
SLAM: Efficient Sweep Line Algorithms for Kernel Density
Visualization

Tsz Nam Chan

Hong Kong Baptist University

edisonchan@comp.hkbu.edu.hk

Leong Hou U

University of Macau

SKL of Internet of Things for Smart City

ryanlhu@um.edu.mo

Byron Choi

Hong Kong Baptist University

bchoi@comp.hkbu.edu.hk

Jianliang Xu

Hong Kong Baptist University

xujl@comp.hkbu.edu.hk

ABSTRACT
Kernel Density Visualization (KDV) has been extensively used in

a wide range of applications, including traffic accident hotspot de-

tection, crime hotspot detection, disease outbreak detection, and

ecological modeling. However, KDV is a computationally expensive

operation, which is not scalable to large datasets (e.g., million-scale

data points) and high resolution sizes (e.g., 1920 × 1080). To signifi-

cantly improve the efficiency for generating KDV, we develop two

efficient Sweep Line AlgorithMs (SLAM), which can theoretically

reduce the time complexity for generating KDV. By incorporat-

ing the resolution-aware optimization (RAO) into SLAM, we can

further achieve the lowest time complexity for generating KDV.

Our extensive experiments on four large-scale real datasets (up to

4.33 million data points) show that all our methods can achieve

one to two-order-of-magnitude speedup in many test cases and

efficiently support KDV with exploratory operations (e.g., zooming

and panning) compared with the state-of-the-art solutions.

CCS CONCEPTS
• Theory of computation → Computational geometry; •
Human-centered computing → Heat maps; • Information
systems → Geographic information systems.

KEYWORDS
Kernel density visualization, hotspot detection, SLAM

ACM Reference Format:
Tsz Nam Chan, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. SLAM:

Efficient Sweep Line Algorithms for Kernel Density Visualization. In Proceed-
ings of the 2022 International Conference on Management of Data (SIGMOD
’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3514221.3517823

1 INTRODUCTION
Kernel-density-estimation-based visualization (or Kernel Density

Visualization (KDV)) [16, 17, 57] has become a de facto visual

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517823

analytic tool for various applications, including hotspot detec-

tion [15, 34, 37, 38, 53, 62, 65, 69, 72] and ecological model-

ing [14, 27, 28, 60, 66]. Criminologists [15, 34, 37, 53, 72] and trans-

portation experts [62, 65, 69] utilize KDV to detect the crime and

traffic accident hotspots in different regions, respectively. Epidemi-

ologists [39, 45, 56, 59, 68] utilize KDV to detect the disease outbreak

in different cities and countries. Ecologists [14, 28, 60] utilize KDV

to model the distribution of environmental incidents, e.g., pollution

[60]. Due to awide range of applications of KDV,many geographical

and scientific software packages, including QGIS [52], ArcGIS [1],

Scikit-learn [47], and KDV-Explorer [19], have been developed to

support this operation. Figure 1 illustrates an example usage of

KDV to identify the traffic accident hotspots in two regions, namely

Upper Manhattan and Lower Manhattan, of New York City, using

the New York traffic accident dataset [3] (with 1.5 million location

data points).

(a) Upper Manhattan (b) Lower Manhattan

Figure 1: Generate the traffic accident hotspot maps, based
on KDV, in two regions, namely Upper Manhattan and
Lower Manhattan, of New York City, using the software
KDV-Explorer [19], where each pixel with red color repre-
sents the high density value (i.e., hotspot/ traffic accident
blackspot).

Despite the usefulness of KDV, generating KDV is very time-

consuming, which takes O(XYn) time in the worst case, where

X ×Y and n denote the screen resolution size (e.g., 1920× 1080) and

the number of location data points (e.g., 1.5 million), respectively.

The huge amounts of computational costs restrict the applicability

of this operation to small-scale datasets and low resolution sizes.

Worse still, domain experts [19, 25, 36, 41–43, 70] need to generate

massive amounts of KDVs for a single dataset, by using some ex-

ploratory tools, including zooming, panning, bandwidth selection

(i.e., control the smoothness of the hotspot map), attribute-based

filtering (e.g., generate KDV for only robbery crime events), and

time-based filtering (e.g., generate KDV for those crime events

https://doi.org/10.1145/3514221.3517823
https://doi.org/10.1145/3514221.3517823

B

Bandwidth

selection

Zoom in Panning Zoom out Many exploratory

operations

(e.g., filtering)

Figure 2: Some visual analytic tasks need to undergo many exploratory operations in order to thoroughly understand the
hotspots of a given dataset.

Table 1: Theoretical results of different exact methods for generating KDV.
Method Time complexity Space complexity

RQS (cf. Section 2.2) O (XYn) O (XY + n)
SLAMSORT (cf. Section 3.4) O (Y (X + n logn)) (cf. Theorem 1)

SLAMBUCKET (cf. Section 3.5) O (Y (X + n)) (cf. Theorem 2) O (XY + n)
SLAM

(RAO)

SORT
(cf. Sections 3.4 and 3.6) O (min(X , Y) × (max(X , Y) + n logn)) (cf. Theorem 3) (cf. Theorem 4)

SLAM
(RAO)

BUCKET
(cf. Sections 3.5 and 3.6) O (min(X , Y) × (max(X , Y) + n)) (cf. Theorem 3)

from 1
st
Jan 2018 to 1

st
Jan 2019), in order to thoroughly under-

stand the hotspots (cf. Figure 2). Therefore, many research studies

also complain about the inefficiency issues for using KDV. Some

representative ones are quoted as follows.

• “KDV cannot scale well to handle many data points and display
of color maps on high-resolution screens.” [16]
• “...the total runtime cost of density estimation is quadratic in
dataset size...” [31]
• “However, many (or even most) of the practical algorithms
and solutions designed in the context of KDE are very time-
consuming with quadratic computational complexity being a
commonplace.” [32]

Even though many solutions [16, 21, 22, 31, 73, 75] have been de-

veloped to efficiently generate KDV, these algorithms either cannot

reduce the time complexity [16, 21, 22, 31] or cannot provide the

exact solution [16, 21, 22, 31, 73, 75] for generating KDV. Therefore,

we ask a question: Can we reduce the time complexity of generating
KDV, without degrading the quality of KDV theoretically (i.e., exact
solution)?

To provide an affirmative answer to this question, we first de-

velop two Sweep Line AlgorithMs (SLAM), which are the simple

sorting-based sweep line algorithm (SLAMSORT) and the advanced

bucket-based sweep line algorithm (SLAMBUCKET). These two al-

gorithms can theoretically reduce the time complexity for gen-

erating KDV compared with the state-of-the-art solutions (e.g.,

QUAD [16]). In addition, we further develop the resolution-aware

optimization (RAO) and incorporate this method into SLAMSORT

and SLAMBUCKET, which are called SLAM
(RAO)

SORT
and SLAM

(RAO)

BUCKET
,

respectively. Theoretically, both SLAM
(RAO)

SORT
and SLAM

(RAO)

BUCKET
can

further reduce the time complexity for generating KDV compared

with SLAMSORT and SLAMBUCKET, respectively. Table 1 summa-

rizes the theoretical results for generating KDV in different exact

methods, where X × Y and n denote the resolution size of a given

geographical region and the number of data points, respectively.

To the best of our knowledge, this is the first research work that

can reduce the time complexity for generating exact KDV. Our

experiments on four large-scale real datasets show that all our

methods can achieve one to two-order-of-magnitude speedup in

many test cases compared with the state-of-the-art solutions. In ad-

dition, we can efficiently support KDV generation with exploratory

tools (e.g., zooming and panning), using large-scale datasets and

high resolution sizes, which cannot be achieved by other software

packages, including Scikit-learn [47], QGIS [52], ArcGIS [1], and

KDV-Explorer [19] (slow with high resolution sizes).

The rest of the paper is organized as follows. We first revisit the

concept of KDV and discuss the exact method, called range-query-

based solution (RQS), in Section 2. Then, we present our sweep

line algorithms (SLAM) in Section 3. After that, we provide the

experimental evaluation in Section 4. Then, we review the existing

work in Section 5. Lastly, we conclude our paper in Section 6.

2 PRELIMINARIES
In this section, we revisit the concepts of KDV in Section 2.1. Then,

we discuss the exact solution, called range-query-based solution

(RQS), in Section 2.2, which is mostly related to this work.

2.1 Revisitation of KDV
In order to generate KDV for each geographical region (e.g., Upper

Manhattan in Figure 1a), we need to color each pixel q, based on

the kernel density function value of this pixel. Here, we formally

define KDV in Problem 1.

Problem 1. Given a geographical region with size X ×Y , where X
and Y are the numbers of pixels in the x-axis and y-axis, respectively,
and a set P of n location data points, we compute the kernel density
function FP (q) (cf. Equation 1) for each pixel q.

FP (q) =
∑
p∈P

w · K(q, p) (1)

wherew andK(q, p) denote the normalization constant and the kernel
function, respectively.

Table 2 summarizes the representative kernel functions. Here,

we denote b and dist(q, p) as the bandwidth value of the kernel

function and the Euclidean distance, respectively.

Table 2: Representative kernel functions.

Kernel K (q, p) Used in

Uniform

{
1

b if dist (q, p) ≤ b
0 otherwise

[34, 64]

Epanechnikov

{
1 − 1

b2
dist (q, p)2 if dist (q, p) ≤ b

0 otherwise

[10, 60]

Quartic

{
(1 − 1

b2
dist (q, p)2)2 if dist (q, p) ≤ b

0 otherwise

[38, 65]

In this paper, we denote the x and y coordinates of each location

point p to be p.x and p.y, respectively, i.e., p = (p.x, p.y), and
mainly use the Epanechnikov kernel in FP (q) for discussion (i.e.,

Equation 2). We leave the discussion for using our methods to

support other kernel functions (cf. Table 2) in Section 3.7.

FP (q) =
∑
p∈P

w ·

{
1 − 1

b2
dist(q, p)2 if dist(q, p) ≤ b

0 otherwise

(2)

2.2 Range-Query-based Solution (RQS)
In Equation 2, observe that only those data points pwithdist(q, p) ≤
b can contribute to the kernel density function value FP (q) of the
pixel q. Therefore, we can first find the range query solution set

R(q) for each pixel q, where:
R(q) = {p ∈ P : dist(q, p) ≤ b} (3)

Then, we can find the kernel density function value FP (q) for
pixel q, based on this range query solution set R(q), where:

FP (q) =
∑

p∈R(q)

w ·
(
1 −

1

b2
dist(q, p)2

)
(4)

Even though many well-known and commonly-used index struc-

tures, e.g., kd-tree [9], and ball-tree [44], have been proposed to

improve the efficiency for solving range query problem, which

can also boost the efficiency for generating exact KDV, the worst-

case time complexity for using this approach to solve this problem

remains in O(XYn).

3 SWEEP LINE ALGORITHMS (SLAM)
In this section, we first summarize the core ideas of our solutions in

Section 3.1. Then, we discuss two concepts, that are adopted in our

solutions, namely (1) envelope point set and (2) lower and upper

bound functions, in Section 3.2 and Section 3.3, respectively. Based

on these two concepts, we propose two Sweep Line AlgorithMs

(SLAM) for efficiently generating KDV, which are sorting-based

sweep line algorithm (SLAMSORT) and bucket-based sweep line al-

gorithm (SLAMBUCKET) in Section 3.4 and Section 3.5, respectively.

Then, we develop the resolution-aware optimization (RAO) for

SLAMSORT and SLAMBUCKET (i.e., SLAM
(RAO)

SORT
and SLAM

(RAO)

BUCKET
,

respectively) in Section 3.6. After that, we discuss how to extend

our methods to support other representative kernel functions in

Section 3.7. Lastly, we discuss the space complexity of SLAM in

Section 3.8.

