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Abstract. Although augmented reality (AR) and virtual reality (VR)
systems have garnered extensive attention from both industry and academia,
their built-in sensors continuously collect sensitive user data, making
them potential targets for malicious attacks. To assess the threat of in-
audible acoustic channels in AR/VR, we propose AcouListener, a novel
side-channel attack that uses inaudible acoustic signals emitted and re-
ceived by off-the-shelf VR headsets or mobile phones. Variations in the
acoustic channel caused by hand movements allow attackers to recon-
struct user input (e.g., passwords). AcouListener is implemented as a
camouflaged mobile app that runs on AR/VR or mobile platforms. We
evaluate it across three common VR attack scenarios: (1) inferring vic-
tims’ unlocking patterns, (2) handwriting patterns and (3) typing words
and passwords on virtual keyboards. AcouListener achieves an average
F1-score of 84%, 95% and 80%, respectively. Furthermore, we present
countermeasures against this inaudible acoustic attack.

Keywords: Side-channel Attacks · Augmented Reality · Virtual Reality.

1 Introduction

Recent advances in augmented reality (AR) and virtual reality (VR) technologies
provide users with immersive interactions and experiences in seamless physical-
virtual worlds. These technologies are proliferating across diverse industrial sec-
tors, such as gaming [30], education [14], smart manufacturing, and health-
care [27]. The commercially available off-the-shelf (COTS) VR headsets (such as
the Meta Quest Series, HTC Vive and Bytedance Pico) typically feature Head-
Mounted Displays (HMDs) for immersive visuals and controllers for interactive
tracking, facilitated by various sensors such as speakers and microphones.

However, while these multi-channel sensors provide users with an immer-
sive experience, they also increase the potential side-channel attack surface for
privacy and security on AR/VR systems [30]. For example, an attacker can
use cameras (video channels) to monitor a VR user’s hand movement, allowing
them to infer input on the virtual keyboard (such as login passwords, browsing
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Fig. 1: Four types of side-channel acoustic attacks in AR/VR scenarios.

URLs, etc.) [12,37]. Similarly, other side channels, such as VR device motion sen-
sors [21,29,36], connected Wi-Fi [4], or external IR [25] or mmWave [23], can also
compromise user privacy via the tracked controller. These attacks pose serious
security risks, including sensitive information leakage, spoofed accounts, stolen
identities, and social network leakage. Therefore, it is crucial to comprehensively
understand the side-channel threats to AR/VR systems so as to design effective
countermeasures to promptly remedy the vulnerabilities.

In this paper, we investigate emerging threats in AR/VR systems by conduct-
ing a concealed active side-channel attack through inaudible acoustic signals. We
refer to this attack system as AcouListener, which can be easily launched using
built-in microphones and speakers in COTS VR headsets or mobile phones, re-
quiring minimal hardware and software support. In this attack, a speaker emits
inaudible acoustic signals that are imperceptible to human ears. When a victim
moves their hands in an AR/VR scenario, the resulting variations in the acoustic
channel can be captured by a nearby concealed mobile phone or AR/VR device.
Notably, different hand movements produce distinct acoustic responses, each
with unique characteristics. By processing the received signals, the adversary
can recover gestures for privacy intrusion. Fig. 1 depicts four typical attack sce-
narios of AcouListener (more details given in § 3). For example, when a VR user
holds controllers to input information (such as handwriting or virtual keyboard
typing), local or remote attackers emitting inaudible sounds can capture vari-
ants in the acoustic channel caused by hand movements, thus inferring sensitive
information (such as the device’s unlock password). However, it is non-trivial to
implement AcouListener, which requires overcoming the following challenges.

Challenge 1: Attack Concealment. Existing methods often rely on exter-
nal devices (e.g., cameras [12], radar [23], Leap Motion [25]) that are visible and
easily detected. Designing a stealthy attack channel using only built-in COTS
hardware requires careful design, particularly for broad applicability.

Challenge 2: Capturing Motion Patterns. In-air gestures in AR/VR
are unconstrained and motion-induced acoustic disturbances are weak and eas-
ily masked by environmental noise, making passive and low-frequency active
sensing unreliable. Accurately capturing these subtle channel variations remains
technically challenging.
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Challenge 3: Lightweight and Deployable Design. While high perfor-
mance devices (e.g., high-power audio systems) may offer better signal quality,
they are typically less accessible or portable. Building a low-power, efficient
sensing and inference pipeline that runs on COTS devices without dedicated
modifications is essential for practical deployment.

