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Abstract—Payment channel networks (PCNs) are considered as a prominent solution for scaling blockchain, where users can

establish payment channels and complete transactions in an off-chain manner. However, it is non-trivial to schedule transactions in

PCNs and most existing routing algorithms suffer from the following challenges: 1) one-shot optimization, 2) privacy-invasive channel

probing, 3) vulnerability to DoS attacks. To address these challenges, we propose a privacy-aware transaction scheduling algorithm

with defence against DoS attacks based on deep reinforcement learning (DRL), namely PTRD. Specifically, considering both the

privacy preservation and long-term throughput into the optimization criteria, we formulate the transaction-scheduling problem as a

Constrained Markov Decision Process. We then design PTRD, which extends off-the-shelf DRL algorithms to constrained optimization

with an additional cost critic-network and an adaptive Lagrangian multiplier. Moreover, considering the distribution nature of PCNs, in

which each user schedules transactions independently, we develop a distributed training framework to collect the knowledge learned by

each agent so as to enhance learning effectiveness. With the customized network design and the distributed training framework, PTRD

achieves a good balance between the optimization of the throughput and the minimization of privacy risks. Evaluations show that PTRD

outperforms the state-of-the-art PCN routing algorithms by 2.7%–62.5% in terms of the long-term throughput while satisfying privacy

constraints.

Index Terms—Blockchain, transaction scheduling, privacy-aware, deep reinforcement learning, distributed training
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1 INTRODUCTION

IN recent years, blockchain has received enhanced interests
in many domains. Despite the advances in booming lots

of cryptocurrencies as well as other applications, the
throughput bottleneck of blockchains also restricts their fur-
ther adoptions [1], [2]. For example, the transaction process-
ing capacity of Bitcoin [3] is limited to 10 transactions per
second (tps), which is far from meeting the demands of
large-scale trading scenarios. The recent off-chain payment

channel network (PCN) is emerging as a feasible scaling
solution to address this issue. PCNs have been deployed to
the prevailing cryptocurrencies, such as the Lightning Net-
work [4] adopted in Bitcoin.

PCNs allow two nodes to establish a private channel,
which acts as a two-party ledger privately maintained by
both parties. Through the private channel, two nodes can
settle multiple payments without resorting to on-chain
operations. Take Fig. 1 as an example, in which nodes A
and B need to conduct transactions with each other fre-
quently. By contrast, if all transactions are conducted on the
blockchain, it will introduce huge overhead and high
latency. To process transactions in an off-chain way, nodes
A and B open a channel by depositing funds as initial collat-
eral, e.g., each of them deposits 10 tokens to the channel, as
shown in Fig. 1. Subsequently, nodes A and B can execute
off-chain transactions by updating the available balances in
the channel. Either party can close the channel by submit-
ting a transaction containing the latest balance messages to
the blockchain. In practice, PCNs can not only be used for
executing transactions between two directly-connected
nodes. PCNs use a smart contract called Hash Time-Lock
Contract (HTLC) to guarantee transaction atomicity and
thus empowers two unconnected nodes to settle payments
through a multi-hop path. Therefore, the key to settle pay-
ment in PCNs is to find a path with sufficient channel balan-
ces; this process is also called PCN routing.

Challenges. To make PCNs economically viable, it is nec-
essary to design an efficient and robust routing algorithm to
schedule transactions for successful executions. Routing

� Xiaoyu Qiu, Wuhui Chen, Bingxin Tang, and Junyuan Liang are with the
School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou 510006, China. E-mail: {qiuxy23, tangbx, liangjy53}@mail2.
sysu.edu.cn, chenwuh@mail.sysu.edu.cn.

� Hong-Ning Dai is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, China. E-mail: hndai@ieee.org.

� Zibin Zheng is with the School of Computer Science and Engineering, Sun
Yat-sen University, Guangzhou 510006, China, and also with the School
of Software Engineering, Sun Yat-sen University, Zhuhai, Guangdong
519082, China. E-mail: zhzibin@mail.sysu.edu.cn.

Manuscript received 11 March 2022; revised 14 September 2022; accepted 15
October 2022. Date of publication 25 October 2022; date of current version 1
September 2023.
This work was supported in part by National Key Research and Development
Plan under Grant 2021YFB2700302, in part by the National Natural Science
Foundation of China under Grant 62172453, in part by the Key-Area
Research and Development Program of Shandong Province under Grant
2021CXGC010108, in part by the National Natural Science Foundation of
Guangdong province under Grants 2022A1515010154, 6142006200403, and
XM2021XT1084, in part by the Major Key Project of PCL under Grant
PCL2021A06, and in part by Pearl River Talent Recruitment Program under
Grant 2019QN01X130.
(Corresponding author: Wuhui Chen.)
Digital Object Identifier no. 10.1109/TDSC.2022.3216571

4372 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

1545-5971 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:55:17 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9322-9060
https://orcid.org/0000-0002-9322-9060
https://orcid.org/0000-0002-9322-9060
https://orcid.org/0000-0002-9322-9060
https://orcid.org/0000-0002-9322-9060
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0002-6015-3100
https://orcid.org/0000-0002-6015-3100
https://orcid.org/0000-0002-6015-3100
https://orcid.org/0000-0002-6015-3100
https://orcid.org/0000-0002-6015-3100
https://orcid.org/0000-0002-4436-9585
https://orcid.org/0000-0002-4436-9585
https://orcid.org/0000-0002-4436-9585
https://orcid.org/0000-0002-4436-9585
https://orcid.org/0000-0002-4436-9585
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
mailto:qiuxy23@mail2.sysu.edu.cn
mailto:tangbx@mail2.sysu.edu.cn
mailto:liangjy53@mail2.sysu.edu.cn
mailto:chenwuh@mail.sysu.edu.cn
mailto:hndai@ieee.org
mailto:zhzibin@mail.sysu.edu.cn


protocols in PCN essentially work quite different from con-
ventional routing protocols in data communication net-
works. Rather than finding paths with the shortest length
(or with the lowest load) like traditional data networks,
PCN routing aims to find paths with sufficient channel balan-
ces to support transaction-forwarding operations. Moreover,
PCN routing is highly sensitive to the dynamics of channel
balances due to the consumptive nature of transaction for-
warding. Despite some recent advances in PCN routing
schemes, such as Flash[5], SpeedyMurmurs[7], and Flare[8],
there exist three fundamental challenges that remain
unstudied.

1) One-shot Optimization: Because the consumed funds
(balances) are not automatically restored in PCNs unlike the
auto-released bandwidth in traditional data networks, PCN
routing is highly sensitive to system dynamics and a short-
term routing decision may not reach an optimal solution
from a long-term perspective. In this regard, despite the
high instantaneous throughput, the long-term throughput
may be low, where the long-term throughput is defined as
the overall number of successful transactions within a given
period. Unfortunately, most existing PCN routing algo-
rithms only consider one-shot optimization, which only
focuses on the successful settlement of current transactions
and may accelerate the channel imbalance. As a result, these
greedy schemes may not achieve a long-term optimal
throughput even if the instantaneous throughput is
achieved.

2) Privacy-invasive Channel Probing: To preserve privacy,
the instantaneous channel balances are not publicly
announced in PCNs. Thus, the transaction senders need to
iteratively probe the available balances of candidate paths
before sending transactions [9] though the highly frequent
channel-probing operations are privacy-invasive and also
violate the design intent of PCNs. The privacy constraint in
PCN requires that the number of probed channels when a
payment is processing is below a preset threshold. How-
ever, most existing work fails to consider the trade-off
between the transaction throughput and the privacy risks
caused by channel probing.

