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ABSTRACT
Network K-function has been the de facto operation for analyzing

point patterns in spatial networks, which is widely used in many

communities, including geography, ecology, transportation science,

social science, and criminology. To analyze a location dataset, do-

main experts need to generate a network K-function plot that in-

volves computing multiple networkK-functions. However, network
K-function is a computationally expensive operation that is not

feasible to support large-scale datasets, let alone to generate a net-

work K-function plot. To handle this issue, we develop two efficient

algorithms, namely count augmentation (CA) and neighbor sharing

(NS), which can reduce the worst-case time complexity for comput-

ing network K-functions. In addition, we incorporate the advanced

shortest path sharing (ASPS) approach into these two methods

to further lower the worst-case time complexity for generating

network K-function plots. Experiment results on four large-scale

location datasets (up to 7.33 million data points) show that our

methods can achieve up to 165.85x speedup compared with the

state-of-the-art methods.

1 INTRODUCTION
Point pattern analysis in spatial networks [39] is a fundamen-

tal topic in different communities, including geography, ecology,

transportation science, social science, and criminology. One of the

most important operations in point pattern analysis is network

K-function [30, 39, 40], which counts all data points that are within

a given distance τ from every data point. Figure 1 shows an example

to illustrate the concept of network K-function. In Figure 1a, since

there is no data point within the distance τ from the data points

p1, p2, p3, and p4, the network K-function value for the dataset of

Figure 1a is 0. In Figure 1b, since the sets {p2, p3}, {p1, p3}, and
{p1, p2} are within the distance τ from p1, p2, and p3, respectively,
and there is no data point within the distance τ from p4, the network
K-function value for this dataset is 6. In general, a high network

K-function value indicates that the data points are clustered.

Network K-function has been extensively adopted by domain

experts to analyze location datasets and perform meta-analysis.

Consider the most representative example. Transportation ex-

perts [10, 14, 22, 30, 35, 57, 58] and criminologists [11, 12, 20, 34, 47]

first compute the network K-function values for a given location

dataset and L randomly generated datasets (e.g., L = 100 ran-

dom datasets are generated in [30]) with D distance values, i.e.,

τ1, τ2,..., τD (D is 200 in [30]). Then, they can generate the network
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Figure 1: Network K-function with distance τ for two loca-
tion datasets.

K-function plot (cf. Figure 2) based on these values. In Figure 2, the

black curve shows the network K-function values for the location

dataset with τ1, τ2,..., τD . In addition, the red dashed curve and

the blue dashed curve denote the smallest and the largest network

K-function values, respectively, among those L random datasets for

each distance τd . Observe that once the black curve is above the

blue dashed curve (i.e., orange region), they classify that these data

points are clustered with the corresponding distance values τ . In
contrast, they reckon that the data points are dispersed with those

distance values τ if the black curve is below the red dashed curve

(i.e., yellow region).
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Figure 2: Network K-function plot.
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Table 1: Theoretical results of different exact methods for generating the network K-function plot, where TSP and SSP denote
the time and space complexity of the shortest path algorithm, respectively.

Method Time complexity Space complexity

RQS [7, 37–39] (cf. Section 2.2) O (LDn(TSP + n)) O ( |V | + |E | + nL + SSP)
SPS [46] (cf. Section 2.3) O (LD( |E |TSP + n2))

CA (cf. Section 3.2) O
(
LD

(
|E |TSP + n |E | log

( n
|E |

) )
+ Ln logn

)
(cf. Theorem 1)

O ( |V | + |E | + nL + SSP) (cf. Theorem 4)
NS (cf. Section 3.3) O (LD( |E |TSP + n |E |) + Ln logn) (cf. Theorem 2)

CA
(ASPS)

(cf. Sections 3.2 and 3.4) O
(
|E |TSP + nLD |E | log

( n
|E |

)
+ Ln logn

)
(cf. Theorem 3)

NS
(ASPS)

(cf. Sections 3.3 and 3.4) O ( |E |TSP + nLD |E | + Ln logn) (cf. Theorem 3)

After domain experts obtain this network K-function plot,

they can detect which distance τ reveals the meaningful clus-

ters/hotspots for the location dataset (e.g., τ in the orange region

of Figure 2), which can further facilitate their spatial analysis tasks

(e.g., understandingwhich clusters/hotspots in a location dataset are

the meaningful ones but not the random distributions [49, 55]). In

addition, social scientists and urban planners [23, 36, 41, 49, 55, 56]

utilize the network K-function to analyze the spatial patterns of

different social phenomena, e.g., distribution properties of health

care facilities in a city [36, 56]. Ecologists [50] utilize the network

K-function to analyze the spatial patterns of different species. All

of these studies also need to generate the network K-function plot

(cf. Figure 2) for their tasks. Due to the wide applicability of net-

work K-function, the famous software ArcGIS [1] (based on the

SANET plugin [7, 37, 38]) and spNetwork [8] (an R package) can

also support this operation.

Although network K-function is widely used in many appli-

cations, these studies normally restrict the usage of this tool in

small-scale datasets (e.g., thousand-scale data points). The main

reason is that network K-function is a time-consuming operation,

which involves the evaluation of distances between all pairs of data

points in the worst case. Consider a road network that has 10,000

data points, the network K-function could take up to 100 million

operations (10, 000 × 10, 000). However, with the ever growing data

size in different applications, e.g., 7.3 million location data points in

the Chicago crime dataset [2], the existing solutions [7, 37–39, 46]

for network K-function are infeasible to handle these large-scale

datasets. Worse still, all these studies need to compute L+1 network
K-function values for each distance value τ in order to generate

the network K-function plot, which further deteriorates this infea-

sibility issue to use this tool for handling large-scale datasets. As

such, some research studies [34, 46] have explicitly pointed out this

drawback for using the network K-function. For example: Lu et

al. [34] explicitly state that they adopt small datasets (with 1,452

samples) in order to avoid the excessive computation when they

use the network K-function tool.

Therefore, we ask a research question. Can we reduce the time
complexity for generating the exact network K-function plot, without
increasing the space complexity? To provide an affirmative answer

to this question, we first develop the simple count augmentation

(CA) method (by adapting the solution in [17]) and the advanced

neighbor sharing (NS) method, which can significantly reduce the

time complexity for generating the network K-function plot. Then,

we incorporate the advanced shortest path sharing (ASPS) approach

for these two methods, namely CA
(ASPS)

and NS
(ASPS)

, which can

further reduce the time complexity for generating the network K-
function plot. As a remark, all these methods do not theoretically

incur space overhead (i.e., with the same space complexity). Table 1

summarizes the time and space complexity of all methods. Exper-

iment results show that our methods can achieve up to 165.85x

speedup compared with the existing methods. Furthermore, we

demonstrate how to use the network K-function plot to understand

the cluster properties for the crime location dataset in Chicago,

which cannot be feasibly supported by the existing solutions.

The rest of the paper is organized as follows. First, we define

the problem of generating the network K-function plot and discuss

the existing methods, RQS and SPS, for solving this problem in

Section 2. Then, we present our methods in Section 3. Next, we

show our experiment results in Section 4. After that, we discuss

the related work in Section 5. Lastly, we conclude our paper in

Section 6. The appendix of this paper can be found in Section 7.

2 PRELIMINARIES
In this section, we first formally define the network K-function
and the problem for generating the network K-function plot in

Section 2.1. Then, we discuss two baseline methods for generating

this network K-function plot, namely range-query-based solution

(RQS) and shortest path sharing solution (SPS), in Section 2.2 and

Section 2.3, respectively.

2.1 Problem Definition
Recall from Section 1, the network K-function is to count all data

points that are within a given distance τ from each data point in

the location dataset (cf. Definition 1).

Definition 1. Given the spatial network G = (V , E), the location
dataset P with n data points, i.e., P = {p1,p2, ...,pn }, where each
data point is on one and only one edge e ∈ E, and the distance τ , the
network K-function for this dataset P is KP (τ ) (cf. Equation 1).

KP (τ ) =
∑
pi ∈P

∑
pj ∈P
pj,pi

I(distG (pi ,pj ) ≤ τ ) (1)

where I(distG (pi ,pj ) ≤ τ ) is the indicator function (cf. Equation 2)
and distG (pi ,pj ) is the shortest path distance between pi and pj .

I(distG (pi ,pj ) ≤ τ ) =

{
1 if distG (pi ,pj ) ≤ τ

0 otherwise
(2)

With the definition of the network K-function, we can formally

define the problem for generating the network K-function plot (cf.

Figure 2) in Problem 1.

Problem 1. Given the spatial network G = (V , E), the distance
values, τ1, τ2,..., τD , the location dataset P and L randomly generated
datasets R1, R2,..., RL with the same size n, we need to plot these
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three values L(τd ), U(τd ) and KP (τd ) for each distance τd , where
1 ≤ d ≤ D.