To address these challenges, we design AcouListener with three key com-
ponents (detailed in § 4): (1) Acoustic Transceiver. We emit high-frequency
acoustic signals (above 18 kHz), which are inaudible to humans, ensuring attack
concealment. (2) Channel Estimator. We employ the channel impulse response
(CIR) method to capture fine-grained motion patterns. Compared to Doppler
and Frequency Modulated Continuous Wave (FMCW) techniques, the CIR has
demonstrated state-of-the-art performance in gesture recognition [19]. (3) Hand-
Movement Recognizer. We use well-trained deep convolutional neural networks
(CNNs) that require minimal computational and storage resources, enabling
lightweight and portable deployment. We develop the whole system as a cam-
ouflaged mobile application (app), which can be deployed to mobile phones or
VR devices with a compact size (around 70 MB). To further verify the effective-
ness of this easily overlooked attack, we conduct extensive experiments in three
attack scenarios (detailed in § 5). Results show that AcouListener achieves an
average F1-score of 84% for unlocking pattern recognition, 95% for handwriting,
and 80% for word typing. In addition, we propose countermeasures to mitigate
such an attack (discussed in § 7). Moreover, we also provide countermeasures to
mitigate such an attack (detailed in § 7). In summary, we highlight the following
contributions of this paper.
• Novel Side-Channel Attack Vector. We demonstrate that adversaries can

actively launch a side-channel attack in AR/VR using built-in microphones
and speakers to infer user behaviors. This covert attack is largely imperceptible
to victims, as it operates primarily through an inaudible acoustic channel.

• Customized Attack Design. We develop an attack system as a camouflaged
mobile application that can be seamlessly deployed on various AR/VR devices
or nearby mobile phones. By leveraging a lightweight CNN model trained on
CIR graphs that capture human gesture patterns, the app can accurately
recognize a wide range of victim gestures from the received acoustic signals.

• Comprehensive Evaluations. We conduct extensive experiments across
three representative attack scenarios commonly found in AR/VR applications.
Experimental results confirm the effectiveness of this concealed acoustic side-
channel attack, for example, achieving a 96% F1-score in handwritten numbers
recognition. In addition, we propose countermeasures to mitigate this attack.

2 Background, Motivation, and Related Work

Acoustic Side-Channel Leakage. Modern AR/VR devices and mobile phones
are typically equipped with speakers and microphones to enable immersive human-
computer interaction. However, improper permission configurations can intro-
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duce a hidden risk of acoustic side-channel leakage [11]. Notably, COTS speak-
ers can emit high-frequency acoustic signals (e.g., above 20 kHz) that are in-
audible to most adults (typically below 17 kHz [17]), yet highly sensitive to
ambient disturbances caused by human movement. When such signals interact
with moving objects like hands or fingers, the resulting variations can be cap-
tured by microphones and analyzed, enabling accurate gesture recognition using
deep CNNs [19,35]. Since the CIR characterizes signal fading, scattering, and
delay in the channel [6], the differential CIR (dCIR), defined as dCIR(t1) =
CIR(t1) − CIR(t0) (between t0 and t1), can be used to model motion-induced
channel variations for gesture recognition tasks [19].

Motivation. Most COTS AR/VR devices and mobile phones have micro-
phones and speakers, enabling gesture inference from acoustic channels. These
facts naturally raise the question: Can inaudible acoustic signals be leveraged
for a concealed side-channel attack? To explore this, we investigate (1) how to
accurately infer common gestures and (2) which scenarios are vulnerable. To
the best of our knowledge, this is the first study to report an active attack on
the inaudible acoustic side-channel of AR/VR systems to infer private inputs
(e.g., unlocking patterns, handwriting, and typing). This attack is distinct from
prior mobile-based approaches, as it targets immersive AR/VR settings where
users wear HMDs and draw in the air with controllers—scenarios not replicable
on standard mobile devices. Compared to earlier acoustic gesture recognition on
phones [34,38], AcouListener expands the motion range from 10 cm to 30–60 cm,
enabling large-scale motion tracking with power-limited devices. We hope this
study raises awareness of such hidden risks in the AR/VR community to prevent
potential privacy breaches.

Related Work We survey related work on side-channel attacks targeting
AR/VR devices through various approaches.

(1) Acoustic-Based Activity Recognition. Content inference via acoustics has
been studied [7]. Passive methods such as Keylistener [20], Acoustictype [24],
and WordRecorder [8] rely on microphones to capture typing or writing sounds,
making it inapplicable to in-air AR/VR typing. Active approaches emit sound
to track fingers or short-range hand gestures [34,35,38]. However, they mainly
focus on mobile interactions and neglect large-scale hand movements in AR/VR.
In contrast, AcouListener reveals that acoustic channels are also capable of cap-
turing large-scale gestures and exposing sensitive information.

(2) Side-Channel Attacks in AR/VR. External cameras [12,26] and virtual
avatar tracking [32,37] have been used for privacy inference. Motion, optical, and
eye-tracking sensors can also leak private data, such as keystrokes and voice con-
tent [29,36]. Other side channels, including performance counters [39] and power
traces [18], can reveal user activities. Active-signal-based systems reconstruct
hand motions via Leap Motion [25], WiFi [4,1], or mmWave [23]. In contrast,
AcouListener systematically explores novel inaudible acoustic side-channel risks
in AR/VR. Although weak and easily masked by noise, passively captured me-
chanical button sounds have been used for in-air keystroke inference [22]. In
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contrast, AcouListener distinguishes itself as an active and inaudible attack, of-
fering greater robustness to low-frequency noise.

