
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 1

An Empirical Study on Meta Virtual Reality
Applications: Security and Privacy Perspectives

Hanyang Guo, Hong-Ning Dai, Senior Member, IEEE, Xiapu Luo, Senior Member, IEEE, Gengyang Xu,
Fengliang He, and Zibin Zheng, Fellow, IEEE

Abstract—Virtual Reality (VR) has accelerated its prevalent
adoption in emerging metaverse applications, but it is not a
fundamentally new technology. On the one hand, most VR
operating systems (OS) are based on off-the-shelf mobile OS (e.g.,
Android OS). As a result, VR apps also inevitably inherit privacy
and security deficiencies from conventional mobile apps. On the
other hand, in contrast to traditional mobile apps, VR apps can
achieve an immersive experience via diverse VR devices, such as
head-mounted displays, body sensors, and controllers. However,
achieving this requires the extensive collection of privacy-sensitive
human biometrics (e.g., hand-tracking and face-tracking data).
Moreover, VR apps have been typically implemented by 3D
gaming engines (e.g., Unity), which also contain intrinsic security
vulnerabilities. Inappropriate use of these technologies may
incur privacy leaks and security vulnerabilities although these
issues have not received significant attention compared to the
proliferation of diverse VR apps. In this paper, we develop a
security and privacy assessment tool, namely the VR-SP detector
for VR apps. The VR-SP detector has integrated program static
analysis tools and privacy-policy analysis methods. Using the VR-
SP detector, we conduct a comprehensive empirical study on 900
popular VR apps. We obtain the original apps from the popular
SideQuest app store and extract Android PacKage (APK) files via
the Meta Quest 2 device. We evaluate the security vulnerabilities
and privacy data leaks of these VR apps through VR app analysis,
taint analysis, privacy policy analysis, and user review analysis.
We find that a number of security vulnerabilities and privacy
leaks widely exist in VR apps. Moreover, our results also reveal
conflicting representations in the privacy policies of these apps
and inconsistencies of the actual data collection with the privacy-
policy statements of the apps. Further, user reviews also indicate
their privacy concerns about relevant biometric data. Based on
these findings, we make suggestions for the future development
of VR apps.

Index Terms—Virtual Reality, Metaverse, Static Analysis, Se-
curity and Privacy

I. INTRODUCTION

The work described in this paper is partially supported by Hong Kong
Baptist University Seed Funding for Collaborative Research Grants (Reference
No. RC-SFCRG/23-24/R2/SCI/06), HKPolyU Grant (H-ZGGG) and CCF-
Sangfor “Yuanwang” Research Fund.

H. Guo is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, 999077, China, and the School of Soft-
ware Engineering, Sun Yat-sen University, Zhuhai 519082, China (e-mail:
guohy36@mail2.sysu.edu.cn).

H.-N. Dai, G. Xu, and F. He are with the Department of Computer
Science, Hong Kong Baptist University, Hong Kong, 999077, China (e-mail:
hndai@ieee.org, 21253277@life.hkbu.edu.hk, csflhe@comp.hkbu.edu.hk).

X. Luo is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, 999077, China (e-mail: csxluo@comp.polyu.edu.hk).

Z. Zheng is with the School of Software Engineering, Sun Yat-sen Univer-
sity, Zhuhai, 519082, China (e-mail: zhzibin@mail.sysu.edu.cn).

Corresponding Author: Hong-Ning Dai

V IRTUAL Reality (VR) [1] has recently received a
boosted development. Diverse VR devices and VR sys-

tems have been developed by Meta (previously Facebook),
Apple, Microsoft, ByteDance, Sony, HTC, etc. As reported by
Fortune [2], the global VR market size is projected to grow
from $25.11 billion in 2023 to $165.91 billion by 2030. The
proliferation of VR devices and VR systems has also greatly
driven the development of the metaverse, which emphasizes
users’ immersive experience in virtual worlds [3] and the real-
time interactions with 3D models in a VR environment.

Despite its rapid development, VR is not a fundamentally
novel technology. VR’s conceptual prototypes were established
several decades ago by implementing a computer simulation
system to generate 3D objects in virtual worlds. The recent
development of hardware and software has fastened the adop-
tion of VR technology. With the proliferation of VR devices
and metaverse systems, a large number of VR apps have been
developed and released. Most of these VR apps are running
on top of off-the-shelf mobile operating systems (OS), such as
Android (as well as its variants), Sony Orbis OS (originated
from FreeBSD 9), and Apple visionOS (based on iOS). As
a result, VR apps share common features with conventional
mobile apps and also inherit their intrinsic deficiencies. For
example, many VR apps run on top of Android OS with
underlying VR devices (e.g., Meta Quest 2 [4] (former name:
Oculus Quest 2) and ByteDance’s Pico 4 [5]). Consequently,
VR apps developed based on these VR devices are packaged as
Android PacKage (APK) files. After decompiling APK files,
these VR apps also generate similar files to Android apps,
such as AndroidManifest.xml, resource files, java files, and
so on. In addition, VR apps also adopt third-party libraries
(TPLs) like conventional mobile apps to implement specific
app functionalities or add new features.

Despite the similarity to Android mobile apps, VR apps
have unique characteristics different from conventional mobile
apps. (i) VR apps include not only Personally Identifiable
Information (PII) data like Android apps, but also VR-specific
PII data (e.g., VR device ID, Controller ID, and sensor ID).
(ii) Many VR apps have been developed on top of specific
VR platforms (e.g., Meta Quest SDK) and 3D game engines
(e.g., Unity, Unreal Engine, etc.) for achieving an immersive
user experience in the 3D environment. (iii) VR apps request
not only identity information data like Android mobile apps,
but also extensive access to human biometrics, such as iris
or retina scans, fingerprints, hand-tracking as well as face-
tracking data, and voice. Using new data types requires addi-
tional permission authentication, which can place new requests

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 2

on the specification of configuration files, e.g., including new
VR-related permission flags in AndroidManifest.xml in
addition to conventional Android permission flags. (iv) VR
apps have more descriptions of access norms for human
biometrics in their privacy policies, sharply different from
conventional Android apps. (v) User reviews of VR apps may
have additional privacy concerns about biometrics information,
such as access to information permissions.

Sharing common features of Android apps while possessing
different features, VR apps are exposed to not only known se-
curity and privacy vulnerabilities inherited from Android apps
but also emerging security and privacy risks. Unfortunately, a
comprehensive study on VR apps is largely missing in the liter-
ature compared to the proliferation of VR apps [6]. Ignorance
of these emerging security risks will greatly dampen users’
enthusiasm for using VR apps and purchasing VR devices
as well as VR services [7], [8]. For example, as discovered in
Bigscreen (i.e., a famous virtual social VR app), a vulnerability
allows strangers to perform various intrusive activities without
the user’s consent, such as turning on the user’s microphone
and eavesdropping on private conversations [9].

In order to address the above issues, we propose a VR
Security and Privacy assessment tool for VR apps, called
VR-SP Detector for detecting potential security vulnerabilities
and privacy risks. To the best of our knowledge, this is the
first study on evaluating security and privacy issues of VR
apps from code analysis, privacy-policy analysis, and review
analysis. Despite a recent study (OVRSEEN) on analyzing
privacy policies of VR apps [10], it mainly focuses on network
traffic rather than the implemented codes of VR apps. Our VR-
SP detector integrates both static code analysis tools, privacy-
policy analysis techniques, and review analysis techniques,
thereby effectively revealing security and privacy risks. Based
on the VR-SP detector, we conduct a comprehensive empirical
study on 900 popular VR apps (i.e., more than 5 × of
OVRSEEN and 1.8 × of our preliminary study [11]) from
the largest VR app store SideQuest.