3.1 Core Ideas
The main disadvantage for using RQS is that we need to compute

the range query solution set R(q) (cf. Equation 3) for each pixel q, in
order to compute the kernel density function FP (q) (cf. Equation 4).

However, two consecutive pixels q and q′ can share a large amount

of data points (e.g., white circles in Figure 3). Therefore, we ask a

question: Suppose that we have obtained the range query solution

set R(q), can we efficiently update this set to R(q′)? In Figure 3, we

observe that the most efficient approach to update from R(q) to
R(q′) is to remove all yellow circles and insert all green circles.

q q’

Figure 3: The range query solution sets, i.e., R(q) (inside the
dashed orange circle) and R(q′) (inside the dashed blue cir-
cle), of two consecutive pixels, i.e., q and q′, respectively,
share a large amount of data points (white circles).

On the other hand, computingFP (q) (cf. Equation 4) from scratch

for each pixel q can be time-consuming. By expanding Equation 4,

we have:

FP (q) =
∑

p∈R(q)

w ·
(
1 −

1

b2
dist(q, p)2

)
= w |R(q)| −

w

b2

∑
p∈R(q)

(q − p)T (q − p)

= w |R(q)| −
w

b2

∑
p∈R(q)

(| |q| |2
2
− 2qT p + | |p| |2

2
)

= w |R(q)| −
w

b2

(
|R(q)| × | |q| |2

2
− 2qT

(∑
p∈R(q)

p
)
+

∑
p∈R(q)

| |p| |2
2

)
Once we let ARq =

∑
p∈R(q) p and SRq =

∑
p∈R(q) | |p| |22 , we can

represent FP (q) by the following expression:

FP (q) = w |R(q)| −
w

b2

(
|R(q)| × | |q| |2

2
− 2qTARq + SRq

)
(5)

Based on Equation 5, suppose that we can efficiently maintain

these aggregate terms, i.e., |R(q)|, ARq , and SRq , we can efficiently

obtain FP (q).

3.2 Envelope Point Set
We consider how to evaluate all pixels, q1, q2,..., qX , with the same

y-coordinate (i.e., pixels in the green region in Figure 4). Here, we

let the y-coordinate of all these pixels to be k , i.e.,

q1.y = q2.y = · · · = qX .y = k

…
…

…
…

…

…

X

Y
…

…

q1 q2 qX

…
…

qX-1

Figure 4: All pixels, q1, q2,..., qX , in the green region have the
same y-coordinate (= k).

We also define the concept, called envelope point set, for this

y-coordinate k in Definition 1.

Definition 1. Given a set P of location data points, bandwidth b
and y-coordinate k , we define the envelope point set of k to be E(k),
where:

E(k) = {p ∈ P : |k − p.y | ≤ b} (6)

𝐪1. 𝑥, 𝑘

𝐪2. 𝑥, 𝑘

𝐪3. 𝑥, 𝑘

𝐪𝑋 . 𝑥, 𝑘
…

𝑋

𝑏

Figure 5: The white circles, which are covered by the red dot-
ted lines, are in the envelope point set E(k). This E(k) covers
the range query solution sets R(qi) for all pixels qi with the
same y-coordinate k .

In Figure 5, observe that this envelope point set E(k) covers all
range query solution sets for all pixels with the same y-coordinate
k , i.e.,

R(qi) ⊆ E(k), i = 1, 2, ...,X

Lemma 1 states that we can use O(n) time to find the envelope

point set E(k).

Lemma 1. The time complexity of finding E(k) (cf. Equation 6) is
O(n).

Proof. To find the envelope point set E(k), we only need to scan
the point dataset P with sizen and check the condition in Equation 6.
As such, the time complexity of finding E(k) is O(n). �

3.3 Lower and Upper Bound Functions
In order to find the range query solution set R(q) for each pixel q
with the same y-coordinate k (cf. Figure 5), we check whether the

condition dist(q, p) ≤ b holds for the data point p (i.e., white circle).

By expanding this expression, we have:

dist(q, p) ≤ b

(q.x − p.x)2 ≤ b2 − (k − p.y)2

Based on Equation 6, we ensure that each data point p (cf. Fig-

ure 5) in the envelope point set E(k) fulfills b2 − (k − p.y)2 ≥ 0. As

such, we can take the square root for the above inequality to obtain

the following expression.

p.x −
√
b2 − (k − p.y)2 ≤ q.x ≤ p.x +

√
b2 − (k − p.y)2 (7)

Therefore, after we have obtained the envelope point set E(k),
we can then store the lower bound and upper bound values, LBk (p)
andUBk (p), for each data point p, where:

LBk (p) = p.x −
√
b2 − (k − p.y)2 (8)

UBk (p) = p.x +
√
b2 − (k − p.y)2 (9)

With these bound values for each data point p in E(k), we can
conclude that the data point p is in the range query solution set

R(q) if LBk (p) ≤ q.x ≤ UBk (p) (cf. Lemma 2). Using Figure 6 as an

example, since q.x is inside the bound intervals of p1, p2 and p3,
the range query solution set R(q) contains these three data points.

Lemma 2. Given the lower and upper bound values, i.e., LBk (p)
and UBk (p), respectively, for each data point p in the envelope point
set E(k), this data point p is in the range query solution set R(q) if
q.x is within the bound interval [LBk (p),UBk (p)].

Proof. Since we usedist(q, p) ≤ b to derive the bound functions
LBk (p) and UBk (p) (cf. Equation 8 and Equation 9, respectively),

we can conclude that LBk (q) ≤ q.x ≤ UBk (q) =⇒ dist(q, p) ≤
b =⇒ p ∈ R(q) (cf. Equation 3). �

q.x

p1
LBk(p1) UBk(p1)

p2
LBk(p2) UBk(p2)

LBk(p3) UBk(p3)
p3

LBk(p4) UBk(p4)
p4

Figure 6: The range query solution set of R(q) = {p1, p2, p3}.

3.4 A Simple Sorting-based Sweep Line
Algorithm (SLAMSORT)

Once we have obtained the lower and upper bound values for

each data point in the envelope point set E(k), our method

SLAMSORT needs to create the list L, by sorting these bound

values and the x-coordinates of all pixels with the same

y-coordinate k (cf. Figure 5), i.e., q1.x , q2.x ,..., qX .x , in an

increasing order. Using Figure 7 as an example, the list L =

[LBk (p1), LBk (p2), LBk (p3), LBk (p4), qi−1.x,UBk (p2),UBk (p4), ...].
With this list L, the core idea of SLAMSORT is to utilize the sweep

line algorithm to process these bound values in order to compute

the kernel density function FP (q) (cf. Equation 5) for each pixel q.
In Figure 7, we maintain two point sets, namely Lℓ (cf. Equation 10)

and Uℓ (cf. Equation 11), for the sweep line ℓ, which has passed

through the lower and upper bound values of those data points,

respectively.

Lℓ = {p ∈ E(k) : LBk (p) ≤ ℓ.x} (10)

Uℓ = {p ∈ E(k) : UBk (p) ≤ ℓ.x} (11)

p1
LBk(p1) UBk(p1)

p2
LBk(p2) UBk(p2)

UBk(p3)

qi.x

LBk(p4)
p4

LBk(p3)
p3

UBk(p4)

ℓ

LBk(p5)
p5

UBk(p5)

qi

qi-1.x

qi-1

qi+1.x

qi+1

Figure 7: Sweep line ℓ moves from left to right (by scanning
the list L), Lℓ = {p1, p2, p3, p4} and Uℓ = {p2, p4}.

p
LBk(p) UBk(p)

ℓ

p
LBk(p) UBk(p)

ℓ

Case 1: ℓ intersects with LBk(p),

i.e., ℓ. 𝑥 = LBk(p)

(insert p in 𝕃ℓ, add 𝐴𝕃ℓ by p , add 𝑆𝕃ℓ by 𝐩 2
2)

Case 2: ℓ intersects with UBk(p),

i.e., ℓ. 𝑥 = UBk(p)

(insert p in 𝕌ℓ, add 𝐴𝕌ℓ by p , add 𝑆𝕌ℓ by 𝐩 2
2)

ℓ

Case 3: ℓ intersects with 𝐪. 𝑥,

i.e., ℓ. 𝑥 = 𝐪. 𝑥
(compute ℱ𝑃(𝐪))

q

Figure 8: Three cases of the sweep line ℓ for scanning the list L.

We also maintain the aggregate values for these two sets, i.e.,

ALℓ ,AUℓ
(cf. Equation 12) and SLℓ , SUℓ

(cf. Equation 13), which can

be used to efficiently compute the kernel density function FP (q)
(cf. Equation 5).

ALℓ =
∑
p∈Lℓ

p and AUℓ
=

∑
p∈Uℓ

p (12)

SLℓ =
∑
p∈Lℓ

| |p| |2
2

and SUℓ
=

∑
p∈Uℓ

| |p| |2
2

(13)

Figure 8 shows three possible cases of the sweep line ℓ, which

are: (1) ℓ intersects with the lower bound LBk (p) of the data point
p (i.e., ℓ.x = LBk (p)), (2) ℓ intersects with the upper boundUBk (p)
of the data point p (i.e., ℓ.x = UBk (p)), and (3) ℓ intersects with q.x
(i.e., ℓ.x = q.x). Regarding the first two cases, we need to update the
corresponding point sets (Lℓ or Uℓ) and aggregate values, e.g., we

insert p in Lℓ , add ALℓ by p and add SLℓ by | |p| |
2

2
, once the sweep

line ℓ intersects with the lower bound LBk (p). Therefore, the time

complexity of these two cases is O(1). Regarding the third case, we

claim that we can calculate FP (q) inO(1) time (cf. Lemma 3), using

these two point sets (Lℓ and Uℓ) and their aggregate values (cf.

Equations 12 and 13).

Lemma 3. If the sweep line ℓ intersects with q.x (i.e., case 3), we
can compute FP (q) in O(1) time, using Equation 5 with:

|R(q)| = |Lℓ | − |Uℓ | (14)

AR(q) = ALℓ − AUℓ
(15)

SR(q) = SLℓ − SUℓ
(16)

Proof. The sweep line ℓ is within the bound interval

[LBk (p),UBk (p)], if ℓ passes through LBk (p), i.e., Lℓ contains p,
and ℓ does not pass through UBk (p), i.e., Uℓ does not contain p.
Therefore, once the line ℓ intersects with q.x , |Lℓ | − |Uℓ | denotes
the number of bound intervals that contain q.x . Based on Lemma 2,

we prove Equation 14. By adopting the similar argument, we can

also prove Equation 15 and Equation 16. �

Algorithm 1 describes how our method SLAMSORT finds the ker-

nel density function values for all pixels q1, q2,..., qX with the same

y-coordinate (cf. Figure 4). In Lemma 4, we show that Algorithm 1

takes O(n logn + X) time to process all pixels q1, q2,...., qX with

the same y-coordinate.

Lemma 4. Given the pixels q1, q2,...., qX with the same y-
coordinate, SLAMSORT computes the kernel density function values
for all these pixels with O(n logn + X) time.