3 Threat Model

Acoustic System. We utilize inaudible sound emitted from AR/VR devices or
mobile phones to capture the victim’s hand trajectory and infer their inputs. The
victim’s hand movement may affect the received acoustic signals. The fluctua-
tions of received acoustic signals at the microphones can represent the victim’s
unique gesture features [16]. Considering signal attenuation, our attack operates
within an effective range (detailed in § 6). Moreover, we also assume that the
input process is one-time without any input errors or modifications.

Threats. According to different signal sources received by the adversary,
we consider two types of side-channel attacks: local attacks and remote attacks.
Regarding local attacks, the adversary may sit near the victim (e.g., a public
coffee shop) and “hear” the victim’s gesture by his/her mobile phone or HMD.
In contrast to local attacks, the remote attack can be launched by an infectious
malware installed on the victim’s HMD or mobile phone, as assumed in many
previous studies (e.g., [28,40,41]). Fig. 1 summarizes four types of side-channel
acoustic attacks in AR/VR scenarios.

Attack 1. As shown in Fig. 1(a), the adversary deliberately places his mobile
phone on the victim’s desk. This phone emits and receives inaudible acoustic
signals, enabling the adversary to track the victim’s hand movements, such as
when she unlocks her HMD.

Attack 2. As shown in Fig. 1(b), the adversary sits near the victim in a public
setting (e.g., a coffee shop) and uses their own HMD to emit and capture inaudi-
ble signals. This allows the adversary to monitor the victim’s hand movements,
such as typing on a virtual keyboard.

Attack 3. As shown in Fig. 1(c), malware installed on the victim’s HMD
carries out the attack. The malware uses inaudible acoustic signals to monitor
fine-grained hand movements, such as writing or drawing in the air.

Attack 4. As shown in Fig. 1(d), the attack can also be launched by a mali-
cious WebVR website that can access sensors on the HMD for interaction pur-
poses [36]. In this case, the malicious website infects the victim’s HMD, emitting
and collecting inaudible acoustic sounds to track the victim’s hand movements,
such as entering a URL.

Attack Scenarios. Adversaries can launch the above four types of attacks
(either locally or remotely) in the following three scenarios.

Scenario 1 (Inferring Unlocking Patterns). Many COTS HMDs utilize un-
locking patterns for device access [30], e.g., Meta Quest 2 (MQ-2). In AR/VR,
users draw the unlocking pattern in the air using a controller, in contrast to
touchscreen input on mobile devices [31]. In this proposed side-channel attack,
adversaries capture acoustic fluctuations caused by the victim’s hand movements
via microphones and infer the unlocking pattern by analyzing the resulting dCIR
patterns using deep CNNs.
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Fig. 2: System overview of AcouListener.

Scenario 2 (Inferring Handwritten Inputs). In AR/VR collaborative appli-
cations, such as virtual meetings (e.g., Meta Horizon Workrooms), victims may
use an MQ-2 controller to write or draw on a virtual screen. During this process,
the resulting acoustic signal variations produce unique dCIR patterns, which can
be captured and analyzed (either locally or remotely) by adversaries to infer the
written content.

Scenario 3 (Inferring Hand Typing on Keyboards). Typing is another com-
mon hand movement. Current VR HMDs provide various input methods [12,36].
For instance, the MQ-2 supports both beam-style and drum-style virtual key-
boards. This opens up several attack opportunities: (1) monitoring web activity
by capturing inputted URLs, which can be used for profiling or targeted at-
tacks; (2) inferring passwords, including credentials for meetings or games; and
(3) recovering typed content such as meeting notes or other sensitive information
entered during VR sessions.

4 System Framework

This section details the design of AcouListener, as illustrated in Fig. 2.

4.1 Acoustic Transceiver

Our acoustic transceiver consists of two main functions: transmitting the target
signal frames and receiving them for subsequent acoustic feature extraction.