2) Vulnerability to DoS Attacks: A participant may attack
PCNs rather than forwarding transactions. As indicated in
[10], [11], [12], Denial-of-Service (DoS) attacks based on
route hijacking have emerged. However, most PCN routing
algorithms are memoryless. To maximize the throughput,
they tend to choose the channels with higher balances,
thereby making them be vulnerable to DoS attacks based on
route hijacking [10], [13]. Moreover, the scale-free nature of
PCNs further exacerbates the damage of DoS attacks [14],

[15]. Section 2 will elaborate details of the above three
challenges.

Motivation and Contributions. To address the above
challenges, we present a Privacy-aware high-Throughput
Routing algorithm with defence against DoS attacks based
on Deep reinforcement learning (DRL), namely PTRD.
DRL [16] essentially integrates both the long-term optimiza-
tion principle of reinforcement learning (RL) and the strong
function approximation capability of deep learning (DL). In
particular, DRL directly learns from the historical experien-
ces without human intervention by operating in an interac-
tive manner.

However, PCN routing poses non-trivial challenges in
designing DRL schemes in contrast to standard DRL tasks.
In particular, there are multiple objectives in PCN routing,
which need to be optimized while standard DRL tasks can
usually be modeled as a maximization problem (i.e., maxi-
mizing the cumulative reward). More specifically, in our
PTRD, we need to minimize the channel-probing operations
in addition to maximizing the long-term throughput. This is
because high-frequency balance probing is extremely pri-
vacy-invasive. Thus, our PTRD essentially needs to make a
trade-off between improving the network throughput and
reducing privacy risks caused by channel probing. An intui-
tive idea is to add a penalty term to the original objective
function if there are frequent channel probing operations.
This design nevertheless requires designers to carefully
choose an appropriate penalty value. For instance, if the
penalty value is too small, the DRL agent may deliberately
violate constraints to achieve a higher throughput; while
DRL may fail to learn anything [17] if the penalty is too
large. This critical requirement also poses a challenge in
designing an effective DRL scheme.

Our PTRD has well addressed these challenges. To con-
sider both the PCN throughput (as the reward) and privacy
risks (as the constraint) together, we start by formulating
the routing problem as a Constrained Markov Decision Pro-
cess (CMDP). The major difference between CMDP and tra-
ditional MDP is that additional constraints are added to the
objective function. This significantly increases the difficulty
of finding the optimal policy. Inspired by [17], we then
design an additional network module called the cost critic
network to bound the expected number of probed channels
within a predefined privacy constraint. In addition, we con-
vert the constrained optimization problem to an uncon-
strained equivalent problem by introducing a parameterized
adaptive Lagrangian multiplier. In particular, considering that
PCN is a distributed system where each user routes transac-
tions independently, we develop a distributed training
framework to collect the knowledge from each distributed
agent to boost learning.

Table 1 compares our PTRD with three state-of-the-art
PCN routing algorithms and naive DRL approaches (i.e.,
PPO-0.01, PPO-1, and PPO-100). The evaluations are con-
ducted over two real-world PCNs, i.e., Ripple [18] and
Lightning [4]. After integrating a long-term optimization
goal with both a privacy-aware constraint and DoS protec-
tion, PTRD outperforms the state-of-the-art PCN routing
algorithms. For example, PTRD improves the long-term
throughput of existing PCN routing schemes by 2.7%–62.5%
while keeping the privacy violation rate near 0, where the

Fig. 1. An example of PCN, through which nodes A and B can make pay-
ments via the routing path A! C! D! B.
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long-term throughput is the ratio of the number of com-
pleted payments to the total number of payment demands
and the privacy violation rate is the ratio of the number of
payments that violate the privacy constraint (during rout-
ing) to the total number of payment demands (details to be
given in Section 5).

In summary, the main contributions are as follows:

1) We present PTRD, a novel privacy-aware high-
throughput routing algorithm to schedule transactions
based on DRL. To the best of our knowledge, this is the
first PCN routing scheme considering both the throughput
and privacy constraints. In addition, the learning ability
of DRL empowers PTRD to detect DoS attacks.

2) We introduce an additional cost critic network and a
novel training method based on the Lagrangian-mul-
tiplier technique to PTRD so as to achieve a good
trade-off between the transaction throughput and
privacy constraints.

3) We conduct extensive experiments over the traces of
two real-world PCNs to validate the performance of
PTRD. Compared with state-of-the-art PCN routing
algorithms and standard DRL, our PTRD improves
the transaction throughput by 2.7%–62.5% while
keeping the privacy violation rate near 0.

The rest of this paper is organized as follows. Section 2 first
gives the motivation of this work. Section 3 then presents the
system model. Section 4 formulates the routing problem as a
CMDP and presents the design of PTRD. Evaluation results
are shown in Section 5, followed by relatedwork given in Sec-
tion 6. The paper is finally concluded in Section 7. The main
notations are summarized in Table 2.

2 PRELIMINARIES AND MOTIVATION

2.1 Payment Channel Network

In a nutshell, PCN allows participants to execute transac-
tions in an off-chain manner by establishing payment chan-
nels. Suppose nodes A and B need to conduct transactions
with each other frequently. If all transactions are conducted
on the blockchain, it will introduce huge overhead and high
latency. To process transactions in an off-chain way, nodes
A and B can open a channel by depositing funds as initial
channel balances. Subsequently, they can conduct off-chain
transactions by updating the available balances in the chan-
nel. Either party can close the channel by submitting a

transaction containing the latest balance messages. This
transaction is finally submitted to the blockchain.

More importantly, PCN supports multi-hop routing. In
particular, if nodes A and B are not directly connected, they
can still settle transactions along a path consisting of multiple
payment channels, e.g., A! C! D! B. For the transactions
to be successful delivered, the channels along the path should
have sufficient funds, i.e., the available balances of channels A
! C, C! D, and D! B should be larger than the amount of
the transaction to be sent. Therefore, routing algorithms are
the key components of PCNs. Despite advances made by
emerging PCN routing protocols, such as Flash [5], Speedy-
Murmurs[7], and Flare[8], they only consider either the topo-
logical reachability or the instantaneous throughput. As a
result, they suffer from the following challenges.

2.2 Challenges and Motivations

Challenge 1: how to achieve a long-term optimization on the
throughput of PCN when routing transactions? A critical issue
in the PCN is how to route transactions from the sender to
the receiver. At the first glance, PCNs are similar to
traditional communication networks. However, unlike

TABLE 1
Comparison of PTRDWith State-of-the-Art PCN Routing Algorithms

Routing Algorithms

Normalized
Throughput

Privacy
Violation Rate Long-term Privacy-aware DoS Attack Channel Dynamics

Ripple Lightning Ripple Lightning

Flash [5] 43.6% 12.1% 34.1% 86.4% ✘ ✘ ✘ ✓
Waterfilling [6] 27.9% 61.5% 42% 24.4% ✘ ✘ ✘ ✓
SpeedyMurmurs [7] 37.8% 71.9% 0% 0% ✘ ✓ ✓ ✘
PPO-0.01 67.1% 76.6% 50.1% 61.9% ✓ ✓ ✓ ✓
PPO-1 63.4% 74.3% 3.3% 6.1% ✓ ✓ ✓ ✓
PPO-100 59.7% 70.9% 0.06% 0.05% ✓ ✓ ✓ ✓
PTRD 63% 74.6% 0.2% 0.07% ✓ ✓ ✓ ✓

The bold values to emphasize the experimental results of our proposed algorithm, PTRD.

