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With the development of the theory and technology of computer science, machine or computer painting is increasingly being

explored in the creation of art. Machine-made works are referred to as artiicial intelligence (AI) artworks. Early methods of

AI artwork generation have been classiied as non-photorealistic rendering (NPR) and, latterly, neural-style transfer methods

have also been investigated. As technology advances, the variety of machine-generated artworks and the methods used to

create them have proliferated. However, there is no uniied and comprehensive system to classify and evaluate these works.

To date, no work has generalised methods of creating AI artwork including learning-based methods for painting or drawing.

Moreover, the taxonomy, evaluation and development of AI artwork methods face many challenges. This paper is motivated

by these considerations. We irst investigate current learning-based methods for making AI artworks and classify the methods

according to art styles. Furthermore, we propose a consistent evaluation system for AI artworks and conduct a user study to

evaluate the proposed system on diferent AI artworks. This evaluation system uses six criteria: beauty, color, texture, content

detail, line and style. The user study demonstrates that the six-dimensional evaluation index is efective for diferent types of

AI artworks.

CCS Concepts: • General and reference→ Surveys and overviews.

Additional Key Words and Phrases: AI Art, Artwork, Style Transform, Painting, Methodology Taxonomy, Quality Evaluation

1 Introduction

In the late 19th century, the emergence of photographic technology stimulated artistic diversity. In the early
1990s, the successes of photorealistic computer graphics encouraged alternative techniques for non-photorealistic
styles of rendering [81, 82, 124, 142]. Recently, creation of computer artworks has become popular along with
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related research studies, and new advances in machine learning and deep learning have led to an acceleration in
the development of AI artworks [12]. In this review, we consider state-of-the-art methods in AI artworks, i.e.
non-photorealistic creative drawings or paintings generated by AI models.

Many artists and computer researchers have used technologies and methodologies for automatically transform-
ing images into synthetic artworks. Since the 1990s, stroke-based rendering (SBR) methods irst proposed by [48]
have become popular in computer-generated artwork. In 2003, Hertzmann reviewed SBR algorithms and art styles
of machine paintings [54]. Although diverse SBR methods ofer many types of art style for synthesised artworks,
these methods require signiicant use of computer memory and are time-consuming. With the development
of machine learning and reinforcement learning, methods and technologies addressing AI artworks optimise
these issues. In 2013, the authors of [81] reviewed technologies and methods of non-photorealistic rendering
(NPR) that transferred input photographic images or videos into non-photorealistic stylised results. Latterly, the
authors of [70] investigated neural-style transfer (NST) methods that belong to the ield of NPR. Their work
extended the review of NPR based on the work of [81]. However, to date, no work has generalised the methods of
creating AI artwork including learning-based methods for painting or drawing. Moreover, the evaluation of AI
artwork methods is not systematic. Researchers have tended to use their own evaluation methods to compare
their own work with prior works. However, a reasonable and consistent evaluation system is important for
fair comparison of the difering methods of generating AI artworks. Although [70] summarised the current
approaches to evaluating NPR artworks, most evaluation approaches are not suited to diferent algorithms. It is
necessary to develop a consistent evaluation system for diverse styles of AI artwork.

To solve the above problems, we investigate current learning-based methods for AI artworks and classify these
methods according to diferent art styles. Furthermore, inspired by art vocabulary [134] and the representation
of art paintings [22], we propose a consistent evaluation system for AI artworks and conduct a user study to
evaluate the adaptability of the evaluation system. The proposed evaluation system contains six criteria: beauty,
color, texture, content detail, line and style. In particular, since beauty [107] is a dominant factor in the judgement
of artwork by humans, we set a weighting of 50% of the score for beauty, and the other ive aspects account for
10% each, respectively. The results of the user study indicate that the proposed evaluation system is efective for
diferent types of artworks, and the score distribution also demonstrates that the percentage setting is reasonable.
Based on the analysis of the current methods and experiments on the evaluation system, we propose and analyse
challenges and opportunities for AI artworks as well as areas of possible development.

We summarise the contributions of this survey as follows:

• We investigate recent works on existing AI artworks and classiied these according to diferent art types to
produce a clear taxonomy and consistent evaluation.
• We propose a uniied evaluation system for diferent AI artworks to ensure fair comparison of diferent AI
models.
• We analyse challenges and opportunities for the development of AI artworks.

The paper takes into consideration methods, art styles, and the evaluation system. To ensure the comprehen-
siveness and reliability of the literature review, we collected relevant literature from multiple databases, including
Google Scholar, IEEE Xplore, ACM Digital Library, and ArXiv. Our keywords includedłartiicial intelligence
artž, łdeep learningž, łgenerative adversarial networks (GAN)ž, łdifusion modelž, łcomputer visionž, łcreative
generationž, łline drawingž, łoil paintingž, and łstrokež. The search range was limited to publications from 2015
to 2024 to provide bounding of information but also ensure the timeliness and relevance of the literature. The
initial search yielded about 2500 papers, and an additional 50 papers were identiied from other sources. After
removing duplicate entries, we screened 600 papers. By reading the titles and abstracts, we excluded 300 less
relevant papers, leaving 300 papers. We then conducted a full-text review of these remaining papers and excluded
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Fig. 1. Taxonomy of AI artwork based on methods and art styles.

100 that did not meet the inclusion criteria. Ultimately, we selected 200 highly-relevant papers as the basis for
this study.
As Fig. 1 shows, AI artworks are classiied into two preliminary categories based on the method used: con-

ventional stroke-based methods and learning-based methods. Since conventional stroke-based methods have
been extensively investigated and we mainly focus on learning-based methods, we only discuss conventional
stroke-based methods briely, in Section 2. We further categorise learning-based methods into style transfor-
mation and style reconstruction (painting/drawing ) based on the way the style is produced. In each category,
the number of references is extensive. Due to space constraints, we have selected only a subset to represent
each category. Section 3 introduces the concepts and related methodologies of learning-based AI artworks. As
stated in Section 3, we categorise and analyse current research on AI artwork based on neural networks in
Section 4. Section 5 presents the resultant evaluation system for AI artworks and the experimental results to test
the system on diferent methods. We aim to build a standardised, comprehensive evaluation system in follow-up
studies. This evaluation system is able to evaluate various types of AI artworks adaptively. In Section 6, we
analyse the opportunities and challenges of AI artworks while pointing out possible ways to address them in the
not-too-distant future. Finally, we present the conclusions of this paper in Section 7 and proposed several worthy
issues for future research. For a further discussion, we make a supplementary to discuses the application of AI
Art and the Ethics and Artistic Integrity for AI Art.

2 Conventional stroke-based AI Artworks

Conventional SBR methods mainly reconstruct images into non-photorealistic imagery with stroke-based models.
Researchers have proposed many SBR methods adapted to diferent types of artwork, e.g. paintings [48, 52, 53,
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83, 122], pen-and-ink drawings [27, 36, 148, 150] and stippling drawings [25, 26]. The work [48] introduced a
semi-automatic painting method based on a greedy algorithm commonly used for SBR. This work shows that
diferent stroke shapes and stroke sizes can be used to draw paintings with diferent styles; however, this method
needs substantial human intervention to control the stroke shapes and select the stroke location. The authors
of [52] also proposed a style design for their painting method by using spline-brush strokes to draw the image.
They used a set of parameters to deine the style of the brush strokes. The painting efects can be changed when
the parameters are altered by the designer (user). Thus, this method requires users to have a high level of drawing
skill. The work of [83] proposed a method to segment an image into areas with similar levels of salience to control
the brushstrokes. The detail level of brushstrokes in the salient area can be increased to improve the realism
of painterly rendering, though users are also required to control the number of levels. Other researchers also
proposed pen-and-ink drawing and stippling drawing methods [25ś27, 36, 148, 150] to improve the drawing efect.
Most of these methods decompose strokes utilizing a greedy algorithm [54] into steps and require substantial
human intervention.
Most SBR methods are relatively slow, so their usability is limited, especially in interactive applications [54].

It is also diicult for inexperienced or unskilled users to choose key parameters in SBR methods to produce
satisfying paintings. Moreover, SBR methods can generate a limited number of styles, making them inlexible.

3 Learning-based AI Artworks

Learning-based AI artworks are non-photorealistic images reconstructed by deep neural networks. We classify
learning-based AI artworks into two categories: end-to-end image reconstruction by style-transform models and
drawing/painting with digital strokes by art-style-reconstruction models.

3.1 Style-transform AI Artworks

Style-transform methods mainly focus on reconstructing an image into another visual style according to a
reference style image or a style image dataset. Image neural style transfer (NST) methods take a content image
and a style image as the input and then output a stylised result containing the content features of the content
image; the visual representation of this stylised result looks like the style image. Most GAN-based methods
transform the input image into another style image according to the style of the training dataset. The output
image contains its own content and presents the visual style in the same style as the dataset.

Style

Content Output

Fig. 2. Sample of results generated by the neural style transfer method [38].

3.1.1 Neural Style Transfer. Neural Style Transfer (NST) is a prototypical style-transform AI artwork method.
Fig. 2 shows an NST result generated by [38]. NST works in an image-to-image manner, extracting texture
features from a style image and content features from a content image, then fusing them to synthesize a new
image. Modeling the style image and extracting its texture features is crucial. The goal is to reconstruct an image
with the style textures from the style image while preserving the content of the content image.

The NST method, introduced in [38], uses CNNs to transfer style texture to a target image while resolving its
content. The Gram matrix models the style image’s representation, and the pre-trained VGG network’s high-level
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features represent the content image. By minimizing content and style losses, the method synthesizes an image
with both input images’ content and style. However, this style representation focuses on texture rather than global
arrangement, resulting in unsatisfactory results for long-range symmetric structures. The work [5] improved this
by imposing a Markov structure on high-level features. [69]’s StrokePyramid module considers receptive ield
and scale, producing variant stroke sizes.
NST-generated images often have hard style features, making them appear unnatural. Careful selection of

input-style images is essential to avoid unattractive results.

3.1.2 GAN-based Style Transfer. GANs, introduced by [42], have been widely applied in various research ields.
GANs consist of a generator and discriminator, trained in an adversarial manner. The generator learns to produce
realistic images, while the discriminator aims to distinguish between real and generated images. This minimax
optimization process ends at a saddle point, balancing the two networks. GANs generate visually compelling
fake images, blending authenticity with novelty.

GAN-based methods have revolutionized AI art, with notable applications like CycleGAN [170], AttentionGAN
[132], and Gated-GAN [14]. These models learn the style features from datasets, transforming real photos into
artistic styles without harsh style features. However, GAN-based methods have their drawbacks: the diiculty of
training, large model size, sometimes poor detailed representation, and even mistakes.