Generation. Fig. 3 illustrates five steps for generating the acoustic signal
used to detect channel information affected by moving objects (e.g., hand move-
ments via VR controllers). We utilize a 26-bit GSM training sequence, which is
widely used in single carrier communication due to its high efficiency in chan-
nel estimation and synchronization [19]. Furthermore, a 24-bit zero padding is
added to prevent inter-frame interference. Subsequently, the frame is upsampled
using replication interpolation, with each element repeated 12 times, resulting
in a total of 600 symbols within the signal frame. A low-pass filter with a cut-
off frequency of 2 kHz is then applied to eliminate discontinuities, ensuring a
smooth signal. Each signal frame takes 12.5 ms to play at a 48 kHz sample rate,
allowing for the transmission of 80 frames within 1 second. From these received
sequences, 80 dCIR feature graphs can be extracted to characterize the acoustic
channel variations associated with object movements. This intensity is sufficient
to distinguish between different hand input movements.
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Up-conversion. Speakers integrated into VR devices or mobile phones typ-
ically operate at a sampling rate of 48 kHz [17]. According to the Nyquist sam-
pling theorem, the maximum playable frequency can theoretically reach 24 kHz.
To enhance the concealment of sound during detection, we up-convert the signal
frame to an inaudible band by modulating with

√
2 cos(2πfct), where fc is set

to 20 kHz. This process shifts the signal’s center frequency to fc, ensuring it
remains within an inaudible frequency range that is imperceptible to adults [17].
Next, we apply an 18-22 kHz band-pass filter (at a 48 kHz sample rate) to the
signal to eliminate interference and noise. Finally, we save the sequence S as a
Wave file in 16-bit PCM format, preserving high-quality audio data while en-
suring compatibility and versatility for playback and processing across various
audio applications and devices.

4.2 Channel Estimator

After receiving the reflected signal sequences containing key features of the VR
user’s hand movements, we segment them into frames and extract channel vari-
ations using dCIR graphs.

Demodulation. The signal R is transmitted at a high frequency, with a
center frequency of 20 kHz. We down-convert it by modulating with the carrier√
2 cos(2πfct). A low-pass filter with a cutoff frequency of 2 kHz processes the

signal. Environmental noises (e.g., voices, music, footsteps, and air-conditioning
sounds), typically fall within the low-frequency band [35]. These noises are natu-
rally eliminated through down-conversion and the low-pass filter, enhancing the
robustness of our recognition system. To identify the start index and segment the
signal into frames containing the 600 training symbols for channel estimation,
we calculate the Pearson Correlation Coefficients between the received 1200-bit
signal and a 600-bit transmitted signal frame S. The peak of this correlation in-
dicates the start index. The signal is then segmented into target frames, starting
from this initial point and cut every 600 data points.

Normalization. The signal received by the microphone is influenced by fac-
tors such as the distance between the user’s hand and the receiver, obstructions
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of the sound source, and the level of environmental noise. To address this issue,
the keystroke data is normalized by dividing each data point by the maximum
value in the dataset. This process compresses the data to a range between 0 and
1, ensuring uniformity and comparability across the dataset.

CIR Estimation. We employ the least squares (LS) channel estimation
method, which offers lower computational complexity, to estimate the CIR of
the collected signals reflected by the target object (i.e., the hand). The core idea
of LS estimation is to derive the CIR, denoted as H, by solving the equation
R = S ∗ H, where ∗ represents convolution, and S and R are the transmit-
ted and received signals, respectively. To obtain an accurate H, it is essential
to have a sufficiently large S, although this may increase computational costs.
Specifically, we define the length of the training sequence as T = P + L, where
L represents the memory length needed to account for multipath effects and P
is the reference length used for channel information calculation. Therefore, the
training sequence is represented as S = {s1, s2, . . . , sL+P }, while the calculated
CIR sequence is H = {h1, h2, . . . , hL}. The received signal sequence is denoted
by R = {r1, r2, . . . , rL+P }. Based on LS channel estimation, the CIR can be
obtained using the following equation:

s1 s2 · · · sL
s2 s3 · · · sL+1

...
...

. . .
...

sP sP+1 · · · sP+L−1


︸ ︷︷ ︸

Training Matrix Mt

·


h1

h2

...
hL


︸ ︷︷ ︸
CIR H

=


rL+1

rL+2

...
rL+P


︸ ︷︷ ︸

Received Sequence R

. (1)

We then obtain the estimated CIR denoted by Ĥ as follows,

Ĥ = (MT
t Mt)

−1MT
t R. (2)

In our system, we set L = 140 and P = 172 to achieve adequate accuracy
while maintaining low computational complexity. Each signal frame produces 140
channel taps, reflecting the channel status over a duration of 12.5 ms, resulting in
80 updates per second. The value of dCIR is calculated by subtracting the CIR
value of the previous frame from that of the current frame: dCIR(t1) = CIR(t1)−
CIR(t0). This value represents the extent of change in the CIR, characterizing
channel fluctuations caused by object motion (i.e., hand movements).

Transceiver Setting. Attacks can be launched using various combinations
of acoustic transceivers: (1) a VR device as the speaker and a mobile device as
the receiver (microphone); (2) a VR device as both the speaker and receiver; (3)
a mobile device as the speaker and a VR device as the receiver; and (4) a mobile
device as both the speaker and receiver. We conduct preliminary experiments
using the first and fourth combinations of experimental settings. The results
are presented in Fig. 4. It is evident that different gesture trajectories exhibit
unique patterns on the dCIR graph in each scenario. Each gesture corresponds to
a distinct trajectory pattern in terms of shape and distribution, which provides
a crucial foundation for gesture recognition. By analyzing these patterns, we
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can extract key features to differentiate between various gestures. Furthermore,
the results indicate that different transceiver combinations do not affect the
unique dCIR patterns generated by hand movements. Therefore, for simplicity,
we primarily consider the fourth combination as the basic setting for our system.