Proof. Recall that the time complexity of finding E(k) (line 2) is
O(n) (cf. Lemma 1) and the sweep line ℓ only takes at mostO(n+X)

Algorithm 1 Sorting-based Sweep Line Algorithm (SLAMSORT)

1: procedure SLAMSORT(Point set P = {p1, p2, ..., pn }, band-
width b, pixels q1, q2,..., qX with y-coordinate k)

2: Find the envelope point set E(k) ◃ Equation 6

3: Create the sorted list L ◃ Increasing order

4: Lℓ ← ϕ, Uℓ ← ϕ
5: ALℓ ← 0, AUℓ

← 0
6: SLℓ ← 0, SUℓ

← 0

7: ℓ.x ← −∞
8: while ℓ.x ≤ qX .x do
9: ℓ sweeps the next element in L

10: if ℓ.x = LBk (p) then ◃ Case 1

11: Lℓ ← Lℓ ∪ {p}
12: ALℓ ← ALℓ + p
13: SLℓ ← SLℓ + | |p| |

2

2

14: if ℓ.x = UBk (p) then ◃ Case 2

15: Uℓ ← Uℓ ∪ {p}
16: AUℓ

← AUℓ
+ p

17: SUℓ
← SUℓ

+ | |p| |2
2

18: if ℓ.x = qi .x then ◃ Case 3 (where 1 ≤ i ≤ X)

19: Compute FP (qi) ◃ Lemma 3

20: Return {FP (q1), FP (q2), ..., FP (qX)}

iterations for sweeping all elements in the list L (which contains at

most 2|E(k)|+X elements and |E(k)| → n in the worst case), where

each iteration (lines 9 - 19) takes O(1) time. Therefore, the main

bottleneck of this algorithm is to sort the list L (line 3), which takes

O(n logn + X) time.
1
Therefore, the worst-case time complexity of

Algorithm 1 is O(n logn + X). Hence, this lemma is proved. �

Based on Lemma 4, we conclude that SLAMSORT takes

O(Y (n logn + X)) time to generate KDV, i.e., computes the kernel

density values for all X × Y pixels, (cf. Theorem 1).

Theorem 1. The time complexity of SLAMSORT is O(Y (n logn +
X)).

Proof. Since there are Y y-coordinates in the geographical re-

gion (cf. Figure 4) and SLAMSORT takesO(n logn +X) time to com-

pute the kernel density function values for all pixels with the same

y-coordinate (cf. Lemma 4), the time complexity of this method is

O(Y (n logn + X)). �

1
Since the pixels q1 , q2 ,..., qX are sorted in advance (q1 .x < q2 .x < ... < qX .x),
we only need to sort the data points in E(k), which takes O (n logn) time, and merge

them into the list L, which takes O (n + X) time.

Compared with the method RQS (cf. Section 2.2), which takes

O(XYn) time to generate each KDV, our method SLAMSORT is

theoretically faster than RQS, if X > logn. In practice, since X is

normally large, the inequality X > logn usually holds (e.g., the

resolution size can be 1280 × 960 (i.e., X = 1280) in modern screens

and n is 1.5 million for the New York traffic accident dataset [3]).

3.5 An Advanced Bucket-based Sweep Line
Algorithm (SLAMBUCKET)

Even though SLAMSORT can be theoretically faster than the method

RQS (cf. Section 2.2) in most of the cases (with X > logn), this
method cannot be faster than RQS in all cases (e.g., the cases with

X ≤ logn). Therefore, we further ask a question: Can we further

improve the theoretical result (e.g., remove the logn factor in The-

orem 1)? Here, we provide an affirmative answer to this question.

Recall that the main bottleneck of Algorithm 1 is to sort the

list L (line 3), which incurs O(n logn + X) time. Suppose that we

can avoid this sorting operation, it is possible to remove the logn
factor in Theorem 1. In Figure 4, observe that the x-coordinates

of all pixels in the green region follow an increasing order, i.e.,

q0.x < q1.x < q2.x < · · · < qX−1.x < qX .x < qX+1.x , where we
denote two dummy pixels as q0 and qX+1 with q0.x = −∞ and

qX+1.x = ∞, respectively. Therefore, we conclude that the lower
(upper) bound value of each data point p, i.e., LBk (p) (UBk (p)) must

be within any unique interval [qi−1.x, qi .x] (cf. Figure 9), where
1 ≤ i ≤ X + 1.

Based on this property, we augment the lower and upper bound

buckets, denoted as BL(qi−1.x, qi .x) and BU (qi−1.x, qi .x), respec-
tively, between two consecutive pixels qi−1 and qi , where:

BL(qi−1.x, qi .x)= {p ∈ E(k) : qi−1.x < LBk (p) ≤ qi .x} (17)

BU (qi−1.x, qi .x)= {p ∈ E(k) : qi−1.x < UBk (p) ≤ qi .x} (18)

x-axis

q1 q2 q3 q4 q5 q6p1

p2 p3p4

p5

𝐵𝑈(−∞, 𝐪1. 𝑥)

𝐵𝐿(−∞, 𝐪1. 𝑥)

𝐵𝐿(𝐪1. 𝑥, 𝐪2. 𝑥)
𝐵𝑈(𝐪1. 𝑥, 𝐪2. 𝑥)

𝐵𝐿(𝐪2. 𝑥, 𝐪3. 𝑥)
𝐵𝑈(𝐪2. 𝑥, 𝐪3. 𝑥)

𝐵𝐿(𝐪3. 𝑥, 𝐪4. 𝑥)
𝐵𝑈(𝐪3. 𝑥, 𝐪4. 𝑥)

𝐵𝐿(𝐪4. 𝑥, 𝐪5. 𝑥)
𝐵𝑈(𝐪4. 𝑥, 𝐪5. 𝑥)

𝐵𝐿(𝐪5. 𝑥, 𝐪6. 𝑥)
𝐵𝑈(𝐪5. 𝑥, 𝐪6. 𝑥)

𝐵𝐿(𝐪6. 𝑥,∞)
𝐵𝑈(𝐪6. 𝑥,∞)

Figure 9: Augment the buckets for each pair of consecutive
pixels with X = 6.

Each lower (upper) bound bucket stores the data points p with

their lower (upper) bounds LBk (p) (UBk (p)) lying in this bucket.

Using Figure 9 as an example, Table 3 shows the data points in

these buckets.

Table 3: Data points in the lower and upper bound buckets
(cf. Figure 9).

i 1 2 3 4 5 6 7

BL (qi−1 .x , qi .x) {p5 } {p2 } ϕ {p1, p3, p4 } ϕ ϕ ϕ
BU (qi−1 .x , qi .x) ϕ ϕ {p2, p5 } {p4 } ϕ {p1 } {p3 }

Since the x-coordinate gap дx between each pair of two consecu-

tive pixels (except for q1.x−q0.x and qX+1.x−qX .x) is the same, i.e.,

q2.x−q1.x = · · · = qX .x−qX−1.x = дx , we can useO(1) time to de-

termine which lower and upper bound buckets (BL(qil−1.x, qil .x)
and BU (qiu−1.x, qiu .x)) cover the data point p, where:

il = max

(⌈LBk (p) − q1.x
дx

⌉
, 0
)

(19)

iu = min

(⌈UBk (p) − q1.x
дx

⌉
,X + 1

)
(20)

Once we have obtained these buckets, we utilize the sweep line ℓ

to process each pixel qi . Suppose that ℓ intersects with qi .x (cf. Fig-

ure 10), we insert the bucket BL(qi−1.x, qi .x) and BU (qi−1.x, qi .x)
into Lℓ and Uℓ , respectively, and also update the aggregate values

ALℓ , AUℓ
(cf. Equation 12) and SLℓ , SUℓ

(cf. Equation 13) for these

two sets.

ℓ

qi qi+1qi-1

𝐵𝐿(𝐪𝑖−1. 𝑥, 𝐪𝑖 . 𝑥)
𝐵𝑈(𝐪𝑖−1. 𝑥, 𝐪𝑖 . 𝑥)

Figure 10: Sweep line ℓ intersects with qi .x (We need to in-
sert BL(qi−1.x, qi .x) and BU (qi−1.x, qi .x) into Lℓ and Uℓ , re-
spectively, and add ALℓ (SLℓ) and AUℓ

(SUℓ
) by p (| |p| |2

2
) with

each p in BL(qi−1.x, qi .x) and BU (qi−1.x, qi .x), respectively).

Hence, if ℓ intersects with qi .x , we have:

Lℓ =

i⋃
j=1

BL(qj−1.x, qj .x) (21)

Uℓ =

i⋃
j=1

BU (qj−1.x, qj .x) (22)

In Lemma 5, we claim that we can correctly compute FP (qi),
using these two sets Lℓ (cf. Equation 21) and Uℓ (cf. Equation 22)

and their aggregate values (cf. Equations 12 and 13).

Lemma 5. If the sweep line ℓ intersects with qi .x (cf. Figure 10),
we can correctly compute FP (qi) (cf. Equation 5), using Equations 14,
15 and 16 as |Rqi |, ARqi

and SRqi
, respectively.

Proof. We first prove Rqi = Lℓ\Uℓ and then prove Uℓ ⊆ Lℓ .
Based on these two expressions, we have:

|Rqi | = |Lℓ\Uℓ | = |Lℓ | − |Uℓ |

ARqi
=

∑
p∈Rqi

p =
∑

p∈Lℓ\Uℓ

p =
∑
p∈Lℓ

p −
∑
p∈Uℓ

p = ALℓ − AUℓ

SRqi
=

∑
p∈Rqi

| |p | |2
2
=

∑
p∈Lℓ\Uℓ

| |p | |2
2
=

∑
p∈Lℓ

| |p | |2
2
−
∑
p∈Uℓ

| |p | |2
2
= SLℓ−SUℓ

which means Equations 14, 15 and 16 hold if ℓ intersects with qi .x .
Proof of Rqi = Lℓ\Uℓ : In Figure 11, observe that there are three

possible cases for the bound intervals.

Consider the (blue) bound interval of p
left

, i.e., LBk (pleft) ≤ qi .x
and UBk (pleft) ≤ qi .x . Since −∞ = q0.x < q1.x < · · · < qi .x ,
we conclude that there exists one unique interval [qj−1.x, qj .x],

qipleft

pcross

pright

ℓ

x-axis

Figure 11: Three possible cases for the bound intervals. (1)
The (blue) bound interval of pleft is in the left side of qi .x .
(2) The (orange) bound interval of pcross crosses qi .x . (3) The
(purple) bound interval of pright is in the right side of qi .x .

where 1 ≤ j ≤ i , that contains LBk (pleft) (UBk (pleft)). Based on

Equations 21 and 22, we have: p
left
∈ Lℓ and p

left
∈ Uℓ .

Consider the (purple) bound interval of p
right

, since both

LBk (pright) and UBk (pright) are larger than qi .x , none of the in-

tervals [qj−1.x, qj .x] with 1 ≤ j ≤ i contains these two values.

Therefore, we have: p
right
< Lℓ and p

right
< Uℓ .

Consider the (orange) bound interval of pcross, we can easily

conclude that pcross ∈ Lℓ and pcross < Uℓ .
Therefore, Lℓ\Uℓ denotes the set of data points p with (orange)

bound intervals, i.e., LBk (p) ≤ qi .x ≤ UBk (p). Based on Lemma 2,

we conclude that Rqi = Lℓ\Uℓ .
Proof of Uℓ ⊆ Lℓ : If the data point p ∈ Uℓ , there exists an

interval [qj−1.x, qj .x] with 1 ≤ j ≤ i that covers UBk (p). Since
LBk (p) ≤ UBk (p), there exists another interval [qj′−1.x, qj′ .x]with
j ′ ≤ j that covers LBk (p). Therefore, p ∈ Lℓ and we have: Uℓ ⊆
Lℓ . �

Algorithm 2 shows how our method SLAMBUCKET computes the

kernel density function values for all pixels q1, q2,..., qX with the

same y-coordinate k (cf. Figure 4). We claim that Algorithm 2 takes

O(n +X) time for computing the kernel density function values for

all pixels q1, q2,..., qX (cf. Lemma 6).