3.1.3 Difusion-model Style Transfer. Difusion model style transfer represents a major breakthrough in Artiicial
Intelligence Generated Content (AIGC). It harnesses the power of Difusion Models, which transform random
noise into novel data samples through a unique stochastic difusion process. This technology has fueled the
rise of AI drawing platforms like OpenAI’s DALL·E 2 [84, 111] and Google’s Imagen [118], showcasing their
remarkable image generation capabilities. In style transfer, difusion models apply their generative prowess to
imagery, enabling the seamless transformation of any input image into a speciied artistic style. Their working
mechanism seamlessly integrates noising and denoising processes, gradually degrading and then reconstructing
the image with the desired style while preserving its original content.
This approach not only ofers exceptional controllability, allowing users to ine-tune generated images with

precision, but also guarantees diversity and lexibility. It efortlessly accommodates a wide spectrum of style
requirements and reference images, yielding results ranging from photorealistic fakes [8, 49, 113, 118] to artistic
interpretations [35, 49, 76, 99, 114, 164]. Furthermore, difusion models exhibit remarkable stability and robustness,
consistently producing high-quality stylized images even under noisy or varying input conditions. This reliability
has sparked interest in research exploring partial image re-editing [51, 80], further underscoring the versatility of
this technology.

3.2 Art-style-reconstruction AI Artworks

In this paper, we refer to art-style-reconstruction AI artworks as those images that are generated via simulated
strokes. Note that the art style is neither transferred from the style image nor learned from the dataset: it is
determined by the elements rendered onto the canvas. Therefore, when the models use diferent strokes to render
the canvas, the generated image presents a diferent style. We irst propose the concept of art-style-reconstruction
AI artworks for these methods. It is important to recognise the diference between style-transform methods and
style-reconstruction methods for AI artworks. Style-transform methods do not consider the generating process of
the result, while style-reconstruction methods with simulated strokes pay signiicant attention to the generating
process, since the result is built by strokes. For fairness, methods in these diferent categories should be evaluated
by diferent evaluation metrics. According to the types of style, we classify art-style-reconstruction AI artworks
into line drawings, oil paintings and watercolor paintings, and ink wash paintings.
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3.2.1 Line Drawing. Line-drawing artworks such as sketches [6, 11, 47, 85, 89, 119, 129, 160], pencil drawings [87],
portraits [96, 139] and doodles [105, 169] are created by line strokes. Signiicant research has been undertaken on
line-drawing methods. Many studies have concerned the generation of line-drawing artworks by reconstructing
input photos into line drawings. Compared with the input photos, generated line drawings lose much detailed
content but retain the key contour of the object. Photo-sketch methods are mainly focused on the approach
for capturing the contour information of an object in a photo, then mimicking the human sketching process to
present the object. We usually consider photo-to-sketch synthesis as a cross-domain reconstruction issue. For
example, the work of [129] constructed a generative sequence model with a recurrent neural network (RNN)
acting as a neural sketcher. Their neural sketcher reconstructed a photo into a synthesis sketch by learning
the noisy photo-sketch pairs dataset. Many methods for reconstructing photos into line drawings have been
proposed. Line-drawing methods emphasise extracting the edge features of the object but not paying attention to
the image’s color information. In particular, when comparing methods of line drawings, the key point is the line
stroke or the shade drawn by line strokes. Portraits and pencil drawings (except with colored pencils) similar to
sketches usually have black-and-white color characteristics.

3.2.2 Oil Painting andWatercolor Painting. Painting is an important form of visual art. Oil painting and watercolor
painting, distinct from line drawings, emphasise color and tone. The essence of painting is color, which is made
up of hue, saturation, and value, dispersed over a surface. In generating oil paintings and watercolor paintings,
mimicing the color and stroke texture of paintings is a main task for the reconstruction of image-to-painting.
With deep learning coming into widespread use, researchers have conducted studies on training machines to
learn to paint like human artists. In particular, the work [105] proposed a neural network SPIRAL++ to doodle
human portraits. The style of the generated image is close to that of an oil painting, although the results lose
detailed content. The work by [68] proposed a self-supervised learning algorithm to achieve painting stroke by
stroke, and the results outperformed SPIRAL++ on the presentation of details, although the detailed contents
were still not sharp. The authors of [64] designed a painting model based on reinforcement learning (RL) to
mimic the painting process of a human artist. The color strokes rendered onto the digital canvas in a certain
order made their generated images similar to oil paintings, although the texture of the strokes was diferent
from human artists’ strokes. The work [171] proposed an automatic image-to-painting model that generates oil
paintings with controllable brushstrokes. The authors re-framed the stroke prediction as a parameter searching
process so that it mimicked the human painting process. The authors of [123] also proposed a model using
content masked loss to generate paintings stroke by stroke, although they lost some detailed contents of the
image. For the stroke-based methods, the key point is how to present the detailed contents of the input image
when reconstructing it to the painting stroke by stroke. The problem is that retaining as many details as possible
will produce to a close-to-photo result instead of a painting.

3.2.3 Ink Wash Painting. Ink wash painting is a type of Chinese ink brush painting that uses black or colored
ink in diferent concentrations. The stroke texture and character of ink wash painting are so diferent from that
of oil painting and watercolor painting that teaching a machine or computer to do ink wash painting is diicult.
Research has been conducted on methods to simulate the special stroke of ink wash painting; for example, in
a conventional stroke-based method in [34], the authors used B-spline curves to simulate the trajectory of the
Chinese brush. This method inspired later researchers to improve the simulation of Chinese brushstrokes for deep
neural networks. The authors of [151] irst modelled the tip of the Chinese brush and then utilised a reinforcement
learning algorithm to formulate the automatic stroke generator.

3.2.4 Robtic Painting. Robotic painting, an intersection of art and robotics, has seen signiicant advancements.
Researchers and interdisciplinary artists have employed various painting techniques and human-machine collab-
oration models to create visual media on canvas. While robot paintings difer from the AI artworks discussed
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in this paper, they share some similarities. Robotic painting requires the use of physical robotic arms or robots
to complete stroke-by-stroke painting, ultimately resulting in physical paintings. However, the AI paintings
discussed in this article are almost exclusively electronic versions, and do not require the use of robotic arms or
robots. Their similarity lies in the stroke-by-stroke painting algorithm, as most AI models for stroke-by-stroke
painting, after processing, can be applied to robotic painting. Nevertheless, since the focus of this paper is not an
in-depth exploration of algorithms, in section 4.4.5, we conduct a more comprehensive analysis and discussion
on robotic painting.

4 Methods comparison

For diferent types of AI artworks, we have classiied existing research into several categories based on artistic
types. Correspondingly, we propose an algorithm taxonomy according to the diferent types of AI artwork. We
irst classify AI artworks into two categories according to the generating process mentioned in Section 3. This
section explains the algorithms of diferent methods for diferent types of AI artwork.

4.1 NST Method

DeepDream [1] irst synthesized artistic pictures by reversing CNNs’ representations with image-style fusion
through online image reconstruction techniques. This method aimed to improve the interpretability of deep CNNs
by visualizing patterns that maximize neuron activation. Although producing a psychedelic and unrealistic style,
it became popular for digital art. Subsequent methods [38ś40, 46, 62, 63, 71, 88, 100, 101, 117] optimized digital
art by combining visual-texture-modeling techniques with style transfer, inspiring the proposal of Neural Style
Transfer (NST). The basic idea is to model and extract style and content features from input style and content
images, respectively, then recombine them into a target image through iterative reconstruction to produce a
stylized result with features of both images.
Generally, image-style fusion NST algorithms share the same image reconstruction theory but difer in

techniques to model the visual style. For example, some methods [97, 146, 154, 157] adjust parameters to tune the
style or content ratio, while others [9, 69, 79, 142, 158, 159] control stroke size to represent the stylized results. A
common limitation is their computation-intensive nature due to the iterative image optimization procedure.

The classical NST algorithm by Gatys et al. [38] reconstructs representations from intermediate layers of the
VGG-19 network, showing that CNN-extracted content and style representations are separable. The algorithm
combines these features to synthesize a new image displaying both the style and content of the original images.
The detailed algorithm is as follows:

Given a pair of images, the content image (�� ) and the style image (�� ), the algorithm of [38] synthesizes a
target image (�� ) by minimizing the following function:

�̃ = argmin
��

�L� (�� , �� ) + �L� (�� , �� ), (1)

where L� is the content loss between the content image and the generated target image, and L� is the style loss
between the style image and the synthesized target image. The parameters � and � tune the ratio of content and
style in the target image. While tuning � and � changes the visual expression of the result, it does not allow for
detailed style texture adjustments.

Further methods proposed controlling model parameters to achieve diferent stylization outcomes. The authors
of [142] introduced intuitive guidance and artistic control on style-transfer models by adjusting pattern density
and stroke strength. Based on the style transfer concept of [38], this method also minimizes content loss and style
loss, as shown in Eq. 1, but with a diferent style loss deinition in Eq. 2c. In particular, Eq. 2a deines the centered
Gram matrix, Eq. 2b is the style representation by Eq. 2a, and �� controls the importance of each network layer. �
denotes the input, and � (� ) (� ) denotes the feature activation from the VGG-19 network.
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����
�
(� ) = E[(� − E[� ]) (� − E[� ])� ], (2a)

�� (�, �) = ����
�

(
� (� ) (� )

)
, (2b)

L� =
︁

�

�� | |�� (�� , �) − �� (�� , �) | |22 . (2c)

To control the visual efect of the stylized results, research has proposed using stroke size, style scale, or pattern
density to control the artistic style in the synthesized image. These methods adjust the graininess of style feature
representation to change the visual art efect. [142]’s pattern density controls stroke sizes, frequency, and graininess
overall for the entire image through style resolution changes and variance-aware adaptive weighting. Pattern
density is inversely proportional to image resolution size, and variance-aware adaptive weighting prioritizes
dense pattern features to afect style representation. Additionally, [142] used pattern density and stroke strength

together to control the art style, deining stroke strength as the salience of texture edges to tune without afecting
other features.
While pattern density and stroke strength can adjust the visual performance of the stylized image, such as

sharpening or lightening edge details, or zooming in or out on the style pattern grain, they cannot change the
percentage of style or content features in the results. This highlights the need for more lexible methods that
allow detailed adjustments of both style and content features.