4.3 Hand-Movement Recognizer

The dCIR sequences of the acoustic channel are obtained from the sound signals
reflected by the hands of the VR user. To identify and analyze hand movements,
we employ a CNN, training it with a series of dCIR sequences (images).

CNN-based Recognizer. Due to their exceptional performance, deep CNNs
have been widely employed in various computer vision tasks [5,9]. After process-
ing the CIR signals, we obtain dCIR sequences, which can effectively be con-
sidered as images. We then train a deep CNNs model on these dCIR images to
accurately recognize different types of hand movements.

Data Augmentation. One of the challenges in using CNNs in our system
is the limited availability of dCIR data for training. To tackle this challenge, we
employ data augmentation. Specifically, we apply various image transformation
operations, including random rotations, translations, scaling, cropping, and flip-
ping. By applying these random transformations to the obtained dCIR images,
we expand the training dataset, increasing both the diversity and quantity of
samples. This strategy enables the model to learn from a more varied dataset
during training, thereby enhancing its generalization capability and robustness.
The system can effectively handle various factors such as gesture speed, distance,
and high-frequency noise by using this enriched data to train the final model.

4.4 Camouflaged App Development

To implement the aforementioned processes on mobile devices (e.g., AR/VR
HMDs), we develop a camouflaged app that encapsulates the above functional
modules, thus enabling its deployment on mobile or AR/VR devices (e.g., Meta
Quest Series). Since speakers require no permissions, this app only requests ac-
cess to the MICROPHONE for the collection of inaudible sound data while this per-
mission can be easily obtained by masquerading as a benign application (e.g.,
video conferencing software) or injection attacks [13]. The recognizer model is
developed by using PyTorch and saved as a script model by torch.jit.trace
so that it can perform without relying on the original Python interpreter. We
adopt pytorch_android API to load the trained model on the Android platform
for dCIR images recognition. While our primary focus is on Android develop-
ment, a similar approach can be applied to iOS or other platforms.

5 Experiment

We conducted extensive experiments to validate the feasibility of the proposed
side-channel attack across different scenarios.
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5.1 Experimental Setup

Hardware Devices. In our experiments, we selected the Honor X10 and iPhone
12 Pro as mobile platforms, with the MQ-2 serving as the default VR device,
currently one of the most popular VR hardware options available [36]. Generally,
AcouListener can be adapted for use with other AR/VR devices by developing
similar mobile applications.

Experiment Design. In the attack scenarios, a volunteer sits in a chair at a
desk, wears the MQ-2 HMD, and holds controllers in both hands while perform-
ing designated hand movements. Simultaneously, a mobile phone (i.e., Honor
X10) emits and receives corresponding inaudible audio signals and captures the
volunteers’ hand movements, as illustrated in Fig. 5. The speed, amplitude, and
distance of the volunteers’ inputs are tailored to their usage habits (on aver-
age, participants complete scenarios 1 and 2 within 3-5 seconds, and scenario 3
within 6-10 seconds). The experiments were conducted in a public office room
(11 m x 15 m), where there was audible noise interference from the environment
(approximately 55 dB), but no moving objects.

Data Collection. We collect a total of 9,400 samples across three attack sce-
narios. We recruited 10 volunteers in the experiments5. They vary in age (20-30
years), height (158-185 cm), and gender (70% males and 30% females). Among
them, two participants are familiar with VR devices, while the others had no
prior exposure. Before the experiments, we provided the volunteers with essen-
tial training to ensure they were comfortable with basic operations. Consistent
with prior studies [2,33,10], we employed a training-test split, allocating 80% for
training and validation, and 20% for testing. Theoretically, a well-trained model
with sufficient data can generalize effectively and perform consistently on new
users, just as it does on the test set.

Training CNN Models. We developed a mobile CNN model based on Mo-
bileNet V2 for gesture classification tasks (refer to Appendix A for more details).
This lightweight and portable model delivers excellent performance on mobile
devices while maintaining efficiency. After being resized to a specified dimen-
sion of 224x224 pixels with 3 color channels, a dCIR image is then normalized
using a mean of [0.485, 0.456, 0.406] and a standard deviation of [0.229, 0.224,
0.225]. To enhance the model’s robustness and generalization ability, we apply
data augmentation techniques on dCIR images. The model is initialized with a

5 Ethical approval has been obtained (SCI-COMP-2024-25_002).
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learning rate of 0.001, a batch size of 32, and is trained for 100 epochs using
stochastic gradient descent (SGD) as the optimization algorithm.

