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Abstract. We study a similarity search problem on a raw image by its pixel val-
ues. We call this problem as matrix similarity search; it has several applications,
e.g., object detection, motion estimation, and super-resolution. Given a data im-
age D and a query q, the best match refers to a sub-window of D that is the
most similar to q. The state-of-the-art solution applies a sequence of lower bound
functions to filter sub-windows and reduce the response time. Unfortunately, it
suffers from two drawbacks: (i) its lower bound functions cannot support arbi-
trary query size, and (ii) it may invoke a large number of lower bound functions,
which may incur high cost in the worst-case. In this paper, we propose an effi-
cient solution that overcomes the above drawbacks. First, we present a generic
approach to build lower bound functions that are applicable to arbitrary query
size and enable trade-offs between bound tightness and computation time. We
provide performance guarantee even in the worst-case. Second, to further reduce
the number of calls to lower bound functions, we develop a lower bound function
for a group of sub-windows. Experimental results on image data demonstrate the
efficiency of our proposed methods.

1 Introduction

Multimedia databases [15, 14, 21] support similarity search on objects (e.g., images)
by their feature vectors. In contrast, we consider a similarity search problem on a raw
image by its pixel values. We call this problem as matrix similarity search; it has several
applications, e.g., object detection [6], motion estimation [17], and super-resolution [7].
For example, we consider a satellite image in which each pixel represents a certain area
on Earth (or in the sky). We illustrate a weather satellite image (obtained from [1]) in
Figure 1a and a cloud pattern in Figure 1b. The matrix similarity search problem has
been used for cloud motion estimation on satellite images [4]. This problem takes a data
image D and a query image q as inputs (c.f. Figure 1). A candidate c refers to a sub-
window (of D) with the same size as q. The matrix similarity search problem comes in
two flavors [19, 22]:

– Range search: given a range τrange, find every candidate c of D such that
dist(q, c) ≤ τrange.

– Nearest neighbor (NN) search: find a candidate c ofD such that it has the smallest
dist(q, c).



The typical distance function dist(q, c) is the Lp-norm distance (usually L1 or L2). In
subsequent discussion, we let the size of D be ND = LD ×WD, and the size of q be
Nq = Lq ×Wq .

(a) data image D, of size ND = LD ×WD (b) query image q, of size Nq = Lq ×Wq

(best match: yellow rectangle)

Fig. 1: The matrix similarity search problem

In this paper, we focus on the NN flavor of matrix similarity problem because some
applications [17, 4] require finding the best match. Unlike the range search, the NN
search has a fixed result size and does not require the user to supply a range parameter
τrange [22].

Schweitzer et al. [22] is the state-of-the-art NN search algorithm for the matrix sim-
ilarity search problem. It applies a sequence of lower bound functions to filter candi-
dates and reduce the response time. We illustrate this idea in Figure 2a. It starts with the
cheapest lower bound function and then progressively apply tighter lower bound func-
tions when necessary. However, this solution still suffers from two drawbacks. First, the
lower bound functions in [22] are based on a Fourier transform on matrix (called the
Walsh-Hadamard transform), which can only support query of the size 2r × 2r. Thus,
it cannot support arbitrary query size. Second, in the worst case, it may invoke a large
number of lower bound functions on a candidate, which may sum up to a high cost.

To avoid the above drawbacks on matrix similarity search, we contribute two lower
bound functions LBlevel,` and LBgroup, as shown in Figure 2b.

– When compared to Ref. [22], we present a generic approach to build a sequence
of lower bound functions LBlevel,` that are applicable to arbitrary query size. As
shown in Figure 2b, our approach would only call a logarithmic number of func-
tions (in terms of Nq) in the worst-case.

– Existing lower bound functions take a single candidate as input. We develop a lower
bound function LBgroup that can take a group of candidates as input. This signif-
icantly reduces the frequency of calling lower bound functions for individual can-
didates.
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Fig. 2: Intuition

The rest of the paper is organized as follows. Section 2 defines our problem and
introduces the background information. Section 3 presents our proposed solution. Sec-
tion 4 discusses our experimental results. Section 5 elaborates on the related work.
Section 6 concludes the paper with future research directions.