After extracting the original APK file for each app after
installing it in Meta Quest 2, we then decompile the APK
to get not only the configuration file but also the source
codes as well as the intermediate representation (IR) files.
We next conduct a comprehensive analysis of the decompiled
codes of each app. In particular, we conduct an analysis on
the configuration file AndroidManifest.xml of each app to
get app basic information and permission usage information.
We adopt pattern recognition techniques to detect Android-
related general security and privacy vulnerabilities, vulnerable
TPLs, and dangerous permission usage in TPLs from Java
files and the corresponding IR (i.e., Smali) files. We also use
a taint analysis framework to detect private data leaks. Since
most VR apps utilize Unity to achieve immersive environment
rendering, biometric data capture, and even In-App Purchasing
(IAP) service [12], [13], we hence leverage a static binary
analysis framework to detect the flows, biometric data usage,
and IAP data in Unity-developed VR apps. Also, we adopt a
privacy policy analysis based on natural language processing
(NLP) to detect inconsistencies in the privacy policies of VR
apps. At last, we collect the user reviews of the VR apps from

the SideQuest app store and analyze the concerns about VR
apps. We have obtained many insightful findings, on which
we provide some suggestions for developing VR apps.

In summary, the main contributions of this work are sum-
marized as follows.

• We propose an automatic security and privacy evaluation
tool for metaverse-related VR apps. This tool can detect
not only general vulnerabilities but also sensitive (i.e., PII
and biometric) data leaks.

• Our tool integrates static analysis and privacy-policy anal-
ysis technologies. Specifically, we detect security threats
of VR apps by pattern matching and taint analysis from
the decompiled code and use an NLP-based method to
analyze privacy policies. Holistically, the proposed tool
also adopts user review analysis.

• We run our tool on 900 popular VR apps and find that
more than 95.40% of the apps have no root detection
(No RD) vulnerability and 37.20% exist insecure random
generator (IRG) vulnerability. Only one VR app uses
the vulnerable TPL and 22.00% use general TPLs but
there is also only one app that involves calling dangerous
permissions in the TPL. Moreover, 44.40% of the apps
invoke functions using biometric data though there are
no requests in the manifest file. In addition, 55.20% of
apps have no privacy policy and 11.00% of apps have
contradictory statements in privacy policies. As for user
reviews, about 6.15% of reviews concern about dangerous
permission usage, and 3.61% of them are biometric
permission-related.

• Based on the findings, we provide some advice on VR
app development. We make our tool publicly available at
https://github.com/Henrykwokkk/Meta-detector-expand.

II. BACKGROUND OF VR APPS

A. Taxonomy of VR apps

VR apps in the metaverse context have different charac-
teristics from conventional VR apps. Conventional VR apps
usually create virtual content for a single user whose activities
typically occur alone, e.g., simulating a single-user adventure,
playing a single-player game, and watching VR movies alone.
Differently, VR apps in the metaverse context emphasize the
interaction among multiple users. Moreover, this kind of VR
app typically creates virtual elements from real-world elements
such as buildings, objects, and characters. Further, they also
greatly extend virtual spaces from computer games to educa-
tion, socialization, and online business activities. Considering
news reports and research papers, we mainly consider the
following five types of VR apps:
• Virtual society [14], [15]. These VR apps provide users

with virtual spaces to interact and socialize with others.
Typical apps include Rec Room, VRChat, etc.

• Gaming [15], [16]. A large body of VR apps are themed
with games, such as Pavlov VR, Echo VR, etc.

• Art and culture [17]. Many VR apps support virtual mu-
seums, exhibitions, concerts, and other cultural and artistic
events, such as Forbidden City Journey, Gravity Sketch, etc.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Henrykwokkk/Meta-detector-expand

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 3

• Education [15]. As a growing trend in the metaverse, VR
apps can provide virtual classrooms, learning resources, and
online courses, such as EngageVR, VR Anatomy, etc.

• Business and finance [18]. Many VR apps provide virtual
stores, trading platforms, and financial services, e.g., Decen-
traland.

B. VR App Security and Privacy Vulnerabilities

1) OS-related Security and Privacy Vulnerabilities: Since
a large body of VR devices run on top of Android OS or
its variants, VR apps share some similar vulnerabilities with
Android apps running on top of mobile devices like mobile
phones although VR devices also have different features from
mobile phones. We investigate the following security and pri-
vacy vulnerabilities, which are bestowed on new metaverse/VR
features though they originated from Android security analy-
sis [19], [20].

Insecure Flag Settings: These vulnerabilities come from in-
secure flags in the configuration file AndroidManifest.xml,
such as allowBackup, debuggable, and clearTextTraf-

fic. We next elaborate on them as follows.
(i) allowBackup [21]: The allowBackup flag is used

to specify whether or not the app’s data is allowed to be
backed up and restored through Android’s backup mechanism.
Positively setting the allowBackup flag (i.e., setting to true)
allows the user’s data to be stored in the cloud, which
can nevertheless lead to the potential disclosure of sensitive
data, especially when the application stores the user’s private
information or sensitive data.

(ii) debuggable [22]: The debuggable flag is used to
specify whether the application can be debugged. In a debug
build, it is usually set to true and it is set to false in the
release build. A positive setting in the release build means
that an attacker can use debugging tools to peek into the
internal running state of the application, variable values, etc,
thereby revealing sensitive information or making it easier for
an attacker to find vulnerabilities in the application.

(iii) clearTextTraffic [23]: The clearTextTraffic

flag is used to specify whether the application allows plaintext
(unencrypted) HTTP traffic. If it is set to true, apps can use
plaintext HTTP traffic, thus making apps be vulnerable to man-
in-the-middle attacks (MITM) [24] because unencrypted data
can be intercepted and tampered with in transit.

Dangerous Permission Usage: These vulnerabilities are
related to the misuse of dangerous Android permission re-
quests, such as location, camera, microphone, etc. These
vulnerabilities also exist in VR apps. Differently, we also
consider permission requests from other peripheral VR-related
devices, e.g., controllers and keyboards.

PII Data Leaks: Some of these vulnerabilities are related to
PII data (e.g., user, name, password, email, and phone) leaks.

General Vulnerabilities: State-of-the-practice tools [19],
[25]–[27] also presented general vulnerabilities. We summa-
rize them into the following nine categories in the VR context.

(1) SQL Database Injection (SDI) in VR apps [28] means
that an attacker can insert additional SQL statements to the end
of a pre-defined query statement or input in an application

to trick the database into executing an un-authorized query.
(2) Insecure Certificate Validation (ICV) in VR app client
[29] means that it might allow an attacker to spoof a trusted
entity by interfering in the communication path between the
host and client if a certificate is invalid or malicious. (3)
Insecure Random Generator (IRG) [30] means some insecure
random number methods that can produce predictable values
(e.g., virtual room passwords) as a source of randomness in a
security-sensitive context. (4) Insecure Webview Implementa-
tion (IWI) [31] means that the VR app allows loading HTML
contents and HTML pages within the application. (5) IP
Disclosure (IPD) [32] is a vulnerability that can be exploited
by an attacker to obtain internal information from VR Apps’
IP addresses. (6) Remote Webview Debugging (RWD) of VR
apps [33] means to enable webview debugging in VR apps.
(7) Unsafe sensitive data (such as user input by the virtual
keyboard) cryptographic algorithms include Improper Encrypt
Functions (IEF) [34] and Insecure Hash Functions (IHF) [35].
(8) Root Detection (RD) of VR devices [36] means to detect the
function usage that requires root access and check if the app
asks to detect the rooted device. (9) VR-related Tackers [37]
include not only trackers in general Android apps (e.g., Google
Firebase Analytics) but also other VR-specified trackers (e.g.,
Unity3d Ads).