The trained model with a size of approximately 70 MB, has been deployed on
a mobile device as described in § 4.4. Experimental measurements on the Honor
X10 smartphone indicate that the model takes approximately 80 ms to predict
a dCIR image, thereby meeting practical application requirements.

5.2 Attack Scenario 1: Unlocking Pattern Inference

Unlocking Action on VR Device. The MQ-2 supports pattern-based un-
locking, allowing users to select and connect points on a virtual screen using
the controller, as shown in Fig. 6. Each pattern typically includes four to eight
points, which can be seen as a direct extension of similar features on mobile
phones [31]. During startup or standby, once the controller is paired and acti-
vated, a virtual unlocking interface appears. The user moves a cursor using the
controller, presses a button to select a point, and continues connecting at least
four points. If the drawn pattern matches the preset configuration, the device is
successfully unlocked.

Attack Scenario. In this scenario, we assume that the victim, wearing a VR
HMD, is seated at a desk attempting to unlock the VR device. Simultaneously, a
mobile phone, casually placed on the table, runs a camouflaged (spy) application
that continuously sends and receives inaudible sounds. This application utilizes
the trained mobile CNN model to recognize the victim’s hand gestures. Our
objective is to accurately infer the victim’s unlock patterns by analyzing the
signal changes in the surrounding sound channel.

Experimental Description. As shown in Fig. 6, we invited volunteers to
enter 10 different unlocking patterns, which were primarily designed based on the
most common unlocking patterns found in the Android system [3]. Each pattern
was repeated 50 times, resulting in a total of 1,400 data samples collected.

Attack Results. The result is shown in Fig. 7. The average precision, recall,
and F1-score all exceed 84%, indicating an acceptable inference performance
for the adversary from the perspective of side-channel attacks. It can be found
that pattern j has the highest F1-score (91%). The reason is that the lines
in the pattern j are complex enough and require connecting all eight points,
making it significantly different from other patterns observed in the trajectory.
While pattern i (F1-score: 85%) also involves eight points, the intertwining of
its trajectory increases the similarity between different segments.
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Fig. 8: Handwritten patterns.
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Fig. 9: Recognition of 15 handwritten drawings.

5.3 Attack Scenario 2: Hand-Written Content Inference

Handwriting in Virtual Meetings. In VR video conferencing applications,
users engage in immersive communication and collaboration. For example, in
Horizon Workrooms, a user can write or draw on a virtual whiteboard. In this
scenario, the user first designates an area on the physical desk as the virtual
whiteboard, then holds and moves the controller like a pen to write on it.

Attack Scenario. We consider a situation where a victim sits at a desk and
participates in video conferences on the Horizon Workrooms platform using the
MQ-2 device. During the meeting, the victim writes and draws on the virtual
whiteboard. A mobile phone running a camouflaged application secretly analyzes
the victim’s hand movements by emitting and collecting inaudible sounds. By
analyzing the acoustic signals, attackers can track the victim’s hand movements
and recognize the content being written on the virtual whiteboard.

Experimental Description. Each participant sits at their desk, entering
the Horizon Workroom virtual conference room through the MQ-2 HMD. Using
the hand controllers as pens, they write a series of shapes, letters, and numbers
on the table. Fig. 8 illustrates the main shapes, letters, and numbers evaluated
in our experiments. These drawing actions are rendered in the virtual space
as inscriptions on the virtual whiteboard. Meanwhile, the mobile device placed
next to the table sends and records inaudible sounds to capture variations in the
acoustic signals. In total, 2,550 data samples were collected.

Attack Results. As shown in Fig. 9, the experiment yields an average preci-
sion, recall, and F1-score of 95%. Handwritten numbers exhibit the highest score
(over 96%) due to their distinct shapes, which distinguish them from each other.
Furthermore, each type of handwritten pattern achieved an F1-score greater than
90%, demonstrating better recognition performance compared to the recognition
of unlock patterns. This may be attributed to the relatively fixed trajectory of
handwriting actions, making the patterns easier to capture than unlock patterns.
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Fig. 10: Recognition of beam-style and drum-style typing.

5.4 Attack Scenario 3: Hand Typing Inference

Besides unlocking patterns and handwriting, typing on virtual keyboards is an-
other common interaction method in VR. We focus on two representative VR
typing techniques. Beam-style Keyboard. In this method, the user holds a con-
troller that emits a visible virtual beam (e.g., a laser pointer) to select keys
on the virtual keyboard by pointing and clicking. Drum-style Keyboard. In this
method, the controller becomes a drumstick in the virtual environment, used to
strike virtual keys in mid-air, resembling the action of drumming but without
any physical contact. We consider three types of hand-typing attacks:

(1) Monitoring Web-Surfing Habits. Peeping into MQ-2’s keyboard in-
put can reveal the website URLs entered by the user in the browser, thereby
allowing for wiretapping their web-surfing habits. When users utilize MQ-2’s
browser, they must use their hand controller to input various web addresses and
search terms on the virtual keyboard. During this process, an adversary can em-
ploy inaudible sound to capture the user’s hand movements and infer the URLs
being entered. Once the adversary successfully obtains this website information,
they can deduce the user’s browsing preferences, interests, and potentially sen-
sitive data. The misuse of this information could lead to targeted advertising,
personal data analysis, or other malicious purposes.