2 Preliminaries

2.1 Problem Definition

In this paper, we represent each image as a matrix. Let D be the data matrix (of size
ND = LD ×WD) and q be the query matrix (of size Nq = Lq ×Wq). A candidate
cx,y is a sub-window of D with the same size as q.

cx,y[1..Lq, 1..Wq] = D[x..x+ Lq − 1, y..y +Wq − 1] (1)

The subscript of cx,y denotes the start position in D; we drop it when the context is
clear.

Problem 1 (Matrix NN Search). Given a query q and a data matrixD, find the candidate
cbest such that it has the minimum distp(q, cbest), where the distance is defined as:

distp(q, c) = (

Lq∑
i=1

Wq∑
j=1

|q[i, j]− c[i, j]|p)
1
p (2)

Figure 3 shows a query q of size 4× 4 and a data matrix D of size 8× 8. There are
5×5 = 25 candidates inD. For instance, the dotted sub-window refers to the candidate
c3,3. The right-side of Figure 3 enumerates the distances from q to each candidate,
assuming the L1 distance (i.e., p = 1) is used. In this example, the best match is c3,3
because it has the smallest distance dist1(q, c3,3) = 27 from q.
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Fig. 3: Example for the problem

2.2 Background: Prefix-Sum Matrix & Basic Lower Bound Functions

In this section, we first introduce prefix-sum matrix and then discuss how they can be
utilized to compute basic lower bound functions.

As we will introduce shortly, lower bound functions require summing the values in a
rectangular region in a matrix. We can speedup their computation by using a prefix-sum
matrix [11]. It is also called integral image [26] in the computer vision community.

Definition 1 (Prefix-sum matrix). Given a matrix A (of size NA = LA ×WA), we
define its prefix-sum matrix PA (of the same size) with entries:

PA[x, y] =

x∑
i=1

y∑
j=1

A[i, j] (3)

The prefix-sum matrix occupiesO(NA) space and takesO(NA) construction time [11].
It enables us to find the sum of values of a rectangular region (say, [x1..x2, y1..y2]) in a
matrix A in O(1) time, according to Equation 4.

∑
A[x1..x2, y1..y2] =



PA[x2, y2] if x1 = 1, y1 = 1

PA[x2, y2]− PA[x1 − 1, y2] if x1 > 1, y1 = 1

PA[x2, y2]− PA[x2, y1 − 1] if x1 = 1, y1 > 1

PA[x2, y2] + PA[x1 − 1, y1 − 1]

−PA[x1 − 1, y2]− PA[x2, y1 − 1]
otherwise

(4)
Figure 4 illustrates a data matrix D and its corresponding prefix-sum matrix PD.

The sum of values in the dotted region ([4..7,2..5]) in D can be derived from the entries
(7,5), (3,1), (3,5), (7,1) in PD.

We proceed to introduce the basic lower bound function LBbasic used in Figure 2.
Since our solution will use LBbasic as a building block (cf. Section 3), we require that:
(i) LBbasic can be computed in O(1) time, (ii) LBbasic(q, c) ≤ distp(q, c) always
holds, and (iii) LBbasic supports arbitrary query size.
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x
1 2 3 4 5 6 7 8

1 16 40 66 79 97 113 133 146
x

1 16 24 26 13 18 16 20 13

2 14 10 11 12 19 14 16 16

3 24 25 20 16 23 20 17 19

4 16 12 17 16 22 11 18 14

5 11 15 14 15 21 25 17 24

6 17 19 14 30 24 26 25 31

7 14 26 22 33 26 19 20 20

x
1 16 40 66 79 97 113 133 146

2 30 64 101 126 163 193 229 258

3 54 113 170 211 271 321 374 422

4 70 141 215 272 354 415 486 548

5 81 167 255 327 430 516 604 690

6 98 203 305 407 534 646 759 876

7 112 243 367 502 655 786 919 1056

x

14 26 22 33 26 19 20 20

8 23 21 18 21 24 23 18 22

data matrix D
y

8 135 287 429 585 762 916 1067 1226

prefix-sum matrix PD of D
y

Fig. 4: Example of a prefix-sum matrix

In this paper, we use the following lower bound functions as LBbasic.