4.2 GAN Method

4.2.1 Per-model-per-style. GAN is a min-max game between two neural networks with diferent objectives. One
network, the generator (�), aims to trick the other, the discriminator (�), by generating images that resemble the
dataset from a random latent vector �. The objective of� is to create images closer to the dataset, while � tries to
distinguish between real and generated images. Both networks optimize their tasks according to their objective
functions. The dataset image is denoted as � , and � (�) represents the probability that � is from the dataset.� (�)
denotes the image generated by the generator, and the cost for� is log(1−� (� (�))). The overall loss function is:

LGAN = � ( �
max
, �
min
) = E�∼����� (� ) [− log(� (�))] + ��∼�� (� ) [log(1 − � (� (�)))] . (3)

The discriminator aims tomaximize its ability to distinguish between real training data images and those generated
by the generator. In the loss function 3, minimizing − log(� (�)) equates to maximizing the discriminator’s
probability. The generator, on the other hand, minimizes log(1 − � (� (�))) to generate images that can trick the
discriminator. Training a GAN, being a two-player adversarial game, is complex and challenging.

When Goodfellow et al. irst proposed GANs, they were not capable of generating stylized images. As shown
in Eq.(3), the generator aims to minimize its cost to produce images similar to the real data. Building on the GAN
framework, researchers developed image-to-image translation methods[66, 130, 170] to achieve style transfer.
CycleGAN, proposed by Zhu et al. [170], transforms photos into paintings that closely resemble the styles of
various artists using unpaired data. This method maps a source image data domain � to a target image domain � ,
learning the mapping � : � → � . It employs an adversarial loss to distinguish between the data distribution of �
and the distribution of images generated by � (�).
Since the mapping � : � → � lacks constraints, another generator �̃ is introduced for the reverse mapping

�̃ : � → � to ensure consistent results. Cycle consistency loss is added to enforce �̃ (� (�)) ≈ � . When� translates

an image from � to � , �̃ should be able to translate it back to � , ensuring the reconstructed image �̃ (� (�))
closely matches the original image � . Similarly, for each image from � , the reverse should hold. For the mapping
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� : � → � and its discriminator �� , the objective function is:

LGAN (�,�� , �,� ) = E�∼����� (� ) [log�� (�)] + E�∼����� (� ) [log(1 − �� (� (�))] . (4)

For each image � from the source image domain � , the image reconstruction cycle should be able to bring � back

the original image, i.e. � → � (�) → �̃ (� (�)) ≈ � . This gives the forward cycle consistency. On the other

hand, for each image � from the target image domain � , � and �̃ should also inish backward cycle consistency:

� → �̃ (�) → � (�̃ (�)) ≈ � . Therefore, we get the cycle consistency loss function written as follows:

Lcyc (�, �̃) = E�∼����� (� ) [∥�̃ (� (�)) − � ∥1] + E�∼����� (� ) [∥� (�̃ (�)) − � ∥1] . (5)

The whole loss function of CycleGAN is:

L(�, �̃, �� , �� ) = LGAN (�, �� , �,� ) + LGAN (�̃, �� ,� , �) + �Lcyc (�, �̃), (6)

CycleGAN allows the generation of stylised images that contain both the content of input images and the style
of the training dataset, controlled by � . It enriches diverse art styles for unpaired image datasets, enabling recon-
structions like transforming a modern photo into a Monet or Van Gogh painting. As shown in Fig. 3, CycleGAN’s
stylised results exhibit harmonious stylised characteristics, closely resembling Monet’s style, compared to neural
style transfer methods like AAMS [159], ASTSAN [110], and URUST [144], which contain varied features not
truly relective of Monet’s style.

Content & style AAMS ASTSAN URUST CycleGAN

Fig. 3. Comparison of results: The first column displays content and style images. The last column shows CycleGAN’s output,

while the others present results from various neural style transfer methods.

CycleGAN has drawbacks, such as unclear detailed contents. To improve image quality, AttentionGAN [132]

incorporates the attention mechanism [140] into CycleGAN. AttentionGAN redesigns the second generator �̃ to
generate content and attention masks, fusing them with the generated image � (�) to restore the source image � .

This process is formulated as: �̃ (� (�)) = �� ∗�� +� (�) ∗ (1 −�� ). The term of �̃ consists of an encoder �̃� , an

attention mask module �̃�, and a content mask module �̃� . �̃� generates content masks, while �̃� generates
attention masks for both background and foreground. These masks are fused with � (�) to restore � , formulated

as: �̃ (� (�)) = ∑�−1
� =1 (�

�
� ∗ ��� ) + � (�) ∗ ��� , where the reconstructed image �̃ (� (�)) should closely match the

input source image � . Similarly, for a target image � , the cycle is formulated, and the reconstructed image should
closely match � .

Fig. 4 compares CycleGAN and AttentionGAN. The irst row shows real photos (small images) and subsequent
rows display style-reconstructed results. AttentionGAN generates images with more detailed content than
CycleGAN, especially in photo-to-Monet transformations, due to its attention mask mechanism. Diferent
datasets yield distinct styles, enabling diverse AI artwork. For instance, training CycleGAN with a photo-to-
anime dataset transforms real photos into anime images. CartoonGAN [15] and MS-CartoonGAN [125] focus on
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AttentionGAN

CycleGAN

Photo → Monet

Input

Fig. 4. Visual comparison between CycleGAN [170] and AtentionGAN [132].

reconstructing photos to anime, emphasizing sharp edges, smooth shading, and abstract textures. CartoonGAN’s
edge-promoting adversarial loss is given by:

Ladv (�,�) = E��∼�data (�� )
[
log� (�� )

]
+ E��∼�data (�� )

[
log

(
1 − � (�� )

) ]
+ E��∼�data (�� )

[
log

(
1 − �

(
� (�� )

) )]
. (7)

The discriminator � maximizes the probability of distinguishing the generated image � (�� ), cartoon images
without sharp edges, and real cartoon images. CartoonGAN also introduces a content loss for smooth shading:

Lcon (�, �) = E�∼�data(PI )
[| |���� (� (�� )) −���� (�� ) | |1], (8)

where � denotes a speciic layer of VGG [126] for feature extraction. This loss uses ℓ1 sparse regularization for
better representation and regional characteristic preservation. While mimicking real art styles is crucial for AI
artworks, diversity is also important. CycleGAN-based methods contribute to vivid art styles but generate only
one style per model, which is inconvenient for diverse art style applications.

Input Monet Van Gogh Cézanne Ukiyo-e

CycleGAN

Gated-GAN

Fig. 5. Examples generated by Gated-GAN [14].

4.2.2 Per-model multi-style. Gated-GAN, proposed by [14], enables the generation of multiple styles within a
single framework. It uses an adversarial gated network, known as the gated transformer, for multi-collection style
transfer. The model includes a switching trigger to select the desired style for the output. The gated transformer
processes a set of photos {�� }��=1 ∈ � and multiple painting collections� = {�1, �2, ..., �� }, where� is the number

of collections, each containing �� images {�� }��

�=1. The network generates multiple styles � (�, �) by applying
the style of collection � to the input photo: � (�, �) = ��� (� (��� (�), �)). Here, � (.) is a transformer built with
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residual networks, and ��� (�) denotes the encoded feature space. Each style-speciic branch in the transformer
module contains additional parameters, minimizing the overall model complexity. Inspired by LabelGAN [135],
Gated-GAN incorporates an auxiliary classiier to handle multiple style categories, optimizing the entropy to
improve classiication conidence. This design enables the model to generate diverse styles within a uniied
framework.

Despite its ability to produce multiple styles, Gated-GAN has limitations, such as occasionally lacking detailed
content. Fig. 5 shows examples generated by Gated-GAN, highlighting issues like the unnatural color block in
the cloud region of the Van Gogh-styled image.

Gated-GAN’s per-model multi-style approach contrasts with per-model-per-style methods like CycleGAN and
CartoonGAN. While CycleGAN and CartoonGAN generate one style per model, Gated-GAN supports multiple
styles, enhancing versatility. However, models like AttentionGAN, which builds on CycleGAN, tend to produce
higher-quality images with more detailed content. Gated-GAN’s strength lies in its ability to manage multiple
styles eiciently, but it sometimes sacriices detail. Combining the advantages of these approaches could lead to
models that handle multiple styles and maintain high-quality, detailed outputs.

4.3 Difusion Model Method

Early research on Difusion Models (DM) began with deep unsupervised learning using nonequilibrium thermo-
dynamics [128] in 2015. However, the key breakthrough came with Denoising Difusion Probabilistic Models
(DDPM) [58]. Unlike other models, DMs generate images by gradually "sampling" from Gaussian noise, forming
images through a series of steps.
DMs consist of two processes: the forward (difusion) process and the reverse (denoising) process, both

parameterized as Markov chains. The forward process adds Gaussian noise to the input image �0 over � steps,
transforming it into pure Gaussian noise �� . The reverse process denoises this to generate realistic images.

For real data y0 ∼ �(y0), the forward process is: �(y� |y�−1) = N(y� ;
︁
1 − ��y�−1, �� I), where �� is the variance

at each step. The reverse process generates data using parameterized Gaussian distributions:

{
�� (y0 : � ) = � (y� )

∏�
�=1�� (y�−1 |y� ),

�� (y�−1 |y� ) = N(y�−1;�� (y� , �), �� (y� , �)),
(9)

where � (y� ) = N(y� , 0, I), and �� (y�−1 |y� ) is the parameterised Gaussian distribution. The trained networks of
�� (y� , �) and �� (y� , �) give the means and variances. The difusion model is to obtain the trained networks for
the inal-generation model. The objective function of Denoising Score Matching, integrating Score Matching [65]
and denoising principles [141], is: E�∼� (�)E�̃∼� (�̃ |�)

[
∥�� (�̃) − Δ�̃ log�(�̃ |�)∥22

]
, where �� is (Stein Score) is the

real noisy data. For Gaussian noise, this simpliies to:

︁

�∈�
�(�)E�∼� (�)E�̃∼N(�,� )

[

�� (�̃, �) −
�̃ − �
�2




]
, (10)

where � is the set of standard deviations and �(�) is a coeicient function. Using Langevin dynamics principles,
the iterative update is: y� ← y�−1 + �Δy log� (y�−1) +

√
2�z� , 1 ≤ � ≤ � . This method allows the gradual

transformation of noise into the desired data. The work [58] proposed an objective function for optimization

based on variational bounds, leading to: E�,�
[
� ∥� − �� (

√
��y0 +

√
1 − ���, �)∥22

]
, where � is a deinite constant, �

is the noise generated randomly from a standard Gaussian distribution and � is also a constant changing with � .
Let �� ∼ N(0, 1), � = 1 − �� , �� = Π

�
�=1�� , where we can set �� = 0.5.

Compared to GANs, DMs ofer signiicant advantages in stability and simplicity. While GANs require training
both a generator and discriminator, DMs focus solely on the generator with a straightforward Gaussian-based
loss, avoiding the adversarial nature that often causes instability in GANs. The work [28] demonstrated that
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DMs outperform GANs in image quality, achieving lower Fréchet Inception Distance (FID) scores across multiple
resolutions on ImageNet. This indicates superior idelity and diversity in generated samples.