TABLE 2
List of Notation Definitions

Notation Definition

V; E Set of PCN nodes and channels
Cuv Initial capacity of channel ðu; vÞ
buv Channel balance of channel ðu; vÞ
D ¼ fd1; d2; . . . ; dTg Payment demand sequence
T Number of payment demand
PC;PS Candidate path set and selected path set
IðdtÞ Indicator for payment success
PrðdtÞ Number of probed channels for routing dt
r Maximum number of probed channels
st; at; rt; ct State, action, reward, cost
g Discount factor
u Parameters of the actor network
v Parameters of the reward-critic network
d Parameters of the cost-critic network
pu Actor-network
V c
v Reward critic-network

V c
d Cost critic-network

k Lagrangian-multiplier
d Hyper-parameter for privacy constraint
Ât Advantage function
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traditional communication networks, PCN routing is more
sensitive to system dynamics. This is because forwarding

transactions is a consumptive behavior and will change the

distribution of channel balances, thereby affecting the settle-

ment of future transactions. By contrast, the channel capacity

can be immediately restored in traditional communication

networks. Existing PCN routing algorithms nevertheless only

consider one-shot optimization and the instantaneous through-
put while failing to consider the long-term optimization of the

throughput. The ignorance of the long-term optimization of

the throughput can fasten the channel imbalance, thereby

leading to the decreased throughput from a long-term per-

spective. In other words, despite the high instantaneous

throughput, the overall throughput in the long run may be

still low. Fig. 2 illustrates the problems caused by one-shot

optimization. Assume that node A sends 5 tokens to node B,

which then sends 5 tokens to node C. Node C next sends 5

tokens to node A. As shown in Fig. 2b, the traditional one-

shot optimization tends to let each node choose the shortest

path, consequently depleting channel capacity in the direc-

tions of , , and .

By contrast, Fig. 2c shows that the long-term strategy can

balance each channel along the route

A while successfully executing transactions. In

particular, PCN remains perfectly balanced after sending
transactions. To achieve such a long-term throughput opti-
mization, it requires the PCN to strategically route transac-
tions from a long-term perspective, which is nevertheless
non-trivial because the future payment demands are gener-
ally unavailable beforehand [19]. This motivates us to
design PTRD based on DRL, which formulates the instanta-
neous throughput as reward and focuses on maximizing
the cumulative rewards, thereby achieving high long-term
throughput. Furthermore, DRL directly learns the system
dynamics via the historical interactions, thereby endowing
PTRD with the ability to predict future payment demands.

Challenge 2: how to make the trade-off between the transaction
throughput and the privacy risks caused by channel probing?
Cryptocurrency users have a practical concern on their pri-
vacy preservation. For this concern, PCNs use the source
routing protocol for transaction sending, in which the
sender is responsible for finding available paths having suf-
ficient balances to reach the receiver. In addition, the

instantaneous channel balances are not publicly announced
in PCNs for privacy preservation. As a result, to determine
the paths to route transactions, the senders need to itera-
tively probe the available channel balances of candidate
paths. However, high-frequency channel probing is
extremely privacy-invasive and also violates the design
intent of PCNs though this issue has not been addressed in
most existing studies. For instance, some routing algo-
rithms, such as Flash [5] use breadth-first-search (BFS) to
enumerate topologically-reachable paths and then to probe
the channel balances along the paths. Fig. 3a shows a possi-
ble probing choice of these schemes, where node A wants to
send 10 tokens to node G. It can be observed that the BFS
strategy needs to probe eight channels to fulfill the transac-
tion. This is because Path probes three channels, Path
probes two channels (the common channel A-B is probed
by Path ), and Path probes three channels. By contrast,
Fig. 3b shows a better solution, in which only six channels
are needed (i.e., only Path and Path are needed). There-
fore, there exists a trade-off between improving the transac-
tion throughput and reducing privacy risks. In a privacy-
preserving PCN, a privacy-aware routing algorithm should
strive for the high throughput while maintaining the mini-
mal need for channel probing.

Challenge 3: How to Defend Against DoS Attacks? Subject to
complicated incentives, a participant may attack PCN
instead of forwarding transactions to maximize its profits.
In particular, a novel DoS attack based on route hijacking is
emerging, where malicious nodes may seduce transaction
senders to choose them as routing relays and compromise
PCN by dropping transactions [13]. However, most
dynamic routing schemes are vulnerable to these emerging
DoS attacks since they highly rely on the probed informa-

Fig. 2. An illustrative example of the problem with one-shot optimization, where the lines with arrows represent the transaction flows. In the one-shot
optimization scheme, the channel balances of A! B, B ! C and C! A are exhausted after sending transactions. By contrast, in the long-term opti-
mization scheme, PCN remains perfectly balanced after sending transactions.

Fig. 3. An illustrative example of the problem caused by state-of-the-art
BFS-based routing schemes, where the lines with arrows and serial
numbers indicate the sequential probing paths.
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tion and tend to choose channels with high balances. Even
worse, since PCN exhibits similar properties to the scale-
free network [20], [21], [22], in which most transactions are
relayed by a few nodes with high betweenness centrality
[13], it further exacerbates the harm of DoS attacks. Con-
sider Fig. 4 as an example, where cluster A and cluster B are
connected through channels with a balance of 100 tokens.
Then, a newly added malicious node deposits large funds
and establishes channels with two nodes that have a high
betweenness centrality. As a result, the newly added mali-
cious node is more likely to be selected as routing relay.

In essence, this malicious attack occurs because existing
routing algorithms are memoryless, where transactions are
scheduled according to the current channel states. To maxi-
mize the throughput, most PCN routing schemes have a
higher preference to a node with a higher balance at each
channel for a higher successful rate of the transactions, thus
the malicious node will have a higher chance to be selected
than the normal nodes. Consequently, a single adversary
can hijack routes of multiple nodes and even paralyse the
entire PCN. Moreover, because of the implementation of
multi-hop payments with HTLC, senders are unaware
which node drops the transactions since they only have the
knowledge of the failed transactions due to the timeout.
This effect further increases the routing difficulty.

These challenges motivate us to design PTRD, a privacy-
aware high-throughput routing algorithm with defence
against DoS attacks. In particular, PTRD is based on DRL
yet customized for PCN routing. We first present the system
models in Section 3 and then give details of PTRD in
Section 4.

3 MODEL DESIGN

3.1 Network Model

In this work, we consider a bidirectional-channel PCN,
which can be modeled as an undirected graph denoted by
GðV; EÞ, where V denotes the vertex set of PCN nodes and
E � V � V denotes the edge set of opened payment chan-
nels. The number of nodes and the number of channels are
denoted by V ¼ jVj and E ¼ jEj, respectively. Due to the
bidirectional channels, each edge ðu; vÞ 2 E has two weights
representing the instantaneous balances in two directions.
We denote the channel balance from u to v and that from v
to u by buv and bvu, respectively. In addition, for each chan-
nel ðu; vÞ 2 E, we denote the initial capacity (i.e., the amount
of cryptocurrencies when the channel ðu; vÞ is established)
by Cuv, where Cuv ¼ buv þ bvu. If there is no direct channel

connected two nodes, i.e., 8v1; v2 2 V; ðv1; v2Þ =2 E, the capac-
ity Cv1v2 equals to 0. The channel capacities and instanta-
neous balances of the whole PCN can be denoted by two
matrices C and B, respectively, each with size V � V . For
each node u 2 V, NðuÞ ¼ fvjðu; vÞ 2 Eg is a set containing all
the neighboring nodes of u and AðuÞ is a set containing all
channels directly connected to node u. To preserve privacy,
the instantaneous channel balances are not publicly
announced in PCN, and each node only knows the balances
of its connected channels.

3.2 Routing Model

To complete a payment request, the sender initiates one or
more transactions. PCN conducts transactions with a source
routing protocol, where the transaction sender is responsi-
ble for finding a path from the source to the destination and
determining the amount of transactions. To maximize the
long-term throughput, we propose a discrete-time model to
describe the payment demands in PCN. In this model, a
sequence of payment demands D ¼ fd1; d2; . . . ; dTg are gen-
erated to be conducted. Each payment demand dt (dt 2 D) is
associated with four attributes: i) source SðdtÞ, ii) destina-
tion DðdtÞ, iii) amount of payments denoted by AðdtÞ, and
iv) timestamp T ðdtÞ. We assume that each payment is
sequentially processed. When a payment dt arrives, the
source node needs to find all the available paths from SðdtÞ
to DðdtÞ. An available path p can be denoted by a list of
edges: p ¼ ½ðu1; u2Þ; ðu2; u3Þ; . . . ; ðum�1; umÞ� 2 E�, where u1 ¼
SðdtÞ and um ¼ DðdtÞ. If the transaction is forwarded along
path p, the channel balances are updated as: 8ðu; vÞ 2 p,
buv ¼ buv �AðdtÞ and bvu ¼ bvu þAðdtÞ. For the transaction
to be successfully delivered, the balances of channels along
path p should be no less than the transaction amount AðdtÞ.
The consideration of balances along the path differentiates
PCNs from traditional communication networks.

