. As such, these
methods can result in ghosting effect, once there is a dynamic
object in the screen. To tackle this issue, many studies have
been proposed in the literature, which can be classified into
two domains, namely radiance domain and intensity domain.

Radiance domain: This type of methods [37]–[41] first
transforms (using the camera response function) the multi-
exposure images to the radiance domain, which assumes that
the irradiance is linearly proportional to the exposure time
of each image [42]. Based on this property, these methods
can then detect and remove those inconsistent pixels (e.g.,
with motion) in the radiance domain and then perform image
fusion. After that, they can utilize the tone mapping methods
to obtain those fused images. However, these methods suffer
from high computational costs, as evaluating the camera re-
sponse functions [42]–[44] and the tone mapping methods [5],
[45], [46] are time-consuming.

Intensity domain: Different types of feature extraction
methods, e.g., gradient direction features [47], SIFT fea-
tures [48], and CNN features [49], have been proposed to
detect the motion, and then remove the inconsistent pixels, in
the intensity domain. Moreover, some other motion detection
methods [50]–[52] have been also adapted to support for this
task. However, all these methods can either provide inaccurate
fusion results [47]–[49] or suffer from high computational
cost [50]–[52].

III. STATE-OF-THE-ART APPROACH: SPD-MEF
In this section, we first illustrate the state-of-the-art

method [3], namely structural-patch-decomposition-based
multi-exposure fusion (SPD-MEF), in Section III-A. Then, we
discuss the fast algorithm for SPD-MEF [4] in Section III-B.
Lastly, we describe the multi-scale version for SPD-MEF [4]
in Section III-C.

A. SPD-MEF
The core idea of SPD-MEF method [3] is to decompose the

size r× r image patch x, which is denoted as an Rr2×1 vec-
tor, into three conceptually independent components, namely
signal strength c = ‖x − l‖, signal structure s = x−l

‖x−l‖ and
mean intensity l, i.e.,

x = ‖x− l‖ · x− l
‖x− l‖

+ l

= c · s+ l (1)

where l = [mx,mx, ...,mx]
T ∈ Rr2×1 and mx is the mean

pixel value of this image patch x.
Suppose that there are K multi-exposure image patches

(with the same position) and xk denotes the image patch in the
kth image. Ma et al. [3] first decomposed xk into these three
components ck, sk and lk. Then, they estimated the signal
strength ĉ, signal structure ŝ, and mean intensity l̂ of the fused
image patch x̂ by the following equations.

ĉ = max
1≤k≤K

ck and ŝ =
K∑
k=1

αksk and l̂ =
K∑
k=1

βklk (2)

where they utilized the norm and Gaussian functions to
estimate the weightings αk and βk respectively. More details
can be found in [3], [4].

Once they have obtained these three components ĉ, ŝ and
l̂, they reconstructed the fused image patch x̂, based on
Equation 1.

B. Fast SPD-MEF

The basic algorithm for SPD-MEF method [3] takes
O(WHKr2) time, where W and H denote the width and
height of each image. However, this method can be time-
consuming. As such, Li et al. [4] further observed that each
fused image patch x̂ is equivalent to:

x̂ = ĉ · ŝ+ l̂ =
K∑
k=1

γk(xk − lk) + βklk (3)

where: γk = αk ĉ
‖xk−lk‖ . Based on this equation, they can further

showed that the fused image X̂, with size W × H , can be
obtained using five mean filtering operations, where:

X̂ =

K∑
k=1

(
M
(
αk �M(Xk)

)
+M(γk)�Xk −M

(
γk �M(Xk)

))
(4)

where the operator � is the Hadamard product, i.e., element-
wise multiplication, and M denotes the r×r meaning filtering
operation.

Since mean filtering operations can be efficiently imple-
mented in linear time using box filter [27]. This method can
significantly reduce the time complexity to O(WHK) time.