LB⊕(q, c) =
p
√
Nq

Nq
·

∣∣∣∣∣
Lq∑
i=1

Wq∑
j=1

q[i, j]−
Lq∑
i=1

Wq∑
j=1

c[i, j]

∣∣∣∣∣ (5)

LB∆(q, c) =

∣∣∣∣∣ p

√√√√ Lq∑
i=1

Wq∑
j=1

|q[i, j]|p − p

√√√√ Lq∑
i=1

Wq∑
j=1

|c[i, j]|p
∣∣∣∣∣ (6)

The first one (LB⊕(q, c)) is given in [28]. The second one (LB∆(q, c)) is derived from
the triangle inequality of the Lp distance [5, 13].

Observe that both of them can be computed in O(1) time, by using a prefix-sum
matrix as discussed before. Regarding the summation term for q, we can compute it
once and then reuse it for every candidate c. For LB⊕(q, c), the term

∑Lq

i=1

∑Wq

j=1 c[i, j]
can be derived from the prefix-sum matrix PD (of data matrix D). For LB∆(q, c), the
term

∑Lq

i=1

∑Wq

j=1 |c[i, j]|p can be derived from the prefix-sum matrix PD′ , where the
matrix D′ is defined with entries: D′[i, j] = (D[i, j])p.

As a remark, we are aware of lower bound functions used in the pattern matching
literature [18, 25, 2, 10, 19]. However, since those lower bound functions take more than
O(1) time, we choose not to use them as LBbasic (the building block) in our solution.

3 Progressive Search Algorithm

We illustrate the flow of our proposed NN search method in Figure 5. Like [23, 16], we
employ a min-heapH in order to process entries in ascending order of their lower bound
distance. The main difference is thatH contains two types of entries: (i) a candidate, (ii)
a group of candidates. As discussed before, a candidate corresponds to a sub-window
ofD. On the other hand, a group represents a consecutive region of candidates. Initially,
H contains a group entry that covers the entire D.

When we deheap an entry from H , we check whether it is a group or a candidate.



1. If it is a group G, then we divide it evenly into 4 groups G1, G2, G3, G4
3. For each

Gi, we compute the group lower bound LB(q,Gi) and then enheap Gi into H .
2. If it is a candidate c, then we compute the candidate lower bound LBlevel,`(q, c) at

the next level `, and then enheap c into H again.

During this process, a group would degenerate into a candidate when it covers exactly
one candidate. Similarly, when a candidate reaches the deepest level, we directly apply
the exact distance function dist(q, c) on it, and update the best NN distance found so far
τbest. The search terminates when the lower bound of a deheaped entry exceeds τbest.

a group 

apply LBgroup to these groups, then enheap them

a group 
(of candidates)

min-heap H
deheap an entry

divide it into 

4 groups

increment 

level

apply LBlevel to it, then enheap it

a candidate
(at level l)

or compute 

exact distance

Fig. 5: The flow of our progressive search method

Table 1 lists the lower bound functions to be used in our NN search method. We have
introduced LBbasic in Section 2.2. We will develop LBlevel,` and LBgroup in Sections
3.1 and 3.2, respectively. Section 3.3 explores an efficient technique for computing
LBgroup. Finally, we summarize our proposed NN search algorithm in Section 3.4.

Function Apply to Cost
LBbasic candidate O(1)

(e.g., LB∆, LB⊕)
LBlevel,` candidate O(4`)

LBgroup group O(α)

Table 1: Types of lower bound functions

3 This is similar to the division of nodes in a quadtree.



3.1 Progressive Filtering for Candidates

As discussed in Section 1, the lower bound LBbasic and the exact distance distp have
a significant gap in terms of computation time and bound tightness (cf. Figure 2). In
order to save expensive distance computations, we suggest to apply tighter lower bound
functions progressively.

In this section, we present a generic idea to construct a parameterized lower bound
function LBlevel,` by using LBbasic as a building block. The level parameter ` controls
the trade-offs between the bound tightness and the computation time in LBlevel,`. A
small ` incurs small computation time whereas a large ` provides tighter bounds.