Third-Party Libraries Usage: VR apps also adopt TPLs to
implement different functionalities and improve development
efficiency [38]. Similar to Android apps, the usage of TPLs
may cause some security and privacy risks [39]. For example,
it has been demonstrated that third-party libraries in Android
applications pose risks to security and privacy by introducing
vulnerabilities into the apps they integrate with or by improp-
erly exploiting the permissions granted to them [40].

2) VR-platform-related Security and Privacy Vulnerabili-
ties: To achieve an immersive experience in the metaverse, VR
apps typically implement diverse VR features, such as avatar
modeling, 3D rendering, and 3D interaction. VR development
frameworks, such as Unity [41] and Unreal Engine (UE) [42]
have been increasingly adopted. Both Unity and UE have
been implemented in C++ though Unity has been partially
implemented in C#. Moreover, to capture users’ location
and movement, human biometrics, such as hand tracking,
eye movement, face tracking, and body tracking have been
collected and analyzed. VR device manufacturers (e.g., Meta,
HTC, Bytedance) provide developers with SDKs to achieve
immersive VR features. However, the adoption of VR develop-
ment frameworks and VR device SDKs inevitably causes new
security vulnerabilities and privacy risks; this feature is sharply
different from the development of conventional Android Apps.
In particular, we categorize security and privacy vulnerabilities
related to VR development frameworks and VR device SDKs
as VR-platform-related vulnerabilities, which are summarized
as follows.

• New Permission Requests: The use of new data (such as
human biometrics) may introduce the problem of man-
aging new permissions. Although device manufacturers
provide new <uses-permission> tags for these new
permission requests in the AndroidManifest.xml file,
the technical regulation of using these permissions is still

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 4

App Store

900 Meta Quest 2
Apps

APK backup in
SideQuest

Privacy Policies

manifest file

Java & Smali Files

libil2cpp &
global-metadata

Manifest Analysis App Basic Info (App
Name, Version, etc.)

Activity Launch Mode

Permission (rwx, user, group
from Android & Meta)

Misc Info (plaintext traffic,
debuggable)

Code Analysis General Vulnerabilities

VR-platform-related Security and Privacy Vulnerabilities

Consistency Check

App Collection

APKs

Privacy Policy Analysis

Data Ontology

Entity Ontology

PolicyLint Collected
Statements

Contradictory Statements Check

VR App Analysis

PII Data Leaks Identification

(§ III-A)

(§ III-D)

(§ III-C)

(§ III-B)

Decompile

1

2

3

Unity IAP Vulnerabilities

GDPR Compliance Check

Assembly-
CSharp

OS-related Security and Privacy Vulnerabilities

Traditional PII Data Usage

Leaks of Human Biometrics
(e.g., Hand Tracking, Eye Tracking, Face Tracking)VR PII Data Leaks

OS-related PII Data Leaks

File Analysis

Code Analysis

Vulnerable TPL TPL-Permission Analysis

User Reviews

Review Analysis (§ III-E) Permission-related Review Analysis

Guidance

Fig. 1. The Overview of VR-SP Detector

worth investigating.
• Misuse of Human Biometrics: Unity or UE-based

frameworks include 3D rendering and exploit human
biometrics by data collection APIs. For example, Meta
Unity SDKs provide some functions of collecting hand-
tracking, eye-tracking, body-tracking, and face-tracking
data1. The misuse/abuse of such sensitive may cause
severe security and privacy issues.

• In-App Purchasing (IAP) Vulnerabilities: With the
prevalent adoption of IAP services in VR apps, it also
incurs security risks. For example, players may purchase
virtual items, such as virtual avatars, virtual currency, or
NFT assets. Inappropriate authentication or authorization
when purchasing virtual items may be the root cause of
security vulnerabilities.

• VR-specific PII Data Leak: VR apps may suffer from
the leakage risks of sensitive PII data, which include
not only traditional PII data from Android systems but
also VR-relevant PII data from VR devices (HMDs and
peripheral devices).

• Privacy Policy Weakness: As newly emerging applica-
tions, VR apps are undergoing privacy policy weakness
caused by both incomplete technical regulation origi-
nating from traditional Android development norms and
new issues of VR devices in using and collecting users’
privacy-sensitive data.

• New Features of User Reviews: Since VR apps request
other types of data such as biometric data, users may
have concerns about these new types of data and their
access rights, such as concerns about their security and
user experience.

1We mainly consider these functions: OVRHand.OVRMesh.IOVRMesh-
DataProvider.GetMeshType, OVRBody.OVRSkeletonRenderer.IOVR-
SkeletonRendererDataProvider.GetSkeletonRendererData, VREye-
Gaze.CalculateEyeRotation, and VRFaceExpressions.ToArray, etc.

III. METHODOLOGY OF VR-SP DETECTOR

This section elaborates on the proposed VR-SP detector
to analyze Meta VR apps. Fig. 1 depicts the overall frame-
work of the VR-SP detector. The proposed VR-SP detector
works in the following steps: (1) App Collection, (2) VR
App Analysis, (3) PII Data Leaks Identification, (4) Privacy
Policy Analysis, and (5) Review Analysis. The integration of
VR app analysis and PII data leaks identification provides a
comprehensive security and privacy assessment. Privacy policy
analysis is integrated with VR app analysis and PII data leaks
identification to execute norm and consistency checks. Review
analysis is adopted to ensure the impact of security and privacy
assessment results. The details are described as follows.

A. App Collection

TABLE I
KEYWORDS OF FIVE VR APP CATEGORIES

Categories Keywords

Virtual Society
Social VR, Social Media, Virtual/Social
Communications

Gaming
VR Games, VR Entertainment, Metaverse
Games

Art and Culture Culture, Art, Museum
Education Education, Teaching, Learning
Business and Finance Finance, Business, Economic, NFT, DeFi

According to rankings and popularity, we collect the 900
most popular VR apps from both the official Meta VR app
store and SideQuest. The latter is the most popular third-party
store endorsed by Meta. Compared with the Meta store, Side-
Quest has received a larger popularity and contains more apps.
To obtain the original app files (not those from unauthorized
parties), we download these apps from either the Meta VR
app store or SideQuest. We then install them on Meta Quest
2, one of the most popular VR devices. It is worth mentioning

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 5

that our static analysis of these VR apps is not affected by
VR devices even though some full-fledged features (e.g., eye-
tracking and face-tracking) may require to be executed on
higher-end VR devices (e.g., Meta Quest Pro). These apps are
collected according to the categories specified in Section II-A.
We obtained VR apps by the popularity and the keywords
specified in Table I. We use the “hot” ranking in SideQuest
as the popularity metric and consider only those free apps. At
last, we collected 900 apps including 109 virtual social apps,
503 game apps, 128 art and culture apps, 120 education apps,
and 40 business and finance apps (the distribution of those
apps is given in Section IV).