DMs beneit from simpler training processes and avoid issues like mode collapse common in GANs. Additionally,
classiier guidance in DMs efectively balances diversity and idelity, further enhancing image quality. These
features make DMs more computationally eicient and easier to optimize, marking a signiicant advance in
generative modeling and image synthesis.
In summary, DMs streamline the training process, reduce computational complexity, and achieve superior

performance compared to GANs. The success of DMs lies in their ability to mimic a straightforward reverse
process, itting simple Gaussian distributions, which signiicantly enhances optimization and performance.

4.4 Art-style-reconstruction Algorithm

For comparison fairness, we classify the AI artworks into style transfer and style reconstruction. Meanwhile, we
take the methodology and the art style to consider. This section analyses diferent method algorithms under one
art style.

4.4.1 Line Drawings. As neural style transfer methods achieve sketching directly from images (e.g., APDrawing-
GAN [161], Synthesizing human-like sketches [74]), we analyze line drawing methods focusing on the drawing
process.

The work [47] proposed sketch-rnn, an RNN, capable of generating stroke-based drawings. A sketch is deined
as a point list, where each point is a vector with ive elements: (Δ� , Δ�, ��1, ��2, ��3). The sketch-rnn model
employs a sequence-to-sequence VAE architecture, similar to those in [78, 121]. It encodes a sketch image into a
latent vector and decodes it stroke-by-stroke, guided by the encoded states.
The encoding process involves two RNNs processing the sketch sequence and its reverse, resulting in inal

hidden states ℎ−→ and ℎ←−, combined into ℎ� . The process can be written as follows:

ℎ−→ = encode−−−−−→(��), ℎ←− = encode←−−−−−(��������� ), ℎ� = [ ℎ−→; ℎ←−] . (11)

The sketch-rnn encoder processes the concatenated hidden states ℎ� into � and �̂ of size �� . �̂ is transformed
into the non-negative standard deviation � via exponentiation. Using � , �, N(0, 1), and a vector of 2-D Gaussian
variables, a random latent vector � ∈ R�� is constructed, akin to the VAE approach in [78]. � is conditioned on
the input sketch, difering from deterministic outputs.
The auto-regressive RNN decoder of sketch-rnn sequentially predicts strokes using the last point, previous

sketch sequence ����−1, and latent vector �. It iterates through drawing steps to generate simple object sketches and
can produce ablation sketches by adjusting the Kullback-Leibler loss weight. However, sketch-rnn struggles with
complex images and supports limited sketch styles, allowing human participation only in predicting uninished
sketches.
The Creative Sketch Generation method [41] introduces DoodlerGAN, which leverages styleGAN2 [41] to

sequentially generate sketch parts guided by human observations. Its part selector facilitates a human-in-the-loop
sketching process but is currently limited to birds and creative creatures.

An alternative approach [169] uses reinforcement learning (Deep Q-learning) in Doodle-SDQ to train an agent
to draw strokes on a virtual canvas, aiming to reconstruct a reference image stroke-by-stroke. The similarity

metric S� evaluates the canvas’s closeness to the input image: S� =

∑�
�=1

∑�
�=1

(
��� �−� ref

� �

)

�2
, where ��� � and �

ref
� � are pixel

values at position (�, � ) on the canvas and input image, respectively, at step � . The pixel reward �P = S� − S�+1
optimizes the executing action at each step.

Doodle-SDQ’s line-stroke sketching penalizes slow movements (�s for <5 pixels/step or pen lift) and incorrect
color choices (�c with � adjusted for grayscale/color input). The inal reward �� = �P + �s + ��c combines pixel
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similarity and penalties. While Doodle-SDQ reproduces reference sketches well, it cannot sketch from real photos
and lacks artistic creativity. In [169], strokes are simulated by a virtual ‘pen’, with reinforcement learning mapping
actions to strokes. This inspires the development of diverse stroke types, potentially mimicking oil paintings and
ink-wash paintings.

4.4.2 Oil Painting. The method in [64] utilizes a model-based deep deterministic policy gradient (DDPG) [91]
algorithm to simulate a stroke-by-stroke oil-painting process. Bézier curves mimic brushstroke paths, and a
circle represents the brush tip. The control points of the Bézier curves serve as actions, enabling action-to-
stroke mapping. Given an input photo �� and an initial canvas �0, the model generates an action sequence
(�0;�1, ..., ��−1) to sequentially render strokes onto the canvas, producing the inal painting �� . This task is
formulated as a Markov decision process with a state space�, action space �, transition function trans(��, ��),
and reward function �(��, ��) designed to minimize the distance between the input image and the canvas at each
step: �(��, ��) = �� − ��+1, where �� and ��+1 represent the losses between �� and the current/next canvases,

respectively. The model aims to maximize the accumulated discounted future reward �� =
∑�
�=� �

(�−�)�(�� , �� )
with a discount factor � ∈ (0, 1).

The original DDPG algorithm comprises an actor network Φ(�) that maps state �� to actions �� , and a critic
network Ψ(�, �) that estimates reward to guide the actor. Both networks are trained using the Bellman equation
12, with an experienced replay bufer storing the latest 800 episodes to enhance data usage:

Ψ(��, ��) = �(��, ��) + �Ψ(��+1,Φ(��+1)) . (12)

The MDRL Painter method in [64] improves upon line drawing approaches by simulating oil-painting brush-
strokes using Bézier curves and circles. This method is improved from the line drawing of method [169] by
designing the brushstroke. Although it can create paintings from various input images, the details are coarse, and
the simulated stroke textures lack realism compared to human-made oil paintings.
The work [7] (ASRP) aimed to mimic human artist styles by generating brushstroke samples with similar

textures. It uses Bézier curves to simulate strokes without tuning transparency, ensuring realism. VAEs were
trained to capture artist brushstroke features, resulting in stroke textures close to human artists’, but the inal
paintings lacked content detail.

The work [123] improved painting quality by proposing Content Masked Loss (CML), a reinforcement learning
model based on [64]. CML emphasizes salient regions using VGG-16 features and ℓ2 distance, mimicking the
human painting process. However, while the model captures the painting process well, it loses detailed content
and stroke texture clarity.

Another AI painting model [171] SNP for AI oil painting contributes to stroke modelling by generating strokes
with realistic oil-painting textures. A dual-pathway neural network independently generates stroke colors and
textures. The model predicts and renders strokes step-by-step to optimize the inal canvas �� to resemble the
input image �� : �� = ��=1∼� (�̃) ≈ �� , where ��=1∼� (.) maps stroke parameters to canvas states. The model
optimizes stroke parameters �̃ = [�1, ..., �� ] using gradient descent to minimize the visual similarity loss L(�� , �� ):
�̃ ← �̃ − � �L(�� ,�� )

��̃
, where � is the learning rate.

The SNP method [171] produces paintings with more details and realistic oil-painting stroke textures compared
to [7, 64, 123], as shown in Fig. 6. While ASRP [7] and SNP exhibit clear oil-painting textures, SNP’s output size
is ixed, requiring input images with the same aspect ratio. This can distort non-conforming images, and some
input details may become blurry. Additionally, SNP requires more computation time than MDRLP.

4.4.3 Ink Wash Painting. Ink wash painting seems diicult to achieve with learning-based methods, and there
are only a few research studies [151, 152]. For example, the texture of Chinese hair brush is diicult to mimic,
although conventional SBR methods make contributions [131] to stroke modelling. The method of [151] proposed
using the Markov decision process (MDP) to imitate drawing a stroke. The authors irst used a tip � and a circle
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CMLASRP SNPMDRLP

Fig. 6. Stroke comparison. The images, from let to right, are generated byMDRLP of [64], ASRP [7], CML [123] and SNP [171],

respectively.

Stroke sample Painting result Input image

Fig. 7. The pastel-like stroke samples and the painting result generated by the method of neural painter [109].

with centre �� and radius �� to model the brush agent. MDP consists of a tuple (Ŝ, Â, �� , �� , �), where Ŝ is a set

of continuous states of the canvas, Â is a set of continuous actions, �� is the probability-density of the initial

state. �� (�̂′ |�̂, �̂) is the transition of the probability density from the current state of the canvas �̂ ∈ Ŝ to the next

state �̂′ ∈ Ŝ when taking action �̂ ∈ Â. The term � (�̂, �̂, �̂′) denotes the immediate reward for the transition from
�̂ to �̂′. Let T = (�̂1, �̂1, �̂�, �̂�, �̂�+1) be a trajectory of length �. Then, the return (i.e. the sum of the accumulating

discounted future rewards) along T is written as: � (T ) = ∑�
�=1 �

�−1� (�̂� , �̂� , �̂�+1), where � ∈ [0, 1) is the discount
value for the future reward. Meanwhile, the authors designed four actions to move the brush agent, and in the
reinforcement learning (RL) model, the brush agent was trained to generate hair brushstrokes.

Since the algorithm achieves high idelity of hair brushstroke textures, the RL model is, at last, able to use the
brush agent to generate ink wash paintings or Chinese paintings. Although the painting results contain textures
of hair brushstrokes and characteristics of ink wash paintings, the method does not provide the painting process.
Therefore, we do not know what happened during the painting procedure. We are not sure if the paintings are
painted stroke-by-stroke. Moreover, the method description does not explain how the painting agent processes
the input reference images and how the agent decomposes the images into strokes.