C. Multi-scale SPD-MEF (MSPD-MEF)

The image patch size r × r, a.k.a. kernel size, of the
SPD-MEF method can strongly affect the fusion performance.
Suppose that we choose the small kernel size (e.g., 3 × 3),
the fused images suffer from severe spatial inconsistency.
However, once we adopt the large kernel size, the fused
images suffer from the significant detail loss. Even though
we can achieve the balance between the spatial consistency
and the detail preservation by choosing the medium kernel
size, this approach can still cause the halo artifacts [27] near
strong edges of object boundaries. To resolve this issue, Li et
al. [4] further utilized the multi-scale framework (cf. Fig. 2) to
support SPD-MEF for fusing K multi-exposure images X

(1)
1 ,

X
(1)
2 ,..., X(1)

K .
The core idea of this multi-scale framework [4] is that all

K multi-exposure images are first downsampled by a factor
of 2 (with operator D) into J scales (cf. black arrows in Fig.
2), i.e.,

X
(j)
k = D(M(X

(j−1)
k )) (5)

where they adopted J = blog2 min(H,W )c − 3 in order to
ensure the image size is not too small, i.e., at least 8× 8.

Then, they only fused the high frequency component in
Equation 4 for each scale j (cf. red arrows in Fig. 2), i.e.,

Ĥ(j) =

K∑
k=1

(
M(γ

(j)
k )�X

(j)
k −M(γ

(j)
k �X

(j)
k )
)

(6)
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Fig. 2. Multi-scale framework for SPD-MEF.

After that, they computed the low frequency component in
Equation 4 for the scale J (cf. purple arrow in Fig. 2), i.e.,

B̂(J) =

K∑
k=1

M(α
(J)
k �M(X

(J)
k )) (7)

By iteratively adding the low and high frequency compo-
nents and performing upsampling, termed as U, and mean fil-
tering operations (cf. blue arrows in Fig. 2), they reconstructed
the low frequency components in different scales (cf. Equation
8), and lastly obtained the fused image X̂ (cf. Equation 9).

B̂(j) = M(U(B̂(j+1) + Ĥ(j+1))) (8)

X̂ = B̂(1) + Ĥ(1) (9)

IV. OUR SOLUTION

In this section, we first propose the new method, called
edge-preserving structural path decomposition (ESPD) for
MEF, i.e., ESPD-MEF (cf. Section IV-A). Then, we further
extend this method to multi-scale version (cf. Section IV-B)
to suppress the halo effect of the fused images.

A. Edge-preserving SPD-MEF (ESPD-MEF)

Even though the SPD-MEF method [3] and its variant [4]
can achieve the state-of-the-art accuracy and efficiency per-
formance for MEF, these methods still suffer from the detail
loss (e.g., blurred edges in Fig. 1b and c). To tackle this
issue, we aim to integrate the edge information into the mean
intensity l, instead of using the constant vector to represent
this component. In particular, we define l as:

l = ax+ b1 (10)

where 1 is the r2 × 1-dimensional vector with value one in
all entries.

Observe from Equation 10, the component ax incorporates
the edge/contour information of each image patch. As such,
this representation (cf. Equation 10) can capture more details
for each multi-exposure image, compared with SPD, which
only utilizes b1 (with b = mx) as l (cf. Equation 1). To
determine the coefficients a and b for l, we aim to minimize the
difference between l and x, i.e., ‖l−x‖, to retain more details
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Fig. 3. The weighting method for mean intensity component via different
bell curve functions.

of the image patch. The solution of this problem is trivial, by
setting a = 1 and b = 0. However, this approach can retain all
details (all high frequency components) for each image patch,
which creates noise for the fused image. Therefore, we impose
the regularization constant λ to avoid the large value for the
parameter a in the optimization problem (cf. Equation 11).

min
a,b
‖ax+ b1− x‖2 + λa2 (11)

In this optimization problem, we can obtain the close-form
solutions for both the parameters a and b (cf. Equation 12).

a =
σ2
x

σ2
x + λ

and b =
λ

σ2
x + λ

mx (12)

where mx and σ2
x are the mean and variance of the image

patch x respectively.
Recall that the signal strength c = ‖x − l‖ and the signal

structure s = x−l
‖x−l‖ . After we substitute a and b to l, and then

substitute l to c and s, we can obtain the new signal strength
c, signal structure s and mean intensity l as follows.