After collecting apps, we then extract APK files from those
apps. Since neither the Meta official store nor SideQuest store
provides a direct downloading link for APK files, we extract
APK files by installing each app on the Meta Quest 2 device.
We first connect Meta Quest 2 to the PC via a USB cable
and install the app into Meta Quest 2 via SideQuest. After
that, we exploit the “APK backup” function of SideQuest to
extract the APK file corresponding to each app. For further
privacy policy analysis (in Section III-D) and review analysis
(in Section III-E), we also collect the policy statement and
user review of each of those 900 apps.

B. VR App Analysis
The goal of the VR app analysis module is to detect general

security and privacy vulnerabilities in codes and configuration
files. We conduct VR app analysis based on the APK file
extracted from the installed app. Since we cannot directly
analyze a VR app, we first decompile its APK file. In order
to attain a detailed program structure and development code
information, we adopt Androguard [43], which is an open-
source Python tool capable of extracting different kinds of in-
formation from the individual components of an APK file [44].
Supporting multiple versions of Android and DEX file formats,
Androguard can parse and analyze most Android applications.
It also supports plug-ins and scripting extensions that allow
users to customize and extend the tool’s functionality as
needed to improve analysis efficiency. Therefore, it has good
robustness in analyzing VR-specific apps. With an APK file
as input, Androguard can parse the structure of APK files to
obtain configuration files (e.g., AndroidManiest.xml file),
classes.dex file and so on. Fig. 2 shows an example of
the APK structure of VR apps. It can also parse detailed
information in each file and analyze the code logic and the
data flow.

Obtaining the decompiled files, we then conduct 1 Man-
ifest Analysis, detect 2 OS-related Security and Privacy
Vulnerabilities, and identify 3 VR-platform-related Security
and Privacy Vulnerabilities on the decompiled code of each
app as shown in Fig. 1. The detailed analysis procedure is
elaborated as follows.

1) Manifest Analysis: After decompilation, we extract
AndroidManifest.xml configuration file and parse it to
extract key features of each VR app. In particular, we col-
lect four types of features: 1) app basic information includ-
ing app_name, package_name, version_code and sdk_-

version of the app; 2) permission information containing

APK
File

AndroidManifest.xml

classes.dex

assets

lib

res

arm64-v8a

bin
Data

Managed
Metadata

global-
metadata.dat

Assembly-
CSharp.dll

Libmonobdwgc-2.0.so

libmain.so

libil2cpp.so

libmain.so

Mono-
based

IL2CPP-
based

…
…

…
…

…

…

Fig. 2. APK Structure of VR App

the permission requests, which include not only predefined
permissions by Android but also those newly defined by VR
devices (e.g., Meta Quest 2); 3) activity launch mode, which
refers to the start mode of activity in the task stack; and
4) miscellaneous information including allow_backup and
uses_plaintext_traffic flag information; the settings of
these flags have an impact on the security of data transmission
of VR apps.

Regarding permission information, there are nine predefined
permissions from Meta (i.e., com.oculus.permission):
HAND_TRACKING, RENDER_MODEL, TRACKED_KEYBOARD,
USE_ANCHOR_API, FACE_TRACKING, TOUCH_CONTROLLER-
_PRO, BODY_TRACKING, EYE_TRACKING, and DEVICE_CON-

FIG_PUSH_TO_CLIENT. Moreover, the permission protection
level can be divided into four categories: normal, dangerous,
signature, and signatureOrSystem according to Android
Development Documentation. We classify all the permissions
defined by Meta as dangerous protection levels because they
are all related to requests for sensitive information. With
respect to activity launch mode, it can be used to detect
the task-hijacking vulnerability in VR apps. Specifically, we
identify the launch mode of activities that is singleTask
without setting taskAffinity label, because this kind
of activity may cause the task-hijacking vulnerability (i.e.,
StrandHogg) [45].

2) Detecting OS-related Security and Privacy Vulnerabil-
ities: We extract the decompiled partial Java files (without
detailed variable names and method signatures) and Smali files
that include Dalvik bytecode from classes.dex by adopting
Androguard. The classes.dex file contains the bytecode, on
which the Dalvik virtual machine runs. Androguard can parse
the bytecode into a more manageable internal representation.
This representation format typically includes parsing the head-
ers, string pools, type pools, field pools, method pools, and
class definitions in classes.dex files. It can also construct
the method (function) call graph. Although the parsed result
can not provide full and detailed variable name and method
signature information since some apps adopt code obfuscation
techniques [46], it can be used to detect some general security
and privacy vulnerabilities indicated in Section II-B1 in VR
apps. Specifically, we use pre-defined patterns based on [19] to
detect potentially vulnerable methods (functions) and strings
from Java codes or parsed Dalvik bytecodes. We then search
whether the function call paths exist from the call graph.
If the call paths or strings exist, we consider that the app
being evaluated has this type of vulnerability. For example,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 6

TABLE II
PRE-DEFINED RULES OF OS-RELATED VULNERABILITIES

Vulnerability Types Pre-defined Rules

SDI
Search for dangerous SQL query method signatures
in Smali files.

ICV
Search for SSL or host verifier method signatures
in Smali files.

IRG
Search for random number generator
method signatures in Smali files.

IWI
Search for webview client and SSL errors received
enable related method signatures in Smali files.

RWD
Search for webview-debug-related method
signatures in Smali files.

IEF
Search for cryptographic class and instantiation
method signature, and match insecure encryption
keywords in Smali files.

IHF
Search for message digest class, instantiation
method signature, and match weak hash pattern in
Smali files.

RD Search for root and sudo access string.

IPD
Search IPV4, IPV6 and private address strings by
regular expression matching.

Trackers
Find the tracker code signature that is included
in the tracker list in the Smali files.

suppose an app includes Cipher and AES/ECB keywords in
the app. In that case, it may have IEF because the app uses
the Electronic Code Book (ECB) mode in the cryptographic
encryption algorithm. Since the same block of plaintext is
encrypted into the same block of ciphertext in ECB, it may
cause the leakage of encrypted messages [47]. In summary,
there are nine types of security and privacy vulnerabilities
that we detect in VR apps. Table II summarizes pre-defined
patterns. Moreover, we also extract the methods (functions)
that collect and use PII data. We search method signatures
by using PII keywords, such as user, password, username,
phone, id, and email to identify PII data usage, which can be
used for checking privacy policy consistency (to be depicted
in Section III-D).

As for TPL detection, nowadays there exist different types
of TPL detection tools such as LibScout [39], Libradar [38],
LibD [48], and so on. However, most of these tools are
outdated as they have no longer been maintained. Meanwhile,
the version of Android OS they detected was not compatible
with the latest version of Meta Horizon OS (based on Android
12). To address this challenge, we adopt a general-purpose
TPL detection tool called LibScan [49]. This tool detects TPLs
based on method-opcode similarity and call-chain-opcode sim-
ilarity. We adopt this tool to detect 205 vulnerable TPLs
collected by [49] in VR apps. Moreover, we also detect the
usage of 255 different general TPLs collected by [49] and [40].
Thereafter, we attain some mappings between permission and
APIs by searching permission keywords [50]. We search these
APIs in the detected TPL packages so as to obtain improper
permission grants.