Lemma 6. Given the pixels q1, q2,..., qX with the samey-coordinate
k , the time complexity for using Algorithm 2 to compute the kernel
density function values FP (q1), FP (q2),..., FP (qX) is O(n + X) time.

Proof. In lines 6-9, we assign each data point p in E(k) in the

lower and upper bound buckets, using Equations 19 and 20 (with

O(1) time), respectively. Therefore, the time complexity isO(|E(k)|)
time. In lines 13-20, we utilize the sweep line to scan each pixel.

Once the sweep line ℓ touches the pixel qiq , this algorithm needs to

scan those data points in BL(qiq−1.x, qiq .x) and BU (qiq−1.x, qiq .x)
to update Lℓ , ALℓ , SLℓ and Uℓ , AUℓ

, SUℓ
, respectively. There-

fore, the time complexity is O(X +
∑X
iq=1 |BL(qiq−1.x, qiq .x)| +∑X

iq=1 |BU (qiq−1.x, qiq .x)|) = O(X + |E(k)|) time (The reason is

that each data point can only be in one unique lower bound bucket

and one unique upper bound bucket). Therefore, theworst-case time

complexity of this algorithm is O(n + X) time with |E(k)| = n. �

Based on Lemma 6, we conclude that SLAMBUCKET takes

O(Y (X + n)) time to generate KDV (cf. Theorem 2). We omit the

proof of this theorem, since it is similar to the proof of Theorem 1.

Theorem 2. The time complexity of SLAMBUCKET isO(Y (n +X)).

Algorithm 2 Bucket-based Sweep Line Algorithm (SLAMBUCKET)

1: procedure SLAMBUCKET(Point set P = {p1, p2, ..., pn }, band-
width b, pixels q1, q2,..., qX with y-coordinate k)

2: Find the envelope point set E(k) ◃ Equation 6

3: BL(qi−1.x, qi .x) ← ϕ, where 1 ≤ i ≤ X + 1
4: BU (qi−1.x, qi .x) ← ϕ, where 1 ≤ i ≤ X + 1
5: //Assign each data point p ∈ E(k) in different buckets

6: for each p ∈ E(k) do
7: Obtain il and iu ◃ Equations 19 and 20, respectively

8: BL(qil−1.x, qil .x) ← BL(qil−1.x, qil .x) ∪ {p}
9: BU (qiu−1.x, qiu .x) ← BU (qiu−1.x, qiu .x) ∪ {p}
10: //Sweep line ℓ

11: ALℓ ← 0, AUℓ
← 0

12: SLℓ ← 0, SUℓ
← 0

13: for iq ← 1 to X do
14: Lℓ ← Lℓ ∪ BL(qiq−1.x, qiq .x)
15: Uℓ ← Uℓ ∪ BU (qiq−1.x, qiq .x)
16: ALℓ ← ALℓ +

∑
p∈BL (qiq−1 .x ,qiq .x) p

17: AUℓ
← AUℓ

+
∑
p∈BU (qiq−1 .x ,qiq .x) p

18: SLℓ ← SLℓ +
∑
p∈BL (qiq−1 .x ,qiq .x) | |p| |

2

2

19: SUℓ
← SUℓ

+
∑
p∈BU (qiq−1 .x ,qiq .x) | |p| |

2

2

20: Compute FP (qiq) ◃ Lemma 5

21: Return {FP (q1), FP (q2), ..., FP (qX)}

3.6 Resolution-Aware Optimization (RAO)
Although our methods SLAMSORT and SLAMBUCKET significantly

reduce the time complexity for generating KDV toO(Y (X +n logn))
time (cf. Theorem 1) and O(Y (X + n)) time (cf. Theorem 2), respec-

tively, the worst-case time complexity for these two methods can

also be high with Y >> X (the large Y multiplies with the large n).
Therefore, we incorporate the resolution-aware optimization

(RAO) into our methods SLAMSORT and SLAMBUCKET, which are

renamed as SLAM
(RAO)

SORT
and SLAM

(RAO)

BUCKET
, respectively. If Y > X ,

these two methods compute the kernel density function values

for the pixels with the same x-coordinate, i.e., h1, h2,..., hY (cf.

yellow region in Figure 12), instead of the pixels with the same

y-coordinate (cf. Figure 4). On the other hand, if X ≥ Y , we adopt
the default solutions, i.e., SLAMSORT and SLAMBUCKET, for these

two methods.

… …

Y

h1

h2

hY

…

hY-1

X

…

… …

…

…

…

Figure 12: Evaluate all pixels, h1, h2,..., hY , which have the
same x-coordinate, in the yellow region.

Even though the concept of RAO is simple, these two methods

SLAM
(RAO)

SORT
and SLAM

(RAO)

BUCKET
further reduce the time complexity

for generating KDV (cf. Theorem 3).

Theorem 3. The time complexity of SLAM(RAO)SORT and SLAM(RAO)BUCKET
for generating KDV is O(min(X ,Y) × (max(X ,Y) + n logn)) and
O(min(X ,Y) × (max(X ,Y) + n)), respectively.

Proof. If X ≥ Y , the time complexity of SLAM
(RAO)

BUCKET
(default

setting) isO(Y (X + n)) (cf. Theorem 2). If Y > X , the time complex-

ity of SLAM
(RAO)

BUCKET
is O(X (Y + n)). Hence, we conclude that the

time complexity of SLAM
(RAO)

BUCKET
isO(min(X ,Y)×(max(X ,Y)+n)).

Similarly, we can also prove that the time complexity of SLAM
(RAO)

SORT

is O(min(X ,Y) × (max(X ,Y) + n logn)). �

3.7 Other Kernels
In previous sections, we only focus on the Epanechnikov kernel.

Here, we further extend our methods to support other kernel func-

tions (cf. Table 2). Recall that one of the core ideas for efficiently

computing the kernel density function FP (q) with the Epanech-

nikov kernel is that FP (q) is composed of the aggregate terms |R(q)|,
ARq and SRq (cf. Equation 5), which can be efficiently maintained by

our sweep line algorithms. Therefore, if we can decompose FP (q)
with other kernel functions into the aggregate terms, our methods

can support these kernel functions.

Uniform kernel: We can decompose FP (q) with uniform kernel

in the following expression:

FP (q) =
w

b
|R(q)|

Quartic kernel: We can decompose FP (q) with quartic kernel in

the following expression:

FP (q)=w
(
1 −

2

b2
| |q| |2

2
+

1

b4
| |q| |4

2

)
|R(q)| +w

(
4

b2
−
4| |q| |2

2

b4

)
qTARq

+w
(
2| |q| |2

2
− 2

b4

)
SRq −

4w

b4
qTCRq +

w

b4
QRq −

4w

b2
qTMRqq

where CRq =
∑
p∈R(q) | |p| |22p, QRq =

∑
p∈R(q) | |p| |42 and MRq =∑

p∈R(q) p · pT .
Since we can decompose the kernel density function FP (q) with

the above aggregate values, which are summarized in Table 4, we

can extend our methods for supporting these representative kernel

functions (cf. Table 2) with the same time complexity.

Table 4: Aggregate values for all kernel functions.

Kernel Aggregate values

Uniform |R(q) |
Epanechnikov |R(q) |, ARq , SRq

Quartic |R(q) |, ARq , SRq , CRq , QRq , MRq

As a remark, our methods can only support the kernel functions

in Table 2, which cannot support some kernel functions (e.g., the

Gaussian kernel). The main reason is that we cannot decompose

the kernel density function FP (q) in terms of the aggregate values

(cf. Table 4) for those kernel functions. Nevertheless, the kernel

functions in Table 2 are representative in the GIS community (e.g.,

quartic kernel is the default kernel function in the QGIS [52] and

ArcGIS [1] software packages) and have been extensively adopted

in different applications (cf. Table 2).

3.8 Space Complexity of SLAM
In this section, we proceed to discuss the space complexity for using

our methods to generate KDV.

Here, we first consider the method SLAMSORT (cf. Algorithm 1).

Recall that this method only needs to maintain the additional vari-

ables, which are the envelope point set E(k), Lℓ , Uℓ , ALℓ , AUℓ
, SLℓ

and SUℓ
. Since the sets Lℓ and Uℓ contain at most |E(k)| points and

ALℓ , AUℓ
, SLℓ and SUℓ

take O(1) space, the worst-case space com-

plexity for using SLAMSORT to process q1, q2, ..., qX (cf. Figure 4)

is at mostO(n) (with |E(k)| → n). Moreover, we can clear and reuse

these variables to process each row of pixels (cf. Figure 4) and we

need to store the visualization results (X × Y pixels). Therefore,

the space complexity of SLAMSORT is O(XY + n) for processing all

pixels.

Then, we consider the method SLAMBUCKET (cf. Algorithm 2).

Even though this method needs to store additional buckets

BL(qi−1.x, qi .x) and BU (qi−1.x, qi .x) (where 1 ≤ i ≤ X + 1) com-

pared with SLAMSORT, the additional space for storing these buck-

ets is at mostO(n). Therefore, the space complexity of SLAMBUCKET

is the same as SLAMSORT, which is O(XY + n) for processing all

pixels.

Since the method RAO only needs to determine the processing

order of the pixels (cf. Figures 4 and 12), which does not incur

additional space overhead, the space complexity of SLAM
(RAO)

SORT
and

SLAM
(RAO)

BUCKET
remains in O(XY + n).

Based on the above discussion, we conclude the space complexity

of our methods in Theorem 4. Observe that all our methods do

not incur additional space compared with the method RQS (cf.

Section 2.2).

Theorem 4. The space complexity of SLAMSORT, SLAM
(RAO)
SORT ,

SLAMBUCKET, and SLAM
(RAO)
BUCKET is O(XY + n).

4 EXPERIMENTAL EVALUATION
In this section, we first introduce the experimental settings in Sec-

tion 4.1. Then, we compare our methods with the state-of-the-art

KDV methods, using the default Epanechnikov kernel function, in

Section 4.2. Lastly, we also evaluate the efficiency of all methods for

other kernel functions, including the uniform and quartic kernels

(cf. Table 2), in Section 4.3.

4.1 Experimental Settings
We adopt four large-scale real datasets for evaluating the efficiency

of all methods, which are summarized in Table 5. All these datasets

are the open data from the local governments of different cities,

which can be classified into three categories, namely crime events,

traffic accidents, and 311 calls. In our experiments, we follow the

existing studies [16, 31] and utilize the Scott’s rule [57] to determine

the default bandwidth value b. In addition, we also follow [16] and

choose the default resolution size to be 1280 × 960.

Table 5: Datasets.

Dataset name Dataset size n Category

Bandwidth b
(meters)

Seattle [5] 862873 Crime events 671.39

Los Angeles [2] 1255668 Crime events 1588.47

New York [3] 1499928 Traffic accidents 1062.53

San Francisco [4] 4333098 311 calls 279.27

Table 6: All KDV Methods.

Method SCAN RQS
kd

RQS
ball

Z-order aKDE QUAD SLAMSORT SLAMBUCKET SLAM
(RAO)

SORT
SLAM

(RAO)

BUCKET

Ref. [57]

Section 2.2 Section 2.2

[73] [33] [16, 19] Section 3.4 Section 3.5

Section 3.4 Section 3.5

with [9] with [44] Section 3.6 Section 3.6

Table 7: Response time (sec) of all methods, using the default setting of parameters.