l =
σ2
x

σ2
x + λ

x+
λ

σ2
x + λ

mx1 (13)

c =
λ

σ2
x + λ

‖x−mx1‖ (14)

s =
x−mx1

‖x−mx1‖
(15)

Observe from Equation 13, once the image patch x repre-
sents the flat region, the variance of this patch σ2

x is close to
zero. As such, the mean intensity l degenerates to mx1, which
is the same as SPD. However, suppose that this image patch
contains many high frequency components, including edges
and contours, the variance σ2

x can be higher and the first term
of l (cf. Equation 13) can automatically capture more high
frequency components, in order to improve the quality of the
fused image patch.

To fuse K multi-exposure image patches, we can reuse the
Equation 2 to fuse different components and then reuse the
Equation 3 for obtaining the fused image patch x̂. However,
with the integrated edge information for l (cf. Equation 10),
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Fig. 4. Visual demonstration of the proposed MESPD approach with four scales on the image sequence “Office”. (a) Final fused image. (b) Fused base and
detail layers at different scales.

we also need to modify the expressions of both γk and
βk in Equation 3. Here, we follow [4] and utilize the p-
norm function to estimate the coefficients αk. Based on these
coefficients, we can obtain the new γk as:

γk =
λ

σ2
xk

+ λ

K
max
j=1
{‖xj − lj‖} ·

‖xk − lk‖p−1∑K
j=1 ‖xj − lj‖p

(16)

Since we have incorporated the edge information for l, we
also utilize the new estimation to determine the coefficients
βk in order to further improve the fusion quality. We propose
the new bell curve function between the coefficient βk and the
mean intensity lk (cf. Equation 13) in Equation 17. Here, we
let C(lk) denote the mean intensity value in the center pixel
of the image patch xk.

βk =


C(lk)

δ · 0.251−δ if 0 ≤ C(lk) ≤ 0.25

0.5− (0.5− C(lk))δ · 0.251−δ if 0.25 ≤ C(lk) ≤ 0.5

0.5− (C(lk)− 0.5)δ · 0.251−δ if 0.5 ≤ C(lk) ≤ 0.75

(1− C(lk))δ · 0.251−δ if 0.75 ≤ C(lk) ≤ 1
(17)

Fig. 3 illustrates different functions to estimate βk, including
typical Hat function, Gaussian function, and our method with
different δ values. Observe that these curves can normally
provide higher βk, once C(lk) is close to the middle region (in
x-axis), e.g., 0.4 to 0.6, which indicates the good exposure of
this image patch. Compared with the Gaussian function, our
new bell curve function can be more flexible for controlling
the size of this middle region, in order to determine how many
details should be preserved in the image patch, by tuning the
parameter δ. As an example, once we use δ = 5, the middle
region is larger than the one with δ = 2. As a remark, we also
need to normalize all βk in order to ensure each pixel value
in the fused image is within the domain [0, 255]1.

After we have obtained both the parameters γk and βk, we
can also extend the fast implementation for SPD-MEF (cf.
Section III-B) to ESPD-MEF method, which can produce the
fused image X̂ (cf. Equation 18).

X̂ =

K∑
k=1

(
M
(
αk � F(Xk)

)
+M(γk)�Xk −M

(
γk � F(Xk)

))
(18)

1The normalization process is to use βk∑K
k=1

βk
as the new βk .

where M and F denote the r × r mean filter and the
edge-preserving filter respectively. Since the derivation of this
equation is similar with Equation 4 and F is the simple
extension of the mean filter M, we omit the details in this
paper. Like [4], both M and F can be efficiently implemented
using box filter [27]. Therefore, we can utilize O(WHK) time
to obtain this fused image X̂.

As a remark, even though we only focus on the static scene
fusion in this paper, our method can be easily extended to
support dynamic scene fusion, by using the same method
in [3], [4], i.e., utilizing the temporal similarity to filter the
inconsistent pixels. For more details, please refer to Section
III-E in [4].