L(τd ) = min(KR1
(τd ),KR2

(τd ), · · · ,KRL (τd )) (3)

U(τd ) = max(KR1
(τd ),KR2

(τd ), · · · ,KRL (τd )) (4)

Observe that L(τd ) andU(τd ) are the smallest and largest net-

work K-function values (with distance τd ) of those L randomly

generated datasets R1, R2,..., RL .

2.2 Range-Query-based Solution (RQS)
To efficiently compute the network K-function KP (τ ) (cf. Equa-
tion 1), it is sufficient to count, for each pi , those data points pj that
are within the distance τ , i.e., distG (pi ,pj ) ≤ τ . Therefore, instead
of scanning all data points in G for each pi , Okabe et al. [39] first
find the range query set for pi , i.e., RQτ (pi ) (cf. Equation 5), where

RQτ (pi ) = {pj ∈ P : distG (pi ,pj ) ≤ τ ,pj , pi } (5)

Then, they can compute the network K-function (cf. Equation 6),

based on the range query set for each pi .

KP (τ ) =
∑
pi ∈P
|RQτ (pi )| (6)

In this paper, we term this method as range-query-based solu-

tion (RQS). Figure 3 shows an example for this method to compute

|RQτ (pi )|. First, this RQS method utilizes the shortest path algo-

rithm SPτ (e.g., Dijkstra’s algorithm [19]) to find the shortest path

distances from pi to those yellow nodes (cf. Figure 3) that are within

the distance τ . Here, we denote SPD(pi ).u to be the shortest path

distance from pi to each node u ∈ V that is obtained by SPτ (cf.

Equation 7).

SPD(pi ).u =

{
distG (pi ,u) if distG (pi ,u) ≤ τ

∞ otherwise

(7)

Then, this method scans the data points of each edge that is con-

nected to the yellow node (i.e., the node u with SPD(pi ).u ≤ τ )
and determines whether these data points are within the distance

τ from pi . Algorithm 1 shows the pseudocode of this RQS method.

250m
𝑝𝑖

Figure 3: Find the range query set RQτ (pi ) for the data point
pi with τ = 250m (We use the blue color to denote this range
from pi ). Here, we have |RQτ (pi )| = 4 (orange data points).

Since this method needs to adopt the shortest path algorithm

and scan all data points in the road network for each pi in the worst

case (with large distance τ ), the time complexity for computing

KP (τ ) isO(n(TSP+n)), whereTSP denotes the time complexity of the

Algorithm 1 Range-Query-based Solution for NetworkK-function

1: procedure RQS(G = (V , E), P = {p1,p2, ...,pn }, distance τ )
2: K ← 0

3: for each pi ∈ P do
4: SPD(pi ) ← SPτ (G,pi )
5: for each e = (u,v) ∈ E do
6: if SPD(pi ).u ≤ τ or SPD(pi ).v ≤ τ then
7: for each pj in the edge e do

8: ∆← min

{
SPD(pi ).u + distG (pj ,u)

SPD(pi ).v + distG (pj ,v)

9: K ← K + I(∆ ≤ τ )

10: Clear SPD(pi ) ◃ Clear memory

11: Return K

shortest path algorithm, e.g., TSP = |V | log |V | + |E | for Dijkstra’s
algorithm [19]. Recall that we need to compute (L+ 1) ×D network

K-function values in order to generate the network K-function
plot (cf. Problem 1). Therefore, the worst-case time complexity for

using RQS to solve Problem 1 isO(LDn(TSP+n)), which can be very

time-consuming. As a remark, since this method needs to access the

road network (with O(|V | + |E |) space), access L + 1 datasets (with
O(nL) space), and adopt the shortest path algorithm (with O(SSP)
space), the space complexity of RQS is O(|V | + |E | + nL + SSP).

2.3 Shortest Path Sharing Solution (SPS)
Recently, Rakshit et al. [46] utilize the shortest path sharing so-

lution (SPS) to improve the efficiency for computing the network

K-function. Figure 4 shows the core idea of this method. Consider

the data points pi and pj in the edges (a,b) and (u,v), respectively.
We can observe that there are at most four paths from pi to pj ,
which are (1) pi → a → u → pj , (2) pi → a → v → pj , (3)
pi → b → u → pj , and (4) pi → b → v → pj . As such, we can use

Equation 8 to denote the shortest path distance between pi and pj :

distG (pi ,pj ) = min


distG (pi ,a) + distG (a,u) + distG (u,pj )

distG (pi ,a) + distG (a,v) + distG (v,pj )

distG (pi ,b) + distG (b,u) + distG (u,pj )

distG (pi ,b) + distG (b,v) + distG (v,pj )

(8)

𝑎
𝑏

𝑣
𝑢

Figure 4: The core idea of the SPS method. Black and blue
dots denote the data points in the edges (a,b) and (u,v), re-
spectively.

Therefore, instead of calling the shortest path algorithm for

each data point pi (like RQS (cf. Section 2.2)), this SPS method first

computes the shortest path distances from the nodes a and b to



Tsz Nam Chan, Leong Hou U, Yun Peng, Byron Choi, and Jianliang Xu

other nodes (e.g., u andv) in the spatial networkG (e.g., distG (a,u),
distG (a,v),distG (b,u), anddistG (b,v)), i.e., SPD(a) and SPD(b) (re-
place pi by a and b in Equation 7, respectively). Then, for each data

point (black dot)pi , thismethod computes the shortest path distance

between pi and pj using Equation 8. Since distG (a,u), distG (a,v),
distG (b,u), and distG (b,v) are computed in advance, this method

only calls the shortest path algorithm two times for each edge (e.g.,

(a,b)) and share these shortest path distance values to other data

points (e.g., all black dots). As such, the time complexity of the SPS

method is reduced to O(LD(|E |TSP + n
2)) compared with the RQS

method. As a remark, once the SPS method has processed all data

points in the edge ê = (a,b), it clears all the shortest path distances

SPD(a) and SPD(b). Therefore, the space complexity of the SPS

method remains the same as the RQS method. Algorithm 2 shows

the pseudocode of this SPS method.

Algorithm 2 Shortest Path Sharing Solution for Network K-
function

1: procedure SPS(G = (V , E), P = {p1,p2, ...,pn }, distance τ )
2: K ← 0

3: for each edge ẽ = (a,b) ∈ E do
4: SPD(a) ← SPτ (G,a)
5: SPD(b) ← SPτ (G,b)
6: for each pi in the edge ẽ do
7: for each e = (u,v) ∈ E do

8: if
(
SPD(a).u ≤ τ or SPD(a).v ≤ τ
or SPD(b).u ≤ τ or SPD(b).v ≤ τ

)
then

9: for each pj in the edge e do
10: ∆← distG (pi ,pj ) ◃ Equation 8

11: K ← K + I(∆ ≤ τ )

12: Clear SPD(a), SPD(b) ◃ Clear memory

13: Return K

3 OUR METHODS
Although the RQS and SPS methods can improve the efficiency for

generating the network K-function plot, the time complexity of

these two methods can still be very high, especially for large-scale

datasets (i.e., large n), large number of distance values (i.e., large D)
and large number of datasets (i.e., large L). To tackle this inefficiency

issue, we first discuss how to decompose the networkK-function (cf.
Equation 1) in Section 3.1. Based on this idea, we then propose two

complexity-optimized methods, which are (1) count augmentation

(CA) and (2) neighbor sharing (NS) in Section 3.2 and Section 3.3,

respectively. After that, we further develop the advanced shortest

path sharing approach (ASPS) and integrate it with the CA and NS

methods in Section 3.4. Lastly, we discuss the space complexity of

our methods in Section 3.5.

3.1 Decomposition of Network K-function
We first define the set of data points for each edge e in the spatial

network G as P(e) (cf. Definition 2).
1

1
All our methods need to sort the data points pj in P (e) based on the distance values

from one of the nodes in each edge e to pj (e.g., distG (u , pj ) or distG (v , pj ) if
e = (u , v)) in advance. The time complexity for sorting the data points in all edges is

O (n logn + |E |) for each dataset. For simplicity, we have sorted P (e) in advance for

each edge e ∈ E in this section.

Definition 2. Given an edge e in the spatial network G = (V , E),
P(e) is the point set in this edge e .

Based on this definition, we can then express the network K-
function KP (τ ) (cf. Equation 1) as follows.

KP (τ ) =
∑
pi ∈P

∑
pj ∈P
pj,pi

I(distG (pi ,pj ) ≤ τ )

=
∑
ẽ ∈E

∑
pi ∈P (ẽ)

∑
e ∈E

∑
pj ∈P (e)
pj,pi

I(distG (pi ,pj ) ≤ τ )

=
∑
ẽ ∈E

∑
e ∈E

C
(ẽ ,e)
P (τ ) (9)

where we denote C
(ẽ ,e)
P (τ ) as the (̃e, e)-count function (cf. Equa-

tion 10), which counts the number of data points pj in the edge e
that are within the distance τ from each data point pi in the edge ẽ .