For high throughput, we adopt the same multi-path
transport protocol as in [6], [23], which allows transactions
to be split and sent across different paths. Since the instanta-
neous balances are not publicly announced for preserving
privacy, a transaction sender needs to iteratively probe and
find possible paths with sufficient balances. For each incom-
ing transaction, the sender first generates a candidate path
set PC based on the topology. In this work, the candidate
path set is generated by iteratively invoking the Dijkstra
algorithm. In principle, the candidate path set should
include the shortest paths and try to avoid selecting the
same channel multiple times. Therefore, we first generate a
weighted graph with the same topology as the PCN. The
weight of each edge is 1. Then, the Dijkstra algorithm is iter-
atively invoked to find the path with the lowest sum of
weights. For each path that is found, we increase the weight
of each edge along the path by 10. This process iterates until
the maximum number of candidate paths is reached. In
practice, this process can be completed in advance since the
generation of the candidate path set is purely topology
dependent.

Given PC , the sender iteratively probes paths in path set
PC to get real balances until the payment demand is met or
all paths are traversed. If such a solution exists, the transac-
tion will be partitioned into multiple independent

Fig. 4. An example illustrates DoS attacks, in which a single adversary
can hijack routes of multiple nodes by creating channels with large bal-
ances. For clarity, the balances of other channels are omitted.
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transaction-units and be forwarded to the selected path set
denoted by PS . Given PS and the instantaneous balances
along these paths, the amount of transaction-units sent to
each path can be easily calculated with standard max-flow
algorithms, such as the famous Edmonds-Karp algorithm.

3.3 Attack Model

Subject to complicated incentives, a participant may attack
PCN instead of forwarding transactions to maximize its
profits. In the attack model, we consider the route hijacking-
based Dos attack, where malicious nodes may seduce trans-
action senders to choose them as routing relays and com-
promise PCN by dropping transactions. To this end, they
may strategically establish a set of channels, which puts
them in a topologically important location of the PCN graph
model GðV; EÞ. The sender does not know which nodes are
malicious during routing. If there are malicious nodes along
the select sending path set PS , the malicious nodes can
launch DoS attack, resulting in transaction failure.

3.4 Goals

Given the PCN topology and payment demands, the sender
needs to select a set of targeted paths from the candidate
path set to route transactions. A well-designed routing algo-
rithm should achieve the following goals:

1) High long-term throughput. To achieve economic feasi-
bility and fulfill the ever-increasing payment
demands, the aggregated throughput should be as
high as possible in the long run. This goal also
pushes senders to route transactions through paths
with avoidance of malicious nodes (to defend
against DoS attacks).

2) Privacy-awareness. Highly-frequent channel probing
violates the inherent privacy-preserving design of
PCNs. To address this issue, transaction-routing
schemes should be carried out on the premise of
meeting the privacy-protection requirements. The
privacy constraint in PCN requires that the number
of probed channels when a payment is processing is
below a preset threshold.

In general, the design of PCN routing needs to strike a
trade-off between the transaction throughput and privacy
preservation. To this end, we develop an objective function
subject to a privacy-preservation constraint

max
XT
t¼1

IðdtÞ;

subject to
XT
t¼1

PrðdtÞ � r½ � � 0; (1)

where IðdtÞ is the indicator. In particular, IðdtÞ ¼ 1 if the
receiver successfully receives the payment; IðdtÞ ¼ 0, other-
wise. The number of probed channels is denoted by PrðdtÞ
when routing dt. The hyper-parameter r is used to regulate
the routing behavior of PCN nodes, which represents the
maximum number of probed channels that can be tolerated
in the PCN. Importantly, equation (1) characterizes the sys-
tem dynamic with a long-term objective, which aims at
maximizing the long-term throughput over the period

f1; 2; . . . ; Tg. Directly solving equation (1) is impractical
because IðdtÞ is unknown until the payments are conducted.

4 ALGORITHM DESIGN

In this section, we present the detailed design of PTRD. We
first formulate the constrained optimization problem as a
CMDP. Next, to solve the CMDP, we present the network
architecture of PTRD, which extends off-the-shelf DRL algo-
rithms with an additional cost critic-network and an adap-
tive parameterized Lagrangian multiplier. In addition, we
present a training process customized for this network
architecture. Finally, considering that PCN is a distributed
system and each user routes transactions independently,
we develop a distributed training framework for training
each distributed agent and accumulating the learned
knowledge.

4.1 CMDP Formulation

As shown in equation (1), the problem of maximizing long-
term throughput while meeting privacy constraints is a sto-
chastic constrained optimization problem. This problem is
typically intractable since future payment demands are
unavailable beforehand. Fortunately, recent advances in
DRL offer a promising solution to learn system dynamic
and predict future payment demands. In particular, DRL is
built without any prior knowledge of the system model.
Inspired by this idea, we adopt DRL to set up an intelligent
agent to interact with the PCN (i.e., the environment). To
apply DRL, the interactions between DRL agents and the
PCN is modelled as a sequential decision-making process.
It is straightforward to divide the time period into multiple
epochs according to the arrival of new payment demands.
During each epoch t, the DRL agent deployed at the source
node first observes the PCN state st, then makes a routing
decision as action at, and next receives a reward rt measur-
ing the performance of the former action. Different from tra-
ditional DRL tasks, a cost value ct is also generated to
measure the extent, to which the former action violates the
constraints. After the PCN executing the routing decision, it
transfers to the next state stþ1 and then a new epoch starts.
This process continues until a preset condition is met, such
as no new payment demands are generated or the pre-
defined maximum epoch T is reached.

Since PCN routing is a constrained optimization prob-
lem, we then formulate the problem as a CMDP with an
additional cost function in contrast to the MDP model used
in standard DRL tasks. Take node uðu 2 VÞ as an example,
the corresponding CMDP components in the context of
PCN routing are described as follows:

1) State: The state st at epoch t is the information
observed by node u during routing. The state
includes the PCN topology G, initial channel capaci-
ties C, incoming payment demand dt, candidate path
set PC , the instantaneous balances of the channels
connected to u, and the channels probed in the last
epoch. Note that the instantaneous balances of other
channels are unknown before probing.

2) Action: As mentioned in the routing model of Sec-
tion 3.2, the key to sending transactions is to select a
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set of paths PS from the candidate path set PC to
probe their instantaneous balances. Given a candi-
date path set of size N , i.e., PC ¼ fp1; p2; . . . ; pNg, the
action can be encoded as a vector of size N , i.e., at ¼
fa1t ; a2t ; . . . ; aNt g, where ait 2 ½�1; 1�. We have ait 	 0 if
the sender u probes the balance of path pi; otherwise,
ait < 0.

3) Reward: After probing the channel balances according
to action at, the amount of transaction-units sent along
each path can be easily solved using the maximum
flow algorithm [5]. Then, depending on whether the
receiver receives all transaction-units, a numerical
reward rðst; atÞ is calculated tomeasure the action per-
formance. Since we focus on maximizing the through-
put, rðst; atÞ equals to the term IðdtÞ in equation (1).

4) Cost: Similar to the reward, the cost cðst; atÞ is a
numerical value given by executing an action. More
importantly, the cost is used to describe the extent
(or magnitude), to which an action violates the con-
straints. The cost cðst; atÞ equals to the term PrðdtÞ �
r in equation (1).