3) Identifying VR-platform-related Security and Privacy
Vulnerabilities: This module focuses on detecting VR-
platform-related security and privacy vulnerabilities, such as
Unity IAP vulnerabilities and human biometrics leaks. As
mentioned in Section II-B2, VR apps adopt game engines
to achieve immersive features. We mainly consider Unity,
which is the most dominating framework in VR software
development [51]. We adopt a static native binary analysis
tool [13] to detect IAP vulnerabilities in VR apps developed
based on Unity. There are two ways to run C# programs
on Unity. One is to compile the C# code to .NET Common
Intermediate Language (CIL) and use a Mono Virtual Machine
(VM) to execute the CIL code at run time. This manner is
called Mono-based (see green dash box in Fig. 2). The other is
to further transfer CIL codes into C++ codes and then compile
C++ codes into native binaries. This method is IL2CPP-based
(see red dash box in Fig. 2). Corresponding to Mono-based
and IL2CPP-based methods, APK files are named Mono-
based and IL2CPP-based apps, respectively. Specifically, as
for Mono-based apps, we extract the compiled logic code file
Assembly-CSharp.dll and use a reversed tool called dnSpy
[52] to get the C# source code. As for IL2CPP-based apps,
we extract the compiled Unity binary file libil2cpp.so

and the function mapping file global-metadata.dat from
the decompiled APK file. Different from previous work [13],
which only analyzed the IL2CPP-based apps, our proposed
VR-SP detector focuses on both types of apps. Specifically,
we use taint analysis to track the payment receipt data with
the use of both the binary file and the mapping file. Taint
analysis is a static program analysis technique used to detect
potential security vulnerabilities in programs. It identifies
possible security problems by tracing the propagation path of
data from untrustworthy sources (taint sources) to sensitive
operations (taint sinks) [53]. Fig. 3(a) shows the framework of
IAP vulnerability detection. The details are shown as follows.

• (i) Identification of tainted sources about payment
& Marking tainted data of payment: Tainted sources
are those places in a program, which receive sensi-
tive data inputs. These inputs may come from ex-
ternal sources such as the user, the network, the
file system, etc. When sensitive data enters the pro-
gram from a tainted source, the data is marked as
tainted data, implying that the data needs to be tracked
along its propagation path. In our task, We define the
method UnityEngine.Purchasing.Product.get_-

receipt as the tainted sources and the return value as
tainted data of payment.

• (ii) Identification of tainted sinks about payment val-
idation: Tainted sinks are those places in a program
that perform sensitive operations. Regarding the detec-
tion of local-verification vulnerabilities (i.e., validating
transactions only on the local server rather than ask-
ing the app store to verify the transaction), we define
the method CrossPlatformValidator.Validate as
tainted sinks.

• (iii) Taint propagation of payment data: Once payment
data is marked as “tainted”, the taint analysis tool traces

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 7

the propagation path of that data through the program.
This includes variable assignments, function calls, ma-
nipulation of data structures, etc. The propagation rules
usually include: 1 If tainted data is assigned to another
variable, then that variable is also marked as tainted. 2
If tainted data is passed to a function parameter, then
that parameter is also marked as tainted. 3 If tainted
data is stored in a data structure (e.g., array, object), then
the relevant part of that data structure is also marked as
tainted. The construction of the payment data propagation
path is executed based on data flow analysis.

• (iv) IAP vulnerabilities Detection: By exploiting the
propagation path of tainted data, if the tainted data is
received while does not reach the network API, a local-
verification vulnerability is considered as detected. If the
payment data is not sent externally (e.g., via a network
API) and there is no local verification API involved, then
a no-verification vulnerability is considered as detected.

Different from traditional Android apps, VR apps may col-
lect human biometrics, such as eye location, hand coordinates,
and so on. To tackle this emerging issue, we also trace the
propagation of human biometrics in the proposed framework.
Specifically, we extract the functions of collecting hand-
tracking, eye-tracking, body-tracking, and face-tracking data
described in Section II-B2 according to the Meta development
document. We detect the usage of these biometric functions
to check the risk of data leaks and also check whether their
use is consistent with the permission request and the privacy
policy statement (in Section III-D).

C. PII Data Leaks Identification

Since VR apps have high risks of PII data leaks, we conduct
a taint analysis to detect sensitive information leaks based
on data flow analysis referring to [53]. The PII data leaks
identification module further analyzes the propagation of PII
data on the basis of the VR app analysis module presented
in Section III-B, thus further complementing the analysis of
privacy leakage risks for a more comprehensive security and
privacy assessment. Fig. 3(b) shows the framework of PII data
leaks identification. The details of its taint analysis are similar
to those of IAP vulnerabilities shown as follows.

• (i) Identification of VR-related PII data taint sources:
We firstly define VR-related PII data, which includes not
only OS-related PII data (e.g., username, phone, email,
etc.), but also VR-specific PII data (e.g., VR device ID,
Controller ID). These data are regarded as sensitive data
inputs. Thereafter, we define the methods that trans-
mit sensitive data as sources (e.g., getString(int),
getIntent(), etc.). Moreover, we consider methods
that may get sensitive data without user input, such as
getAddress() for address information acquisition or
database.Cursor.getAllVisitedUrls() for URL
queries in the database as taint sources, too.

• (ii) Tainted VR-related PII data marking: When sensitive
data enters the program from a tainted source, the data
is marked as tainted data, implying that the data needs
to be tracked along its propagation path. Therefore, the

Taint Sources

UnityEngine.Purchasing.Product.
get_receipt()

Taint Propagation

Variables
Payment

Data

Functions

Taint Sinks

Network API

Local verification
API

Other APIs

Local-verification
Vulnerability

No-verification
Vulnerability

Taint Sources

PII Data-specific Methods Taint Propagation

VariablesPII Data

Functions

Taint Sinks

getString(int)
getIntent()

database.Cursor.getAllVisitedUrls()
…

sendBroadcast()
sendDataMessage()

…

Backward Flow
Analysis Privacy-leak

Paths

3

1
2

3

2

2

1

(a) IAP Vulnerability Detection

Taint Sources

UnityEngine.Purchasing.Product.
get_receipt()

Taint Propagation

Variables
Payment

Data

Functions

Taint Sinks

Network API

Local verification
API

Other APIs

Local-verification
Vulnerability

No-verification
Vulnerability

Taint Sources

PII Data-specific Methods Taint Propagation

VariablesPII Data

Functions

Taint Sinks

getString(int)
getIntent()

database.Cursor.getAllVisitedUrls()
…

sendBroadcast()
sendDataMessage()

…

Backward Flow
Analysis Privacy-leak

Paths

3

1
2

3

2

2

1

(b) PII Data Leaks Identification

Fig. 3. Taint Analysis Frameworks

return values of the methods in (i) are marked as tainted
data.

• (iii) Identification of taint sinks about risky access: In our
approach, the tainted data may not be directly accessed
with authentication but they may cause leaks if these data
flow to a method that can be accessed by unauthorized
users. We define these methods as taint sinks, such as
sendBroadcast() and sendDataMessage().

• (iv) Taint propagation & PII data leaks detection: After
defining the taint sources, taint sinks, and sensitive data,
we search the lifecycle and method callback in the
activity to construct the control flow graph (CFG). Based
on CFG, we detect each defined source and taint the
sensitive data. Then, we execute the data flow analysis
to track the tainted data. If the tainted data flows from a
source to a sink, we label it as a potential privacy-leak
path. After conducting a backward flow analysis, which
aims to confirm the vulnerable code is reachable (i.e.,
not dead code) to reduce false positives, we identify that
the app has a risk of privacy leak. For instance, if the
return value of getAddress() flows to a tainted sink,
such as sendDataMessage() and any user or app that
can access it without permission, we identify a privacy
leak existing.