C
(ẽ ,e)
P (τ ) =

∑
pi ∈P (ẽ)

∑
pj ∈P (e)
pj,pi

I(distG (pi ,pj ) ≤ τ ) (10)

Therefore, if we can efficiently compute the (̃e, e)-count function

C
(ẽ ,e)
P (τ ), we can improve the efficiency for computing the network

K-function KP (τ ).
Here, we also define the (pi , e)-count function (cf. Equation 11),

i.e., the inner summation term of C
(ẽ ,e)
P (τ ), which will be also used

in our methods. In addition, we will use ẽ = (a,b) and e = (u,v) as
an example (cf. Figure 4) to illustrate our methods in this paper.

C
(pi ,e)
P (τ ) =

∑
pj ∈P (e)
pj,pi

I(distG (pi ,pj ) ≤ τ ) (11)

3.2 Count Augmentation (CA) Method
Recently, Chan et al. [17] propose the augmentation-based approach

to reduce the time complexity for solving another important point

pattern analysis operation, called network kernel density visual-

ization, which is closely related to this work. Therefore, a natural

question is whether we can extend their idea to efficiently generate

the network K-function plot (cf. Problem 1). In this section, we

adapt their idea (aggregate distance augmentation) and develop the

method, called count augmentation (CA), which can also reduce

the time complexity for generating the network K-function plot.

The core idea of the CA method is to first augment the count

values |P(pj ,u)| and |P(pj ,v)| (instead of the aggregate distance

values in [17]) for each data point pj in the edge e = (u,v) (cf.
Figure 5), where

P(pj ,u) = {p ∈ P(e) : distG (u,p) ≤ distG (u,pj )} (12)

P(pj ,v) = {p ∈ P(e) : distG (v,p) ≤ distG (v,pj )} (13)

Based on these count values, |P(pj ,u)| and |P(pj ,v)|, and the

sorted order of data points in P(e) (cf. footnote 1), we can utilize the

binary search approach to avoid scanning the set of data points P(e)

for evaluating the (pi , e)-count function C
(pi ,e)
P (τ ) (cf. Equation 11)

oncewe havedistG (pi ,u) anddistG (pi ,v) (i.e., the green dashed line
and the orange dashed line, respectively, in Figure 5). In Lemma 1,

we claim that we can compute the (pi , e)-count function C
(pi ,e)
P (τ )

inO(log |P(e)|) time, given the shortest path distances from node a
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𝑝𝑖

𝑝𝑗

𝑎

𝑏

𝑢

𝑣

Figure 5: The core idea of the count augmentation (CA)
method, P(pj ,u) and P(pj ,v) denote the sets of data points
from u to pj and v to pj , respectively, in the edge e = (u,v).

and node b (i.e., SPD(a) and SPD(b)). The proof of this lemma can

be found in Section 7.1.

Lemma 1. Given the spatial network G = (V , E), the count
values |P(pj ,u)| and |P(pj ,v)| for each data point pj in the edge
e = (u,v) and the shortest path distances from nodes a and b (in
the edge ẽ) to nodes u and v , i.e., distG (a,u), distG (a,v), distG (b,u),
and distG (b,v), the time complexity for evaluating the (pi , e)-count
function C(pi ,e)P (τ ) (cf. Equation 11) is O(log |P(e)|) time.

Based on Lemma 1, we further conclude in Lemma 2 that we can

use O(|P (̃e)| log |P(e)|) time to compute the (̃e, e)-count function

C
(ẽ ,e)
P (τ ) (cf. Equation 10). The proof of this lemma can be found in

Section 7.2.

Lemma 2. Given two edges ẽ = (a,b) and e = (u,v) in the spa-
tial network G = (V , E) and the shortest path distances distG (a,u),
distG (a,v), distG (b,u), and distG (b,v), the time complexity for com-
puting the (̃e, e)-count function C(ẽ ,e)P (τ ) is O(|P (̃e)| log |P(e)|).

Algorithm 3 Count Augmentation (CA) Method for Network K-
function

1: procedure CA(G = (V , E), P = {p1,p2, ...,pn }, distance τ )
2: //Augment the count values for each point pj
3: for each edge e = (u,v) ∈ E do
4: for each pj ∈ P(e) do
5: Augment |P(pj ,u)| in pj ◃ Equation 12

6: Augment |P(pj ,v)| in pj ◃ Equation 13

7: K ← 0

8: for each edge ẽ = (a,b) ∈ E do
9: SPD(a) ← SPτ (G,a)
10: SPD(b) ← SPτ (G,b)
11: for each edge e = (u,v) ∈ E do
12: Compute C

(ẽ ,e)
P (τ ) ◃ Lemma 2

13: K ← K +C
(ẽ ,e)
P (τ )

14: Clear SPD(a), SPD(b)

15: Return K

Algorithm 3 shows the pseudocode of our CA method for com-

puting the network K-function, based on the fast evaluation of

C
(ẽ ,e)
P (τ ) (cf. Lemma 2). In Lemma 3, we conclude that the CA

method takes O
(
|E |TSP + n |E | log

( n
|E |

)
+ n logn

)
to compute the

network K-function. The proof of this lemma is in Section 7.3.

Lemma 3. The time complexity of the CA method (cf. Algorithm 3)
is O

(
|E |TSP + n |E | log

( n
|E |

)
+ n logn

)
for computing the network

K-function.

Recall that we need to compute the D(L+ 1) network K-function
values in order to generate the network K-function plot (cf. Prob-

lem 1). Based on Lemma 3 and the footnote 1, the time complexity

for using the CAmethod isO
(
LD

(
|E |TSP+n |E | log

( n
|E |

) )
+Ln logn

)
to solve Problem 1 (cf. Theorem 1).

Theorem 1. The time complexity for using the CA method to gen-
erate the network K-function plot isO

(
LD

(
|E |TSP +n |E | log

( n
|E |

) )
+

Ln logn
)
.

Compared with the state-of-the-art method, SPS, which takes

O(LD(|E |TSP + n
2)) time, our CA method reduces the worst-case

time complexity for generating the network K-function plot based

on the following reason.

O
(
log

( n

|E |

))
< O

( n

|E |

)
=⇒ O

(
n |E | log

( n

|E |

))
< O(n2)

3.3 Neighbor Sharing (NS) Method
Although the CA method reduces the time complexity for generat-

ing the networkK-function plot, the time complexity of this method

can still be high, especially for large number of data points n. Here,
we ask a question. Can we further reduce the time complexity for

generating the networkK-function plot? In this section, we provide

an affirmative answer to this question.

Recall that we need to count the data points pj in the edge e with
distG (pi ,pj ) ≤ τ from the data point pi in the edge ẽ in order to

compute the (pi , e)-count function C
(pi ,e)
P (τ ) (cf. Equation 11). In

Figure 6, observe that there are four possible routes from pi (on the

edge ẽ = (a,b)) to the edge e = (u,v) with length τ . Therefore, we
only need to count those data points in the edge e = (u,v) that are
passed through by any of these four routes. Here, we let τau (pi ),
τbu (pi ), τav (pi ), and τbv (pi ) be the lengths of these four routes in
the edge e = (u,v) (cf. Figure 6), where

τau (pi ) = τ − distG (pi ,a) − distG (a,u) (14)

τbu (pi ) = τ − distG (pi ,b) − distG (b,u) (15)

τav (pi ) = τ − distG (pi ,a) − distG (a,v) (16)

τbv (pi ) = τ − distG (pi ,b) − distG (b,v) (17)

As a remark, it is possible for any of these four values to be negative,

which indicates that we do not need to consider that route (e.g., we

can omit the route pi → b → u if τbu (pi ) < 0, i.e., distG (pi ,b) +
distG (b,u) > τ ) for counting the number of data points.

Based on these four values τau (pi ), τbu (pi ), τav (pi ), and τbv (pi ),
we maintain four sets of data points, i.e., ℓau (pi ), ℓbu (pi ), ℓav (pi ),
and ℓbv (pi ), respectively, in the edge e = (u,v) for computing the

(pi , e)-count function C
(pi ,e)
P (τ ), where

ℓau (pi ) = {pj ∈ P(e) : distG (u,pj ) ≤ τau (pi )} (18)

ℓbu (pi ) = {pj ∈ P(e) : distG (u,pj ) ≤ τbu (pi )} (19)

ℓav (pi ) = {pj ∈ P(e) : distG (v,pj ) ≤ τav (pi )} (20)

ℓbv (pi ) = {pj ∈ P(e) : distG (v,pj ) ≤ τbv (pi )} (21)
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Figure 6: Four possible routes (grey dashed, yellow dashed,
orange dotted, and green dotted lines) with length τ from
the data point pi in the edge ẽ = (a,b) to the edge e = (u,v),
where the data points that are inside ℓau (pi ), ℓbu (pi ), ℓav (pi ),
and ℓbv (pi ) can contribute to C(pi ,e)P (τ ).