Method SCAN RQS
kd

RQS
ball

Z-order aKDE QUAD SLAMSORT SLAMBUCKET SLAM
(RAO)

SORT
SLAM

(RAO)

BUCKET

Seattle > 14400 12351.1 5117.44 942.43 > 14400 620.68 57.77 34.99 45.19 27.47
Los Angeles > 14400 7538.65 3375.3 509.69 > 14400 478.31 54.56 33.56 42.99 26.42
New York > 14400 7388.31 4083.54 570.77 > 14400 394.49 74.49 47.41 58.83 37.63

San Francisco > 14400 > 14400 > 14400 662.92 > 14400 1397.53 232.44 142.9 182.69 112.29

SCAN • RQS
kd
◦ RQS

ball
� aKDE � QUAD + Z-order H SLAM

(RAO)

BUCKET
×

 1

 10

 100

 1000

 10000

 100000

320x240

640x480

1280x960

2560x1920

Ti
m

e
(s

ec
)

Resolution size

 1

 10

 100

 1000

 10000

 100000

320x240

640x480

1280x960

2560x1920

Ti
m

e
(s

ec
)

Resolution size

 1

 10

 100

 1000

 10000

320x240

640x480

1280x960

2560x1920

Ti
m

e
(s

ec
)

Resolution size

 1

 10

 100

 1000

 10000

 100000

320x240

640x480

1280x960

2560x1920

Ti
m

e
(s

ec
)

Resolution size

(a) Seattle (b) Los Angeles (c) New York (d) San Francisco

Figure 13: Response time for generating KDV with default bandwidth value, varying the resolution size.

Table 6 shows all KDVmethods that are used for efficiency evalu-

ation in our experiments. SCAN is the baseline method, which scans

all data points for each pixel to generate KDV. Both RQS
kd

and

RQS
ball

are the range-query-based solutions (cf. Section 2.2), using

the kd-tree and ball-tree, respectively. Z-order [73] is the data sam-

pling method, which achieves the probabilistic error guarantee for

the kernel density function FP (q). Both aKDE [33] and QUAD [16]

incorporate the lower and upper bound functions into the indexing

framework to boost the efficiency for evaluating FP (q). Compared

with these methods, our methods SLAMSORT and SLAMBUCKET

can significantly reduce the time complexity for generating exact

KDV. By combining the resolution-aware optimization (cf. Sec-

tion 3.6) with SLAMSORT and SLAMBUCKET, both SLAM
(RAO)

SORT
and

SLAM
(RAO)

BUCKET
can further reduce the time complexity compared

with SLAMSORT and SLAMBUCKET, respectively.

We implemented all these methods
2
with C++ and conducted

experiments on an Intel i7 3.19GHz PC with 32GB memory. In our

experiments, we perform the efficiency evaluation of all methods

and only report the response time which is smaller than 14400 sec

(i.e., 4 hours).

4.2 Efficiency Comparison of KDV Methods
Although all our methods SLAMSORT, SLAMBUCKET, SLAM

(RAO)

SORT

and SLAM
(RAO)

BUCKET
can significantly reduce the time complexity for

generating KDV without increasing the space complexity, we do

not know the practical improvement of our methods compared with

2
The source codes of all methods can be found in the Github repository https://

anonymous.4open.science/r/SLAM-F8D8/.

the existing methods (cf. Table 6). In this section, we investigate

the following six questions, which are related to the time and space

efficiency issues for generating KDV.

(1) What is the response time of all methods under the default

setting of parameters?

(2) How does the resolution size (i.e., X ×Y) affect the response
time of all methods?

(3) How does the dataset size (i.e., n) affect the response time of

all methods?

(4) How does the bandwidth value (i.e., b) affect the response
time of all methods?

(5) What is the response time of all methods for supporting

exploratory operations (e.g., zooming and panning)?

(6) How does the dataset size (i.e., n) affect the space consump-

tion of all methods?

Response time of all methods under the default setting of pa-
rameters: In this experiment, we test the efficiency of all methods,

using the default parameters, i.e., we set the default resolution size

to be 1280 × 960 and adopt the Scott’s rule [57] to choose the default

bandwidth valueb for each dataset. Table 7 shows the response time

of all methods. Observe that ourmethods SLAMSORT, SLAMBUCKET,

SLAM
(RAO)

SORT
and SLAM

(RAO)

BUCKET
can achieve 2.85x to more than two-

order-of-magnitude speedup in different datasets compared with

the existing methods. The main reason is that all our methods can

reduce the time complexity for generating KDV. Since SLAMBUCKET

is theoretically more efficient than SLAMSORT, SLAMBUCKET can

outperform SLAMSORT by 1.57x to 1.65x in all these datasets. By

incorporating the resolution-aware optimization (cf. Section 3.6)

https://anonymous.4open.science/r/SLAM-F8D8/
https://anonymous.4open.science/r/SLAM-F8D8/

SCAN • RQS
kd
◦ RQS

ball
� aKDE � QUAD + Z-order H SLAM

(RAO)

BUCKET
×

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

Ti
m

e
(s

ec
)

Dataset size (%)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100
Ti

m
e

(s
ec

)

Dataset size (%)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

Ti
m

e
(s

ec
)

Dataset size (%)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

Ti
m

e
(s

ec
)

Dataset size (%)

(a) Seattle (b) Los Angeles (c) New York (d) San Francisco

Figure 14: Response time for generating KDV with default resolution size and bandwidth value, varying the dataset size.

SCAN • RQS
kd
◦ RQS

ball
� aKDE � QUAD + Z-order H SLAM

(RAO)

BUCKET
×

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 1 2 4

Ti
m

e
(s

ec
)

Bandwidth (Ratio)

 1

 10

 100

 1000

 10000

0.25 0.5 1 2 4

Ti
m

e
(s

ec
)

Bandwidth (Ratio)

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 1 2 4

Ti
m

e
(s

ec
)

Bandwidth (Ratio)

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 1 2 4

Ti
m

e
(s

ec
)

Bandwidth (Ratio)

(a) Seattle (b) Los Angeles (c) New York (d) San Francisco

Figure 15: Response time for generating KDV with default resolution size, varying the bandwidth value.

into the method SLAMBUCKET, the method SLAM
(RAO)

BUCKET
achieves

the smallest response time in practice. In the following experiments,

we omit the results of SLAMSORT, SLAMBUCKET and SLAM
(RAO)

SORT
,

since these methods are consistently inferior compared with the

best method SLAM
(RAO)

BUCKET
.

Response time of all methods with different resolution sizes:
In this experiment, we investigate how the resolution size affects

the response time of all methods. We follow [16] and choose these

four resolution sizes, which are 320× 240, 640× 480, 1280× 960 and

2560 × 1920, for testing. In Figure 13, the larger the resolution size,

the higher the response time of all methods. In addition, since the

time complexity of existingmethods isO(XYn), the response time of

these existing methods can increase by roughly four times, after we

adopt the next larger resolution size (e.g., change from 640 × 480 to

1280× 960). As our method SLAM
(RAO)

BUCKET
can reduce the time com-

plexity for generating KDV (with O(min(X ,Y) × (max(X ,Y) + n))),

we expect that the response time of SLAM
(RAO)

BUCKET
increases smaller

(i.e., two times) for using the next larger resolution size compared

with these existing methods. Therefore, once the resolution size is

larger, the time gaps between SLAM
(RAO)

BUCKET
and all existing meth-

ods are also larger.

Response time of all methods with different dataset sizes: We

proceed to test how the dataset size affects the response time of

all methods. To conduct this experiment, we adopt the random

sampling (without replacement) approach to sample 25%, 50%, 75%

and 100% (original one) of data points from each dataset (cf. Table 5)

for testing. Figure 14 shows the results for all methods. Observe

that once we increase the dataset size, all methods need to process

more data points. As such, the response time of all methods is

also higher. Here, we notice that SLAM
(RAO)

BUCKET
can outperform the

existing methods by a visible margin, no matter which dataset size

we adopt.

Response time of all methods with different bandwidth val-
ues: Here, we further investigate how the bandwidth value b affects

the response time of all methods. To conduct this experiment, we

choose five bandwidth values, by multiplying the default bandwidth

value with five ratios, which are 0.25, 0.5, 1 (original one), 2 and

4, for testing in each dataset. In Figure 15, observe that once we

increase the bandwidth value b, the response time of all methods

increases. The main reason is that all methods need to scan more

data points with the large bandwidth b (e.g., large range value b
for the methods RQS

kd
and RQS

ball
(cf. Section 2.2)). In addition,

we notice that SLAM
(RAO)

BUCKET
can consistently outperform the top-2

best competitors, i.e., Z-order and QUAD, by 5.76x to 34.77x.

Response time of all methods with different exploratory oper-
ations: In practice, users (e.g., Geoscientists, criminologists) need

to perform the exploratory operations (cf. Figure 2) to visualize

hotspots in different regions (e.g., zooming and panning) and time

intervals (e.g., time-based filtering). Here, we investigate the effi-

ciency of all KDV methods for supporting zooming and panning

operations, using the Seattle and Los Angeles datasets, where the

event time of each data point is from 1
st
Jan 2019 to 31

st
Dec 2019.

As a remark, we fix the resolution size to be 1280 × 960.

In the first experiment, we test the efficiency for the zooming

operation. First, we use the minimum bounding rectangle to cover

SCAN • RQS
kd
◦ RQS

ball
� aKDE � QUAD + Z-order H SLAM

(RAO)

BUCKET
×

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

Ti
m

e
(s

ec
)

Ratio

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1
Ti

m
e

(s
ec

)

Ratio

 1

 10

 100

 1000

 10000

1 2 3 4 5

Ti
m

e
(s

ec
)

Region number

 1

 10

 100

 1000

 10000

1 2 3 4 5

Ti
m

e
(s

ec
)

Region number

(a) Seattle (Zooming) (b) Los Angeles (Zooming) (c) Seattle (Panning) (d) Los Angeles (Panning)

Figure 16: Response time for generating KDV with zooming (a and b) and panning (c and d) operations in the Seattle (a and c)
and Los Angeles (b and d) datasets, where the event time of each data point is from 1

st Jan 2019 to 31
st Dec 2019.

SCAN • RQS
kd
◦ RQS

ball
� aKDE � QUAD + Z-order H SLAM

(RAO)

BUCKET
×

 10

 100

 1000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B)

Dataset size (%)

 10

 100

 1000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B)

Dataset size (%)

 10

 100

 1000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B)

Dataset size (%)

 10

 100

 1000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B)

Dataset size (%)

(a) Seattle (b) Los Angeles (c) New York (d) San Francisco

Figure 17: Space consumption for generating KDV with default resolution size and bandwidth value, varying the dataset size.

each city, e.g., Seattle. Then, we generate four visualized regions, by

multiplying the height and width of this rectangle with four ratios,

i.e., 0.25, 0.5, 0.75 and 1 (the original one). Here, the smaller ratio

denotes that we zoom in to this city. Figure 16a and Figure 16b show

the response time of all methods. Since we fix the resolution size to

be 1280 × 960 for each visualized region and the zoomed regions

contain data points with higher density, each pixel in the zoomed

region with smaller ratio (e.g., 0.25) can have a larger number of

data points that are within the bandwidth b (i.e., each method,

except SCAN, needs to process more data points). Therefore, the

smaller the ratio, the higher the response time of each method.

Observe that SLAM
(RAO)

BUCKET
can achieve at least one to two-order-

of-magnitude speedup in most of the cases compared with the

existing methods, regardless of the visualized regions. As a remark,

since the competitors (e.g., QUAD) adopt the filter-and-refinement

approach to improve the efficiency for generating KDV and the

filtering performance in the Los Angeles dataset is better, the time

gap between SLAM
(RAO)

BUCKET
and the best competitor (i.e., QUAD) in

the Seattle dataset is larger compared with the Los Angeles dataset.