4.4.4 Pastel-like Painting. The method of neural painters (NP) in [109] uses GAN-based model and VAE-based
model to simulate an intrinsic style-transform painting. Since the stroke textures are close to the pastel-painting
style, we have called this form of painting pastel-like painting. However, the inished paintings express few
characteristics of pastel paintings. The GAN-based and VAE-based models in the method were used to generate
pastel-like strokes by training the models on the stroke dataset provided by the MyPaint program. When training
the GAN and VAE-based models, the author labelled the dataset for the action space mapping a single action to
a single brushstroke. The entire model (a neural painter) then used the GAN or VAE-based model to generate
pastel-like strokes rendering on the canvas. By dividing the canvas into grids with the same size as the stroke
image generated by the GAN or VAE-base model, the neural painter was able to recreate a pastel-like painting
based on the given image. However, the paintings generated by neural painters lost much detailed content and
the pastel-painting stroke textures were not clear. As Fig. 7 shows, with images from [109], the stroke samples
contained characteristics of pastel-painting stroke textures, but the painting not only lost too much detailed
content but also had few pastel-painting characteristics.
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4.4.5 Robotic Painting. Robotic painting has long captivated both artists and robotics experts. Most artistic
painting robots use acrylic paints [75], which are nearly as versatile as oil paints but are water-soluble, eliminating
the need for harsh or toxic thinners and solvents. An example of an acrylic painting robot is the e-David
robot [43, 92, 93], developed by Dessoin, Lindmeier and colleagues. This system comprises an industrial robot
equipped with a paintbrush and a visual feedback system, utilizing a set of premixed colors. Additional color
mixing is achieved by applying translucent brushstrokes to the canvas, considering the Kubelka-Munk paint
ilm theory. The e-David robot can also learn to replicate brushstrokes through trial and error. The work of
LETI painting robot [75] introduces a new type of robot capable of precisely metering and mixing acrylic
paints, demonstrating high-quality painting results. The robotic system’s capabilities are showcased through
four artworks: replicas of landscapes by Claude Monet and Arkhip Kuindzhi, and synthetic images generated by
StyleGAN2 and Midjourney neural networks. These results can be applied to computer-generated creativity, art
replication and restoration, and color 3D printing.
The work by [7] presents a new approach that integrates artistic style into the process of robotic painting

through collaboration with human artists. The method involves collecting brushstroke samples from artists,
training a generative model to imitate the artist’s style, and then ine-tuning the brushstroke rendering model to
adapt it to robotic painting. Their user studies have shown that this method can efectively apply the artist’s
style to robotic painting. The use of a Visual Measurement System (VMS) and a Robotic Painting System (RPS) to
simulate brushstrokes is presented by [44]. The speciic method involves using VMS to capture the interaction
trajectories and environmental state information during the artist’s painting process. Then, RPS mimics human
painting actions based on this information, utilizing real-time visual feedback to adjust the robot’s movements,
thus achieving precise brushstroke simulation. Through these methods, the proposed ShadowPainter system can
simulate brushstroke efects that are close to human levels.

Work by [106] explores whether AI-driven robots can be regarded as artists and create real works of art. Two
experiments were conduction to investigate people’s perception of the artistic quality of robot paintings and
their acceptance of the identity of robot artists. Experimental results show that although people generally believe
that robot paintings are not much diferent from human works in terms of artistic quality, they have reservations
about identifying robots as artists.

In conclusion, robotic painting has become a fascinating ield that bridges art and technology. Various systems
and methods have been developed to mimic and even surpass human artistic abilities. From using acrylic paints
to precise metering and mixing techniques, these robots have demonstrated extraordinary painting capability.
The integration of artistic styles through human-machine collaboration further enhances the creative possibilities
of robotic painting. As technology advances, we can expect more innovative and captivating artworks to emerge
from this exciting ield, breaking the boundaries of traditional art forms and opening new avenues for artistic
expression. However, the debate over whether AI-driven robots can truly be considered artists remains unresolved.
Despite the increasing technical proiciency and artistic quality approaching human standards, societal acceptance
of robots as genuine creators of art continues to lag. Future research and development in this ield may focus
on bridging this gap, enhancing the creative capabilities of robots, and addressing the ethical and philosophical
issues surrounding AI and art.

5 Evaluation

From the SBR methods of the early nineties to increasingly learning-based methods of drawing/painting and
generating for image processing, research into AI painting has reached a new pinnacle. We have analysed recent
methods based on the taxonomy of generation methods and art styles. Diferent models and algorithms have
been proposed to achieve diverse kinds of creative artwork. Although these methods are rich in AI artworks,
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their drawbacks are still obvious as well as their advantages. The discussion about the evaluation of aesthetics
and usability catches much attention of researchers in both industry and academia.
We propose that AI artworks should be compared within the same ield or category. However, for existing

evaluations of methods and the artworks generated by these methods, there are no uniform standards. Some
evaluation aspects do not it certain methods or artworks. For example, we should not take the details of the
content in artwork into account only when comparing the method and its outputs. We are comparing artworks
instead of the high resolution of an image: we should be taking the art elements into account.

5.1 Evaluation Metrics

Currently, there are four principal representative metrics widely used for image quality evaluation, namely
Inception Score (IS), Fréchet Inception Distance (FID), Contrastive Language-Image Pre-training (CLIP), and
Generated Image Quality Assessment (GIQA) [143]. IS evaluates the efectiveness of generative models, mainly
measuring the quality and diversity of generated images. It assesses the classiication efectiveness of generated
images based on the image classiier Inception v3. FID evaluates the efectiveness of generative models, measuring
the distance between the distribution of generated images and the distribution of real images. FID calculates the
diference between these two distributions based on the Inception network. CLIP is an artiicial intelligence model
developed by OpenAI that can simultaneously understand text and images. It is not just an evaluation metric
but also a bridge connecting language and visual information. GIQA evaluates the quality of generated images,
deining łqualityž as the similarity between the distribution of generated images and real datasets. This metric
can score individual-generated images, which is a capability that some previous generative model evaluation
metrics lacked.
These four metrics cannot be directly compared due to their diferent calculation methods and result ranges.

Moreover, none of these evaluation metrics target elements related to artistic aesthetics. When image evaluation
is needed from the perspective of the image or artwork itself, these evaluation metrics are not very applicable. To
this end, we propose a six-dimensional evaluation index to focus on evaluating images from an artistic aesthetic
perspective, which perfectly ills this gap.

We have referred to some elements used for evaluation from the artistic ield. Art vocabulary [134] describes
the elements of art and principle of design as:

• The elements of art: form, line, shape, space, texture, color. Color is light relected of objects. There are
three main characteristics: hue (the name of the color: red, green, blue, etc.), value (how light or dark it is)
and intensity (how bright or dull it is).
• The principles of design: balance, movement, emphasis, repetition, proportion, pattern, rhythm, unity,
variety.

When evaluating AI-generated images, we cannot only consider the quality of the generated images, namely
just using the four evaluation metrics mentioned above. From an artistic perspective, we should evaluate the
artistic characteristics of the works. Thus, we design several items of the evaluation for AI artworks inspired by
the AI criticism [37], Exploring the Representativity of Art Paintings [22], Beauty in abstract paintings [102],
Aesthetic-Aware Image Style Transfer [61], and Aesthetics-Guided Graph Clustering [165]. We mainly design
the items on two aspects, the Beauty of the entire painting and the art elements. In particular, the beauty of
the painting takes 50% of the score, and the elements, too. The art elements are Line Smooth, Stroke Texture,

Colors, Contents, and Art Style recognisability. As Table 1 indicates, the beauty of the entire artwork is the
core characteristic of artwork so the item of beauty takes 50% of an artwork. Each of the other elements takes
10% of an artwork. We ask the participants to score the paintings on the beauty of the entire artwork and all the
elements according to a ive-point Likert scale [90] (the points being: strongly good (5′), good (4′), neither good
nor bad (3′), bad(2′), strongly bad(1′)). The questions are as follows:
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Table 1. Evaluation items used in the user study.

Item Explanation

Beauty The aesthetic evaluation of the entire artwork

Line The expression and smoothness of the lines in the artwork

Texture The stroke texture expressed in the artwork

Color The treatment of light and shade in the artwork

Contents The features of the whole artwork, including the details

Style The art style of the artwork, for example, oil-painting style

• How beautiful is this artwork?
• How well are lines expressed in this artwork?
• How well are stroke textures expressed in this artwork?
• How well is the light and shade of the color treated in this artwork?
• How detailed are the contents contained in this artwork?
• How easy is it to recognise the art style of this artwork?

5.2 Experiments and Analysis

Experiments were conducted using the the methods described on the same platform with the authors providing
codes and pre-trained models. We then choose the best results of the compared methods as the test images for
visual comparison and user study.

5.2.1 Visual Comparison. We irst compare the results generated by the methods of image-style-transfer. In
particular, the stylised images are synthesised by the content image and the style image. Fig. 8 shows the sample
results generated by methods of AAMS [159], ASTSAN [110], and URUST [144]. The irst column contains the
content images and style images (small). Rest columns from left to right are the generated images of AAMS [159],
ASTSAN [110], and URUST [144], respectively. All of the results present the style features well.

However, as can be seen from the top row (Fig. 8), the style image is a pencil drawing in the top row. However,
the image generated by ASTSAN [110] still retains the original color features of the content image, indicating
incomplete style transfer. Although the image generated by URUST [144] exhibits pencil drawing features, the
content of the bird is blurred, indicating imperfect content expression. The image generated by AAMS [159]
presents clear content of the target image, and the style features are also harmoniously synthesized into the
target image. From a visual aesthetic perspective, considering overall aesthetic łBeautyž, łLinesž, łColorsž, łStroke
Texturež, łContentž details, and łStylež, the image generated by AAMS [159] appears more aesthetically pleasing
than the others. Therefore, we conclude that the results of image style transfer should contain detailed content of
the target image, and the features of the style image should not overshadow the content image.
Fig. 9 shows the visual results of new style transfer methods. The visual efects of the images generated by

AesPA-Net [60], EFDM [167], AdaIN [63], CAST [168], StyTR2 [23] and AdaAttN [95] are quite impressive. They
maintain high clarity and content detail, with good color reproduction and contrast. The stroke and line textures
are also well-presented. The cat’s image is vivid, and the background environments have their own characteristics,
showcasing diferent artistic styles. However, in terms of style transfer, they do not fully embody the features of
the style image, so they are not the best in this aspect.

The images generated by MAST [24] and SID [21] are slightly inferior in content detail. Although they basically
capture the cat’s image and background environment, they are slightly lacking in clarity, color reproduction,
and contrast. Some details may be blurry, and the colors may be somewhat distorted, afecting the overall visual
efect. The line sense and stroke texture are not very obvious. The content detail expression in images generated
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Content & Style AAMS ASTSAN URUST

Fig. 8. Visual comparison of existing neural style transfer methods. The first column shows the content and style images

(the small images). The second to the fourth columns contain the results of AAMS [159], ASTSAN [110], URUST [144],

respectively.