Intuitively, we build LBlevel,` by using divide-and-conquer. We can partition the
space [1..Lq, 1..Wq] into 4` disjoint rectangles {Rv : 1 ≤ v ≤ 4`}, and then apply
LBbasic (for q and c) in each rectangle Rv .4 Then, we combine these 4` lower bound
distances into LBlevel,` in Equation 7. The time complexity of LBlevel,` is O(4`), as
each LBbasic takes O(1) time.

LBlevel,`(q, c) =
p

√√√√ 4`∑
v=1

LBbasic(q[Rv], c[Rv])
p (7)

For example, in Figure 6, when ` = 2, both the query q and the candidate c are divided
into 4` = 16 rectangles. We apply LBbasic on each rectangle in order to compute
LBlevel,`(q, c). As a remark, the maximum possible level `max (for `) is:

`max = dlog2(max{Lq,Wq})e (8)

Next, we show that LBlevel,` satisfies the lower bound property.

Lemma 1. For any candidate c, we have: LBlevel,`(q, c) ≤ distp(q, c).

Proof. For each region Rv , we have LBbasic(q[Rv], c[Rv]) ≤
p

√∑
(i,j)∈Rv

|q[i, j]− c[i, j]|p, and thusLBbasic(q[Rv], c[Rv])
p ≤

∑
(i,j)∈Rv

|q[i, j]−

c[i, j]|p. By summing it over all Rv , we obtain:
∑4`

v=1 LBbasic(q[Rv], c[Rv])
p ≤

Lq∑
i=1

Wq∑
j=1

|q[i, j] − c[i, j]|p, because ∪4`v=1Rv covers all positions in the query matrix q.

Thus we have: LBlevel,`(q, c) ≤ distp(q, c). ut

During search, we will apply LBlevel,` on a candidate in the ascending order of `
as shown in Figure 6. If we cannot filter c at level `, then we attempt to filter it with
minimal extra effort, i.e., at level `+ 1. We justify this ascending ` order in Lemma 2.

Lemma 2. Consider a candidate c that is not the nearest neighbor. The ascending level
order achieves costorder ≤ 4

3 · costopt, where costopt is the optimal cost, and costorder
is the cost of the order.

4 In general, the space [1..Lq, 1..Wq] may have less than O(4`) disjoint rectangles.
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Fig. 6: LBlevel,` at different levels

Proof. Recall that the cost of LBlevel,`(q, c) is 4`. Let `∗ be the smallest level such that
LBlevel,`∗(q, c) > distNN , where distNN is the best match distance.

In order to discard c, the optimal way (which knows `∗) is to apply LBlevel,`∗ . Thus,
we have: costopt = 4`

∗
.

For the ascending level order, we have: costorder =
∑`∗

i=0 4
i = 4`

∗+1−1
3 . Thus, we

have: costorder/costopt ≤ 4`
∗+1−1
3×4`∗ ≤

4
3 . ut

3.2 Progressive Filtering for Groups

We first introduce the concept of a group and then propose a lower bound function for
it. A group G represents a consecutive region of candidates as shown in Figure 7. It
contains the following attributes: (i) Lg and Wg represent the size of the group, and
(ii) xstart and ystart represent the start position (top-left corner) of the group. In order
to cover all candidates in the group (e.g., those at bottom-right corner), we define the
extended region as G.Rext = [xstart..x

ext
end, ystart..y

ext
end], where xextend = min(xstart +

Lg + Lq − 1, LD) and yextend = min(ystart + Lg +Wq − 1,WD).
Our lower bound functions require the following concepts.

Definition 2 (The smallest / largest Nq values). We define Nqmin(G.Rext) as the
multi-set of the smallest Nq values in the submatrix D[G.Rext], i.e., it satisfies:

max{v : v ∈ Nqmin(G.Rext)} ≤ min{v : v ∈ D[G.Rext]−Nqmin(G.Rext)}

Then we define the following aggregates:
φmin(G.R

ext) =
∑
v∈Nq min(G.Rext) v, φpmin(G.R

ext) =
∑
v∈Nq min(G.Rext) |v|p.