D. Privacy Policy Analysis
The privacy policy is a complete and clear description of

the practices of product and service providers in collecting,
storing, using, and providing personal information to the
public [54]. Recently, several studies have been conducted
to analyze the privacy policies of mobile apps to identify
problems and verify their reliability [55]–[57] despite few
studies on privacy policy analysis on VR apps. In our VR-
SP detector, we implement a privacy policy analysis module
to check the contradictory statements and the consistency
between the privacy policy and the app analysis results. On
the one hand, the analysis of the privacy policy gives an idea
about the current norms of the app’s privacy policy. On the
other hand, integrated with VR app analysis in Section III-B
and PII data leaks identification in Section III-C, this module
can check whether the actual code behavior is consistent with
the privacy policy statement. In other words, when the privacy
policy states certain types of personally identifiable informa-
tion (PII) not be collected while the taint analysis reveals that
the code does collect and transmit such information, then we
flag this as a potential privacy issue.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 8

0 50 100 150 200 250 300 350
of Apps

0M-100M
100M-200M
200M-300M
300M-400M
400M-500M
500M-600M
600M-700M
700M-800M
800M-900M
900M-1.0G

>1.0G
Ap

p
Si

ze

372
196

106
62

35
27
29

13
21
21

18

Fig. 4. App Size Distribution

We use PolicyLint [58], which transfers each statement in
the privacy policy to plain texts and takes them as input. The
output of the tools is collected statements formatted like <en-
tity, action, data type>, where entity refers to the app or third-
party platform that receives the privacy data, action specifies
the manner, in which entities process data and data type is the
type of privacy data. The categories of entity and data type
are defined in [10]. For example, the privacy policy sentence
“We will collect your photo information and voice information
for AI face pinching.” can be input to PolicyLint to generate
the collection statements <we, collect, voice information> and
<we, collect, photo information>. We check privacy policies
to see whether there are different collection operations for
the same data type, i.e., both collection and non-collection.
We also detect whether each privacy policy complies with
the General Data Protection Regulation (GDPR). GDPR was
enacted by the European Union in 2018 and is one of the most
well-known data privacy protection laws in the world [59]. We
adopt a free online service called GDPRWise [60] to conduct
GDPR compliance checks.

The consistency check module in our VR-SP detector
includes three components. Firstly, we use the collected per-
mission feature in the AndroidManifest.xml file and adopt the
permission request information in manifest analysis to make
a consistency check for confirming the reliability of privacy
policies. Meanwhile, we extract the apps that request permis-
sions HAND_TRACKING, FACE_TRACKING, BODY_TRACKING

and EYE_TRACKING. Moreover, we check whether their pri-
vacy policies have statements about the use of these sensitive
data. We conduct a consistency check between the policy
statements and the corresponding permission requests. Sec-
ondly, we use the result of decompiled Java and Smali code
analysis. We extract methods that collect PII information by
keyword searching and check whether their privacy policies
have statements about the use of these PII data. Thirdly, we
also conduct a consistency check between biometric collection
function usage and privacy policy.

E. Review Analysis

VR apps request not only conventional sensitive data (sim-
ilar to mobile apps) but also biometric data with permissions
to achieve an excellent user experience. Therefore, users are
likely to be more concerned about the security and privacy
issues caused by these data acquisitions and their impact on
the user experience. We conduct a review analysis to address
the users’ concerns. Review analysis can help determine which

0 100 200 300 400
of Apps

0-250
250-500

500-1000
1000-5000

5000-10,000
10,000-50,000

>50,000

Do
wn

lo
ad

s

458

118

120

139

26

24

15

Fig. 5. Downloads Distribution

privacy and security issues have the greatest impact on users,
thus guiding the VR app analysis (Section III-B) and PII data
leaks identification (Section III-C) to prioritize these high-risk
areas. Moreover, based on review analysis, recommendations
can be made for privacy policy improvements to ensure that
the policy is more in line with users’ expectations and actual
usage.

We collect the app’s user reviews from the SideQuest store
and filter out non-English and malformed reviews. Thereafter,
we extract the sensitive data-related reviews. In particular, we
convert reviews to lowercase and consider some keywords
related to dangerous permission in Android apps based on [61]
to search sensitive-data-related reviews. We also consider some
keywords related to biometric data requests. Table III lists all
the related keywords.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed VR-SP detector by
conducting comprehensive experiments on the collected 900
VR apps. We mainly consider the following seven research
questions (RQs).
RQ1: What is the manifest vulnerability profile of VR apps?
RQ2: What are VR apps’ major OS-related security and

privacy vulnerabilities?
RQ3: What is the usage of TPL by VR apps?
RQ4: What are VR apps’ major VR-platform-related security

and privacy vulnerabilities?
RQ5: To what extent is PII data leaked?

TABLE III
KEYWORDS OF DANGEROUS PERMISSION

Permissions Keywords

Account account access, account
Bluetooth bluetooth, bluetooth devices
Calendar read calendar, write calendar
Contact read contacts data, write contact, contact
Location location, gps
Mail mail, voicemail

Media
picture, photo, media, files, take picture, taking
picture, camera

Messages
sms, receive mms, send mms, messages, read
messages, read sms, send sms, mms, receive sms

Network
network, network state, wifi information, wifi,
internet access, internet, network connectivity

Notification notification, system alert window, system alert
Sensor sensor data, sensor, fingerprint, nfc, vibrate
Biometric hand, eye, body, face, track, biometric, iris

General Keywords
permission, access, intrusive, identity, personal
info, malware, virus, malicious

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 9

0% 20% 40% 60% 80% 100%
Positive Rate

dangerous launch mode

allow_backup

debuggable

use_cleartext_traffic

Vu
ln

er
ab

ilit
y

96.00%

2.11%

15.78%

4.44%

Fig. 6. Manifest Analysis Result

RQ6: How do the VR app developers comply with the privacy
policies?

RQ7: How concerned are users about the security and privacy
of VR apps?

Data Preparation. As mentioned in Section III-A, we
collect 900 VR apps from five categories in the context of
VR (the complete app list is given in our repository). Fig. 4
and Fig. 5 summarize the app size and download distribution
of those 900 VR apps. It can be found that many apps are less
than 100MB, which may lead to limited space in current VR
devices. With respect to the number of downloads, most VR
apps have been downloaded less than 5,000 times, implying
that the development of VR apps is still in its early stages.

A. RQ1: What is the manifest vulnerability profile of VR apps?

Analyzing the manifest file of each app, we can find vulner-
ability risks, as shown in Fig. 6. It can be found that 96.00% of
the VR apps have activities having dangerous launch modes.
Compared with dangerous launch mode, the percentage of
apps containing other types of manifest vulnerabilities is rel-
atively small. The positive rates of allow backup, debuggable
and uses cleartext tracffic are 2.11%, 15.78% and 4.44%,
respectively. Enabling allow backup and debuggable causes
a risk of coping and tampering with data from the device.
This is even more dangerous in VR devices with human
biometrics collected. Further, as mentioned in Section II-B1,
uses cleartext tracffic may cause a MITM attack.

For these activities with dangerous launch modes, we
further analyzed their specific contents and reported the re-
sults in Table IV. We find that most of the activities are
com.unity3d.player.UnityPlayerActivity since these
apps are developed based on Unity. Some other activities
with dangerous launch modes are from third-party platforms
(e.g., Epic Games, Google, etc.). Further, a root activity
makes dangerous launch mode attributes be insecure since
it is possible for other malware to read the contents of the
calling intent. Table V shows examples of apps that have
the most dangerous launch mode activities, where these apps
are anonymized by MD5 encryption with the first five prefix
letters. These apps need to be used with caution of security
risks.