5) State Transition Probabilities: At the end of epoch t, the
PCN (i.e., the environment) updates its channels and
proceeds to a new state stþ1 according to the state
transition probabilities. In general, the transition
probabilities are unavailable in real-world PCNs.
This is because the future payment demands are not
explicitly given and the channel updates of the
whole PCN are hidden due to privacy concerns.

Based on the above formulation, DRL solves equation (1)
by learning a mapping (referred to as the policy) from each
state to the optimal action. To be consistent with existing DRL
literature, we transform the objective function in equation (1)
to a general form inDRL settings. In particular, we have

arg maxpu Epu

XT

t¼1
gt�1rðst; atÞ

h i
;

subject to Epu

XT

t¼1
gt�1cðst; atÞ

h i
� d; (2)

where T is the number of epochs, g 2 ð0; 1� is the discount
factor that measures the importance of future states, and pu

is the parameterized policy, which is typically implemented
by a deep neural network (DNN). The subscript u denotes
the parameters of DNN. The term Epu with subscript pu

means that the state-action distribution follows the policy
pu. Meanwhile, d is a hyper-parameter for the privacy con-
straint. For instance, we can set d � 0 to prevent the routing
policy from violating the constraints, or we can set d > 0 to
allow the policy to violate the constraint (only a few times).

4.2 Network Architecture

Compared with unconstrained MDPs in standard DRL
tasks, it is more challenging to solve the optimal policy in
the CMDPs of equation (2) [24]. A simple idea is to add a
penalty term Q to the original reward value if the number
of probed channels reaches the preset threshold, i.e.,

r0t ¼ IðdtÞ �Q: (3)

Then, we can directly maximize this new reward r0t. This
approach is common in many multi-objective problems.

However, this setting will require designers to carefully
choose an appropriate penalty value. For instance, if the
penalty hyper-parameter Q is too small, the DRL agent may
deliberately violate constraints to achieve higher through-
put. On the other hand, if Q is too large, DRL may fail to
learn anything[17], [25].

To solve the above problem, it is natural to consider
introducing an adaptive penalty factor. Inspired by this
idea and the Lagrangian-based method in [17], we propose
PTRD, which extends a state-of-the-art DRL algorithm
called Proximal Policy Optimization (PPO) [26] based on
adaptive Lagrangian-multiplier methods. In general,
Lagrangian-multiplier methods solve the constrained opti-
mization problems by introducing an additional Lagrange-
multiplier k [27]. In line with this idea, we first convert
equation (2) to an equivalent problem without constraints
as follows:

max
pu

min
k	0

Lðpu; kÞ ¼ fðpuÞ � kgðpuÞ; (4)

where

fðpuÞ ¼ Epu

XT

t¼1
gt�1rðst; atÞ

h i
;

and

gðpuÞ ¼ Epu

XT

t¼1
gt�1cðst; atÞ

h i
� d:

To achieve adaptive control, the Lagrange-multiplier k is
implemented as learnable network parameters in PTRD. In
this case, equation (4) can be alternatively solved by per-
forming gradient ascent on u and performing gradient
descent on k. Specifically, the gradient ascent applied to u is
to find the optimal policy pu under the given Lagrange-mul-
tiplier k. Meanwhile, the gradient descent applied to k is to
enforce the constraint adaptively. If the policy violates the
constraint frequently, taking the gradient descent on k will
make PTRD pay more attention to the constraints. Other-
wise, PTRD will pay more attention on maximizing the
throughput.

As shown in Fig. 5, our PTRD is based on the actor-critic
architecture. This is because the action space is continuous
and the critic enables efficient learning by providing more

Fig. 5. Network architecture of PTRD. Black lines depict how PTRD
routes transactions and other colored lines depict how PTRD is trained.
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useful feedback to the actor. PTRD contains four core neural
networks:

1) Actor-network (aka the policy) pu determines the
action to be taken. During each agent-environment
interaction, the actor-network takes the observed
PCN state st as the input and outputs the routing
action at, as depicted by the black lines in Fig. 5. The
goal of PTRD is to update pu toward the optimal
policy.

2) Reward critic-network V r
vð
Þmaps each state to the esti-

mated long-term reward following the actor-net-
work pu. Since the state transition probabilities are
unavailable in real-world PCNs, the reward critic-
network works as an approximation of the long-term
reward function. It is used to evaluate the perfor-
mance of the actor-network.

3) Cost critic-network V c
d ð
Þ maps each state to the esti-

mated long-term cost following the actor-network
pu. Similar to the reward critic-network, the cost
critic-network is used to approximate the long-term
cost function and to regularize the behaviors of the
actor-network.

4) Lagrangian multiplier k is implemented as a small
neural network and can be adaptively updated dur-
ing the training process of PTRD. For instance, if the
actor-network violates the privacy constraint, i.e.,
gðpuÞ > 0, we can enforce the constraint by increas-
ing k.

4.3 Training Process

We next present the training process of our PTRD. Given
the above network design, the primary problem is then con-
verted in how to train PTRD to solve equation (4). PTRD
training proceeds in episodes and uses the collected experi-
ences to optimize the policy. Specifically, each episode is
composed of multiple epochs. During each epoch t, PTRD
first observes the PCN state st, makes a routing action at,
and then receives a reward rt ¼ rðst; atÞ as well as a cost ct ¼
cðst; atÞ. After performing the action, PCN updates its chan-
nels and proceeds to a new state st, which ends the epoch.
Hence, an experience collected from epoch t can be denoted
as a tuple ðst; at; rt; ct; stþ1Þ. This agent-environment interac-
tion continues until reaching a terminal state that ends the
episode. We next describe the training process in detail.

First, the reward critic-network V r
vð
Þ approximates the

long-term reward function with the network parameters v.
Accordingly, we update parameters v by iteratively mini-
mizing the Mean-Squared Error (MSE) between real long-
term rewards and the estimated values. Let G ¼
ðs1; a1; r1; c1; s2; . . . ; sT ; aT ; rT ; cT Þ denote the sequence of
experiences collected from the whole episode. Mathemati-
cally, the loss function for the reward critic-network can be
represented as:

LðvÞ ¼ EG
XT�t

i¼0

girtþi � V r
vðstÞ

" #2

; (5)

where EG means the expectation with respect to the experi-
ence sequence G and g is the discount factor that measures
the importance of future states. Similarly, the cost critic-

network V c
d ð
Þ is used to approximate the long-term cost

function with the network parameters d. Therefore, the
parameters d are updated by minimizing the MSE between
real long-term costs and the estimated values, where the
loss function is defined as follows:

LðdÞ ¼ EG
XT�t

i¼0

gictþi � V c
d ðstÞ

" #2

: (6)

The updates of reward critic-network and cost critic-net-
work are illustrated in the green lines and the blue lines in
Fig. 5, respectively.

Then, the parameterized actor-network pu is updated by
maximizing a clipped objective function similar to the PPO
algorithm [26]. Specifically, in PPO, the objective function
uses a specially designed surrogate objective to enforce con-
structive policy updates, i.e.,

JðuÞ ¼ EG minðptðuÞÂt; p
clip
t ðuÞÂtÞ

h i
; (7)

where ptðuÞ denotes the probability ratio between the behav-
ior policy for collecting experiences and the policy to be
updated. PPO denotes the behavior policy by pold. Thus, the
probability ratio ptðuÞ can be calculated as

ptðuÞ ¼ puðatjstÞ
poldðatjstÞ ; (8)

where puðatjstÞ denotes the probability of taking action at in
state st following the policy pu. Similarly, poldðatjstÞ denotes
the action selection probability following the behavior pol-
icy pold. The surrogate objective in equation (7) uses ptðuÞ to
compensate the mismatch between the distribution of the
training data collected by the behavior policy pold and the
true data distribution for the policy to be updated. This pro-
cess can be explained as the application of importance
sampling [28].