Style Image

Content Image DiffuseIT MAST AesPA-Net EFDM SID

AdaAttNDiffStyleStyTR2CASTInSTAdaIN 

Fig. 9. Visual comparison of existing style transfer methods. The first is the style image and the first image in the top

row is the content image. The compared images refer to the work of Style Injection in Difusion (SID) [21]. The methods

are DifuseIT [80], MAST [24], AesPA-Net [60], EFDM [167], SID [21], AdaIN [63], InST [166], CAST [168], StyTR2 [23],

DifStyle [67], AdaAtN [95].

by DifuseIT [80], InST [166], and DifStyle [67] is very poor. For InST [166] and DifStyle [67], the cat’s image is
almost indistinguishable. On the contrary, InST [166] expresses more content from the style image. Although it is
hard to recognize the content of the image generated by DifStyle [67], its overall color expression creates a fresh
and ‘cute’ efect.
In summary, the evaluation of style transfer results across various models highlights several key features

necessary for generating high-quality, new-style artistic images. From the perspective of Beauty, an ideal artistic
image should exhibit a balanced composition of visually pleasing elements, including harmonious color schemes
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and well-composed subjects. Regarding Lines, clarity and sharpness are crucial for deining objects and subjects,
contributing to the overall structural readability of the image. In terms of Colors, accurate color reproduction
and contrast are essential for enhancing visual appeal and relecting the desired mood and atmosphere. Stroke
texture plays a vital role in conveying the sense of artistic technique and traditional medium, providing a tactile
experience for the viewer. Content details are important for maintaining the recognizability and realism of the
main subject, ensuring that key elements are neither lost nor distorted during the transformation process. Finally,
the Style itself must be faithfully reproduced, capturing the unique characteristics and nuances of the reference
style image. Balancing these elements ensures that the generated artistic image not only adheres to the desired
style but also stands out as a cohesive and aesthetically engaging piece of art.

Input GANs N'Roses U-GAT-IT WBC

Fig. 10. Visual comparison of existing GAN-based methods for photo-to-cartoon. The first column shows the input images,

and the remaining columns from let to right are generated images by methods of GANs N’ Roses [20], U-GAT-IT [77], and

WBC [147], respectively.

Fig. 10 shows the results generated by style transfer methods. Note that the style of the generated images is
learned from the training dataset, not synthesised from a style image. The irst column shows the input images,
and the rest of the columns, from left to right, are generated images by GANs N’ Roses [20], U-GAT-IT [77]
and WBC [147], respectively. The irst row input image is from the dataset provided by U-GAT-IT [77], and the
last input image is from the sample image test provided by WBC [147]. When comparing the irst three rows
of images, we observe that images generated by WBC [147] retain more realistic contents of the input images
than the others. The images generated by GANs N’ Roses [20] and U-GAT-IT [77] present more non-realistic
cartoon features than WBC [147]. However, when comparing the bottom row images, we observe that the image
generated by U-GAT-IT [77] has few cartoon features but blurred contents. Based on the analysis, we conclude
that U-GAT-IT [77] has a low generalization.

Fig. 11 shows the results generated by line drawings methods. The top row shows the input reference images
(small images), and the rest of the rows, from top to bottom, show the results generated by photo-sketching [85]
and APDrawingGAN [161], respectively. The images generated by photo-sketching [85] lose so much content
that it is diicult to recognise the object in the image. Although results generated by APDrawingGAN [161]
contain suicient image content, the expression of the girl’s hair is not satisfactory.

Fig. 12 shows another line drawing results generated by DoodlerGAN [41]. The images are created by the online
demo provided by the authors. The model only creates birds or bird-like creatures. The images are generated
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Input

Photo-
sketching

APDGAN

Fig. 11. Visual comparison for photo-to-sketch. The top row shows the reference images. The middle row shows the results of

the photo-sketching method [85], and the last row shows the results of APDrawingGAN method [161].

step by step. The whole image consists of several components of a bird or bird-like creatures. The human or
the computer draws a inal step in the process to inish a component. Images (a) and (c) are inished by the
cooperation of a human and a computer. Images (b) and (d) are generated by the computer only. We observe that
all the images are like birds but not real birds.

(a) (b) (c) (d)

Fig. 12. Line drawings generated by DoodlerGAN [41].

Fig. 13 shows the results generated by methods of painting. The results are created stroke by stroke. The
left column shows the input images, and the remaining columns from left to right are the results generated by
methods of MDRLP [64], SNP [171], Stroke-GAN Painter [145] and NP [109], respectively. The images in the
three middle columns have colors closer to the input images than the right-column images. Images generated by
SNP [171] present clearer stroke textures than others. Images generated by MDRLP [64] contain more details
than others. Images generated by MDRLP [64], Stroke-GAN Painter [145] and SNP [171] look like oil-painting,
especially the brushstroke texture of SNP [171]. The style of images generated by NP [109] is diicult to recognize
since the stroke texture is more like pastel-painting than oil-painting, but the art style is close to watercolor
painting.

5.2.2 User Study. To make an objective evaluation of the generated images, we undertake a two-step user study.
For a fair comparison, we conduct a blind-trial test among the participants. The participants know neither the
authors of the methods used for generating comparison paintings nor the experimenter. The participants are
chosen from various backgrounds (69.2% in the art ield, and 85.1% known about AI Art), age groups (18ś60), and
genders ( 74 females and 127 males).

We designed the user study as a two-step test for the six-dimensional evaluation index analysis to ind suitable
items for a certain art style. We design the two-step user study inspired by the work of [136]. For the irst step,
we mix all the painting results in the same questionnaire and then ask the participants to score all the paintings
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Input MDRLP SNP NPStroke-GAN Painter

Fig. 13. Visual comparison for paintings. The let column contains the input reference images. The other columns are the

painting results of diferent methods. The three middle-column methods use oil-painting strokes to create paintings. The

right column uses pastel-like strokes to generate paintings.

according to the six evaluation items. In the second step, we classify the paintings into two categories: style-
transform paintings and style-reconstruction paintings (stroke-by-stroke paintings). The style-reconstruction
paintings contain the painting process images, and the paintings with the same style are put in the same group.
We then ask the participants to score the paintings based on a ive-point Likert scale [90]. The participants inish
the user study’s Step 1 and Step 2.

Table 2. Intra-class Correlation Coeficient Results of the Step 1 test.

Two-way Mixed/Random Consistency ICC 95% CI

Single Measure ICC (C,1) 0.437 0.373 ∼ 0.513
Average Measure ICC (C,K) 0.985 0.980 ∼ 0.989

Table 3. Intra-class Correlation Coeficient Results of the Step 2 test.

Two-way Mixed/Random Consistency ICC 95% CI

Single Measure ICC (C,1) 0.498 0.432 ∼0.5740.437
Average Measure ICC (C,K) 0.988 0.985 ∼0.991

Table 2 and Table 3 show the Intraclass Correlation Coeicient (ICC) Results of the two-step user study.
In analyzing two sets of ICC data, we observed similar trends regarding the reliability of single and average
measurements. In both datasets, the single measure ICC(C,1) values, 0.437 and 0.498 respectively, indicate a
certain to moderate degree of correlation in single measurements, but not particularly strong. The 95% conidence
intervals for these single measures show a range of luctuation, suggesting room for improvement and relecting
the potential impact of random errors or individual diferences. However, the average measure ICC(C,K) values
exhibit extremely high reliability in both sets, reaching 0.985 and 0.988. The narrow conidence intervals further
conirm that averaging multiple measurements signiicantly enhances measurement accuracy and consistency.
These indings underscore the importance of repeated measurements in improving data quality and reliability. In
the subsequent data analysis, we mainly took the average score of each question for further analysis.
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Table 4 shows the experimental results of Step 1, and Table 5 shows the results of Step 2. Scores in the two
tables are marked with diferent colors for observation. Red indicates the highest scores, blue indicates the lowest
scores, and orange represents scores lower than 3 except blue ones.

Table 4 shows the six-dimensional evaluation index scores on mixed artworks. In the beauty column of Table 4,
we observe that the results generated by the method of photo-sketching [85] give the lowest scores (2.849).
Compared with other paintings, the sketches generated by photo-sketching [85] have little content from the
input image, and we cannot readily recognise what the sketches express in some cases (as Fig. 11 shows). The
score is 2.849, which means that most participants judged the sketches to be poor in terms of beauty. The sketches
generated by DoodlerGAN [41] also obtain a lower score (3.000) compared with other paintings. However,
when comparing the line smoothness of the paintings, we observe that paintings generated by the method of
APDrawingGAN [161] gained higher scores than most. Paintings generated by DifStyle [67], ASTSAN [110],
DifuseIT [80], andH-SRC [72] obtained scores lower than 3. Thismeans these paintings have poor line expressions.
The texture column compares the stroke texture of the test artworks. MAST [24], H-SRC [72] obtain scores lower
than 3; however, AesPA-Net [60], APDrawingGAN [161], StyTR2 [23], CAST [168] and PST [98] obtain scores
higher than 3.6. That means these methods express stroke texture well. Methods obtaining high scores, especially
PST [98] (3.823), present clear stroke textures in their paintings. In the color column, most of the methods score
higher than 3 except Photo-Sketching [85], MAST [24], DifStyle [67], H-SRC [72] and DoodlerGAN [41]. For the
content comparison, only H-SRC [72], Photo-Sketching [85] and DoodlerGAN [41] obtain a score lower than 3.
Scanning Fig. 11, the images generated by Photo-Sketching [85] lose too much content. Thus, the line drawings
or sketches, when compared with other paintings with rich contents, only gain lower scores. When compared in
terms of art style recognisability, only the paintings generated by H-SRC [72] obtained low scores (2.940). That is,
most of the participants cannot recognize the art style of the paintings created by H-SRC [72]. Table 5 shows the

Fig. 14. Example of the painting process.

scores of the six-dimensional evaluation index on the classiied artworks. The artworks are divided into four
groups: style transfer/transform, photo-to-cartoon, line drawing, and stroke-by-stroke painting. Some of the
artworks created stroke-by-stroke also exhibit the painting process images (Fig. 14). In the user study step 2, the
scores were signiicantly higher than those of step 1, especially since the number of scores below 3 was much
fewer. The reason is that in the second test, users were informed of the style type and the image generation
method so that users had a fuller understanding of the object they were evaluating. Therefore, users would be
more tolerant and accepting of some less distinguishable options, thus giving higher scores. In the beauty column
of Table 5, results of PST [98], AAMS [159], Im2Oil [137], APDrawingGAN [161], Intelli-paint [127] obtained
higher scores than most others. Especially, in the style column, the lowest score is higher than 3, which means
when users are informed of the styles and generation methods, their scores for artworks will be more accurate
in the style conirmation item. In addition, it is in line with the principle of fairness to evaluate paintings by
classifying them according to their styles and generation methods.
To conduct a more detailed analysis of the user study, we have sorted and classiied the scores of the users

based on their backgrounds. Fig. 15 shows the scores of all artworks by ive backgrounds of users: all users, users
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Table 4. Scores on evaluation items in the user study, Step 1. All the painting results are put in the same questionnaire.