We also count the most used dangerous permissions, which
have dangerous protection level in official Android docu-
mentation, and the number of the used Meta permissions
mentioned in Section III-B. Functionally related permissions
are grouped (e.g., WRITE_EXTERNAL_STORAGE and READ_-

EXTERNAL_STORAGE are grouped into STORAGE). As reported
in Fig. 7, most VR apps use network info permission though

some of them use permissions related to audio access. This
is because the social properties and immersive nature of VR
apps require network access and recording of the user’s voice.
Meanwhile, 99 apps use Meta permissions to attain sensitive
data. It is necessary to check whether dangerous permissions
are secure before installing them. It is also important to
manage app permissions by checking which permissions are
allowed and declining if necessary.

0 200 400 600 800 1000 1200
of Apps

Network Info

Audio Access

External Storage Access

Power Management

Others

com.oculus Domain Permission

Pe
rm

iss
io

n
Gr

ou
ps

876(97.33%)

655(72.78%)

170(18.89%)

166(18.44%)

109(12.11%)

99(11.00%)

Fig. 7. Permissions at Dangerous Protection Level

Answer to RQ1: Most of the VR apps have a dangerous
launch mode and sound-recording. Some apps have backup,
debug, and network traffic misuse.

B. RQ2: What are VR apps’ major OS-related security and
privacy vulnerabilities?

As mentioned in Section III-B, we detect security and
privacy vulnerabilities from decompiled Java and Smali files.
The results are shown in Fig. 8. It can be found that most VR
apps have the no-root-detection vulnerability of VR devices
(864 apps), thereby leading to private information leakage
caused by accessing databases with root privileges. Mean-
while, 186 apps have IP disclosure risks, which may cause pri-
vate information (e.g., location) to be tracked. IRG may cause
private information leaks by speculating random numbers
on critical functions such as generateDefaultSessionId

and ChangeWatermarkPosition used in virtual social and

TABLE IV
ACTIVITIES WITH DANGEROUS LAUNCH MODES

Types of Activities with Dangerous Launch Modes Amount

com.unity3d.player.UnityPlayerActivity 775
com.epicgames.ue4.GameActivity 54
com.google Domain Activity 14
com.epicgames.unreal Domain Activity 12
com.godot.game.GodotApp Activity 3
com.oculus Domain Activity 3
com.deepinc Domain Activity 2
com.microsoft Domain Activity 2
Others 27

0 200 400 600 800 1000
of Apps

No RD
IP Disclosure

IRG
IHF

SQL Injection
IWI

RWD
IEF
ICV

Se
cu

rit
y

&
Pr

iv
ac

y
Ri

sk
s

864(96.00%)
265(29.44%)

250(27.78%)
200(22.22%)

169(18.78%)
109(12.11%)

54(6.00%)
19(2.11%)
12(1.33%)

Fig. 8. Results of Code Analysis

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 10

TABLE V
APP EXAMPLES WITH MOST DANGEROUS LAUNCH MODE ACTIVITIES

App MD5 Prefix Activity

203fc˜
com.google.firebase.auth.internal.GenericIdpActivity
com.google.firebase.auth.internal.RecaptchaActivity
com.unity3d.player.UnityPlayerActivity

d3458˜
com.google.firebase.auth.internal.GenericIdpActivity
com.google.firebase.auth.internal.RecaptchaActivity
com.unity3d.player.UnityPlayerActivity

a0165˜
com.deepinc.liquidcinemasdk.SettingsActivity
com.deepinc.liquidcinemasdk.VideoSixGridActivity

6e800˜
com.google.firebase.auth.internal.GenericIdpActivity
com.google.firebase.auth.internal.RecaptchaActivity

0163c˜
com.google.android.play.core.missingsplits.PlayCoreMissingSplitsActivity
com.unity3d.player.UnityPlayerActivity

4e336˜
com.pico.loginpaysdk.auth.TransferStationActivity
com.stormx.forbiddencityjourney.MainActivity

9bbd5˜
com.pico.loginpaysdk.auth.TransferStationActivity
com.unity3d.player.UnityPlayerActivity

a2114˜
com.epicgames.ue4.GameActivity
com.google.ar.core.InstallActivity

TABLE VI
APP EXAMPLES WITH SECURITY AND PRIVACY RISKS

App MD5 Prefix cda01˜ 4dbd4˜ 0163c˜ 9bbd5˜ 58dea˜ 7d3df˜ 3aa85˜ 54208˜

SDI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ICV ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
IRG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IWI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IPD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RWD ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓
IEF ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗
IHF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No RD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

business apps. In addition, IHF can also cause a serious
security issue in VR apps. Attackers can exploit IHFs to con-
jecture users’ input via analyzing typing activities on virtual
keyboard [62]. Table VI shows examples of apps (anonymized
by MD5) having the most security and privacy risks.

We also identify trackers used in VR apps by code analysis.
Table VII summarizes the most typical 13 kinds of trackers of
VR apps. We observe that 159 VR apps use trackers, implying
the prevalent usage of trackers in VR apps. Although the use
of trackers can help VR app developers to provide users with
customized services, it may expose users to the risk of privacy
breaches. For example, [63] indicated that sharing sensitive
data with distinct advertisers (trackers), such as Unity3d Ads
is egregious.

TABLE VII
TRACKER ANALYSIS

Trackers # of Apps
Google Play Billing Library / Service 96
Unity3d Ads 55
Google Firebase Analytics 20
GameAnalytics 12
Umeng Analytics 5
Umeng Common SDK logging 5
Bugsnag 5
Microsoft Domain 4
Meta (Facebook) Domain 4
Google AdMob 4
Amplitude 2
AppMetrica 2
Others 5

In particular, some specific non-VR apps also have some
OS-related security and privacy vulnerabilities. Reference [19]
analyzed contract tracing apps and found that most contract
tracing apps had IEF and IHF. The study [64] also conducted
an empirical study of Android app vulnerabilities and found
that the OS-related security and privacy vulnerability that most
apps had was SSL connection vulnerability (e.g., ICV and

RWD). The results show that VR apps and non-VR apps
have different distributions of OS-related security and privacy
vulnerabilities.

Answer to RQ2: Most VR apps have the no-root-detection
vulnerability of VR devices. A significant number of apps have
used trackers.

C. RQ3: What is the usage of TPL by VR apps?

As mentioned in Section III-B2, we utilize LibScan to detect
the TPL distribution in VR apps. Firstly, we detect whether
205 vulnerable TPLs exist in our collected apps. The result
shows that only one VR app has vulnerable TPL (TPL name:
nifi-web-contect-access-1.1.1). As for the detection
of 255 general TPLs, we find that 198 VR apps have general
TPLs. The TPL distribution is shown in Table VIII. It can
be found that most VR apps use java.inject TPL where
java.inject is a Java library for dependency injection that
provides a simple set of annotations to implement dependency
injection. Dependency injection is a design pattern used to
implement Inversion of Control (IoC) as a way to improve the
modularity and testability of the code. As for the detection of
permission in TPL, we searched permission-related APIs in
the TPL packages and found that only one app uses dangerous
permission APIs in the TPL. The TPL is Guava and it requests
AUDIO and BLUETOOTH. The overall results show that VR apps
make limited use of TPLs in traditional Android apps and do
not request too many dangerous permissions in TPLs.