In Lemma 4, we claim that we can compute C
(pi ,e)
P (τ ) in O(1)

time, once we have these four sets of data points (cf. Equations 18

to 21).

Lemma 4. Given the data point pi in the edge ẽ = (a,b) and the
sets of data points ℓau (pi ), ℓbu (pi ), ℓav (pi ), and ℓbv (pi ) in the edge
e = (u,v), the (pi , e)-count function C

(pi ,e)
P (τ ) can be computed in

O(1) time based on the following two conditions (C1 and C2).
C1 (max(|ℓau (pi )|, |ℓbu (pi )|) +max(|ℓav (pi )|, |ℓbv (pi )|) > |P(e)|):

C
(pi ,e)
P (τ ) = |P(e)| (22)

C2 (max(|ℓau (pi )|, |ℓbu (pi )|) +max(|ℓav (pi )|, |ℓbv (pi )|) ≤ |P(e)|):

C
(pi ,e)
P (τ ) = max(|ℓau (pi )|, |ℓbu (pi )|) +max(|ℓav (pi )|, |ℓbv (pi )|)

(23)

Proof. Note that computing the (pi , e)-count functionC
(pi ,e)
P (τ )

is equivalent to counting the number of data points that are covered

by the sets ℓau (pi ), ℓbu (pi ), ℓav (pi ), and ℓbv (pi ), i.e.,

C
(pi ,e)
P (τ ) = |ℓau (pi ) ∪ ℓbu (pi ) ∪ ℓav (pi ) ∪ ℓbv (pi )|

Observe from Figure 6 that ℓau (pi )∪ℓbu (pi ) and ℓav (pi )∪ℓbv (pi )
cover the data points in the edge e = (u,v) that are from the

node u and node v , respectively. Therefore, if ℓau (pi ) ∪ ℓbu (pi )
intersects with ℓav (pi ) ∪ ℓbv (pi ), i.e., max(|ℓau (pi )|, |ℓbu (pi )|) +
max(|ℓav (pi )|, |ℓbv (pi )|) > |P(e)|, ℓau (pi ) ∪ ℓbu (pi ) ∪ ℓav (pi ) ∪
ℓbv (pi ) = P(e), i.e., covers all data points in the edge e = (u,v).
Hence, we have proved the correctness of the condition C1.

Suppose that ℓau (pi ) ∪ ℓbu (pi ) does not intersect with ℓav (pi ) ∪
ℓbv (pi ), i.e., (ℓau (pi ) ∪ ℓbu (pi )) ∩ (ℓav (pi ) ∪ ℓbv (pi )) = ϕ. We have:

C
(pi ,e)
P (τ ) = |ℓau (pi ) ∪ ℓbu (pi ) ∪ ℓav (pi ) ∪ ℓbv (pi )|

= |ℓau (pi ) ∪ ℓbu (pi )| + |ℓav (pi ) ∪ ℓbv (pi )|

= max(|ℓau (pi )|, |ℓbu (pi )|) +max(|ℓav (pi )|, |ℓbv (pi )|)

Hence, we have proved the correctness of the condition C2. �

Recall that we need to compute the (pi , e)-count function

C
(pi ,e)
P (τ ) (cf. Equation 11) for each pi in the edge ẽ = (a,b) (cf.

𝑝𝑖𝑎
𝑏

𝑢
𝑣

𝑝𝑖+1

Figure 7: Remove the data points from ℓau (pi ) (grey data
point) and ℓav (pi ) (orange data point) to obtain ℓau (pi+1) and
ℓav (pi+1), respectively, once we change from pi to pi+1 (i.e.,
move away from the node a) in the edge ẽ = (a,b).

Figure 6) in order to compute the (̃e, e)-count function C
(ẽ ,e)
P (τ ) (cf.

Equation 10). In Figure 7, observe that we change from the data

point pi to the data point pi+1 in the edge ẽ = (a,b) (i.e., away from
the node a (distG (pi+1,a) > distG (pi ,a))). Based on Equations 14

and 16, we have:

τau (pi+1) ≤ τau (pi ) and τav (pi+1) ≤ τav (pi )

Consider Equations 18 and 20, we can further conclude that:

ℓau (pi+1) ⊆ ℓau (pi ) and ℓav (pi+1) ⊆ ℓav (pi )

Similarly, the values τbu (pi+1) > τbu (pi ) and τbv (pi+1) >
τbv (pi ) (cf. Figure 8) if we change from pi to pi+1. Therefore, we
have:

ℓbu (pi+1) ⊇ ℓbu (pi ) and ℓbv (pi+1) ⊇ ℓbv (pi )

𝑝𝑖𝑎
𝑏

𝑢
𝑣

𝑝𝑖+1

Figure 8: Insert the data points to ℓbu (pi ) (yellow data
point) and ℓbv (pi ) (green data point) to obtain ℓbu (pi+1) and
ℓbv (pi+1), respectively, once we change from pi to pi+1 (i.e.,
move towards the node b) in the edge ẽ = (a,b).

Hence, we conclude that these four sets of data points exhibit

the monotonicity property (cf. Lemma 5). The proof of this lemma

follows from the above discussion.

Lemma 5. Given the data points pi and pi+1 in the edge ẽ =
(a,b), where distG (pi ,a) ≤ distG (pi+1,a), and the sets of data points
ℓau (pi ), ℓbu (pi ), ℓav (pi ), and ℓbv (pi ) in the edge e = (u,v), these
four sets exhibit the monotonicity property, where

ℓau (pi+1) ⊆ ℓau (pi ) and ℓav (pi+1) ⊆ ℓav (pi )

ℓbu (pi+1) ⊇ ℓbu (pi ) and ℓbv (pi+1) ⊇ ℓbv (pi )
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Algorithm 4 Neighbor Sharing (NS) Method for (̃e, e)-count func-
tion

1: procedure NSedge (̃e = (a,b), e = (u,v), SPD(a), SPD(b), dis-
tance τ )

2: Obtain distG (a,u), distG (a,v) ◃ Obtain from SPD(a)
3: Obtain distG (b,u), distG (b,v) ◃ Obtain from SPD(b)
4: C ← 0

5: for each pi ∈ P (̃e) do
6: Update τau (pi ), τav (pi ) ◃ Equations 14, 16

7: Update τbu (pi ), τbv (pi ) ◃ Equations 15, 17

8: Update ℓau (pi ), ℓav (pi ) ◃ Equations 18, 20

9: Update ℓbu (pi ), ℓbv (pi ) ◃ Equations 19, 21

10: C ← C +C
(pi ,e)
P (τ ) ◃ Lemma 4

11: Return C

Algorithm 4 shows how we compute the (̃e, e)-count function

C
(ẽ ,e)
P (τ ), once we have obtained the shortest path distances from

the node a and node b (i.e., SPD(a) and SPD(b)). Based on Lemma 4

and Lemma 5, we conclude that Algorithm 4 takes at mostO(|P (̃e)|+

|P(e)|) time to compute C
(ẽ ,e)
P (τ ) (cf. Lemma 6).

Lemma 6. Given two edges ẽ = (a,b) and e = (u,v) in the graph
G = (V , E) and the shortest path distances distG (a,u), distG (a,v),
distG (b,u), and distG (b,v), Algorithm 4 takesO(|P (̃e)|+ |P(e)|) time
to compute C(ẽ ,e)P (τ ).

Proof. In this proof, we show that the main bottleneck of this

algorithm (i.e., lines 5 to 10) takes at most O(|P (̃e)| + |P(e)|) time.

Suppose that we process each data point pi in P (̂e) from node a
to node b in the edge ẽ = (a,b) in line 5 of Algorithm 4 (the data

points in P (̂e) are sorted in advance (cf. footnote 1).).

Since we can use Equations 14 to 17 to obtain τau (pi ), τbu (pi ),
τav (pi ), and τbv (pi ) (lines 6 and 7) in O(1) time for each pi , the
time complexity of lines 6 and 7 is O(|P (̃e)|) time throughout the

loop (in line 5).