We define the max versions (i.e.,Nqmax(G.Rext), φmax(G.R
ext), φpmax(G.R

ext))
in a similar way.

We illustrate these concepts in Figure 8. Assume that p = 2 and the query size is
Nq = 2×2 = 4. Consider the groupGwith regionG.R = [2..5, 2..5] (as dotted square)
and the extended region G.Rext = [2..6, 2..6] (as bolded square). In this example, the
smallest Nq values G.Rext are: 9, 9, 10, 10. Thus, we have: φmin(G.R

ext) = 9 + 9 +
10 + 10 = 38, φ2min(G.R

ext) = 2 · 92 + 2 · 102 = 362.
We then extend basic lower bound functions (e.g., LB⊕, LB∆) for a group G. We

propose the lower bound functions LB⊕group and LB∆group for G in Equations 9,10.
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Fig. 7: Illustration of a group with Lg ×Wg consecutive candidates
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Fig. 8: Illustration of Nqmin(G.Rext) and Nqmax(G.Rext)

They serve as lower bounds of LB⊕(q, c), LB∆(q, c) for any candidate c in G (cf.
Lemmas 3,4).

LB⊕group(q,G) =


p
√
Nq

Nq
(φmin(G.R

ext)−
∑
∗ q) if φmin(G.R

ext) >
∑
∗ q

p
√
Nq

Nq
(
∑
∗ q − φmax(G.R

ext)) if φmax(G.R
ext) <

∑
∗ q

0 otherwise

(9)

LB∆group(q,G) =


p
√
φpmin(G.R

ext)− p
√∑

∗ |q[i, j]|p if φpmin(G.R
ext) >

∑
∗ |q[i, j]|p

p
√∑

∗ |q[i, j]|p −
p
√
φpmax(G.Rext) if φpmax(G.R

ext) <
∑
∗ |q[i, j]|p

0 otherwise
(10)



where
∑
∗ q =

Lq∑
i=1

Wq∑
j=1

q[i, j] and
∑
∗ |q[i, j]|p =

Lq∑
i=1

Wq∑
j=1

|q[i, j]|p.

Lemma 3. Given a group G, for any candidate c in G, we have: LB⊕group(q,G) ≤
LB⊕(q, c).

Proof. First, we focus on the first case of LB⊕group(q,G), i.e., when φmin(G.R
ext) >∑

∗ q.
Consider a candidate c in the group region of G. Since Nqmin(G.Rext) con-

tains the least Nq values in the group, we have:
∑
∗ c ≥ φmin(G.R

ext). Combin-
ing it with the condition in the first case, i.e., φmin(G.R

ext) >
∑
∗ q), we have∑

∗ c ≥ φmin(G.R
ext) >

∑
∗ q.

Then we apply the above inequality on LB⊕(q, c) and derive: LB⊕(q, c) =
p
√
Nq

Nq
·

(
∑
∗ c−

∑
∗ q) ≥

p
√
Nq

Nq
(φmin(G.R

ext)−
∑
∗ q) = LB⊕group(q,G).

We omit the proof for the second case as it is similar to the above argument. The
proof for the third case (i.e., LB⊕group(q,G) = 0) is trivial. ut

Lemma 4. Given a group G, for any candidate c in G, we have: LB∆group(q,G) ≤
LB∆(q, c).

Proof. First, we focus on the first case of LB∆group(q,G), i.e., when φpmin(G.R
ext) >∑

∗ |q[i, j]|p.
Consider a candidate c in the group region of G. Since Nqmin(G.Rext) contains

the least Nq values in the group, we have:
∑
∗ |c[i, j]|p ≥ φpmin(G.R

ext). Combin-
ing it with the condition in the first case, i.e., φpmin(G.R

ext) >
∑
∗ |q[i, j]|p, we have∑

∗ |c[i, j]|p ≥ φ
p
min(G.R

ext) >
∑
∗ |q[i, j]|p.

Then we apply the above inequality on LB∆(q, c) and derive: LB∆(q, c) =
p
√∑

∗ |c[i, j]|p − p
√∑

∗ |q[i, j]|p ≥ p
√
φpmin(G.R

ext) − p
√∑

∗ |q[i, j]|p =
LB∆group(q,G).