In addition, instead of directly using the reward function,
PTRD uses a generalized advantage function Ât to reduce
the variance during the gradient propagation, thus increas-
ing the training stability. This is a common practice in deep
reinforcement learning. The generalized advantage function
Ât can be considered as a specific version of the long-term
reward function with a lower variance by deducing a base-
line. A popularized baseline to achieve the goal is the accu-
mulated rewards for K steps forward [29]. Accordingly, the
advantage function can be expressed as

Ât ¼
XK
j¼0

gj rt þ gV r
vðstþ1Þ � V r

vðstÞ
� �

; (9)

where K is the number of steps that we look forward. In
general, K is fixed and is much smaller than the length of
the episode. The term rt is the immediate reward and stþ1 is
the next state of st. Intuitively, the advantage function meas-
ures the advantage of the overall rewards for K steps for-
ward over the average case. Therefore, if a policy has a
higher Ât, it is more likely to select an action that brings a
better-than-average reward.

Note that without restricting the ratio ptðuÞ, directly max-
imizing ptðuÞÂt may lead to a drastic parameter update and
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instability since the probability ratio ptðuÞ may be extremely
large. For instance, if the action selection probability
poldðatjstÞ is a small value, it may lead to a large ptðuÞ since
poldðatjstÞ is in the denominator. To address this issue, the
objective function equation (7) imposes a constraint to
enforce the ratio to stay within a small range around 1. This
clipped ratio denoted by pclipt ðuÞ is defined as follows:

pclipt ðuÞ ¼ clipðptðuÞ; 1� �; 1þ �Þ; (10)

where � is a hyper-parameter to move the ratio to interval
½1� �; 1þ ��. Finally, equation (7) selects the smaller value
between ptðuÞÂt and pclipt ðuÞÂt as the surrogate objective and
then maximize it, thereby leading to a bounded objective
and a stable training process.

Note that the objective function of PPO, given in equa-
tion (7), only considers the rewards. To extend PPO from
standard DRL tasks to CMDP, PTRD augments equation (7)
with an adaptive cost term. Thus, the objective function can
be rewritten as

JðuÞ ¼ EG minðptðuÞðÂt � kðĈt � dÞÞ;
h

pclipt ðuÞðÂt � kðĈt � dÞÞÞ
i
; (11)

where k is the adaptive Lagrangian multiplier and Ĉt is the
cost value. Similar to Ât, Ĉt is the generalized advantage
function of the long-term costs and uses the accumulated
costs forK steps forward as the baseline

Ĉt ¼
XK
j¼0

gj ct þ gV c
d ðstþ1Þ � V c

d ðstÞ
� �

; (12)

where ct is the immediate cost and stþ1 is the next state of st.
Obviously, performing gradient ascent on u with the col-
lected experiences increases the surrogate objective JðuÞ.
This operation will update the PTRD toward maximizing
the rewards and minimizing the costs, thereby maximizing
the long-term throughput while minimizing the privacy
violation rate.

In particular, to strike a trade-off between the reward and
the cost, the Lagrangian multiplier k in equation (11) is
adaptive and implemented as a parameterized DNN, where
k is initialized to 0. During the training, k is learned by

minimizing the loss function LðkÞ:

LðkÞ ¼ EG kðd� V c
d ðstÞÞ

� �
: (13)

If the constraint is violated, i.e., d� V c
d ðstÞ < 0, minimizing

LðkÞwill increase k, consequently leading the actor-network
to put more emphasis on the cost term in JðuÞ. Otherwise k

will be decreased to make the PTRD emphasize the reward,
thereby achieving the adaptive control. Through periodi-
cally interacting with the environment and updating net-
work parameters, PTRD steadily improves the performance
of the actor network and eventually strikes a trade-off
between improving PCN throughput and reducing privacy
risks.

4.4 Distributed Training Framework

So far, we have presented how PTRD route each incoming
transaction for PCN users. Considering that PCN is a dis-
tributed system and each user routes transactions indepen-
dently, it is impractical to design a centralized DRL agent to
make routing decisions for all PCN users. Also, since PCNs
typically have tens of thousands of nodes, the concurrency
of a centralized method is problematic [30].

A naive approach is to implement PTRD in a fully inde-
pendent manner [31], where an independent PTRD agent is
deployed at each PCN user. From the perspective of each
node, it is basically equivalent to single-agent DRL. The
independent PTRD agent consists of an actor-network, an
adaptive Lagrangian multiplier, a reward critic-network, a
cost critic-network, and a experience buffer. The training
and interactions are fully independent and each user uses
its own collected experiences to update its agent. However,
it cannot be ignored that the process of agent-environment
interaction before the convergence is often accompanied by
trial-and-error costs. Moreover, to train a well-performed
DRL agent, a large amount of highly diversified data is
often required. As a result, in a fully independent scheme,
each PCN user suffers from huge interaction costs caused
by trial-and-error [32].

Therefore, we develop a novel distributed training
framework that collects the knowledge from each distrib-
uted agent to reduce the trial-and-error costs. As shown in
Section 4.3, the interaction and training processes can be

Fig. 6. Overview of the distributed training framework of PTRD.
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completely decoupled, where the actor-network is responsi-
ble for interaction and the reward critic-network, cost critic-
network, and the adaptive Lagrangian multiplier are
responsible to guide policy training. Fig. 6 shows an over-
view of our distributed training framework. Similar to the
fully independent approach, we deploy a distributed DRL
agent on each PCN user, except for the agent only contain-
ing an actor-network. During each decision epoch, using
the actor-network alone can perform interactions. After
interactions, PCN users store the collected experience
ðst; at; rt; stþ1Þ to a global experience buffer (according to
steps�1 to�4 ). In addition, all the distributed actor-networks
share a global reward critic-network, a global cost critic-net-
work, and a global adaptive Lagrangian multiplier. Periodi-
cally, PTRD samples training data from the experience
buffer and uses it to update the global networks according
to the equations given in Section 4.3. For the distributed
actor-networks, PTRD propagates the gradient required for
the policy update to each user.

Algorithm 1. PTRD for PCN Routing

Input: Distributed actor-network pu, global reward critic-net-
work V c

v , global cost critic-network V c
d , global Lagrangian mul-

tiplier k, maximum training episode J , maximum interaction
epoch T , and training interval ttrain.
1: for episode j ¼ 1; 2; . . . ;J do
2: for epoch t ¼ 1; 2; . . . ; T do
3: Observe PCN state st;
4: Select action with actor-network at � puðatjstÞ;
5: Perform action at;
6: Receive a reward rt and a cost ct, and proceed to a new

state stþ1;
7: Store experience ðst; at; rt; ct; stþ1Þ in the global

experience buffer;
8: if tmod ttrain = 0 then
9: Sample ðs1; a1; r1; c1; s2; . . . ; sT ; aT ; rT ; cT Þ as training

data from the experience buffer;
10: Update the global reward critic-network and global

cost critic-network by minimizing equations (5) and (6),
respectively;

11: Update the Lagrangian multiplier by minimizing
equation (13);

12: Compute the advantage estimations Ât and Ĉt with
equations (9) and (12), respectively;

13: Compute the clipped surrogate gradient in
equation (7);

14: Propagate the policy gradient to each distributed
actor-network.

15: Update the actor-network with the received gradient.
16: end if
17: end for
18: end for

On the one hand, the actor networks are distributed
because PCN is a distributed system and each user should
route transactions independently. On the other hand, the
critic network is shared globally to collect the knowledge of
all PCN users and to amortize the costs of trial and error.
The main idea behind this distributed training framework
is that the interaction and training processes can be
completely decoupled and each user shares its collected
experiences to other users [33]. In this regard, the costs of

trial-and-error can be spread over multiple users and the
training speed can be greatly improved. Thus, from the per-
spective of an individual user, the cost is far lower than that
under a fully independent training scheme. This entire pro-
cedure of PTRD is outlined in Algorithm 1. Lines 2–7 depict
the agent-environment interaction. PTRD updates the agent
every ttrain epochs. The global networks are first updated
with the sampled experience (lines 10–12) and then the dis-
tributed actor-networks are updated with the received pol-
icy gradient (lines 13–16).