Consider ℓau (pi ) in Algorithm 4. Based on Lemma 5, we can

conclude that:

ℓau (p |P (ẽ) |) ⊆ · · · ⊆ ℓau (p2) ⊆ ℓau (p1)

where p1, p2,..., p |P (ẽ) | are the data points in the edge ẽ = (a,b)
with:

distG (a,p1) ≤ distG (a,p2) ≤ · · · ≤ distG (a,p |P (ẽ) |)

Since the data points in P(e) are sorted (cf. footnote 1), the total num-

ber of deleted points for maintaining ℓau (pi ), where 1 ≤ i ≤ |P (̃e)|,
in line 8 isO(|P(e)|) throughout this loop (cf. Figure 9). Similarly, we

can also prove that the total number of deleted points for ℓav (pi )
and the total number of inserted points for ℓbu (pi ) and ℓbv (pi ) are
at mostO(|P(e)|) throughout this loop. As such, the time complexity

of lines 8 and 9 in Algorithm 4 isO(|P (̃e)| + |P(e)|) for all iterations.
Consider line 10 in Algorithm 4. Based on Lemma 4, we can

compute C
(pi ,e)
P (τ ) in O(1) time for each pi given the sets ℓau (pi ),

ℓbu (pi ), ℓav (pi ), and ℓbv (pi ) (obtained from lines 8 and 9). There-

fore, the time complexity of line 10 is O(|P (̃e)|) throughout the
loop.

Hence, we conclude that Algorithm 4 takes O(|P (̃e)| + |P(e)|)

time to compute C
(ẽ ,e)
P (τ ). �

𝑢
𝑣

~

Figure 9: The green region denotes the set of deleted points
in e = (u,v), which contains atmostO(|P(e)|) points, through-
out the loop (from ℓau (p1) to ℓau (p |P (ẽ) |)).

Algorithm 5 Neighbor Sharing (NS) Method for Network K-
function

1: procedure NS(G = (V , E), P = {p1,p2, ...,pn }, distance τ )
2: K ← 0

3: for each edge ẽ = (a,b) ∈ E do
4: SPD(a) ← SPτ (G,a)
5: SPD(b) ← SPτ (G,b)
6: for each edge e = (u,v) ∈ E do
7: //Use Algorithm 4

8: K ← K + NSEDGE (̃e, e, SPD(a), SPD(b), τ )

9: Clear SPD(a), SPD(b)

10: Return K

Algorithm 5 shows how the NS method computes the network

K-function (cf. Equation 9). Based on Lemma 6 and the footnote 1,

we further claim that this algorithm only takes O(|E |TSP + n |E | +
n logn) time and O(LD(|E |TSP + n |E |) + Ln logn) time to compute

the network K-function and generate the network K-function plot,

respectively (cf. Theorem 2).

Theorem 2. The time complexity of using the NS method (cf. Algo-
rithm 5) to compute the network K-function and generate the network
K-function plot isO(|E |TSP+n |E |+n logn) andO(LD(|E |TSP+n |E |)+
Ln logn), respectively.

Proof. Since we need to find the shortest path distances from

node a and node b, i.e., SPD(a) and SPD(b), respectively, for each
edge ẽ = (a,b), the time complexity of lines 4 and 5 for all iterations

is O(|E |TSP ). With these shortest path distances (i.e., SPD(a) and
SPD(b)), the time complexity for computing the (̃e, e)-count func-

tionC
(ẽ ,e)
P (τ ) isO(|P (̃e)|+ |P(e)|) time (cf. Lemma 6). Therefore, the

time complexity of line 8 for all iterations is:

O
( ∑
ẽ ∈E

∑
e ∈E

(
|P (̃e)| + |P(e)|

))
= O

(
|E |

∑
ẽ ∈E

|P (̃e)| + |E |
∑
e ∈E
|P(e)|

)
= O(n |E |)

Based on the above discussion and the footnote 1, the time com-

plexity for using the NS method (cf. Algorithm 5) to compute the

network K-function and generate the network K-function plot (cf.

Problem 1) isO(|E |TSP +n |E | +n logn) andO(LD(|E |TSP +n |E |)+
Ln logn), respectively.

�
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Figure 10: The shortest path distances from node a and node b (e.g., dashed lines) can be shared for computing the network
K-function values in multiple datasets.

Compared with the CA method, which takes O
(
LD

(
|E |TSP +

n |E | log
( n
|E |

) )
+ Ln logn

)
time to generate the network K-function

plot (cf. Theorem 1), the NS method further removes the log

( n
|E |

)
factor in order to theoretically improve the efficiency, especially

for n >> |E |.

3.4 An Advanced Shortest Path Sharing (ASPS)
Approach for Our Methods

In previous sections, both CA and NS methods mainly focus on

efficiently counting the data points on a single edge e = (u,v) in
order to reduce the time complexity for computing the network

K-function. However, none of these methods reduces the number

of shortest path computations. Although the existing method, SPS

(cf. Section 2.3), successfully achieves this goal, this method only

focuses on improving the efficiency for computing a single network

K-function. However, generating a network K-function plot (cf.

Problem 1) involves computingmany networkK-functions. As such,
we ask a question. Can we share the shortest path computations

in order to further reduce the time complexity for generating a

network K-function plot? To answer this question, we discuss the

advanced shortest path sharing (ASPS) approach based on these

two core ideas, namely (1) sharing the shortest path distances for

multiple datasets and (2) sharing the shortest path distances for

multiple distance thresholds, and investigate how to combine this

approach with our CA and NS methods.

Core idea 1: Sharing the shortest path distances for multiple
datasets. Suppose that we have computed the shortest path dis-

tances from node a and node b (cf. Figure 10) to all other nodes in

the road network G = (V , E). We can reuse these distance values

(i.e., SPD(a) and SPD(b)) for evaluating the network K-function
values in multiple datasets, i.e., P , R1,..., RL (cf. Problem 1).

Core idea 2: Sharing the shortest path distances for multiple
distance thresholds. Recall that all the methods need to call the

shortest path algorithm, i.e., SPτ , to find the shortest path distances

for other nodes that are smaller than the distance threshold τ from

a given node (e.g., line 4 and line 5 in Algorithm 5). Note that we

have τ1 ≤ τ2 ≤ ... ≤ τD (cf. Figure 2). After we use the short-

est path algorithm with the largest distance threshold τD for any

node a in the road network, i.e., call SPτD (a), SPD(a) (cf. Equa-
tion 7, where pi is replaced by a, with the largest distance threshold

τD ) contains enough information of shortest path distances for

other distance thresholds τ1, τ2,..., τD−1. Therefore, we can reuse

this SPD(a) and avoid calling the shortest path algorithms SPτ1 (a),
SPτ2 (a),..., SPτD−1 (a).

Integration of the ASPS approach with our CA and NS meth-
ods. Here, we mainly discuss how to integrate the ASPS approach

with our NS method, namely NS
(ASPS)

. By adopting the similar

concept, we can also integrate this approach with the CA method

(i.e., CA
(ASPS)

). In the NS
(ASPS)

method, once we have computed the

shortest path distances SPD(a) and SPD(b) for an edge ê = (a,b),
we can share SPD(a) and SPD(b) for all L+ 1 datasets (based on the

core idea 1), i.e., P,R1,R2, ...,RL , and D distance thresholds (based

on the core idea 2) in order to evaluate the corresponding edge-edge

count functions (cf. Equation 10), without re-invoking the shortest

path algorithm. Algorithm 6 shows the pseudocode of the NS
(ASPS)

method for generating the network K-function plot.

Algorithm 6 Combine the ASPS Approach with the NS Method

for Generating the Network K-function Plot

1: procedure NS
(ASPS)

(G = (V , E), Datasets {P,R1,R2, ...,RL},
distance thresholds τ1, τ2, ..., τD )

2: Let R0 = P and Kld be the network K-function value using

the l th dataset and τd distance threshold.

3: //Initialization

4: for l ← 0 to L do
5: for d ← 1 to D do
6: Kld ← 0

7: for each edge ẽ = (a,b) ∈ E do
8: SPD(a) ← SPτD (G,a)
9: SPD(b) ← SPτD (G,b)
10: for l ← 0 to L do
11: for d ← 1 to D do
12: for each edge e = (u,v) ∈ E do
13: //Use Algorithm 4

14: C ← NSEDGE (̃e, e, SPD(a), SPD(b), τd )
15: Kld ← Kld +C

16: Clear SPD(a), SPD(b)

17: Return Kld , where 0 ≤ l ≤ L and 1 ≤ d ≤ D

Since this algorithm ensures that we call the shortest path algo-

rithm two times for each edge ẽ = (a,b), the time complexity of

shortest path computations (lines 8 to 9 throughout the loop (in

line 7)) is at most O(|E |TSP). Based on the discussion in Section 3.3,

the time complexity of lines 10 to 15 throughout the loop is at most

O(nLD |E |) once the data points in each edge are sorted in advance

for every dataset (cf. footnote 1). As such, we conclude that the time

complexity of the NS
(ASPS)

method and the CA
(ASPS)

method (by

adopting the similar concept) is O(|E |TSP + nLD |E | + Ln logn) and
O
(
|E |TSP+nLD |E | log

( n
|E |

)
+Ln logn

)
, respectively (cf. Theorem 3).