We omit the proof for the second case as it is similar to the above argument. The
proof for the third case (i.e., LB∆group(q,G) = 0) is trivial. ut

We will discuss how to compute LBgroup(q,G) efficiently in the next subsection.
During our search procedure (cf. Figure 5), we will applyLBgroup(q,G) on a group

G. If we cannot filter G, then we partition its group region G.R into four sub-groups
G1, G2, G3, G4 accordingly, and apply LBgroup(q,Gi) on each sub-group Gi.

3.3 Supporting Group Filtering Efficiently

The lower bound LBgroup(q,G) involves the terms φmin(G.R
ext), φmax(G.R

ext),
φpmin(G.R

ext), φpmax(G.R
ext), which require finding the smallest Nq and the largest

Nq values in G.Rext.
In this section, we design a data structure called prefix histogram matrix to support

the above operations efficiently, namely in O(α) time. The parameter α allows trade-
off between the time complexity and the bound tightness. A larger α tends to provide
tighter bounds, but it incurs more computation time.



We proceed to elaborate on how to construct the prefix histogram matrix for a data
matrix D. First, we partition the values in matrix D into α bins and convert each value
D[i, j] to the following bin number D′[i, j]:

D′[i, j] =

⌊
α · D[i, j]−Dmin

Dmax −Dmin + 1

⌋
+ 1

where Dmin and Dmax denote the minimum and maximum values in D, respectively.
We define the prefix histogram matrix PHD as a matrix where each entry PHD[i, j]

is a vector:
PHD[i, j] = 〈P1[i, j], P2[i, j], · · · , Pα[i, j]〉

where
Pv[i, j] = count(x,y)∈[1..i,1..j](D

′[x, y] = v)

As a remark, the prefix histogram matrix occupies O(αND) space.
Figure 9a illustrates a histogram matrix PHD in which each entry PHD[i, j] stores

a count histogram for values in region [1..i, 1..j] in the data matrix D.
Given an extended group region G.Rext, we first retrieve count histograms at four

corners of G.Rext, and then combine them into the histogram as shown in Figure 9b.
With this histogram, we can derive bounds for the minimum / maximum Nq values of
G.Rext in D by Definition 3.

Definition 3 (Sum of the smallest / largestNq values in a count histogram). LetCH
be a count histogram for G.Rext. We define φ′min(CH) as the sum of the smallest Nq
values in CH , and φ′max(CH) as the sum of the largest Nq values in CH .

While scanning the bins of CH from left to right, we examine the count and the min-
imum bound of each bin to derive φ′min(CH). A similar way can be used to derive
φ′max(CH). The time complexity is O(α) as CH contains α bins.

As an example, consider the count histogram CH obtained in Figure 9b. Assume
that α = 6 and Nq = 4. Thus, the width of each bin is Dmax−Dmin+1

α = 12
6 = 2.

Since the count of bin 9..10 is above Nq , we derive: φ′min(CH) = 9 · 4 = 36. Note
that φ′min(CH) = 36 is looser than the actual value φmin(G.R

ext) = 38 (obtained in
Figure 8).

Then we replace LB⊕group by the following function LB′⊕group:

LB′⊕group(q,G) =


p
√
Nq

Nq
(φ′min(CH)−

∑
∗ q) if φ′min(CH) >

∑
∗ q

p
√
Nq

Nq
(
∑
∗ q − φ′max(CH)) if φ′max(CH) <

∑
∗ q

0 otherwise

(11)

Since φ′min(CH) ≤ φmin(G.R
ext) and φ′max(CH) ≥ φmax(G.R

ext), LB′⊕group ≤
LB⊕group.

Similarly, we can adapt the above technique to derive a lower bound of LB∆group
efficiently.
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3.4 Algorithm for NN Search

In this section, we summarize our techniques in Algorithm 1. Like [23, 16], we employ a
min-heapH in order to process entries in ascending order of their lower bound distance.
Also, we maintain the best distance found-so-far τbest during the search. The main
difference from [23, 16] is that we apply multiple lower bound functions on candidates
and also consider lower bound function for groups of candidates.