In the second experiment, we test the efficiency for the panning

operation. Like the first experiment, we also use the minimum

bounding rectangle to cover each city (let the size be H ×W). Then,

we randomly generate five rectangles, which are inside the mini-

mum bounding rectangle, with the same size 0.5H × 0.5W , as the

visualized regions. In Figure 16c and Figure 16d, we observe that

SLAM
(RAO)

BUCKET
can achieve one-order-of-magnitude speedup inmost

of the cases compared with the best competitor.

Based on the results of these two experiments, we further observe

that SLAM
(RAO)

BUCKET
only takes less than 6 sec (i.e., near real-time)

for generating each KDV with these exploratory operations, which

cannot be achieved by other state-of-the-art methods.

Space consumption of allmethodswith different dataset sizes:
In this experiment, we investigate how the dataset size affects the

space consumption of all methods (by sampling 25%, 50%, 75%

and 100% (original one) of data points from each dataset). Since

SLAM
(RAO)

BUCKET
does not increase the worst-case space complexity

(cf. Theorem 4) compared with existing methods, the space con-

sumption of all methods is similar (cf. Figure 17), no matter which

dataset size we adopt.

4.3 Efficiency Evaluation for Other Kernels
In this section, we proceed to test the efficiency for generating

KDV with other kernel functions, including uniform and quartic

kernels. Here, we adopt the Los Angeles and San Francisco datasets

for testing.

In the first experiment, we test how the resolution size affects the

response time for generating KDV, using the uniform and quartic

kernels. Figure 18 shows the results for all methods. Since the exist-

ing methods and our method SLAM
(RAO)

BUCKET
does not incur the large

time overhead for supporting these kernel functions, the response

time of all methods is similar to the results in Figure 13b and Fig-

ure 13d. Here, we can observe that SLAM
(RAO)

BUCKET
can consistently

outperform the existing methods by a visible margin in many test

cases. In addition, once we increase the resolution size, the time

SCAN • RQS
kd
◦ RQS

ball
� aKDE � QUAD + Z-order H SLAM

(RAO)

BUCKET
×

 1

 10

 100

 1000

 10000

 100000

320x240

640x480

1280x960

2560x1920

Ti
m

e
(s

ec
)

Resolution size

 1

 10

 100

 1000

 10000

 100000

320x240

640x480

1280x960

2560x1920
Ti

m
e

(s
ec

)
Resolution size

 1

 10

 100

 1000

 10000

320x240

640x480

1280x960

2560x1920

Ti
m

e
(s

ec
)

Resolution size

 1

 10

 100

 1000

 10000

 100000

320x240

640x480

1280x960

2560x1920

Ti
m

e
(s

ec
)

Resolution size

(a) Los Angeles (Uniform) (b) San Francisco (Uniform) (c) Los Angeles (Quartic) (d) San Francisco (Quartic)

Figure 18: Response time for generating KDV in Los Angeles (a and c) and San Francisco (b and d) datasets with uniform (a
and b) and quartic (c and d) kernels, varying the resolution size.

SCAN • RQS
kd
◦ RQS

ball
� aKDE � QUAD + Z-order H SLAM

(RAO)

BUCKET
×

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

Ti
m

e
(s

ec
)

Dataset size (%)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

Ti
m

e
(s

ec
)

Dataset size (%)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

Ti
m

e
(s

ec
)

Dataset size (%)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

Ti
m

e
(s

ec
)

Dataset size (%)

(a) Los Angeles (Uniform) (b) San Francisco (Uniform) (c) Los Angeles (Quartic) (d) San Francisco (Quartic)

Figure 19: Response time for generating KDV in Los Angeles (a and c) and San Francisco (b and d) datasets with uniform (a
and b) and quartic (c and d) kernels, varying the dataset size.

gaps between SLAM
(RAO)

BUCKET
and the existing methods are larger,

due to the lower time complexity for our methods.

In the second experiment, we test how the dataset size affects the

response time for generating KDV, using the uniform and quartic

kernels. In Figure 19, we can observe that SLAM
(RAO)

BUCKET
can achieve

one to two-order-of-magnitude speedup in many test cases for

these two kernel functions compared with different state-of-the-art

methods.

5 RELATEDWORK
Kernel Density Visualization (KDV) has been widely used in dif-

ferent types of applications. Some representative examples include

traffic accident hotspot detection [62, 65], crime hotspot detec-

tion [34, 37], disease outbreak detection [19, 56] and ecological

modeling [27, 60]. However, KDV is a computationally expensive op-

eration [16, 31, 73], which is not scalable to large-scale datasets (e.g.,

> 1 million data points) and high resolution size (e.g., 1280 × 960).

In this section, we review six camps of research studies, which are

mostly related to this work.

Function approximation methods: Some researchers propose

to approximate the kernel density function FP (q) (cf. Equation 1).

Raykar et al. [54] and Yang et al. [67] adopt the fast Gauss transform

to approximately compute FP (q). On the other hand, Chan et al. [16,
19, 21, 22], Gan et al. [31] and Gray et al [33] develop the lower

and upper bound functions for FP (q) and further incorporate these
bound functions into the indexing framework to approximately

compute FP (q). Although these function approximation methods

can improve the practical efficiency for generating KDV, these

methods cannot reduce the time complexity for this operation and

can only provide the approximate result for each density value

FP (q).

Data sampling methods: In this camp of research studies, Zheng

et al. [73–75] and Phillips et al. [49–51] propose the advanced data

sampling methods to sample the given original dataset and then

evaluate the modified kernel density function, based on the reduced

dataset. Since the size of the reduced dataset can be much smaller

than the original dataset, these methods can significantly improve

the efficiency for generating KDV. However, like the function ap-

proximation methods, these methods can only provide the approxi-

mate result for each density value FP (q). In addition, these methods

still need to evaluate the exact KDV for the reduced dataset, which

can still be time-consuming. As a remark, since our methods can

reduce the time-complexity for evaluating exact KDV, our meth-

ods can seamlessly combine with these data sampling methods to

further improve the efficiency for generating approximate KDV.

Range-query-based methods: In Section 2.2, we recall that com-

puting the kernel density function FP (q) can be cast as solving the

range query problem for each pixel q. Therefore, the efficient meth-

ods for solving the range query problem can be used to improve

the efficiency for generating KDV. In the literature, many efficient

index structures have been developed to improve the performance

for solving the range query problem. Among most of these index

structures, both kd-tree [9] and ball-tree [44] are the representa-

tive and efficient solutions for the low dimensional datasets [47].

Although these methods can improve the practical efficiency for

generating KDV, they cannot theoretically reduce the time com-

plexity for this operation. Therefore, these methods can normally

provide inferior efficiency compared with our methods, especially

for large bandwidth b.

Sweep line methods: In both spatial database, computational ge-

ometry and GIS communities, sweep line methods (or plane sweep

methods) have been widely adopted to improve the efficiency

for different query processing or data analysis tasks. Some rep-

resentative examples include skyline queries [35, 58], spatial join

queries [7, 12, 13], range sum queries [23, 61], delaunay triangu-

lation [6, 26], Voronoi diagram [29, 30] and line segmentation in-

tersection [11, 24, 63]. Compared with our work, these research

studies do not consider the complex kernel density function FP (q).
Therefore, their sweep line methods cannot be directly applied for

generating KDV with smaller time complexity.

Parallel/distributed and hardware-based methods: In the liter-

ature, there are also many parallel/distributed and hardware-based

methods to boost the efficiency for generating KDV. Some repre-

sentative examples include MapReduce [73], GPU [40, 48, 71] and

FPGA [32]. In this work, we mainly focus on the single CPU setting

and leave the combination of our methods and these methods in

the future work.

Visual analytic systems: Recently, many visual analytic sys-

tems [25, 36, 41–43] have been developed to analyze hotspots, based

on KDV, for different types of applications, including crime hotspot

detection [25, 42], and disease outbreak detection [36, 41, 43]. These

systems offer different types of exploratory operations, e.g., zoom-

ing, panning, bandwidth selection, attribute-based filtering, and

time-based filtering, for generating KDV, in order to accomplish the

more complicated visual analytic tasks for understanding hotspots.

Although these visual analytic tasks normally involve massive KDV

operations, which are not scalable to large datasets and high resolu-

tion sizes, these research studies do not develop efficient algorithms

for supporting KDV. By incorporating our SLAM into these systems,

we reckon that this can significantly save the precious waiting time

of domain experts.

6 CONCLUSION
In this paper, we study kernel density visualization (KDV), which

has become a de facto visual analytic tool in many applications,

including hotspot detection and ecological modeling. Since KDV is

a time-consuming operation, which is not scalable to large datasets

and high resolution sizes, many research studies [16, 31, 32] have

complained about its efficiency issues. Although many recent re-

search studies propose to improve the efficiency for this operation,

all these studies can only provide approximate results for gener-

ating KDV in order to improve the efficiency. Worse still, some

of these studies cannot reduce the time complexity for this opera-

tion. To address this issue, we develop two sweep line algorithms

(SLAM), namely SLAMSORT and SLAMBUCKET, which can theoret-

ically reduce the time complexity for generating exact KDV. By

incorporating the resolution-aware optimization (RAO) into these

two methods, namely SLAM
(RAO)

SORT
and SLAM

(RAO)

BUCKET
, we can fur-

ther achieve the lowest time complexity for generating exact KDV.

Compared with the state-of-the-art solutions, all our methods can

achieve one to two-order-of-magnitude speedup in many test cases

and our best method SLAM
(RAO)

BUCKET
can efficiently support KDV

with exploratory operations in practice.

In the future, we plan to support other types of GIS operations,

e.g., K-function [8] and network K-function [46]. Furthermore,

we will extend our methods to support other commonly used ker-

nel functions (e.g., Gaussian kernel) and other types of KDV (e.g.,

NKDV [20], STKDV [18], and STNKDV [55]). In addition, we will

develop the real-time KDV system, based on SLAM, to support

some meaningful applications with large-scale location datasets,

e.g., visualizing the distribution of COVID-19 cases, using high res-

olution sizes (e.g., 2560 × 1920). Moreover, we will develop the new

plugin, which adopts SLAM to support efficient KDV generation,

for both QGIS [52] and ArcGIS [1].

ACKNOWLEDGMENTS
This work was supported by the National Key Research and De-

velopment Plan of China (No.2019YFB2102100), the Science and

Technology Development Fund Macau (SKL-IOTSC-2021-2023,

0015/2019/AKP), University of Macau (MYRG2019-00119-FST),

IRCMS/19-20/H01, Hong Kong RGC Projects 12201518, 12202221,

C2004-21GF, and C6030-18GF.

REFERENCES
[1] [n. d.]. ArcGIS. http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/

how-kernel-density-works.htm.

[2] [n. d.]. Los Angeles Open Data. https://data.lacity.org/A-Safe-City/

Crime-Data-from-2010-to-2019/63jg-8b9z.

[3] [n. d.]. NYC Open Data. https://data.cityofnewyork.us/Public-Safety/

Motor-Vehicle-Collisions-Crashes/h9gi-nx95.

[4] [n. d.]. San Francisco Open Data. https://data.sfgov.org/City-Infrastructure/

311-Cases/vw6y-z8j6.

[5] [n. d.]. Seattle Open Data. https://data.seattle.gov/Public-Safety/

SPD-Crime-Data-2008-Present/tazs-3rd5.