Theorem 3. The time complexity of the NS(ASPS) method and the
CA(ASPS) method to generate the networkK-function plot isO(|E |TSP+
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nLD |E | + Ln logn) and O
(
|E |TSP + nLD |E | log

( n
|E |

)
+ Ln logn

)
, re-

spectively.

Hence, the CA
(ASPS)

and NS
(ASPS)

methods can further reduce

the time complexity for generating the network K-function plot (cf.

Problem 1) compared with the CA and NS methods, respectively.

As a remark, we further discuss how to parallelize our methods in

Section 7.5.

3.5 Space Complexity of Our Methods
In this section, we investigate the space complexity of all our meth-

ods, i.e., CA, NS, CA
(ASPS)

, and NS
(ASPS)

. Note that all thesemethods

need to access the road networkG = (V , E) (withO(|V |+ |E |) space),
access the L datasets (with O(nL) space), and adopt the shortest

path algorithm (withO(SSP) space). All these methods take at least

O(|V | + |E | + nL + SSP) space. In the following, we consider the

additional space consumption for all these methods.

CA method. Recall that we only need to augment the count

values, |P(pj ,u)| and |P(pj ,v)|, for each data point pj in each edge

e = (u,v) (cf. Figure 5). Therefore, we need to store additionalO(nL)
count values for these L datasets. As such, the space complexity of

this method remains in O(|V | + |E | + nL + SSP).
NSmethod. Recall that we need to maintain at most four sets of

data points (cf. Figure 6), i.e., ℓau (pi ), ℓbu (pi ), ℓav (pi ), and ℓbv (pi ),

in the edge e = (u,v) so as to compute C
(ẽ ,e)
P (τ ) (cf. line 8 in Al-

gorithm 5). Since we can clear all these sets after we consider the

next pair of (̃e, e), this algorithm takes O(n) additional space (with
|P(e)| → n in the worst case). Therefore, the space complexity

remains in O(|V | + |E | + nL + SSP).
CA(ASPS) and NS(ASPS) methods. Like the SPS method, since

we need to maintain and clear the shortest path distances from

node a and node b, i.e., SPD(a) and SPD(b) (with size O(|V |)), in
each iteration (cf. lines 8-9 and line 16 in Algorithm 6), these two

methods, CA
(ASPS)

and NS
(ASPS)

, take O(|V | + nL) and O(|V | + n)
additional space, respectively. As such, the space complexity of

these two methods remains in O(|V | + |E | + nL + SSP).
Based on the above discussion, we conclude the space complexity

of all methods in Theorem 4.

Theorem 4. The space complexity of using the CA, NS, CA(ASPS),
and NS(ASPS) methods to generate the network K-function plot is
O(|V | + |E | + nL + SSP).

Therefore, all our methods remain the same space complexity

compared with the existing RQS and SPS methods (cf. Table 1).

4 EXPERIMENTAL EVALUATION
In this section, we first discuss the experimental settings in Sec-

tion 4.1. Then, we investigate the practical efficiency of different

methods for computing a single network K-function in Section 4.2.

After that, we further test the practical efficiency of different meth-

ods for generating a network K-function plot (cf. Problem 1) in

Section 4.3. Lastly, we conduct the case study in Section 4.4 to

demonstrate how to use the network K-function plot to examine

the cluster properties for large-scale location datasets.

4.1 Experimental Settings
We choose four large-scale location datasets with different cate-

gories, including traffic accidents, 911 calls, 311 calls, and crime

events, to conduct the efficiency experiments, which are summa-

rized in Table 2. For each location dataset, we adopt the OSMnx

software package
2
[13] to extract the corresponding road network

from the OpenStreetMap [4].

Table 2: Datasets.

Dataset |V | |E | n Category

London [5] 19,984 75,610 822,382 Traffic accidents

Detroit [3] 16,294 51,819 1,931,000 911 calls

San Francisco [6] 6,488 21,013 4,771,272 311 calls

Chicago [2] 23,320 66,075 7,358,988 Crime events

In our experiments, we compare all our methods, CA, NS,

CA
(ASPS)

, and NS
(ASPS)

, with the state-of-the-art methods, RQS

and SPS (cf. Table 1). We implemented all these methods with C++
3

and conducted experiments on an Intel i7 3.19GHz PC with 32GB

memory. In this paper, we use the response time (sec) to measure

the efficiency of each method and only report the response time

that is smaller than one day (i.e., 86,400 sec).

4.2 Experiments for Computing a Single
Network K-function

Although our CA and NS methods can theoretically reduce the time

complexity for computing a single network K-function compared

with the RQS and SPS methods (cf. Table 1), we do not know the

practical efficiency improvement of our methods over these meth-

ods. To investigate this issue, we conduct the following experiments

to test the response time for the RQS, SPS, CA, and NS methods. As

a remark, since we focus on computing a single networkK-function

in this section, we omit the CA
(ASPS)

and NS
(ASPS)

methods, which

only improve the efficiency for using multiple datasets and multiple

thresholds (i.e., the setting of generating network K-function plot),

for testing.

Response time of all methods using the default threshold τ :
In this experiment, we follow [30] and choose the default threshold

τ as 1000m for computing the network K-function. Table 3 summa-

rizes the response time of all methods. Since our CA method can

significantly reduce the time complexity for computing the network

K-function (cf. Lemma 3), this method can achieve 6.41x to 28.58x

speedup compared with the RQS and SPS methods. Furthermore,

since our NS method can further remove the log

( n
|E |

)
factor (cf.

Theorem 2) compared with the CAmethod, this method can achieve

the smallest response time for all datasets (with additional 2.12x to

5.86x speedup over the CA method).

Table 3: Response time (sec) of all methods for computing
the network K-function, using the default threshold τ =
1000m.

Dataset RQS SPS CA NS

London 31.02 30.33 4.69 2.21
Detroit 425.02 421.77 37.06 8.79

San Francisco 7145.53 7132.01 251.35 42.88
Chicago 3146.51 3140.63 229.03 49.38

Response time of all methods with different thresholds τ : We

proceed to test how the threshold τ affects the response time of each

2
https://github.com/gboeing/osmnx

3
The implementation of all methods are available in the Github link: https://anonymous.

4open.science/r/Network-K-function-44D9/

https://github.com/gboeing/osmnx
https://anonymous.4open.science/r/Network-K-function-44D9/
https://anonymous.4open.science/r/Network-K-function-44D9/
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Figure 11: Response time for computing a single network K-function, varying the threshold τ from 100 to 5000 meters.
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Figure 12: Response time for computing a single network K-function, varying the dataset size.
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Figure 13: Response time for generating a network K-function plot with D = 5, varying the number of location datasets L.
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Figure 14: Response time for generating a network K-function plot with L = 5, varying the number of distance thresholds D.
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Figure 15: Distributions of response time for different methods with L = 5 in the London (a and c) and Detroit datasets (b and
d), using D = 4 (a and b) and D = 16 (c and d).
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Figure 16: Memory space consumption for generating a network K-function plot with L = 5 and D = 5, varying the dataset size.

method. To conduct this experiment, we choose six threshold values,

which are 100, 200, 500, 1000, 2000, and 5000 meters, for testing.

In Figure 11, once we increase the threshold τ , each method needs

to process more data points. Therefore, the response time of each

method increases. Since both our CA and NS methods can reduce

the time complexity for computing the network K-function, these
methods can achieve significant speedup compared with the RQS

and SPS methods. In particular, the best method, NS, can achieve

11.95x to 165.85x speedup no matter which threshold τ we choose.

Response time of all methods with different dataset sizes: We

investigate how the dataset size affects the response time of each

method. In this experiment, we first randomly sample each dataset

with different ratios, i.e., 25%, 50%, 75%, and 100% (the original one),

and then run all methods for each sampled dataset with the default

threshold τ = 1000 meters. Figure 12 shows the response time of

each method. Observe that our methods are more scalable to the

dataset size, which can achieve up to 165.85x speedup compared

with the RQS and SPSmethods. Themain reason is that ourmethods

can significantly reduce the time complexity for computing the

network K-function.

4.3 Experiments for Generating a Network
K-function Plot

Recall that domain experts need to generate a network K-function
plot (cf. Problem 1) by evaluating multiple network K-functions
(with L randomly generated datasets and D distance thresholds).

In this section, we test how these parameters, i.e., L and D, affect
the response time of all methods. Furthermore, we also test the

memory space consumption of all methods for generating a network

K-function plot.