(2) Inferring Passwords. When using the MQ-2, users often need to enter
various passwords via the virtual keyboard, such as login credentials or unlocking
codes in virtual meetings or games. This input process can present security risks.
Attackers can use inaudible sound to capture the user’s hand movements and
infer the entered password through analysis of these movements. By emitting in-
audible sound around the user, attackers can leverage the device’s microphone or
other sensing techniques to obtain continuous input recognition (CIR) features
during the user’s hand movements. By analyzing these features, attackers can
deduce which keys the user has pressed, thereby guessing the composition and
order of the password. This method poses a significant threat to the confidential-
ity of the user’s sensitive information, such as passwords, personal identification
numbers (PINs), and other confidential data. If an attacker successfully infers
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the user’s password, they may exploit this information for unauthorized access,
theft of sensitive personal information, or identity fraud.

(3) Inferring Words. Similar to typing URLs and passwords, users may
also type on a virtual keyboard using beam-style or drum-style inputs. During
this process, confidential information may be exposed to attackers who can use
inaudible sound to capture changes in dCIR during the user’s hand movements
and analyze these changes to infer the content being entered. This attack poses
a potential threat to the user’s input and privacy. Once attackers infer the user’s
input, they can monitor the user’s activities, obtain sensitive information, or
engage in other forms of abuse. For instance, if a user is participating in a video
conference using the VR device and types important information such as meeting
notes on a virtual keyboard, the attacker could infer the user’s input and monitor
their behavior during the meeting.

Experimental Description. In this experiment, volunteers sit at their desks
and type content using the MQ-2 HMD. Table 2 in Appendix B lists the typing
contents, which are divided into three scenarios as mentioned above. (1) For
the password inference scenario, we selected the top 10 most commonly used
passwords6. (2) For the keyword inference scenario, we selected the first word
from the names of the 10 most popular VR apps7. Users typically only need
to enter the first word when downloading or searching for an app, making this
word a strong indicator of the app they intend to run. (3) For the web-surfing
habits inference scenario, we selected the top 10 most popular websites8 as test
subjects. The layout of the virtual keyboard is set to the default QWERTY
configuration. A total of 5,450 data samples were collected.

Attack Results. The results are shown in Fig. 10. Across the three types of
attacks, the average F1-score for beam-style typing is 84%, while that for drum-
style typing is 79%, resulting in an overall average F1-score of 80%.

(1) In website URL inference, beam-style typing (average F1 88%) demon-
strates superior performance compared to drum-style typing (average F1 80%).
This is primarily due to the longer lengths of website URLs. When using single-
hand beam typing, the method better captures continuous trajectories, allowing
for more significant differentiation. Further, the keyboard layout plays a crucial
role. For instance, when typing facebook.com (average F1 93%) and amazon.com
(average F1 89%), a volunteer must move back and forth across the keyboard,
resulting in salient hand movements and distinct trajectory differences.

(2) In password inference, drum-style typing with an average F1-score of 83%,
outperforms beam-style typing with an average F1-score of 78%. This difference
may be attributed to the short length and proximity of these simple passwords on
the keyboard. Shorter input lengths lead to more similar trajectories in single-
handed beam-style typing, while the use of both hands in drum-style typing
6 https://techcult.com/most-common-passwords/
7 https://shardeum.org/blog/best-metaverse-platform/
8 https://www.expireddomains.net/alexa-top-websites/

https://techcult.com/most-common-passwords/
https://shardeum.org/blog/best-metaverse-platform/
https://www.expireddomains.net/alexa-top-websites/
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separates the input into two parts, thereby amplifying the differences between
them. This input method enhances the ability to distinguish between different
typing contents more effectively.

(3) In word inference, beam-style typing (average F1-score: 87%) demon-
strates a higher degree of distinguishability compared to drum-style typing (av-
erage F1-score: 81%). One possible reason is that the letters forming these words
(such as VR app names) are often distributed across different positions on the
keyboard, allowing one-handed beam-style typing to produce significantly more
distinguishable trajectories. In summary, the overall accuracy of content recog-
nition is influenced not only by the length of the content but also by its specific
distribution on the keyboard.

6 Real-World Impact Factors

We summarize the following factors in real-world deployments based on ex-
tensive experimental observations and results (detailed in § 5.1).

Environmental Noise. Environmental noises, such as voices, music, foot-
steps, and air-conditioning sounds, typically fall within the low-frequency band [35].
AcouListener is robust against low-frequency noise because it utilizes only the
high-frequency band during transmission and filters out signals below 18 kHz
during demodulation (detailed in § 4.2).