[6] Pankaj K. Agarwal, Lars Arge, and Ke Yi. 2005. I/O-Efficient Construction of

Constrained Delaunay Triangulations. In ESA. 355–366. https://doi.org/10.1007/

11561071_33

[7] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-

frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.
http://www.vldb.org/conf/1998/p570.pdf

[8] Adrian Baddeley, Ege Rubak, and Rolf Turner. 2015. Spatial point patterns: method-
ology and applications with R. CRC press.

[9] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-

tive Searching. Commun. ACM 18, 9 (1975), 509–517.

[10] Michal Bíl, Richard Andrášik, and Zbyněk Janoška. 2013. Identification of haz-

ardous road locations of traffic accidents by means of kernel density estimation

and cluster significance evaluation. Accident Analysis & Prevention 55 (2013),

265–273. https://doi.org/10.1016/j.aap.2013.03.003

[11] Jean-Daniel Boissonnat and Franco P. Preparata. 2000. Robust Plane Sweep

for Intersecting Segments. SIAM Journal of Computing 29, 5 (2000), 1401–1421.

https://doi.org/10.1137/S0097539797329373

[12] Panagiotis Bouros and Nikos Mamoulis. 2017. A Forward Scan based Plane Sweep

Algorithm for Parallel Interval Joins. Proceedings of the VLDB Endowment 10, 11
(2017), 1346–1357. https://doi.org/10.14778/3137628.3137644

[13] Panagiotis Bouros, Nikos Mamoulis, Dimitrios Tsitsigkos, and Manolis Terrovitis.

2021. In-Memory Interval Joins. The VLDB Journal 30, 4 (2021), 667–691. https:

//doi.org/10.1007/s00778-020-00639-0

[14] Ellen E. Brandell, Nicholas M. Fountain-Jones, Marie L. J. Gilbertson,

Paul C. Cross, Peter J. Hudson, Douglas W. Smith, Daniel R. Stahler, Craig

Packer, and Meggan E. Craft. 2021. Group density, disease, and sea-

son shape territory size and overlap of social carnivores. Journal of
Animal Ecology 90, 1 (2021), 87–101. https://doi.org/10.1111/1365-2656.

13294 arXiv:https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-

2656.13294

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/ how-kernel-density-works.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/ how-kernel-density-works.htm
https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-2019/63jg-8b9z
https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-2019/63jg-8b9z
https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
https://data.sfgov.org/City-Infrastructure/311-Cases/vw6y-z8j6
https://data.sfgov.org/City-Infrastructure/311-Cases/vw6y-z8j6
https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5
https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5
https://doi.org/10.1007/11561071_33
https://doi.org/10.1007/11561071_33
http://www.vldb.org/conf/1998/p570.pdf
https://doi.org/10.1016/j.aap.2013.03.003
https://doi.org/10.1137/S0097539797329373
https://doi.org/10.14778/3137628.3137644
https://doi.org/10.1007/s00778-020-00639-0
https://doi.org/10.1007/s00778-020-00639-0
https://doi.org/10.1111/1365-2656.13294
https://doi.org/10.1111/1365-2656.13294
http://arxiv.org/abs/https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2656.13294
http://arxiv.org/abs/https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2656.13294

[15] Spencer Chainey, Lisa Tompson, and Sebastian Uhlig. 2008. The Utility of Hotspot

Mapping for Predicting Spatial Patterns of Crime. Security Journal 21, 1 (01 Feb
2008), 4–28. https://doi.org/10.1057/palgrave.sj.8350066

[16] Tsz Nam Chan, Reynold Cheng, and Man Lung Yiu. 2020. QUAD: Quadratic-

Bound-based Kernel Density Visualization. In SIGMOD. 35–50. https://doi.org/

10.1145/3318464.3380561

[17] Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and Jianliang Xu. 2022.

SAFE: A Share-and-Aggregate Bandwidth Exploration Framework for Kernel

Density Visualization. Proc. VLDB Endow. 15, 3 (2022), 513–526.
[18] Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and Jianliang Xu. 2022.

SWS: A Complexity-Optimized Solution for Spatial-Temporal Kernel Density

Visualization. Proc. VLDB Endow. 15, 4 (2022), 814–827.
[19] Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Weng Hou Tong, Shivansh Mittal, Ye

Li, and Reynold Cheng. 2021. KDV-Explorer: A Near Real-Time Kernel Density

Visualization System for Spatial Analysis. Proceedings of the VLDB Endowment
14, 12 (2021), 2655–2658. http://www.vldb.org/pvldb/vol14/p2655-chan.pdf

[20] Tsz Nam Chan, Zhe Li, Leong Hou U, Jianliang Xu, and Reynold Cheng. 2021. Fast

Augmentation Algorithms for Network Kernel Density Visualization. Proc. VLDB
Endow. 14, 9 (2021), 1503–1516. http://www.vldb.org/pvldb/vol14/p1503-chan.pdf

[21] Tsz Nam Chan, Leong Hou U, Reynold Cheng, Man Lung Yiu, and Shivansh

Mittal. To appear. Efficient Algorithms for Kernel Aggregation Queries. IEEE
Transactions on Knowledge and Data Engineering (To appear).

[22] Tsz Nam Chan, Man Lung Yiu, and Leong Hou U. 2019. KARL: Fast Kernel

Aggregation Queries. In ICDE. 542–553. https://doi.org/10.1109/ICDE.2019.00055

[23] Dong-Wan Choi, Chin-Wan Chung, and Yufei Tao. 2014. Maximizing Range

Sum in External Memory. ACM Transactions on Database Systems 39, 3 (2014),
21:1–21:44. https://doi.org/10.1145/2629477

[24] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.

2008. Computational geometry: algorithms and applications, 3rd Edition. Springer.
https://www.worldcat.org/oclc/227584184

[25] Jose Florencio de Queiroz Neto, Emanuele Marques dos Santos, Creto Augusto

Vidal, and David S. Ebert. 2020. A Visual Analytics Approach to Facilitate

Crime Hotspot Analysis. Computer Graphics Forum 39, 3 (2020), 139–151. https:

//doi.org/10.1111/cgf.13969

[26] Vid Domiter and Borut Zalik. 2008. Sweep-line algorithm for constrained Delau-

nay triangulation. International Journal of Geographical Information Science 22, 4
(2008), 449–462. https://doi.org/10.1080/13658810701492241

[27] Jianquan Dong, Jian Peng, Yanxu Liu, Sijing Qiu, and Yinan Han. 2020. Integrating

spatial continuous wavelet transform and kernel density estimation to identify

ecological corridors in megacities. Landscape and Urban Planning 199 (2020),

103815. https://doi.org/10.1016/j.landurbplan.2020.103815

[28] C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgru-

ber, and J. M. Calabrese. 2015. Rigorous home range estimation

with movement data: a new autocorrelated kernel density estima-

tor. Ecology 96, 5 (2015), 1182–1188. https://doi.org/10.1890/14-2010.1

arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/14-2010.1

[29] Steven Fortune. 1986. A Sweepline Algorithm for Voronoi Diagrams. In SoCG.
313–322. https://doi.org/10.1145/10515.10549

[30] Steven Fortune. 1987. A Sweepline Algorithm for Voronoi Diagrams. Algorithmica
2 (1987), 153–174. https://doi.org/10.1007/BF01840357

[31] Edward Gan and Peter Bailis. 2017. Scalable Kernel Density Classification via

Threshold-Based Pruning. In SIGMOD. 945–959.
[32] A. Gramacki. 2017. Nonparametric Kernel Density Estimation and Its Computa-

tional Aspects. Springer International Publishing. https://books.google.com.hk/

books?id=PCpEDwAAQBAJ

[33] Alexander G. Gray and Andrew W. Moore. 2003. Nonparametric Density Estima-

tion: Toward Computational Tractability. In SDM. 203–211.

[34] Timothy Hart and Paul Zandbergen. 2014. Kernel density estimation and hotspot

mapping: examining the influence of interpolation method, grid cell size, and

bandwidth on crime forecasting. Policing: An International Journal of Police
Strategies and Management 37 (2014), 305–323. https://doi.org/10.3390/s80603601

[35] Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas Tsichlas,

and Jeonghun Yoon. 2013. I/O-efficient planar range skyline and attrition priority

queues. In PODS. 103–114. https://doi.org/10.1145/2463664.2465225

[36] Seokyeon Kim, Seongmin Jeong, Insoo Woo, Yun Jang, Ross Maciejewski, and

David S. Ebert. 2018. Data Flow Analysis and Visualization for Spatiotemporal

Statistical Data without Trajectory Information. IEEE Transactions on Visual-
ization and Computer Graphics 24, 3 (2018), 1287–1300. https://doi.org/10.1109/

TVCG.2017.2666146

[37] Ourania Kounadi, Alina Ristea, Adelson Araujo, and Michael Leitner. 2020. A

systematic review on spatial crime forecasting. Crime Science 9, 7 (2020), 1–22.
[38] Pei-Fen Kuo, Dominique Lord, and Troy DuaneWalden. 2013. Using geographical

information systems to organize police patrol routes effectively by grouping

hotspots of crash and crime data. Journal of Transport Geography 30 (2013),

138–148. https://doi.org/10.1016/j.jtrangeo.2013.04.006

[39] P.C. Lai, Chit-Ming Wong, Anthony Hedley, S.V. Lo, P.Y. Leung, J Kong, and G.M.

Leung. 2004. Understanding the Spatial Clustering of Severe Acute Respiratory

Syndrome (SARS) in Hong Kong. Environmental Health Perspectives 112, 15 (2004),

1550–1556. https://doi.org/10.1289/ehp.7117

[40] Ove Daae Lampe and Helwig Hauser. 2011. Interactive visualization of streaming

data with Kernel Density Estimation. In PacificVis. 171–178. https://doi.org/10.

1109/PACIFICVIS.2011.5742387

[41] Ross Maciejewski, Ryan Hafen, Stephen Rudolph, Stephen G. Larew, Michael A.

Mitchell, William S. Cleveland, and David S. Ebert. 2011. Forecasting Hotspots - A

Predictive Analytics Approach. IEEE Transactions on Visualization and Computer
Graphics 17, 4 (2011), 440–453. https://doi.org/10.1109/TVCG.2010.82

[42] Ross Maciejewski, Stephen Rudolph, Ryan Hafen, AhmadM. Abusalah, Mohamed

Yakout, Mourad Ouzzani, William S. Cleveland, Shaun J. Grannis, and David S.

Ebert. 2010. A Visual Analytics Approach to Understanding Spatiotemporal

Hotspots. IEEE Transactions on Visualization and Computer Graphics 16, 2 (2010),
205–220. https://doi.org/10.1109/TVCG.2009.100

[43] Ross Maciejewski, Stephen Rudolph, Ryan Hafen, AhmadM. Abusalah, Mohamed

Yakout, Mourad Ouzzani, William S. Cleveland, Shaun J. Grannis, Michael Wade,

and David S. Ebert. 2008. Understanding syndromic hotspots - a visual analytics

approach. In VAST. 35–42. https://doi.org/10.1109/VAST.2008.4677354

[44] Andrew W. Moore. 2000. The Anchors Hierarchy: Using the Triangle Inequality

to Survive High Dimensional Data. In UAI. 397–405.
[45] Norihiko Muroga, Yoko Hayama, Takehisa Yamamoto, Akihiro Kurogi, Tomoyuki

Tsuda, and Toshiyuki Tsutsui. 2011. The 2010 Foot-and-Mouth Disease Epidemic

in Japan. The Journal of Veterinary Medical Science 74, 4 (2011), 399–404. https:

//doi.org/10.1292/jvms.11-0271

[46] A. Okabe and K. Sugihara. 2012. Spatial analysis along networks: statistical
and computational methods. Wiley. https://books.google.com.hk/books?id=

48GRqj51_W8C

[47] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,

Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research 12 (2011),

2825–2830.