B. Extension to Multi-scale ESPD-MEF (MESPD-MEF)

In order to suppress the halo effect of the fused images,
we extend the multi-scale framework (cf. Fig. 2) to support
our ESPD-MEF method. Since we have utilized the edge-
preserving filter F for each multi-exposure image Xk (cf.
Equation 18), instead of using the mean filter (cf. Equation
4), we need to replace the Equation 5 by Equation 19 in order
to obtain the images with different scales.

X
(j)
k = D(F(X

(j−1)
k )) (19)

Based on Equation 18, we can also modify the expressions
of both the high frequency component in each jth scale (cf.
Equation 6) and the low frequency component in the J th scale
(cf. Equation 7) by the Equations 20 and 21 respectively.

Ĥ(j)=

K∑
k=1

(
M(γ

(j)
k )�X

(j)
k −M(γ

(j)
k � F(X

(j)
k ))

)
(20)

B̂(J)=

K∑
k=1

M(α
(J)
k �M(F(X

(J)
k ))) (21)

By adopting the above modifications, the multi-scale frame-
work can also support this method.

There is still a remaining question. Recall that our method
utilizes the regularization constant λ (cf. Equation 11) to
control the value of a in Equation 10. We notice that the
higher the scale level j, the more the detail loss in the image
X

(j)
k . As such, we need to utilize the higher value of a, i.e.,
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TABLE I
IMPACT OF λ(1) AND T ON AVERAGE MEF-SSIM VALUES OVER THE STATIC DATASETS FROM [3]

Value of λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25 λ(1) = 0.25
T = 0.1 T = 0.2 T = 0.3 T = 0.4 T = 0.5 T = 0.6 T = 0.7 T = 0.8 T = 0.9 T = 1

MEF-SSIM 0.910 0.940 0.959 0.971 0.978 0.982 0.983 0.984 0.985 0.985
Value of λ(1) = 0.05 λ(1) = 0.10 λ(1) = 0.15 λ(1) = 0.20 λ(1) = 0.25 λ(1) = 0.30 λ(1) = 0.35 λ(1) = 0.40 λ(1) = 0.45 λ(1) = 0.50

T = 0.5 T = 0.5 T = 0.5 T = 0.5 T = 0.5 T = 0.5 T = 0.5 T = 0.5 T = 0.5 T = 0.5
MEF-SSIM 0.923 0.958 0.969 0.975 0.978 0.980 0.981 0.982 0.983 0.984

(a)

(b) λ(1) = 0.2, T = 0.5, MEF-SSIM = 0.955 (c) λ(1) = 0.2, T = 0.6, MEF-SSIM = 0.963 (d) λ(1) = 0.2, T = 0.8, MEF-SSIM = 0.972

(e) λ(1) = 0.2, T = 1, MEF-SSIM = 0.974 (f) λ(1) = 0.3, T = 1, MEF-SSIM = 0.975 (g) λ(1) = 0.25, T = 0.5, MEF-SSIM = 0.959

Fig. 5. The results of MESPD by different λ(1) and T . (a) Image sequence “Balloons”. (b) Result by λ(1) = 0.2 and T = 0.5. (c) Result by λ(1) = 0.2
and T = 0.6. (d) Result by λ(1) = 0.2 and T = 0.8. (e) Result by λ(1) = 0.2 and T = 1. (f) Result by λ(1) = 0.3 and T = 1. (g) Result by λ(1) = 0.25
and T = 0.5.

(a)

(b) (c) (d)

Fig. 6. The fused results of MESPD by different weight functions for mean
intensities. (a) Image sequence “Cave”. (b) Result by Hat. (c) Result by
Gaussian. (d) Result by Ours.

the smaller value of λ, in order to achieve edge preservation
for the image with higher scale level j. Therefore, we define
the regularization constant λ(j), where 1 < j ≤ J , using the
Equation 22. Here, T is the constant such that 0 < T ≤ 1.

λ(j) = λ(j−1) · T (22)

Empirically, we find that λ(1) = 0.25 and T = 0.5
can achieve the satisfactory performance. Fig. 42 shows the
intermediate results of our method at four scales along with
the final output.