5 EVALUATION

5.1 Evaluation Setup

In this section, we evaluate the performance of PTRD based
on the historical data of two real-world PCNs: Ripple and
Lightning Network.

5.1.1 Parameters

For network topology, we use the topology of Ripple on Jan-
uary 1, 2022. We remove channels without available funds
in both directions of channels and remove nodes with only
a single neighbor (i.e., they cannot fulfil routing require-
ments). Consequently, we obtain a PCN with 932 nodes and
43,708 channels. Similar to [5], [6], we consider that the ini-
tial PCN channels are perfectly balanced and are evenly
assigned with the total funds at both directions. Therefore,
the redistributed balances b̂uv = b̂vu = ðbvu þ buvÞ=2, where bvu

and buv are the instantaneous channel balances of the chan-
nel ðu; vÞ in the dataset. To simulate the Ripple workload,
we generate payments by randomly sampling from the
dataset, which was also used in SpeedyMurmurs [7]. Each
payment contains sender ID, receiver ID, and payment
amount. Without specification, the number of generated
payments in the evaluations is 1,000. To simulate DoS
attacks, we randomly select 10 nodes from those nodes con-
taining more than 10 neighbors as malicious nodes.

For the hyperparameters of neural networks, we imple-
ment the actor-network, reward critic-network, and cost
critic-network, each with two fully-connected layers. Each
layer has 256 neurons and the activation function of each
layer is the tanh function. The Adam optimizer is used to
update the networks. The learning rates for the policy net-
work, two critic-networks, and the Lagrange-multiplier are
3� 10�4, 1� 10�3, and 5� 10�2, respectively. The surrogate
objective of the actor-network is clipped with � ¼ 0:2. The
discount factor g ¼ 0:99. Lastly, we set r ¼ 10, d ¼ 0 for pri-
vacy constraints, K ¼ 50 for the advantage functions of
actor-network and critic-networks, and ttrain ¼ 50 for dis-
tributed training.

5.1.2 Baselines

For comparison, we use the following routing algorithms as
baselines:

� SpeedyMurmurs [7] is a landmark routing algorithm
used in earlier PCN systems. SpeedyMurmurs
selects k topologically well-connected nodes as land-
marks for routing. We set the number of landmarks
to 8, which is the same as the number of candidate
paths for PTRD.
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� Waterfilling [6] is a PCN dynamic routing algorithm
that sends transactions through paths with maxi-
mum available balances. For each transaction,
Waterfilling uses four edge-disjoint paths per
destination.

� Flash [5] is a state-of-the-art PCN routing algorithm
that uses a modified Edmonds-Karp algorithm to
probe and finds paths with sufficient balances.

� PPO-Q [26] is a baseline that adds a penalty term Q
to the original reward value, as shown in equa-
tion (3), and uses the standard PPO algorithm to
maximize this new reward. This method can be con-
sidered as a static version of PTRD.

5.1.3 Evaluation Metrics

Similar to prior studies [5], [6], [7], we use the ratio of the
number of the completed payments to the total number of
the generated payment demands over a given period as the
normalized throughput. A payment is completed if it reaches
the receiver. A higher throughput also means that the algo-
rithm can better prevent DoS attacks. We also use the pri-
vacy violation rate as the evaluation metric, which is defined
as the ratio of the number of payments that violate the pri-
vacy constraint during routing to the total number of pay-
ment demands.

5.2 Evaluation Results

5.2.1 Convergence Performance

To evaluate the effectiveness of the introduced adaptive
Lagrangian-multiplier and the policy optimization method,
we compare PTRD with standard PPO approaches in terms
of the learning performance. We set the values of penalty
termQ of PPO schemes as f0:01; 1; 100g. The number of gen-
erated payments in the evaluation are 4,000. Fig. 7 plots the
learning curves. It can been observed from Figs. 7a and 7b
that our PTRD continuously improves the normalized
throughput and reduces the privacy violation rate as the
training process progresses. Compared with PPO-0.01 and
PPO-1 (these two schemes are more concerned with the
throughput), PTRD has a comparable throughput while
maintaining a much lower privacy violation rate, which is
only about 0.04%. By contrast, PPO-0.01 and PPO-1 have
privacy violation rates as 53.7% and 2.51%, respectively. On
the other hand, although PPO-100 (which is more concerned
with privacy constraints) also has a low privacy violation
rate, its normalized throughput is about 5% less than our

PTRD. These observations are consistent with our observa-
tions in Section 4.2. In other words, naively applying stan-
dard DRL to PCN routing cannot achieve superior
performance. Meanwhile, it also requires the algorithm
designers to carefully choose an appropriate penalty value.

By contrast, we can observe from Fig. 7c that PTRD adap-
tively updates the penalty. The penalty value is high at the
beginning of training. This is because PTRD is randomly ini-
tialized and may violate constraints frequently. A high pen-
alty forces the agent to pay more attention to the
constraints. When the training proceeds, the privacy viola-
tion rate gradually converges to zero. This is because PTRD
gradually reduces the penalty value, allowing the agent to
pay more attention to the throughput. Therefore, the
Lagrangian-multiplier k used in our PTRD can adaptively
control the training process for a better trade-off between
improving the throughput and preserving the privacy.

5.2.2 Comparison Under Different Transaction Loads

To evaluate the robustness of PTRD against different loads,
we vary the number of generated transactions from 500 to
4,000. Fig. 8 shows both the normalized throughput and the
privacy violation rate versus the number of transactions.
Since SpeedyMurmurs is a static routing algorithm and
sends transactions through topologically well-connected
nodes, it has a violation rate of 0 (i.e., requiring no channel
probing). Fig. 8(a) shows that the throughput of PTRD
decreases as the number of transactions increases. This is
because the increased number of transactions increases the
training complexity. Even so, PTRD still consistently out-
performs the baselines. The performance gains of the
throughput of our PTRD over Flash, SpeedyMurmurs, and
Waterfilling are up to 52.4%, 71.3%, and 133%, respectively.
In addition, although the throughput of PPO-100 and PPO-
1 is slightly higher than PTRD, their privacy violation rate is
much higher, especially for PPO-100, which has an error
rate up to 53%. In contrast, Fig. 8(b) shows that the privacy
violation rate of PTRD is consistently close to 0 across the
evaluation. This demonstrates that even with increased
training complexity, the adaptive Lagrangian-multiplier k

of PTRD can still exert excellent effects in weighing transac-
tion throughput and privacy preservation.

5.2.3 Comparison Under Different Privacy Constraints

We next investigate the effectiveness of the adaptive
Lagrange-multiplier k of PTRD under different conditions

Fig. 7. Convergence curves of the PTRD and standard PPO approaches.
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of privacy constraints. We vary the privacy threshold r from
8 to 15. A lower r means a more stringent constraint. As
shown in Fig. 9(a), with the increment of r, the throughput
of all routing algorithms except SpeedyMurmurs is rising.
This is because: 1) SpeedyMurmurs is a topology-based
static routing algorithm that does not require probing chan-
nel balances; 2) by probing more channels, other routing
algorithms have a better chance of finding a viable path to
send the transactions, leading to a high throughput. Signifi-
cantly, our PTRD performs 84.3%, 56%, 330%, and 19.9%
better than Flash, SpeedyMurmurs, Waterfilling, and PPO-
100 on the throughput (at the minimum privacy threshold).
When the threshold is larger than 13, PTRD achieves a
throughput close to that of the PPO-0.01. This is close to the
maximum throughput since PPO-0.01 pays much attention
on throughput. As shown in Fig. 9(b), the violation rate of
PTRD is kept near 0 throughout the evaluations, even when
the privacy threshold is low. By contrast, the violation rate
of PPO-0.01 significantly increases as the privacy threshold
increases. This suggests that the adoption of the adaptive
Lagrange-multiplier in our PTRD is effective in striking the
trade-off between the throughput and privacy constraints.