Initially, we create an entry eroot to represent the group of all candidates. In each
iteration, we deheap an entry e and check whether it is a group entry or a candidate
entry. When e is a group entry, we divide it into four group entries and enheap them
into H . Otherwise, e is a candidate entry, and then we examine the level of e. If e has
not reached the maximum level `max, we compute LBlevel,`(q, e), advance it to the
next level, and enheap it into H . Otherwise, we compute the exact distance of e from q,
and update τbest if necessary. The loop terminates whenH becomes empty or the lower
bound of the current entry exceeds τbest.

4 Experimental Evaluation

In this section, we compare the efficiency of our methods with the state-of-the-art
method [22] called Dual-Bound (DB). Table 2 shows the bounding functions used in
these methods. Our progressive search methods share the same prefix PS:

– PSL stands for progressive search with LBlevel only, and
– PSLG stands for progressive search with both LBlevel and LBgroup.

The subscripts of our methods (e.g., ⊕ or ∆) indicate whether they use lower bound
functions built on top of LB⊕ or LB∆. We implemented all algorithms in C/C++ and
conducted experiments on an Intel i7 3.4GHz PC running Ubuntu.



Algorithm 1 Progressive Search Algorithm for NN search
1: procedure PROGRESSIVE SEARCH(query matrix q, data matrix D)
2: τbest ←∞ . best NN distance found so far
3: create a min-heap H
4: create a heap entry eroot
5: eroot.G← [0..LD − 1, 0..WD − 1] . the region covered by the group
6: eroot.bound← LBgroup(q, e.G)
7: enheap eroot to H
8: while H 6= ∅ do
9: e← deheap an entry in H

10: if e.bound ≥ τbest then . termination condition
11: break
12: if |e.G| 6= 1 then . group entry
13: divide e into 4 entries e1, e2, e3, e4
14: for each ei, i← 1 to 4 do
15: ei.bound← LBgroup(q, ei.G)
16: enheap ei to H if ei.bound ≤ τbest
17: else . candidate entry
18: if e.` < `max then . not at the deepest level
19: e.bound← LBlevel,`(q, e)
20: increment e.`
21: enheap e to H if e.bound ≤ τbest
22: else
23: compute distp(q, c)

Note that each method (in Table 2) requires a preprocessing step — scan a data
image D to compute its prefix-sum matrix. This step is done only once before queries
arrive. It is negligible compared to the query response time.

Table 3 summarizes the details of our image data and queries. We collect im-
age datasets from [1, 19]. Photo [19] contains 30 images of the size 2560 × 1920.
Weather [1] contains 30 weather satellite images of the size 1800 × 1800; the times-
tamps of these images are from 00:00 on 1/4/2014 to 06:00 on 2/4/2014. For each
image, we generate 10 random starting positions by the uniform distribution to extract
queries from that image.

In each experiment, we execute the methods on 300 queries (= 30 images × 10
queries) and then report the average response time.

Method Bounding functions used in the method
DB [22]

PSL⊕ LB⊕, LBlevel
PSL∆ LB∆, LBlevel

PSLG⊕ LB⊕, LBlevel, LBgroup

Table 2: The list of our methods and the competitor



Dataset Image size Number of images Number of queries per image
Photo 2560× 1920 30 10

Weather 1800× 1800 30 10

Table 3: Our datasets and queries

4.1 Experimental Results

First, we study the effect of the number of bins α on the response time of our method
PSLG⊕. Figure 10 plots the running time as a function of α. When α increases, the
group-based lower bound LBgroup becomes tighter (i.e., higher pruning power) so the
response time drops. Nevertheless, when α is too large, it incurs high overhead to com-
pute LBgroup so the response time rises slightly. In subsequent experiments, we set
α = 16 by default.
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Fig. 10: Response time vs. the number of bins α

Next, we evaluate the scalability of methods with respect to the query size Nq .
Figure 11 shows the response time of methods versus the query size Nq . Since DB [22]
can only support query size of the form 2r × 2r, we use query sizes like 322, 642, · · ·
in this experiment. Thanks to the group lower bound function, PSLG⊕ outperforms all
other methods and scales better with respect to Nq . On the other hand, DB, PSL∆ and
PSL⊕ need to obtain candidates one-by-one and incur higher overhead on maintaining
the min-heap.