V. EXPERIMENTAL EVALUATION
In our experiments, we first conduct ablation studies in our

method MESPD-MEF (cf. Section V-A). Then, we provide

2As a remark, the high frequency component at scale 1, i.e., Ĥ(1), is
computed based on stacking the RGB channels together, which contains both
the finest details and the rich color information of the sequence. For other
scales j, the high frequency components Ĥ(j) are computed in the grayscale
domain. The similar idea has been also adopted in [3], [4].
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(a) (b) (c) (d)

Fig. 7. The fused results of MESPD by different weight functions for mean intensities. (a) MSPD. (b) MESPD with the curve for βk (Used in MSPD). (c)
MSPD with our bell curve in βk . (d) MESPD.

qualitative and quantitative results of our method against the
state-of-the-art MEF methods in both static and dynamic
scenes in Section V-B. Lastly, we compare the running time of
our method with the state-of-the-art MEF methods in Section
V-C. For the sake of simplicity, we abbreviate the meth-
ods SPD-MEF (cf. Section III-A), MSPD-MEF (cf. Section
III-C) and MESPD-MEF (cf. Section IV-B) as SPD, MSPD
and MESPD respectively. As a remark, most parameters
of MESPD are inherited from the state-of-the-art method
MSPD [4] (cf. Section III-C). Therefore, we adopt the default
values in [4] for those parameters in our experiments, except
that we change the kernel size from 8× 8 in [4] to 9× 9 (the
smallest and middle scale levels) and 7× 7 (the highest scale
level), as we need to utilize the center pixel for the image
patch in our method (cf. Equation 17).

A. Ablation Studies of Our Method MESPD
In this section, we first analyze the impact of edge pre-

serving factors, including the regularization constant λ (cf.
Equation 11) and the parameter T (cf. Equation 22), for the
image fusion quality. Then, we investigate how the bell curves
(cf. Fig. 3) affect the image fusion quality of our method.
Lastly, we investigate how each component of our MESPD
method improves the details for the fused image, compared
with the state-of-the-art MSPD method [4] (cf. Section III-C).

Impact of edge-preserving factors: In the first experiment,
we measure the average MEF-SSIM values of our method
MESPD on 21 static scenes (used in [3]), by varying the
parameters λ(1) and T . Table I shows the results for two
sets of parameters (fixing λ(1) = 0.25, varying T and fixing
T = 0.5, varying λ(1)). Observe that once we decrease the
value λ(1), more high frequency components can be added for
the fused image (based on Equations 10 and 11). As such, the
MEF-SSIM value can decrease. On the other hand, the smaller
the value T , the smaller the λ(j) value for each scale level
j (cf. Equation 22), which also leads to the smaller MEF-
SSIM value. However, even though the high λ(1) and T of
MESPD method can lead to the high MEF-SSIM value, the

fused images can suffer from detail loss, as pointed out in the
next experiment, which can also degrade the visual quality.

In the second experiment, we adopt the image sequence
“Balloons” to test the fusion performance (cf. Fig. 5(a)).
Observe that once we fix λ(1) = 0.2 and vary the parameter
T from 0.5 to 1 (cf. Fig. 5(b)-(e)), the visual quality of the
images is lower (e.g., image patches (red boxes) in Fig. 5(e)).
The main reason is that the higher the value T , the larger the
regularization constant λ(j), where 1 < j ≤ J . However, the
large regularization constant can result in smaller value of a(j)

(cf. Equation 11), in which the fused image can suffer from
detail loss (cf. Equation 10). We also vary different sets of λ(1)

and T in this experiment (e.g., Fig. 5(f) and (g)). Observe that
our method MESPD with λ(1) = 0.3, T = 1 and λ(1) = 0.25,
T = 0.5 can achieve the highest MEF-SSIM value and the best
visual quality respectively, which are adopted as the default
values of our method in later experiments.

Impact of bell curve functions: Fig. 6 illustrates the fused
results for the image sequence “Cave”, using different bell
curve functions for estimating the parameter βk for each image
batch (cf. Equation 2). In this experiment, we adopt δ = 5 for
our bell curve function (cf. Equation 17). Observe that both
Hat and Gaussian functions suffer from visible detail loss in
dark regions (i.e., red boxes in Fig. 6), compared with our
bell curve function. The main reason is that our function can
be more flexible to tune the shape (cf. Fig. 3) in order to
provide less weight for βk, once the image patch xk is either
under-exposed or over-exposed.