Attack Range. The feasibility is experimentally validated within a recogni-
tion distance of approximately 1.2 m. Beyond this range, the strength of acoustic
signals diminishes rapidly, making them unrecognizable. This limitation is pri-
marily due to the power constraints of portable mobile and AR/VR devices. We
propose a future solution for this problem in § 7.2.

Bystanders. We have observed that the movement of bystanders can affect
the received acoustic signals, as recognition depends on variations in the acoustic
channel caused by moving objects. However, this effect is confined to a limited
range (approximately 1.2 m) due to the devices’ power limitations. Therefore, we
primarily focus on scenarios where their impact is negligible (beyond the attack
range), which is typical in home or private settings when using AR/VR.

Inconsistent Position and Posture. AcouListener imposes no strict con-
straints on the relative position or posture of the victim. While distance affects
CIR strength, this effect can be mitigated through normalization (§ 4.2). Vari-
ations in angle, posture, hand movement speed, and motion range may deform
CIR patterns though data augmentation (§ 4.3) enables the model to handle
such distortions.
7 Discussion

7.1 Potential Countermeasures

To defend against various side-channel attacks, we recommend implementing the
following countermeasures from both hardware and software perspectives.
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Automatic Elimination of Inaudible Sound at 18 kHz. Most AR/VR
devices possess advanced audio processing capabilities that operate effectively
within the range of human hearing. AR/VR devices need to filter out inaudible
sounds with frequencies exceeding 18 kHz.

Secure Your Applications. AR/VR users should ensure that their devices
have the latest security updates installed and only download new applications
from official app stores (e.g., Meta Store) or other trusted sources.

Restrict Application Permissions. AR/VR users should carefully eval-
uate permission requests from each application, especially for microphones and
sensors, authorizing them only when required [15].

7.2 Limitations

This study still has room for improvement, which we will enhance in future work.
Limited Attack Range. Constrained by AR/VR hardware and the re-

stricted sound propagation, AcouListener has a limited attack range. Future
work may use high-power emitters, sensitive microphone arrays and collabora-
tive devices to form distributed sensing systems that expand spatial coverage.

Limited Inference Content. The current framework can only classify
straightforward gestures (e.g., unlocking patterns, handwriting letters, and typ-
ing words). Future work includes developing more accurate tracking algorithms,
incorporating microphone arrays, and exploring multimodal sensor fusion and
deep learning techniques to support more diverse hand gestures.

8 Conclusion

In this paper, we investigate a novel inaudible acoustic side-channel attack within
emerging AR/VR scenarios. We primarily leverage the unique characteristics
of received acoustic signals generated by a victim’s hand movements, which
reflect inaudible signals emitted by a camouflaged VR device or mobile phone.
After processing the received signals into dCIR sequences, we employ a portable
deep CNN to effectively extract key features from the collected dCIR images.
Moreover, we have developed a user-friendly mobile application that seamlessly
integrates the entire system for practical use. Extensive experiments conducted
with ten volunteers in three different scenarios have demonstrated that our attack
system can accurately infer victims’ unlocking patterns, handwriting styles, and
typed words across two types of virtual keyboards. Furthermore, we also propose
several effective countermeasures to mitigate this new and potentially dangerous
acoustic side-channel attack, thereby improving user security in AR/VR.

Acknowledgements. This work is partially supported by HKBU (with no.
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Appendix A CNN model

We have developed an Android-based application (app) to infer hand gestures9.
Table 1 lists the detailed settings of our adopted MobileNet V2 model.

– t denotes the expansion factor, which is the factor by which the number of
channels is expanded in the bottleneck layer.

– c denotes the number of output channels from each layer.
9 https://github.com/adhakdh/AcouListener

https://github.com/adhakdh/AcouListener
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Table 1: The adopted CNN model structure.
Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1× 1 - 1280 1 1
72 × 1280 avgPool 7× 7 - - 1 -
1× 1× 1280 conv2d 1× 1 - k - -

– n denotes the number of repetitions, meaning how many times the operation
is repeated.

– s denotes the stride of the convolution or pooling operation.
– k denotes the number of classes (k = 10 in Attack Scenario 1 (§ 5.2) and

Attack Scenario 3 (§ 5.4); k = 15 in Attack Scenario 2 (§ 5.3)).

Appendix B Typing Content

Table 2 lists major typing contents inferred by adversaries in § 5.4.

Table 2: Typing contents.
ID (1) Websites (2) Passwords (3) Words

1 google.com 123456 gym
2 youtube.com 123456789 first
3 baidu.com qwerty virtual
4 bilibili.com password netflix
5 facebook.com 1234567 bigscreen
6 qq.com 12345678 deovr
7 twitter.com 12345 skybox
8 zhihu.com iloveyou fitxr
9 wikipedia.org 111111 vr
10 amazon.com 123123 win
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