Methods
Beauty
(50%)

Line
(10%)

Texture
(10%)

Color
(10%)

Content
(10%)

Style
(10%)

Mixed
Total

AAMS [159] 3.756 3.532 3.582 3.677 3.587 3.613 3.677

ASTSAN [110] 3.095 2.935 3.069 3.069 3.000 3.185 3.073

URUST [144] 3.164 3.000 3.224 3.086 3.125 3.267 3.152

SID [21] 3.741 3.444 3.504 3.478 3.483 3.586 3.620

AesPA-Net [60] 3.836 3.612 3.716 3.556 3.746 3.716 3.753

CAST [168] 3.625 3.444 3.608 3.526 3.483 3.539 3.572

StyTR2 [23] 3.884 3.591 3.711 3.591 3.716 3.651 3.768

EFDM [167] 3.595 3.323 3.341 3.418 3.487 3.448 3.499

MAST [24] 3.108 3.004 2.918 2.996 3.116 3.065 3.064

AdaAttN [95] 3.582 3.358 3.371 3.293 3.379 3.362 3.467

AdaIN [63] 3.685 3.405 3.565 3.466 3.440 3.539 3.584

DifuseIT [80] 3.233 2.978 3.185 3.082 3.065 3.151 3.163

InST [166] 3.496 3.216 3.353 3.233 3.341 3.388 3.401

DifStyle [67] 3.246 2.892 3.125 2.978 3.121 3.043 3.139

CycleGAN [170] 3.543 3.188 3.338 3.297 3.358 3.345 3.424

Gated-GAN [14] 3.853 3.491 3.591 3.690 3.634 3.763 3.744

StarGAN [18] 3.353 3.168 3.250 3.134 3.297 3.254 3.287

StarGANv2 [19] 3.366 3.134 3.190 3.095 3.233 3.216 3.270

H-SRC [72] 2.961 2.845 2.901 2.884 2.836 2.940 2.921

MSC [10] 3.522 3.203 3.280 3.306 3.315 3.224 3.394

U-GAT-IT [77] 3.670 3.391 3.460 3.432 3.485 3.460 3.558

WBC [147] 3.432 3.263 3.319 3.235 3.310 3.262 3.355

CartoonGAN [15] 3.358 3.172 3.315 3.284 3.263 3.280 3.310

MSCartoonGAN [125] 3.457 3.272 3.379 3.241 3.366 3.379 3.392

GANs N’Roses [20] 3.865 3.553 3.585 3.586 3.658 3.726 3.743

LGLD [13] 3.862 3.625 3.595 3.366 3.603 3.828 3.733

APDrawingGAN++ [162] 3.565 3.504 3.582 3.220 3.526 3.608 3.526

APDrawingGAN [161] 3.875 3.694 3.642 3.302 3.612 3.741 3.728

Photo-Sketching [85] 2.849 2.784 2.845 2.828 2.853 3.194 2.875

DoodlerGAN [41] 3.000 3.022 2.970 2.918 2.927 3.263 3.010

NP [109] 3.427 3.190 3.310 3.241 3.379 3.397 3.365

MDRLP [64] 3.534 3.310 3.418 3.448 3.418 3.474 3.474

SNP [171] 3.659 3.392 3.491 3.547 3.445 3.582 3.576

Stroke-GAN Painter [145] 3.613 3.430 3.516 3.521 3.456 3.453 3.544

PaintTransformer [94] 3.621 3.512 3.447 3.342 3.452 3.567 3.543

Intelli-paint [127] 3.653 3.521 3.522 3.601 3.485 3.587 3.598

Im2Oil [137] 3.732 3.311 3.554 3.663 3.512 3.601 3.630

RST [79] 3.712 3.344 3.558 3.628 3.523 3.612 3.623

PST [98] 4.112 3.603 3.823 3.892 3.884 3.974 3.983

Average 3.529 3.299 3.389 3.337 3.383 3.443 3.450
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Table 5. Scores on evaluation items in the user study, Step 2. All the painting results are classified into categories according

to the generating procedure and art styles.

Category Methods
Beauty
(50%)

Line
(10%)

Texture
(10%)

Color
(10%)

Content
(10%)

Style
(10%)

Categorised
Total

Style Transfer/
Transform
New Style

AAMS [159] 3.910 3.637 3.672 3.706 3.682 3.881 3.813
ASTSAN [110] 3.378 3.328 3.308 3.318 3.338 3.373 3.356
URUST [144] 3.244 3.104 3.234 3.164 3.209 3.239 3.217
SID [21] 3.602 3.318 3.423 3.323 3.498 3.473 3.504

AesPA-Net [60] 3.861 3.448 3.622 3.493 3.537 3.552 3.696
CAST [168] 3.741 3.433 3.562 3.488 3.512 3.562 3.626
StyTR2 [23] 3.811 3.532 3.602 3.582 3.562 3.642 3.698
EFDM [167] 3.692 3.353 3.567 3.443 3.522 3.493 3.584
MAST [24] 3.478 3.119 3.174 3.219 3.164 3.343 3.341

AdaAttN [95] 3.736 3.343 3.438 3.403 3.398 3.463 3.573
AdaIN [63] 3.746 3.373 3.537 3.502 3.488 3.612 3.624

DifuseIT [80] 3.388 3.139 3.279 3.159 3.184 3.214 3.292
InST [166] 3.493 3.229 3.323 3.279 3.289 3.428 3.401

DifStyle [67] 3.458 3.065 3.323 3.119 3.164 3.149 3.311
CycleGAN [170] 3.674 3.378 3.376 3.453 3.398 3.425 3.540
Gated-GAN [14] 3.881 3.532 3.597 3.542 3.542 3.776 3.739
StarGAN [18] 3.537 3.164 3.363 3.358 3.333 3.249 3.415
StarGANv2 [19] 3.493 3.204 3.333 3.224 3.289 3.388 3.390
H-SRC [72] 3.224 2.945 3.085 3.025 3.070 3.055 3.130
MSC [10] 3.562 3.249 3.483 3.284 3.378 3.423 3.463

Photo to
cartoon

GANs N’ Roses [20] 3.826 3.458 3.653 3.522 3.595 3.784 3.714
U-GAT-IT [77] 3.690 3.378 3.530 3.439 3.479 3.464 3.574
WBC [147] 3.578 3.362 3.453 3.374 3.408 3.311 3.480

CartoonGAN [15] 3.577 3.179 3.507 3.338 3.224 3.373 3.451
MSCartoonGAN [125] 3.552 3.299 3.393 3.343 3.328 3.358 3.448

Line drawing

LGLD [13] 3.831 3.532 3.577 3.368 3.662 3.697 3.699
APDrawingGAN++ [162] 3.682 3.353 3.612 3.348 3.468 3.597 3.579
APDrawingGAN [161] 3.905 3.537 3.617 3.418 3.572 3.796 3.747
Photo-Sketching [85] 3.109 2.900 2.960 2.771 2.950 3.279 3.041
DoodlerGAN [41] 3.308 3.144 3.134 2.905 3.119 3.279 3.212

Stroke by St-
roke Painting

NP [109] 3.776 3.338 3.527 3.433 3.473 3.408 3.606
MDRLP [64] 3.627 3.318 3.393 3.363 3.423 3.498 3.513
SNP [171] 3.697 3.343 3.488 3.403 3.463 3.602 3.578

Stroke-GAN Painter [145] 3.893 3.433 3.513 3.423 3.664 3.725 3.722
PaintTransformer [94] 3.653 3.375 3.443 3.378 3.491 3.564 3.552
Intelli-paint [127] 3.985 3.226 3.586 3.441 3.786 3.786 3.775

Im2Oil [137] 3.901 3.315 3.688 3.412 3.878 3.823 3.762
RST [79] 3.866 3.443 3.557 3.389 3.927 3.886 3.753
PST [98] 3.987 3.586 3.732 3.443 3.998 3.923 3.862

Average 3.650 3.318 3.453 3.349 3.448 3.510 3.533
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with artistic backgrounds who understand AI art, users with artistic backgrounds but do not understand AI art,
users without artistic backgrounds but understand AI art, and users without artistic backgrounds who also do
not understand AI art.

0.0
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1.2
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1.6
1.8
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2.4
2.6
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Beauty  Line Texture Color Contents Style Total

Mixed

All Art & AI Art & W/O AI W/O Art & AI W/O Art &W/O AI

Beauty     Line Texture Color Contents Style Total

Categorised

All Art & AI Art & W/O AI W/O Art & AI W/O Art &W/O AI

Fig. 15. The average scores of diferent background users in the mixed test and categorised test.

The analysis identiied that the average scores of users with artistic backgrounds are higher than those of other
users, whether in artworks-mixed or artworks-categorised tests. In the artworks-mixed test, users with an artistic
background but no knowledge of AI art gave the highest scores, followed by users with an artistic background
and knowledge of AI art. In the artworks-categorised tests, users with an artistic background and knowledge of
AI art gave the highest scores except for the color item, followed by users with an artistic background but no
knowledge of AI art. Especially in the color item, the latter group gave the highest scores. Interestingly, in the
two-step user study, the average scores given by users with an artistic background were higher than the average
scores given by all users. Among users without an artistic background, in the artworks-mixed test, the scores
given by users who understand AI art are lower than those who do not understand AI art in every category. In the
categorized test, only the Beauty and Line items have lower scores from users who understand AI art compared
to those who do not. Overall, in both tests, users who understand AI art gave lower scores than those who do not.

6 Challenges and Opportunities

AI technologies have been applied in many ields, including industry, art and education, and have attracted
signiicant attention. Methods for creating digital art are diverse, and the performance of these is steadily rising.
However, there are still many challenges as well as opportunities. 1) When converting a photo to an artwork,
the balance of idelity and creativity is still an ill-posed issue. 2) For painting/drawing methods, the creation
order of generating an artwork is still a machine order and very diferent from the human order. 3) For most
learning-based methods, the framework almost generates one art style instead of multiple styles. 4) It is diicult
to generate artworks without reference images; in other words, existing methods have to refer to an input image
to inish the painting process. 5) The existing evaluations for AI artworks (conducting user studies) are still
subjective. However, there are still many opportunities for AI artworks in areas such as science and technology
big-bang society [4]. There are requirements and opportunities for AI artworks in many ields, such as social
community, education, art and commerce.

6.1 Challenges

6.1.1 Fidelity VS. Creativity. Creativity has a profound impact on society [16, 163], especially in art. No matter
whether we are considering style-transform AI artworks or art-style-reconstruction artworks, existing methods
can ‘almost’ turn a photo into an artwork. Therefore, it is worth discussing the idelity and creativity [50] of the
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results. Unfortunately, most painting/drawing methods have diiculty in achieving high idelity because of the
art style representation. For example, methods such as [7, 94, 123, 171], although presenting the stroke texture of
oil painting well, produce results that lose much detailed content owing to the invariant stroke shape or type.
The method in [64] also mimics the oil painting process and can generate high idelity results when giving a
large number of strokes, but the high idelity result is almost a photo rather than an oil painting because the
strokes lack oil-painting stroke textures. In summary, turning a photo into a painting is a creative task requiring
the result to not be the same as the photo itself, but the idelity requiring the preservation of as many details as
possible is still a diicult challenge, and we have yet to deliver pleasing results consistently.