Compared with MSPD: MSPD (cf. Section III-C) can be
regarded as the special case of our method MESPD, by setting
a = 0 for l in Equation 10. On the other hand, MESPD further
adopts the flexible bell curve function (cf. Equation 17) for
estimating βk, instead of using the modified arctan function in
MSPD. Here, we ask a question, how can each component of
our method MESPD improve the details for the fused image,
compared with the MSPD method? Fig. 7 shows the results
of different combinations for each component in the image
sequence “Tower”. Observe that once we use the modified
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(a)

(b) Mertens [1] (c) GFF [26] (d) GGIF [16]

(e) SPD [3] (f) MSPD [4] (g) MEF-NET [35]

(h) IFCNN [36] (i) MEF-GAN [34] (j) MESPD

Fig. 8. Fused results by different methods in one static scene. (a) Image sequence “Arto”. (b) Mertens [1]. (c) GFF [26]. (d) GGIF [16]. (e) SPD [3]. (f)
MSPD [4]. (g) MEF-NET [35]. (h) IFCNN [36]. (i) MEF-GAN [34]. (j) MESPD.

arctan curve, i.e., omit our bell curve function (cf. Fig. 7(a) and
(b)), the fused images are dark as this modified arctan function
curve can fuse more under-exposure images, which reduce the
quality of the results (red boxes in Fig. 7). Suppose that we
set a = 0 for l (cf. Fig. 7(a) and (c)), the fused images suffer
from detail loss (green boxes in Fig. 7). By incorporating both
components, our method MESPD (cf. Fig. 7(d)) achieves the
best fusion result.

B. Quality Comparisons with the State-of-the-art MEF Meth-
ods

We proceed to compare the fusion quality between our
method and the state-of-the-art methods in both static and
dynamic scenes.

Static scene comparisons: To verify the effectiveness of the
proposed method, we compare our method with eight state-

of-the-art MEF methods, including Mertens [1], GGIF [16],
GFF [26], MEF-NET [35], MEF-GAN [34], IFCNN [36],
SPD [3], and MSPD [4], on 21 static scenes. Mertens [1]
is the most representative baseline MEF method. GGIF is an
improved method based on Mertens [1]. GFF [26] is a simple
yet effective two-layer decomposition based method. Both
MEF-NET [35], MEF-GAN [34] and IFCNN [36] are the re-
cently proposed deep-learning-based methods. MEF-NET [35]
is the first deep-learning-based approach, which extends Deep-
Fuse [32], to support MEF with arbitrary numbers of multi-
exposure images with unrestricted image resolution. MEF-
GAN [34] uses GAN to achieve better detail and photorealistic
performance. IFCNN [36] is a representative fusion framework
under which multiple fusion issues can be handled. The fused
results are produced by the available implementations on the
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TABLE II
QUANTITATIVE COMPARISON OF OUR METHOD WITH EXISTING MEF ALGORITHMS USING MEF-SSIM [33] ON THE SEQUENCES IN [3]. THE SCORE

RANGES FROM 0 TO 1 WITH A HIGHER VALUE INDICATING BETTER PERFORMANCE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Image sequence
Mertens09 GFF SPD-MEF GGIF Ancuti17 MSPD MEF-NET IFCNN MEF-GAN MESPD MESPD