Response time of all methods with different numbers of
datasets L: To conduct this experiment, we fix the number of dis-

tance thresholds D = 5, by choosing 100, 200, 300, 400, and 500

meters as the thresholds, and randomly generate L = 1, 2, 4, 8, and

16 additional datasets for testing (cf. Problem 1). Since the CA, NS,

CA
(ASPS)

, and NS
(ASPS)

methods can reduce the worst-case time

complexity for generating a network K-function plot (cf. Table 1),

all our methods can achieve up to 137.59x speedup compared with

the existing methods, RQS and SPS (cf. Figure 13). Furthermore,

our methods, CA
(ASPS)

and NS
(ASPS)

, can achieve additional 15% to

40% speedup compared with the CA and NS methods, respectively.

The smaller improvements of using the ASPS approach (e.g., the

gaps between the NS and NS
(ASPS)

methods in Figure 13) indicate

that the main bottleneck of generating a network K-function plot

is to count the data points in a road network from each data point

rather than computing the shortest paths.

Response time of all methods with different numbers of
thresholds D: We proceed to test how the number of thresholds D
affects the response time of each method. In this experiment, we

set the initial threshold value to be 100 and increase the threshold

by 100 to generate D thresholds (e.g., D = 4 indicates that we adopt

the four thresholds, τ1 = 100, τ2 = 200, τ3 = 300, and τ4 = 400, for

testing). Furthermore, we fix the number of randomly generated

datasets L to be 5 and vary the number of thresholds D from 1 to 16.

In Figure 14, observe that all our methods can significantly improve

the efficiency compared with the existing methods, RQS and SPS,

due to the smaller time complexity of our methods (cf. Table 1).

Specifically, the best method, NS
(ASPS)

, can achieve up to 141.62x

speedup compared with the existing methods.

Distributions of response time for different methods: Recall
that all methods need to (1) compute the shortest path distances

(SP) and (2) count the number of data points (COUNT). Here, we

investigate the distributions of response time in these two com-

ponents, i.e., SP and COUNT, for different methods. To conduct

this experiment, we fix L to be 5, set D to be 4 and 16, and choose

two location datasets, which are London and Detroit, for testing.

In Figure 15, observe that both the CA and NS methods contain the

smaller percentages of response time in the COUNT component

compared with the RQS and SPS methods. The main reason is that

these two methods can reduce the time complexity for counting

the data points in a road network. With the ASPS approach, which

can significantly reduce the number of shortest path computations,

both the CA
(ASPS)

and NS
(ASPS)

methods can significantly reduce

the percentages of response time in the SP component compared

with the CA and NS methods. Furthermore, the distributions of the

same dataset (e.g., London dataset in Figure 15a and Figure 15c) are

similar no matter which D we adopt.

Memory space consumption of all methods with different
dataset sizes: We proceed to investigate the memory space con-

sumption of all methods. In this experiment, we first sample 25%,

50%, 75%, and 100% (the original one) of data points from each

dataset. Then, we measure the memory space consumption (in

terms of MB) for generating a network K-function plot in each

subset of the dataset, by fixing the parameters L and D to be 5.

Observe from Figure 16 that all methods have the similar memory

space consumption for different sample ratios. The main reason is

that these methods have the same space complexity (cf. Table 1),



Tsz Nam Chan, Leong Hou U, Yun Peng, Byron Choi, and Jianliang Xu

4.4 Case Study: Understanding the Cluster
Properties for Crime Events in Chicago

In this section, we conduct the case study for using the network K-
function plot to understand the cluster properties for crime events

using the largest Chicago dataset. To conduct this experiment, we

fix the default L to be 5 and vary the threshold τd from 100 to

1600. In Figure 17, observe that each network K-function value

for the Chicago dataset, i.e., KP (τd ), is within the smallest and

the largest K-function values of L randomly generated datasets

when the thresholds τd are from 100 to 700 meters. Therefore, this

indicates that the clusters are not meaningful (same as random

distribution) if their sizes are within 100 to 700 meters. In contrast,

the Chicago dataset has the meaningful clusters with sizes from

700 to 1600 meters. As such, once domain experts (e.g., criminol-

ogists [34]) adopt the cluster detection algorithms for finding the

cluster locations in the Chicago dataset, they can verify whether

the results are meaningful based on Figure 17 (e.g., they can ignore

the results with sizes smaller than 700 meters).
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Figure 17: Network K-function plot for the Chicago dataset.

5 RELATEDWORK
Network K-function has been extensively used to analyze location

data in different communities, including criminology [20, 34], trans-

portation [14, 57], ecology [41, 50], and urban planning [23, 55].

Due to its wide range of applications, the commonly-used software

package, ArcGIS, can also support this operation (based on the

SANET plugin [37, 38]). However, network K-function is a time-

consuming operation, which involves O(n2) distance computation

in the worst case. Worse still, domain experts need to compute

multiple network K-function values in order to generate the net-

work K-function plot (cf. Problem 1), which further deteriorates the

inefficiency issue. In this section, we review four camps of research

studies, which are mostly related to this work.

Spatial queries in a road network: To compute the network K-
function (cf. Equation 1), we need to find those data points pj in
the road network that is within the distance τ from each data point

pi . As such, we can regard this as the spatial range query problem

in the road network. Although many efficient algorithms [25, 27,

33, 42, 51, 53, 63] have been developed for solving the spatial range

query problem and its variants (e.g., kNN query), none of these

methods, to the best of our knowledge, can theoretically reduce the

worst-case time complexity for these problems, let alone to reduce

the time complexity for computing the network K-function.
Shortest path methods: Recall that computing the network K-
function frequently invokes the shortest path algorithms. There-

fore, an efficient shortest path method can be adopted to further

improve the efficiency for generating the network K-function plot.

In the literature, even though many shortest path methods, includ-

ing hierarchical indexing [24, 64], hub labeling [9, 29, 32, 48], and

shortest path sharing [31, 52], have been developed, most of these

methods [9, 29, 31, 32, 48, 52] mainly focus on improving the effi-

ciency of the single source single target shortest path query (rather

than the spatial range query). As a remark, since we can replace the

shortest path algorithm in the existing methods (e.g., RQS and SPS)

and our methods (e.g., CA, NS, CA
(ASPS)

, and NS
(ASPS)

), developing

an efficient shortest path algorithm is orthogonal to this work.

Kernel density visualization methods: Recently, Zheng et

al. [60–62], Phillips et al. [43–45], and Chan et al. [16–18] have

developed efficient algorithms for generating kernel density visual-

ization (KDV), which is another important point pattern analysis

operation. Although these methods can normally reduce the time

complexity for generating KDV with non-trivial accuracy guar-

antees, these methods cannot be directly used for computing the

network K-function. The main reasons are that (1) the network

K-function (cf. Equation 1) is different from the density functions

that are used in these research studies (e.g., Equation 1 in [17]) and

(2) most of these research studies [16, 18, 43–45, 60–62] only focus

on planar KDV (i.e., do not consider the road network).

Clustering and hotspot detection methods: In the literature,

many effective algorithms have been developed for finding clus-

ters and hotspots in a given location dataset. Some representative

examples include k-means clustering [28], DBScan clustering [21],

kernel clustering [15, 54], kernel density visualization [16], etc.

However, unlike the network K-function, these methods cannot

determine whether the clusters/hotspots in the dataset are mean-

ingful/significant. As such, many research studies in the geospatial

community [12, 26, 36, 49, 55] simultaneously adopt both the net-

work K-function and other clustering/hotspot detection methods

to thoroughly understand the location datasets.

6 CONCLUSION
In this paper, we study the network K-function, which has been

extensively used in many geospatial applications for understanding

hotspots and clusters [12, 14, 20, 30]. However, due to the high time

complexity for computing the network K-function, none of the

existing methods can be scalable to support large-scale location

datasets. To overcome this issue, we develop the count augmenta-

tion (CA) and neighbor sharing (NS) methods that can theoretically

reduce the worst-case time complexity for computing the network

K-function. Furthermore, by incorporating the advanced shortest

path sharing (ASPS) approach into our methods, CA and NS, we fur-

ther achieve the lowest worst-case time complexity for generating

the networkK-function plot (cf. Problem 1). Our experiment results

on four large-scale location datasets show that our methods can

achieve up to 165.85x speedup compared with the state-of-the-art

methods.

In the future, we will develop the QGIS and ArcGIS plugins

that integrate our efficient methods for supporting the network

K-function. Furthermore, we will examine the possibility to further

improve the theoretical and practical efficiency for generating the

network K-function plot. Moreover, we plan to extend our methods

to improve the efficiency for other clusteringmethods (e.g., k-means

clustering [59]) in road networks.