[48] Alexandre Perrot, Romain Bourqui, Nicolas Hanusse, Frédéric Lalanne, and David

Auber. 2015. Large Interactive Visualization of Density Functions on Big Data

Infrastructure. In LDAV. 99–106. https://doi.org/10.1109/LDAV.2015.7348077

[49] Jeff M. Phillips. 2013. ϵ -Samples for Kernels. In SODA. 1622–1632. https:

//doi.org/10.1137/1.9781611973105.116

[50] Jeff M. Phillips and Wai Ming Tai. 2018. Improved Coresets for Kernel Density

Estimates. In SODA. 2718–2727. https://doi.org/10.1137/1.9781611975031.173

[51] Jeff M. Phillips and Wai Ming Tai. 2018. Near-Optimal Coresets of Kernel Density

Estimates. In SOCG. 66:1–66:13. https://doi.org/10.4230/LIPIcs.SoCG.2018.66

[52] QGIS Development Team. 2009. QGIS Geographic Information System. Open

Source Geospatial Foundation. http://qgis.osgeo.org

[53] Jerry Ratcliffe and Spencer Chainey. 2005. GIS and crime mapping. John Wiley.

[54] Vikas C. Raykar, Ramani Duraiswami, and Linda H. Zhao. 2010. Fast Computation

of Kernel Estimators. Journal of Computational and Graphical Statistics 19, 1
(2010), 205–220. https://doi.org/10.1198/jcgs.2010.09046

[55] Benjamin Romano and Zhe Jiang. 2017. Visualizing Traffic Accident Hotspots

Based on Spatial-Temporal Network Kernel Density Estimation. In SIGSPATIAL.
ACM, 98:1–98:4. https://doi.org/10.1145/3139958.3139981

[56] Natalya Rybnikova, Richard G Stevens, David I Gregorio, Holly Samociuk, and

Boris A Portnov. 2018. Kernel density analysis reveals a halo pattern of breast

cancer incidence in Connecticut. Spatial and Spatio-temporal Epidemiology 26

(2018), 143–151.

[57] D. W. Scott. 1992. Multivariate Density Estimation: Theory, Practice, and Visual-
ization. Wiley. https://books.google.com.hk/books?id=7crCUS_F2ocC

[58] Cheng Sheng and Yufei Tao. 2011. On finding skylines in external memory. In

PODS. 107–116. https://doi.org/10.1145/1989284.1989298

[59] Xun Shi. 2010. Selection of bandwidth type and adjustment side in kernel density

estimation over inhomogeneous backgrounds. International Journal of Geo-
graphical Information Science 24, 5 (2010), 643–660. https://doi.org/10.1080/

13658810902950625

[60] Xun Shi, Meifang Li, Olivia Hunter, Bart Guetti, Angeline Andrew, Elijah Stom-

mel, Walter Bradley, and Margaret Karagas. 2019. Estimation of environmental

exposure: interpolation, kernel density estimation or snapshotting. Annals of GIS
25, 1 (2019), 1–8. https://doi.org/10.1080/19475683.2018.1555188

[61] Yufei Tao, Xiaocheng Hu, Dong-Wan Choi, and Chin-Wan Chung. 2013. Approx-

imate MaxRS in Spatial Databases. Proceedings of the VLDB Endowment 6, 13
(2013), 1546–1557. https://doi.org/10.14778/2536258.2536266

[62] Lalita Thakali, Tae J. Kwon, and Liping Fu. 2015. Identification of crash hotspots

using kernel density estimation and kriging methods: a comparison. Jour-
nal of Modern Transportation 23, 2 (2015), 93–106. https://doi.org/10.1007/

s40534-015-0068-0

[63] Jan Vahrenhold. 2007. Line-segment intersection made in-place. Computational
Geometry 38, 3 (2007), 213–230. https://doi.org/10.1016/j.comgeo.2006.09.001

[64] Zuyuan Wang, Christian Ginzler, and Lars T. Waser. 2020. Assessing structural

changes at the forest edge using kernel density estimation. Forest Ecology and
Management 456 (2020), 117639. https://doi.org/10.1016/j.foreco.2019.117639

https://doi.org/10.1057/palgrave.sj.8350066
https://doi.org/10.1145/3318464.3380561
https://doi.org/10.1145/3318464.3380561
http://www.vldb.org/pvldb/vol14/p2655-chan.pdf
http://www.vldb.org/pvldb/vol14/p1503-chan.pdf
https://doi.org/10.1109/ICDE.2019.00055
https://doi.org/10.1145/2629477
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1111/cgf.13969
https://doi.org/10.1111/cgf.13969
https://doi.org/10.1080/13658810701492241
https://doi.org/10.1016/j.landurbplan.2020.103815
https://doi.org/10.1890/14-2010.1
http://arxiv.org/abs/https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/14-2010.1
https://doi.org/10.1145/10515.10549
https://doi.org/10.1007/BF01840357
https://books.google.com.hk/books?id=PCpEDwAAQBAJ
https://books.google.com.hk/books?id=PCpEDwAAQBAJ
https://doi.org/10.3390/s80603601
https://doi.org/10.1145/2463664.2465225
https://doi.org/10.1109/TVCG.2017.2666146
https://doi.org/10.1109/TVCG.2017.2666146
https://doi.org/10.1016/j.jtrangeo.2013.04.006
https://doi.org/10.1289/ehp.7117
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/TVCG.2010.82
https://doi.org/10.1109/TVCG.2009.100
https://doi.org/10.1109/VAST.2008.4677354
https://doi.org/10.1292/jvms.11-0271
https://doi.org/10.1292/jvms.11-0271
https://books.google.com.hk/books?id=48GRqj51_W8C
https://books.google.com.hk/books?id=48GRqj51_W8C
https://doi.org/10.1109/LDAV.2015.7348077
https://doi.org/10.1137/1.9781611973105.116
https://doi.org/10.1137/1.9781611973105.116
https://doi.org/10.1137/1.9781611975031.173
https://doi.org/10.4230/LIPIcs.SoCG.2018.66
http://qgis.osgeo.org
https://doi.org/10.1198/jcgs.2010.09046
https://doi.org/10.1145/3139958.3139981
https://books.google.com.hk/books?id=7crCUS_F2ocC
https://doi.org/10.1145/1989284.1989298
https://doi.org/10.1080/13658810902950625
https://doi.org/10.1080/13658810902950625
https://doi.org/10.1080/19475683.2018.1555188
https://doi.org/10.14778/2536258.2536266
https://doi.org/10.1007/s40534-015-0068-0
https://doi.org/10.1007/s40534-015-0068-0
https://doi.org/10.1016/j.comgeo.2006.09.001
https://doi.org/10.1016/j.foreco.2019.117639

[65] Kun Xie, Kaan Ozbay, Abdullah Kurkcu, and Hong Yang. 2017. Analysis of Traffic

Crashes Involving Pedestrians Using Big Data: Investigation of Contributing

Factors and Identification of Hotspots. Risk Analysis 37, 8 (2017), 1459–1476.

https://EconPapers.repec.org/RePEc:wly:riskan:v:37:y:2017:i:8:p:1459-1476

[66] Liting Xu, Shuhe Zhao, Sophia Shuang Chen, Cheng Yu, and Buyun Lei. 2020.

Analysis of arable land distribution around human settlements in the riparian

area of Lake Tanganyika in Africa. Applied Geography 125 (2020), 102344. https:

//doi.org/10.1016/j.apgeog.2020.102344

[67] Changjiang Yang, Ramani Duraiswami, and Larry S. Davis.

2004. Efficient Kernel Machines Using the Improved Fast Gauss

Transform. In NIPS. 1561–1568. http://papers.nips.cc/paper/

2550-efficient-kernel-machines-using-the-improved-fast-gauss-transform

[68] Suyan Yi, Hongwei Wang, Shengtian Yang, Ling Xie, Yibo Gao, and Chen Ma.

2021. Spatial and Temporal Characteristics of Hand-Foot-and-Mouth Disease

and Its Response to Climate Factors in the Ili River Valley Region of China.

International Journal of Environmental Research and Public Health 18, 4 (2021).

[69] Hao Yu, Pan Liu, Jun Chen, and Hao Wang. 2014. Comparative analysis of

the spatial analysis methods for hotspot identification. Accident Analysis and
Prevention 66 (2014), 80 – 88. https://doi.org/10.1016/j.aap.2014.01.017

[70] Kunxiaojia Yuan, Xiaoqiang Cheng, Zhipeng Gui, Fa Li, and Huayi Wu. 2019.

A quad-tree-based fast and adaptive Kernel Density Estimation algorithm for

heat-map generation. International Journal of Geographical Information Science
33, 12 (2019), 2455–2476. https://doi.org/10.1080/13658816.2018.1555831

[71] Guiming Zhang, A-Xing Zhu, and Qunying Huang. 2017. A GPU-accelerated

adaptive kernel density estimation approach for efficient point pattern analysis

on spatial big data. International Journal of Geographical Information Science 31,
10 (2017), 2068–2097. https://doi.org/10.1080/13658816.2017.1324975

[72] Xiangyu Zhao and Jiliang Tang. 2018. Crime in Urban Areas: A Data Mining

Perspective. SIGKDD Explorations 20, 1 (2018), 1–12. https://doi.org/10.1145/

3229329.3229331

[73] Yan Zheng, Jeffrey Jestes, JeffM. Phillips, and Feifei Li. 2013. Quality and efficiency

for kernel density estimates in large data. In SIGMOD. 433–444.
[74] Yan Zheng, Yi Ou, Alexander Lex, and Jeff M. Phillips. 2021. Visualization of Big

Spatial Data Using Coresets for Kernel Density Estimates. IEEE Transactions on
Big Data 7, 3 (2021), 524–534. https://doi.org/10.1109/TBDATA.2019.2913655

[75] Yan Zheng and Jeff M. Phillips. 2015. L∞ Error and Bandwidth Selection for

Kernel Density Estimates of Large Data. In SIGKDD. 1533–1542. https://doi.org/

10.1145/2783258.2783357

https://EconPapers.repec.org/RePEc:wly:riskan:v:37:y:2017:i:8:p:1459-1476
https://doi.org/10.1016/j.apgeog.2020.102344
https://doi.org/10.1016/j.apgeog.2020.102344
http://papers.nips.cc/paper/2550-efficient-kernel-machines-using-the-improved-fast-gauss-transform
http://papers.nips.cc/paper/2550-efficient-kernel-machines-using-the-improved-fast-gauss-transform
https://doi.org/10.1016/j.aap.2014.01.017
https://doi.org/10.1080/13658816.2018.1555831
https://doi.org/10.1080/13658816.2017.1324975
https://doi.org/10.1145/3229329.3229331
https://doi.org/10.1145/3229329.3229331
https://doi.org/10.1109/TBDATA.2019.2913655
https://doi.org/10.1145/2783258.2783357
https://doi.org/10.1145/2783258.2783357

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Revisitation of KDV
	2.2 Range-Query-based Solution (RQS)

	3 Sweep Line Algorithms (SLAM)
	3.1 Core Ideas
	3.2 Envelope Point Set
	3.3 Lower and Upper Bound Functions
	3.4 A Simple Sorting-based Sweep Line Algorithm (SLAMSORT)
	3.5 An Advanced Bucket-based Sweep Line Algorithm (SLAMBUCKET)
	3.6 Resolution-Aware Optimization (RAO)
	3.7 Other Kernels
	3.8 Space Complexity of SLAM

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Efficiency Comparison of KDV Methods
	4.3 Efficiency Evaluation for Other Kernels

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