5.2.4 Comparison Under Different Numbers of

Malicious Nodes

We next show how the DoS attack impacts on the perfor-
mance of routing algorithms. To simulate different levels of
DoS attack, the number of malicious nodes is varied from 10
to 80. Note that the selected malicious nodes are topologi-
cally well-connected, so only a few nodes are needed to
launch a serious attack on the PCN. Fig. 10a shows that the
throughput of all routing algorithms decreases as the num-
ber of malicious nodes increases. This trend is inevitable
because the PCN exhibits similar properties to the scale-free
network [21] and most transactions are relayed by a few

nodes with high betweenness centrality [10], [13]. As more
and more nodes with high betweenness centrality are com-
promised, it will be more difficult to find paths with suffi-
cient balances to send transactions. Nevertheless, PTRD still
achieves a much higher throughput than PPO-100, Flash,
SpeedyMurmurs, and Waterfilling and a much lower pri-
vacy violation rate than Flash, Waterfilling, PPO-0.01, and
PPO-1, as shown in Fig. 10b. This result demonstrates the
superiority of the adopted DRL in our PTRD, thereby

Fig. 8. Performance results under different transaction loads. Fig. 9. Performance results under different privacy constraints.

Fig. 10. Performance results under different numbers of malicious
nodes.
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learning hidden information from historical experiences
and preventing PTRD from selecting malicious nodes as
routing relays.

5.2.5 Comparison Under Different Network Topologies

Lastly, we compare the performance of PTRD under differ-
ent network topologies to evaluate its robustness. Specifi-
cally, we use the historical topologies of the Ripple and
Lightning Network. The setting of Ripple is presented in
Section 5.1.1. For the Lightning Network, we crawl its full
topology on January 1, 2022, where the processed topology
has 791 nodes and 3,845 channels. Similar to the Ripple, we
remove channels without available funds in both directions
of channels and remove nodes with only a single neighbor.
Fig. 11 shows that in both Ripple and Lighting Network
topologies, PTRD has achieved a comparable throughput
performance to PPO-100 and PPO-1 while maintaining a
much lower violation rate. Meanwhile, compared with
SpeedyMurmurs, PTRD achieves about 66.6% and 4.2%
throughput improvement in both Ripple and Lightning
Network, respectively. These results confirm the generality
of PTRD, which effectively improves the transaction
throughput in various situations while ensuring compliance
with privacy constraints.

6 RELATED WORK

PCNs have recently emerged since 2016 while they are still
in their early development. According to whether the rout-
ing algorithm considers the real-time PCN states when
scheduling transactions, they can be divided into static
scheduling and dynamic scheduling.

6.1 Static Scheduling

In static scheduling, PCN nodes schedule transactions
according to pre-configured rules without probing instanta-
neous channel balances, where these rules are typically
designed based on network topologies or node addresses.
Given the same topology, the sending path obtained
through path discovery for transactions with the same
receiver is constant. Therefore, this scheduling strategy is
called static scheduling. Similar ideas can be found in tradi-
tional communication networks. For instance, the Open
Shortest Path First (OSPF) Protocol and Routing Informa-
tion Protocol (RIP) have been widely used to compute the
shortest paths or paths with the fewest hops in interior gate-
way routing.

Due to the implementation simplicity, the static schedul-
ing algorithms have widely been used in early PCN sys-
tems. Prihodko et al. proposed Flare [8] for the Lightning
Network. In Flare, each user maintains a local view of its
k-neighborhood, i.e., at most k neighboring nodes within a
hop distance. For transactions sending to the k-neighbor-
hood of a user, Flare computes the shortest paths to the
receivers based on its local view. In addition, for receivers
that are not k-neighborhood, Flare asks nearby beacon
nodes to send transactions; these beacon nodes are typically
highly-connected. Considering the overhead of maintaining
a local view of k-neighborhood, Malavolta et al. proposed
the landmark-based routing algorithm called SlientWhis-
pers [34], where each user maintains a set of landmark
nodes and sends transactions through landmarks. Periodi-
cally, each user calls SlientWhispers to compute the shortest
paths to the landmarks. Since all transactions have to pass
through the landmarks, their processing capacities become
the major bottleneck of the SlientWhispers. Roos et al. pro-
posed a embedding-based routing algorithm called Speedy-
Murmurs [7], where transactions are sent according to the
IDs of the users. The performance of SpeedyMurmurs are
severely affected by the embedding method. These static
scheduling algorithms tend to send transactions according
to the topology and focus on finding the shortest path while
not considering the available channel balances along the
sending paths. Consequently, this design severely limits the
network throughput of PCNs.

6.2 Dynamic Scheduling

In dynamic scheduling, PCN nodes schedule transactions
according to the real-time PCN states. As mentioned earlier,
the premise of the successful delivery of transactions is to
find paths with sufficient balances. Compared with static
scheduling, dynamic scheduling algorithms tend to achieve
the higher throughput. Many emerging PCN routing
schemes fall into this category. For instance, Wang et al. pro-
posed Flash [5], which divides transactions into mice trans-
actions and elephant transactions based on their amount.
For mice transactions, Flash directly looks up a routing table
that stores the paths to the previous receivers. For the ele-
phant transactions, Flash uses a modified Edmonds-Karp
algorithm to probe the available channel balances and find
the shortest paths with sufficient balances. Based on the
idea of congestion control in data communication network,
Sivaraman et al. proposed Spider [6], where each user

Fig. 11. Performance results under different network topologies.
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builds up the router-signalling queue to describe the real-
time congestion magnitude of the channels. A channel is
considered to be congested when there are one-way transac-
tions passing through for a long time. In this case, the chan-
nel balances that eventually become depleted will fail to
support further transactions toward that direction. When
the congestion occurs, Spider sends the congestion signal to
suppress transactions in that direction.

The acquisition of real-time channel balances is the pre-
requisite for dynamic scheduling. Because the instanta-
neous channel balances are not publicly announced, the
sender is forced to iteratively probe the channel balances
until finding a successful path (if any) to support transac-
tions. How to make a balance between improving transac-
tion throughput and decreasing the privacy risk caused by
channel probing is a major challenge for dynamic schedul-
ing algorithms. For instance, the modified Edmonds-Karp
algorithm used in Flash only focuses on the shortest paths
with sufficient balances. As a result, it may probe a large
number of channels. This violates the design intent of
PCNs. By contrast, PTRD achieves both privacy protection
and high throughput with a novel DRL-based model and
distributed training.

7 CONCLUSION

In this paper, we have studied the routing problem in
PCNs. To make the trade-off between privacy constraints
and the transaction throughput, we propose PTRD, a pri-
vacy-aware high-throughput routing algorithm with the
defence against DoS attacks based on DRL. PTRD formu-
lates the routing problem as a CMDP and extends off-the-
shelf DRL algorithms by introducing an adaptive Lagrang-
ian multiplier. In particular, since PCN is a distributed sys-
tem, a distributed training framework is proposed by
decoupling the interaction process from the training pro-
cess. Compared with state-of-the-art PCN routing algo-
rithms, PTRD can increase the long-term throughput by
2.7%–62.5%, thereby demonstrating the superiority of our
PTRD in routing transactions from a long-term optimization
perspective. We also demonstrate that PTRD can learn hid-
den information from historical experiences, consequently
avoiding to select malicious nodes as routing relays. In sum,
PTRD also has a better trade-off between improving the
throughput and decreasing the privacy risks than tradi-
tional approaches.
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