[1] [26] [3] [16] [14] [4] [35] [36] [34] λ = 0.25 λ = 0.3
T = 0.5 T = 1

Arno 0.991 0.969 0.984 0.970 0.915 0.990 0.958 0.900 0.834 0.975 0.991
Balloons 0.969 0.948 0.969 0.951 0.929 0.963 0.960 0.931 0.716 0.959 0.975
Belgium house 0.971 0.964 0.973 0.968 0.938 0.977 0.962 0.942 0.896 0.969 0.975
Cave 0.975 0.978 0.985 0.979 0.958 0.984 0.958 0.955 0.804 0.984 0.983
Chinese garden 0.989 0.984 0.991 0.983 0.974 0.994 0.981 0.948 0.635 0.987 0.995
Church 0.989 0.992 0.993 0.992 0.980 0.991 0.983 0.939 0.435 0.985 0.991
Farmhouse 0.981 0.985 0.984 0.982 0.976 0.986 0.977 0.948 0.715 0.970 0.980
House 0.964 0.957 0.960 0.961 0.893 0.973 0.902 0.934 0.615 0.969 0.971
Lamp 0.969 0.929 0.956 0.945 0.877 0.967 0.938 0.915 0.648 0.968 0.970
Landscape 0.976 0.942 0.993 0.947 0.939 0.989 0.974 0.889 0.662 0.984 0.991
Laurenziana 0.988 0.987 0.987 0.985 0.957 0.989 0.977 0.956 0.791 0.980 0.993
Madison capitol 0.977 0.968 0.983 0.969 0.907 0.990 0.967 0.957 0.719 0.981 0.985
Mask 0.987 0.979 0.988 0.977 0.948 0.991 0.981 0.933 0.734 0.989 0.993
Office 0.985 0.967 0.990 0.984 0.957 0.989 0.984 0.913 0.747 0.986 0.991
Ostrow 0.974 0.967 0.978 0.977 0.925 0.979 0.964 0.916 0.750 0.965 0.983
Room 0.974 0.986 0.978 0.983 0.958 0.980 0.976 0.934 0.698 0.976 0.979
Set 0.986 0.960 0.988 0.966 0.905 0.992 0.950 0.914 0.820 0.984 0.990
Tower 0.986 0.986 0.986 0.986 0.962 0.988 0.980 0.927 0.697 0.990 0.988
Venice 0.966 0.954 0.984 0.952 0.932 0.984 0.953 0.924 0.650 0.980 0.985
Window 0.982 0.971 0.982 0.972 0.936 0.982 0.967 0.925 0.916 0.969 0.981
Yellow hall 0.995 0.990 0.995 0.987 0.966 0.997 0.988 0.873 0.845 0.991 0.994
Average 0.980 0.970 0.982 0.972 0.940 0.985 0.966 0.927 0.730 0.978 0.985

TABLE III
AVERAGE RUNNING TIME COMPARISON ON 12 DYNAMIC SCENES OF APPROXIMATELY THE SAME SIZE (683× 1024× 3× 3)

Alg Sen12 [38] Hu13 [53] Lee14 [39] Qin15 [50] Oh15 [40] SPD [3] MSPD [4] MESPD
Env MATLAB+Mex MATLAB+Mex MATLAB+Mex MATLAB+Mex MATLAB MATLAB MATLAB MATLAB

Time (s) 75.28± 20.48 114.96± 45.29 36.91± 11.55 465.06± 298.87 40.93± 9.93 57.48± 3.21 1.92± 0.20 2.12± 0.22

public with default optimized settings. The deep-learning-
based methods are tested by GPU GeForce GTX 1080 with 16
GB memory with the released pre-trained models. The visual
comparison results in the image sequence “Arto” can be found
in Fig. 8.

In Fig. 8, the result by Mertens cannot effectively retain the
details, as marked in red boxes. GFF recovers more details
than Mertens, but information in the dark region is still not
sufficient. GGIF is an improved method based on Mertens with
edge-preserving factor and decreased decomposition level.
However, the detail in the green box is still lost. MEF-GAN
severely loses the details in the whole picture due to limited
number of multi-exposure images. Even though IFCNN can
present details in dark region, the result is over-enhanced with
visible noise. Compared with SPD, MSPD loses more details
in dark region. Both MEF-NET and MESPD can achieve
similar visual performance, which can preserve the details on
the building and bridge.

Moreover, we use MEF-SSIM [33] to quantitatively assess
the quality of results generated by different MEF algorithms
(cf. Table II). MEF-SSIM is specifically designed for multi-
exposure fusion task, which has been the most widely used
metric recently. A higher score between 0 and 1 indicates
a better quality. Observe that our proposed method MESPD
(λ(1) = 0.3 and T = 1) can obtain the best performance with
10 highest scores out of 21 scenarios and highest average
score. It should be noted that MEF-SSIM is not accurately
consistent with human visual system. It prefers halo and detail
loss to some extent. Similar observations and statements can
be also found in recent studies [4], [31], [34]. Therefore, it may

not be important to blindly pursue a high MEF-SSIM value for
developing a new MEF method. However, MEF-SSIM is still
an important reference for objective evaluation of MEF task.
A good MEF method should keep a good balance between
dynamic range recovery and decent MEF-SSIM value.