6.1.2 Creation Order. Most painting/drawing methods claim that they can mimic the human painting/drawing
process. In reality, they model stroke generation to render a large number of strokes onto the canvas to inish the
creation of an artwork. However, the generation process is so diferent from the human painting process that they
ignore the creation order that humans follow. In particular, when human artists create artwork, e.g. an oil painting,
they tend to draft the main objects by lines irst and then paint the background and the objects progressively. It is
worthwhile to teach machines to really mimic the human painting process so as to reveal the mysterious veil of
art creation, even though it is diicult to achieve this task. If we make a step to achieve the real human painting
process, we make the machine painting more intelligent and closer to the human artist; if we endow the machine
or computer with inspiration and motivation for its creation (as pointed out by Hertzmann [56, 57]), then we
may claim that the machine or computer can create art.

6.1.3 Abstract Art. Existing methods for creating AI artworks usually refer to the input image to recreate
the artwork. However, a human artist can create artwork without real referent objects thanks to their human
inspiration and imagination. Consequently, teaching a machine or computer to create artworks without reference
images is a very challenging task. Although the work [155] achieved the generation of images from ine-grained
text, the result was photorealistic and could not really be called artwork. The work [32] generated abstract
artworks with their creative adversarial networks, but the model itself could not name the artwork according to
its creation. In other words, this model just generates abstract images but does not know what the image is or
what meaning the image represents. However, researchers can obtain inspiration from these two works, since
the combination of text-to-image and abstract artworks can prompt areas of consideration and development for
future AI art creation.

6.1.4 Multi-style. The work [14] managed to generate multiple styles of results within an uniied framework for
image-style transfer. It is popular to design a model to address multiple tasks; however, it is diicult to design
a model that paints with multiple art styles. Although [64, 94, 171] could change the visual representation of
the results by replacing diferent stroke styles, the art style stayed the same, almost close to oil paintings. Can
machines or computers create diferent art styles of artworks within the uniied framework? Similar to a human
artist who can create a watercolor painting, a pastel painting and an oil painting, seemingly by changing their
painting tools, can a painting system create diferent art styles of paintings by changing its stroke style? It is an
interesting and challenging issue for both artists and computer scientists.

6.1.5 Aesthetic Evaluation. Aesthetic evaluation is a critical issue for AI artworks. The works [33, 45, 55, 61, 103,
108, 133] argued that aesthetic evaluation is important to develop methods for AI artworks. Especially for such
diverse types of AI artworks as mentioned in [115], a fair and scientiic evaluation system is very important.
In this paper, we propose an evaluation system to cover several types of AI artworks so as to unify the diverse
evaluating methods as well as make the evaluation fair when facing diferent types of AI artworks. However,
even the proposed evaluation system is still based on user studies. Can we evaluate AI artwork and its methods
via computing indexes? The proposed six-dimensional evaluation index may give some ideas and inspirations for
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the following research. For the development of AI artworks, fair, objective and scientiic evaluation is still an
important and challenging area to be addressed.

6.2 Technological Advancement

To address the aforementioned challenges, the following technological advancements need to be achieved: Firstly,
the development of advanced image synthesis techniques and creative algorithms is necessary to enhance the
idelity of paintings and exhibit greater creativity. This can be accomplished by improving technological or
algorithmic models such as Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs),
transformers, and difusion models. Secondly, sequential modeling and reinforcement learning techniques should
be utilized to enable AI to mimic the creative sequence of humans, from composition to detail reinement.
For instance, by simulating the painting process of artists through deep learning techniques, a system can be
developed that adjusts based on feedback during the creative process, allowing robots to more intelligently imitate
the artistic creation sequence of humans. Thirdly, exploring unreferenced generation techniques and inspiration
and imagination modules is crucial to enable AI to create abstract artworks without speciic input. This can be
achieved by advancing unsupervised learning and generative model-related technologies, while introducing a
Natural Language Processing (NLP)-based inspiration and imagination generation module. Additionally, through
multi-task learning and style transfer modules, AI can process multiple artistic styles within a single framework
and dynamically change brushstroke styles, resulting in works of various styles. Finally, the introduction of
computational aesthetics evaluation metrics and the proposed six-dimensional evaluation system is essential
for objective, fair, and scientiic evaluation of AI artworks. This can be accomplished through Image Quality
Assessment (IQA) algorithms and visual aesthetic feature extraction techniques.

All these technological advancements rely on powerful computing capabilities and suicient data support.
Therefore, it is necessary to continuously enhance computing power and collect more diversiied art datasets for
model learning and training. By achieving these technological advancements, signiicant breakthroughs can be
made in improving the quality, creativity, and diversity of AI artworks, while promoting the further development
of human-machine collaborative creation.

6.3 Opportunities

6.3.1 Social Media Requirements. The application of AI artworks in the social media community is very popular.
In an era of ever-higher aesthetic aspirations and requirements, self-actualisation and self-creation are areas of
increasing attention and demand resources accordingly. Current techniques and algorithms cannot meet the
demand of interaction and creation for everyone. Whether via social application software or on social websites,
people are enthusiastic about making their own virtual characters or turning photos they have taken into artworks.
However, it is diicult to make high technology and applications accessible universally for all people. First, the
operation of creating an artwork based on a photo should be convenient and easy. Second, the method itself
should have a small model size and a short inference time. Last but not least, the aesthetic quality should be
acceptable to a relevant proportion of people.

6.3.2 Education Requirements. If the virtual artworks are visible but untouchable, that reduces subjective feelings:
real artworks give a more direct sensory experience. When talking about direct sensory experience, painting
artwork by oneself must be the act that gives the most comprehensive sensory experience. However, learning to
paint from scratch is so diicult that most people do not know how to start. Not everyone who likes to paint
needs or wants to go to school to learn how. Learning to paint by referring to videos or websites is popular;
even so, it is not convenient for people who want to paint a certain artwork. Imagining that an application in
your mobile phone can generate any artwork process according to your input: is this not more convenient or
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interesting? Such AI-aided art education can enrich individualised art education [156], which will bring more
opportunities and possibilities for art education.

6.3.3 Art Diversity. AI technologies bring diversity and possibility for all kinds of art. GAN-based methods
in particular have made a visual feast of style transfer or feature texture fusion. In traditional art history, it
is always humans that create and present art. In this AI era, can computers really create art and diversify the
presentation of art, diferentiating from human art? As Hertzmann gave a viewpoint, computers cannot make
art [57] because they have no creation, motivation or emotion, but people do. In addressing the motivation and
emotion of computers, we may have a long way to go, and it is not only the issue of AI artworks. Is it impossible
for AI to create enriching forms of art and occupy a place in art history? The answer is no! We can, at least,
make eforts to apply collaborative intelligence to the creation of digital art. As mentioned in [149], humans
should collaborate with AI so that, when creating a new artwork, we have a clear motivation and emotion, and
even create an amazing artwork out of our imagination. Meanwhile, Cécile Paris pointed out that collaborative
intelligence is the next scientiic frontier of digital transformation [153]. It must be an interesting task to achieve
the collaboration of AI and human artists to create a new form of art, and collaborative intelligence must do
something wonderful in this task [3].

6.3.4 Commercial Values. Since AI artworks can be used in many scenarios, it is necessary to discuss the value
of AI artworks. The work [12] proposed that the novelty of AI art should be taken into account when we talk
about the values of this type of artwork in the context of art history. This type of art as generative art [30] has
been extensively theoretically and practically explored in the last few decades [29]. Recently, Chohan [17] noted
that there is a category of blockchain-based virtual assets known as non-fungible tokens (NFTs), attracting an
incredible amount of interest from investors in a very recent and short period. Digital artworks can be added to the
growing list of uses for the blockchain technology that is now becoming a part of modern life in application such
as accounting and auditing, agriculture, AI, business supply chains, and creative and artistic endeavours [138].
Researchers also investigated the price value of machine-made artworks compared with man-made artworks
by user studies [59]. The work found that man-made and machine-made artworks are not judged equivalent
in their artistic value. The authors pointed out when the participants are told that the artworks are made by
machines, then the evaluation is not inluenced compared with participants not knowing. We can predict that AI
artworks can be traded online and oline in the future, and people have a stable evaluation of artworks. Of course,
we should take into account that the sale and subsequent reaction to the work resurrect venerable questions
regarding autonomy, authorship, authenticity and intention in computer-generated art [104].

6.3.5 AI Evaluation for AI Artworks. Inspired by [22, 70, 112], we focus on making a uniied evaluation system for
AI artworks. Note that the uniied system contains several items (color, content, stroke texture, style and beauty),
and for a certain type of artwork, certain items should be chosen. For example, line drawings without color
design should choose content, stroke texture, style and beauty without the color item. We conduct a comparable
experiment to ind out the relation of the six items and diferent types of artworks. We irst design the user study
with all the artworks put together, composing the questionnaire. We then compose the second questionnaire by
classifying the artworks according to art types. In these two questionnaires, the evaluation items are the same.
From the analysis of Section 5, we determine that the six evaluation items are reasonable, and for diferent types
of artworks, certain items gain very low scores, demonstrating that they are inappropriate for that type. We
propose a uniied evaluation system for AI artworks, where the items are lexible and are to be chosen for a
certain type of artwork. This six-dimensional evaluation index is able to cover many types of AI artworks as well
as assign the abstract aesthetic evaluation into several concrete dimensions. However, it is still not enough to
cover all kinds of AI artworks, and it needs to be developed into a more objective evaluation system based on
computational aesthetics in the future.
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7 Conclusion

We have investigated current learning-based methods for AI artworks and classiied the methods according to art
styles. In particular, we irst classiied the methods into style-transform methods and art-style-reconstruction
methods according to the artwork generation process. For the style-transform ield, we further classiied the
methods as neural-style transfer, GAN-based, and difusion-model-based. For art-style-reconstruction methods,
we classiied the methods according to the traditional artistic art style of the generated results, such as line
drawing, oil painting, ink wash painting, pastel painting, and the more specialized robot paintings. Furthermore,
we proposed a consistent evaluation (based on previous works) for AI artworks and conducted a user study to
evaluate the proposed AI artwork evaluation system. This evaluation system contains six items: beauty, color,
texture, content detail, line, and style. The user study demonstrates that this evaluation system is suitable for
diferent styles of artwork. This consistent evaluation system containing six items is suiciently lexible to enable
the selection of certain items when evaluating diferent styles of artwork. There are many more art styles than
those considered in this paper, and we hope that, in the future, further art styles will be generated and more
methods can be evaluated by a uniied evaluation system.
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