Since PSL⊕ performs better than PSL∆, we omit PSL∆ in the next experiment.
Following [22], we then test the robustness of methods by adding noise to queries.

As in [22], Gaussian noise with a standard deviation σ is added into each query image.
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Fig. 11: Response time vs. vary query size Nq

The query size is fixed to 128 × 128 in this experiment. Figure 12 shows the response
time of methods as a function of σ. The performance gap between our methods and
DB widens as σ increases. At a high σ, the pruning power of all lower bound functions
becomes weaker. For each worst-case candidate (that cannot be pruned), DB may in-
voke a long sequence of bounding functions on it, whereas our methods invoke only
a logarithmic number of LBlevel (in terms of Nq) on it. In summary, our methods are
more robust against noise.

5 Related Work

5.1 Nearest neighbor search

The nearest neighbor (NN) search problem has been extensively studied in multimedia
databases [15, 14, 21] and in time series databases [28, 8, 20].

Multimedia databases [15, 14, 21] usually conduct similarity search (i.e., NN
search) on feature vectors of images (e.g., their color / texture histograms) rather than
on raw pixel values in images. Various techniques on indexing [3, 13, 21], data compres-
sion [27], and hashing [24, 12] have been developed to process NN search efficiently.
Recall that those multimedia techniques require knowing feature vectors in advance.
Those techniques are applicable to our problem context, when the query size Nq is
fixed, as we can convert each candidate (sub-window) cx,y to a Nq-dimensional feature
vector offline. However, those techniques become inapplicable if we need to support
arbitrary query size (i.e., Nq only known at the query time). It is infeasible to do pre-
computation for every possible query size as it would blow up the storage space by a
huge factor (ND2), where ND = LD ×WD is the size of the data image.

Generic NN search algorithms [23, 16] are applicable to any types of objects and
distance function dist(q, c). Ref. [23] requires using a lower bound function LB(q, c),
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where LB(q, c) ≤ dist(q, c) always holds. Its search strategy [23] is to examine can-
didates in ascending order of LB(q, c) and then compute their exact distances to q,
until the current LB(q, c) exceeds the best NN distance found so far. Ref. [16] takes
an additional upper bound function UB(q, c) as input and utilizes it to further reduce
the searching time. Observe that the lower bound functions for a specific problem (e.g.,
matrix similarity search problem) are not provided in [23, 16]. In this paper, we focus on
developing lower bound functions like LBlevel, LBgroup for matrix similarity search.

The NN search on a time series [28, 8, 20] can be considered as a special case of
our problem, where both the data image D and the query q are modeled as vectors
instead of matrices. While some simple lower bound functions originate from them,
our proposed lower bound functions (LBlevel, LBgroup) are new and specific to matrix
similarity search. Specifically, our LBlevel is a generic function that can be built on top
of any given LBbasic, and our LBgroup can take a group of candidates as input.

5.2 Matrix similarity search methods

Various lower bound functions [18, 25, 2, 10, 19, 9, 22] have been developed for the ma-
trix similarity search problem, in order to prune unpromising candidates efficiently and
thus avoid expensive exact distance computations. Most solutions focus on range search
and a few study on NN search. Ouyang et al. [19] proposes a unified framework that
covers range search solutions [18, 25, 2, 10, 9]. The state-of-the-art NN search method
is [22]. It applies both lower and upper bound functions to accelerate NN search. Its
lower / upper bound functions are based on a Fourier transform on matrix (called the
Walsh-Hadamard transform), which can only support query of the size 2r×2r. Thus, it
cannot support arbitrary query size. Also, [22] has not explored our group-based lower
bound function LBgroup, which applies to a group of candidates instead of a single
candidate.



6 Conclusion

We have developed a progressive NN search method for the matrix similarity search
problem. It includes a generic lower bound function LBlevel for candidates, and a
group-based lower bound function LBgroup for a group of candidates. Our proposed
solution performs much better than the state-of-the-art method.

In the future, we plan to investigate approximate NN search methods for matrix
similarity search. Sampling techniques may be adapted to address this problem.
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