Fast Network K-function-based Spatial Analysis

7 APPENDIX
7.1 Proof of Lemma 1

Proof. In Figure 5, observe that we can either use the route

pi → u → pj or the route pi → v → pj to reach pj from pi . Since
the shortest path distances distG (a,u), distG (a,v), distG (b,u), and
distG (b,v) are available, we can find the shortest path distances

distG (pi ,u) and distG (pi ,v) (dashed lines in Figure 5) in O(1) time,

using the following equations.

distG (pi ,u) = min

{
distG (pi ,a) + distG (a,u)

distG (pi ,b) + distG (b,u)
(24)

distG (pi ,v) = min

{
distG (pi ,a) + distG (a,v)

distG (pi ,b) + distG (b,v)
(25)

There are four possible cases fordistG (pi ,u) anddistG (pi ,v), which
are (1) distG (pi ,u) > τ and distG (pi ,v) > τ , (2) distG (pi ,u) ≤ τ
and distG (pi ,v) > τ , (3) distG (pi ,u) > τ and distG (pi ,v) ≤ τ , and
(4) distG (pi ,u) ≤ τ and distG (pi ,v) ≤ τ . Here, we claim that we

can use O(log |P(e)|) time to calculate the (pi , e)-count function

C
(pi ,e)
P (τ ) in these four cases.

Case 1 (distG (pi ,u) > τ and distG (pi ,v) > τ ): In Figure 5, we ob-

serve that:

distG (pi ,pj )

= min(distG (pi ,u) + distG (u,pj ),distG (pi ,v) + distG (v,pj )) > τ

Based on Equation 11, we have C
(pi ,e)
P (τ ) = 0.

Case 2 (distG (pi ,u) ≤ τ and distG (pi ,v) > τ ): Since we have

distG (pi ,v) > τ , those data points with distG (pi ,pj ) ≤ τ , i.e., red
points in Figure 18, must have the shortest path that passes through

the node u. Therefore, we need to use the binary search method to

find p∗j , where distG (pi ,p
∗
j ) is just smaller than τ , i.e., dist(u,p∗j ) ≤

τ −distG (pi ,u) (cf. Figure 18). Then, we haveC
(pi ,e)
P (τ ) = |P(p∗j ,u)|.

As such, the time complexity for this case is O(log |P(e)|).

𝑢

𝑣

𝑝𝑗
∗

𝜏 − 𝑑𝑖𝑠𝑡𝐺(𝑝𝑖 , 𝑢)

Figure 18: Case 2 of the CA method.

Case 3 (distG (pi ,u) > τ and distG (pi ,v) ≤ τ ): We omit the

proof of this case, since the idea is the same as Case 2.

Case 4 (distG (pi ,u) ≤ τ and distG (pi ,v) ≤ τ ): Like Case 2, we

can utilize the binary search method to find both pL and pR (cf.

Figure 19), where distG (u,pL) ≤ τ −distG (pi ,u) and distG (v,pR ) ≤
τ − distG (pi ,v), respectively, with O(log |P(e)|) time. Based on

these two data points, we have C
(pi ,e)
P (τ ) = max(|P(pL,u)| +

|P(pR ,v)|, |P(e)|).
Since the time complexity of these four cases isO(log |P(e)|) and

we only need O(1) time to obtain distG (pi ,u) and distG (pi ,v), the

time complexity for computing the (pi , e)-count functionC
(pi ,e)
P (τ )

is O(log |P(e)|) time. �

𝑢

𝑣

𝑝𝐿
𝑝𝑅

Figure 19: Case 4 of the CA method.

7.2 Proof of Lemma 2
Proof. Recall that C

(pi ,e)
P (τ ) (cf. Equation 11) is the inner sum-

mation term of C
(ẽ ,e)
P (τ ) (cf. Equation 10), i.e.,

C
(ẽ ,e)
P (τ ) =

∑
pi ∈P (ẽ)

C
(pi ,e)
P (τ )

Since it takes O(log |P(e)|) time to compute C
(pi ,e)
P (τ ) (cf.

Lemma 1), we conclude that the time complexity of computing

C
(ẽ ,e)
P (τ ) is O(|P (̃e)| log |P(e)|). �

7.3 Proof of Lemma 3
Proof. Recall that we need to sort all data points in P(e) for

each edge e in advance (cf. footnote 1), which takesO(n logn + |E |)
time. In lines 3 to 6, this method needs to scan all data points for

each edge e in E to augment the count values (cf. Equations 12

and 13) for each data point pj , which takes O(n + |E |) time. Then,

we can find the shortest path distances from nodes a and b in the

edge ẽ = (a,b) to all other nodes that are within the distance τ ,
which takesO(TSP) time for each edge ẽ . As such, lines 9 and 10 take
O(|E |TSP) time for all iterations. Based on Lemma 2, computing each

(̃e, e)-count function C
(ẽ ,e)
P (τ ) (cf. line 12) takes O(|P (̃e)| log |P(e)|)

time. Therefore, the time complexity of Algorithm 3 is:

O
(
n + |E | + |E |TSP +

∑
ẽ ∈E

∑
e ∈E
|P (̃e)| log |P(e)| + n logn

)
= O

(
n + |E |TSP +

( ∑
ẽ ∈E

|P (̃e)|
) ( ∑

e ∈E
log |P(e)|

)
+ n logn

)
= O

(
|E |TSP + n

∑
e ∈E

log |P(e)| + n logn
)

= O
(
|E |TSP + n |E | log

( n

|E |

)
+ n logn

)
In the last equality, we use the fact that

∑
e ∈E log |P(e)| ≤

|E | log
( n
|E |

)
, which has been proved in [17] (in Theorem 2). Hence,

we conclude that the time complexity of Algorithm 3 is O
(
|E |TSP +

n |E | log
( n
|E |

)
+ n logn

)
(cf. Lemma 3). �

7.4 Computing a Network K-function with
Various Data Distributions

In this section, we further investigate how a data distribution can

affect the efficiency of all methods for computing a network K-
function. To construct the dataset based on a data distribution, we

first randomly choose 10,000 initial points in a road network. Then,

we generate 1,000 data points around each initial point, where the

distance from each data point to the initial point is denoted by the

multiplication of the threshold τ with the positive random value д
(i.e., τ × д). In this experiment, we adopt the default threshold τ =
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Figure 20: Response time for generating a network K-function plot with six cores, varying the number L × D.

1000mand choose the Gaussian distribution (themean µ = 1 and the

standard deviation σ = 0.5) and the exponential distribution (the

default parameter λ = 1) for д in order to construct two synthetic

datasets (with 10,000,000 (10,000 × 1,000) data points) in the largest

Chicago road network (cf. Table 2). Table 4 shows the response time

of all methods for computing the network K-function (using the

default threshold τ = 1000m) in these synthetic datasets. Observe

that our methods can achieve 9.98x to 42.54x speedup, no matter

which data distribution we adopt.

Table 4: Response time (sec) of all methods for comput-
ing the network K-function in each synthetic dataset (gen-
erated by a data distribution), using the default threshold
τ = 1000m.

Distribution RQS SPS CA NS

Gaussian 5580.44 5561.29 553.81 130.73
Exponential 5520.94 5498.17 550.96 129.94

7.5 Parallelization of Our Methods for
Generating a Network K-function Plot

In order to further improve the efficiency for generating a net-

work K-function plot, which involves computing multiple network

K-functions with L + 1 datasets and D distance thresholds (cf. Prob-

lem 1), we discuss how to parallelize our methods, NS
(ASPS)

and

CA
(ASPS)

. Using NS
(ASPS)

as an example, Algorithm 6 shares SPD(a)
and SPD(b) (line 8 and line 9, respectively) to evaluate the (̂e, e)-
count functions (cf. Equation 10) for all datasets and distance thresh-

olds. As such, we adopt the round-robin approach to assign each

thread for handling the (l,d)-pairs in lines 10 and 11 of Algorithm 6.

Since different threads do not need to share the computational re-

sources, this approach can parallelize our NS
(ASPS)

method. The sim-

ilar idea can also be applied for parallelizing the CA
(ASPS)

method.

Here, we term the parallel versions of CA
(ASPS)

and NS
(ASPS)

to be

CA
(ASPS, parallel)

and NS
(ASPS, parallel)

, respectively.

To verify the efficiency of our methods, we further conduct the

experiment in an Intel PC with six cores. In this experiment, we

vary L × D from 2 × 2, 4 × 4, 6 × 6, and 8 × 8.
4
Figure 20 shows

the response time of all methods. Observe that CA
(ASPS, parallel)

and

NS
(ASPS, parallel)

can further achieve 2.6x to 3.99x speedup compared

with the CA
(ASPS)

and NS
(ASPS)

methods, respectively.

4
Like the previous experiment for varying different numbers of thresholds D in

Section 4.3, we set the initial threshold to be 100 and increase the threshold by 100 to

generate D thresholds. As an example, D = 4 indicates that we adopt four thresholds

with τ1 = 100, τ2 = 200, τ3 = 300, and τ4 = 400.
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