Furthermore, we conduct the subjective experiment in an
indoor environment for these nine MEF methods. In this
experiment, we have found six volunteer subjects, including
three males and three females, to provide the score from 1 (the
worst) to 10 (the best) for each fused image. Based on their
scores, we measure the mean opinion score (MOS) for each
MEF method. Fig. 9 shows the MOS of all methods. Observe
that our method MESPD can achieve the highest MOS, i.e.,
7.33 ± 1.03, which is higher than the second best method
MEF-NET with MOS 7.17± 1.17.

Mertens
GFF

GGIF SPD
MSPD

MEF-NET
IFCNN

MEF-GAN
MESPD

0

1

2

3

4
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8
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Fig. 9. MOS of all methods, using the 21 static scenes (from [3]) for testing.
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(a)

(b) Gallo [37] (c) Hu [53] (d) Li [51] (e) Oh [40]

(f) Qin [50] (g) SPD [3] (h) MSPD [4] (i) MESPD

Fig. 10. Fused results by different methods in one dynamic scene. (a) Image sequence “ArchSequence”. (b) Gallo [37]. (c) Hu [53]. (d) Li [51]. (e) Oh [40].
(f) Qin [50]. (g) SPD [3]. (h) MSPD [4]. (i) MESPD.

Dynamic scene comparisons: We proceed to compare
the performance between our method and the state-of-the-art
methods, including Gallo [37], Hu [53], Li [51], Oh [40],
Qin [50], SPD [3], and MSPD [4], under dynamic scene
setting. Fig. 10 shows the results of all methods in the image
sequence “ArchSequence”. Gallo fails to present the details
in dark arch and bright sky. Hu can recover a few details in
dark region, but the sky in the fused image is over-exposed.
Li shares similar performance with Gallo. Oh can show the
blue sky, but it suffers from evident artifacts on the arch. Qin
suffers from the color distortions on the dark region. Even
though SPD can recover the detail in both dark and bright
regions, it suffers from halo effect, as shown in the green
box. MSPD can suppress the halo effect. However, it loses

the details in the dark region. Our presented method MESPD
can simultaneously recover the blue sky and visible details in
the dark region.
C. Running Time Comparisons with the State-of-the-art MEF
Methods

In this section, we compare the running time between our
method and the state-of-the-art methods, under dynamic scene
setting, using a computer with 4GHz CPU and 32GB RAM.
We report the average running time of different methods on
12 natural scenes in Table III. In our preliminary work [4], we
have already shown that MSPD can achieve the smallest time
complexity, compared with other methods. Therefore, the run-
ning time of this method is the smallest (cf. Table III). Since
our MESPD method shares the same theoretical computational
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cost as MSPD, our method MESPD, which can significantly
preserve the details (cf. Fig. 10), only incurs a slightly higher
computational time, compared with the fastest method MSPD.

VI. CONCLUSION

In this paper, we proposed the multi-scale edge-preserving
structural patch decomposition for supporting multi-exposure
fusion, i.e., MESPD-MEF, which can preserve more details in
the fused images, based on incorporating the edge-preserving
factors. Compared with the state-of-the-art methods, SPD-
MEF [3] and MSPD-MEF [4], our method can inherit all their
advantages, e.g., suppress halo artifacts [4], avoid ghosting
effect [3], [4], and achieve the fastest running time [4],
and overcome their weakness, a.k.a. detail loss. As such,
the extensive experiments validate that our proposed method
MESPD-MEF can achieve the state-of-the-art visual quality
for both static scene and dynamic scene settings, compared
with different types of MEF methods. In addition, MESPD-
MEF only incurs a slight time overhead (10-35% in Table III),
compared with the fastest method [4].
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