TABLE VIII
TPL DISTRIBUTION

TPL name # of Apps Package Name

javax.inject 172 javax.inject
annotations-java5/support-annotataions 88 android.support.annotation
Guava 70 com.google.common
Gson 44 com.google.gson
jsr305 33 javax.annotation
FasterXML-Jackson-Core 21 com.fasterxml.jackson.core
Dagger 8 dagger
slf4j-android 1 org.slf4j.impl

Answer to RQ3: Only one VR app adopts vulnerable TPLs.
22.00% of VR apps utilize general TPLs and only one app
request dangerous permission in TPLs.

D. RQ4: What are VR apps’ major VR-platform security and
privacy vulnerabilities?

We next detect Unity IAP vulnerabilities and the usage
of human biometrics. Regarding CIL to C++ Unity-based
apps, we further obtain 553 apps from 900 apps. Depending
on different approaches (Mono-based and IL2CPP-based), we
obtain 266 Mono-based apps. We taint the Unity IAP function
and biometric function. As for the results of Unity-based
code analysis (i.e., C# code analysis), we find that there are
37 apps adopting the Unity IAP function. According to the
taint analysis, there exist IAP no-verification vulnerabilities
in these 37 apps. Moreover, Table IX shows that there are
348 apps adopting biometric data collection functions while
having no permission requests in the manifest file. Specifically,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 11

TABLE IX
INCONSISTENCY OF BIOMETRIC FUNCTION USAGE

Biometric Function # of Apps

Hand-Tracking Function 330
Body-Tracking Function 119
Face-Tracking Function 115
Eye-Tracking Function 113

330 apps use the hand-tracking function while indicating no
request for that permission in the Androidmanifest.xml

file. Among them, 119 apps exploit body-tracking functions,
115 apps invoke face-tracking functions, and 113 apps call
eye-tracking functions. This implies that a significant number
of apps do not adhere to the specifications of the Meta VR
app development documentation. Biometric data collection can
be enabled without user permission2. It exposes the risk of
unknowingly stealing biometric data from users.

Notably, IAP vulnerabilities also exist in non-VR mobile
apps, but most of them do not adopt Unity API to achieve this
function. Thus, they have no Unity IAP vulnerabilities. The
study [65] found that 37% Android apps with at least 100,000
users embed third-party payment functionality. Hundreds of
them violated security rules and contained various potential
security risks, allowing an attacker to consume almost every
aspect of commodities or services in life without actually
purchasing them or deceiving others to pay for them. The
findings show that non-VR apps also have similar security
risks in in-app payment although they do not adopt Unity API.
Our approach mainly focuses on Unity IAP vulnerabilities
in VR apps since most VR apps are developed by Unity.
Moreover, the inconsistent usage of biometric functions does
not exist in non-VR apps since conventional non-VR apps do
not collect biometric data.

Answer to RQ4: Although only 4.11% of VR apps have used
Unity IAP functions, all of them have IAP no-verification
vulnerabilities. 38.67% of Unity VR apps have inconsistency
between permission requests and biometric function usage,
thereby causing leakage risks of human biometrics.

E. RQ5: To what extent is PII data leaked?

We also adopt a taint analysis of PII data leaks. Fig. 9
reports the results of the taint analysis for PII data leakage
by calculating a percentage of the number of source-to-
sink paths found in each VR app. It can be found that
calling from Activity-related methods such as Activity,
NativeActivity, and GameActivity are the most popular
sources for obtaining PII data. The largest amount of PII
data flows to the Intent-related and Log-related sinks, such
as content.Intent and util.Log. The use of the sink
method may cause data leaks. For example, in a virtual
social app, there is a data flow from Location method to
registerReceiver() in content.Intent. The Broadcas-
tReceiver registered with the registerReceiver() method

2This issue was raised in the Meta community forum, but no explicit
answer has been given until January 2025: https://communityforums.atmeta.com/
t5/Oculus-Quest-2-and-Quest/Unity-Oculus-Integration-bug-Hand-tracking-always-\
enabled-no/td-p/753132

Activity (83.23%)

NativeActivity (2.33%)
GameActivity (0.29%)

HTTP (4.06%)

ViewGroup (0.25%)

View (4.95%)

PackageManager (2.26%)
FragmentActivity (1.00%)

Location (0.43%)

Locale (0.07%)

Cursor (0.94%)

GsmCellLocation (0.14%)

WifiInfo (0.07%)

Intent (88.31%)

SharedPreferences (2.37%)

Log (6.82%)

OutputStream (1.51%)

Context (0.43%)

Bundle (0.43%)

CharSequence (0.15%)

Sources Sinks

Fig. 9. Data Leaks Detection by Data Flow Analysis

is global and exportable by default. If access is not restricted,
it can be accessed by any external app, passing Intent to it to
perform specific functions. Therefore, dynamically registered
BroadcastReceiver may lead to security risks such as denial of
service attacks, APP data leakage, or unauthorized calls [66].

Answer to RQ5: A number of VR apps have the leakage
risks of PII sensitive data. Most data flow from activity-related
methods to intent-related methods.

F. RQ6: How do the VR app developers comply with the
privacy policies?

As mentioned in Section III-D, we collect policy statements
from apps’ privacy policies based on predefined ontologies
by PolicyLint [58]. We check whether there are contradic-
tory statements and GPDR violations in privacy policies and
whether they are consistent with the app analysis results.

66.78%
(601 Apps)

25.67%
(231 Apps)

7.56%
(68 Apps)

No Privacy Policy

No Contradictory Statement

Have Contradictory Statements

Fig. 10. App Privacy Policy Distribution

As shown in Fig. 10, unexpectedly 601 apps (66.78%)
have no privacy policy though only 299 apps (33.22%) have
privacy policies. Among 299 apps with privacy policies, 68
of them contain contradictory statements. For example, in
a business and finance VR app, the privacy policy states
that they do not sell personal information to a third party
while indicating that a third party may collect some specified
category of personal information. It implies that there is still a
certain percentage of VR apps containing unregulated privacy
policies. Different from traditional mobile apps (Android apps
on mobile phones), VR apps have higher chances to access
highly-sensitive personal biometrics. Therefore, it is crucial to
establish a consistent privacy policy for regulating VR app
development.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

https://communityforums.atmeta.com/t5/Oculus-Quest-2-and-Quest/Unity-Oculus-Integration-bug-Hand-tracking-always-\enabled-no/td-p/753132
https://communityforums.atmeta.com/t5/Oculus-Quest-2-and-Quest/Unity-Oculus-Integration-bug-Hand-tracking-always-\enabled-no/td-p/753132
https://communityforums.atmeta.com/t5/Oculus-Quest-2-and-Quest/Unity-Oculus-Integration-bug-Hand-tracking-always-\enabled-no/td-p/753132

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 12

TABLE X
GDPR COMPLIANCE CHECK

GDPR Violation Term Risk Level # of Apps

Missing Social Media Clause High 83
Missing Data Sharing Information High 142
Missing GDPR Roles High 184
Missing Data Subject Rights High 94
Missing Legal Ground High 181
Missing Data Retention Information High 151
Missing Timestamp High 70
Missing National Authority High 151
Missing Sections High 105
Missing GDPR Specificity High 105
Missing Dedicated Privacy Mailbox Medium 65
Missing Data Security Information Medium 91
Missing Top Level Link Medium 102
No Violation N/A 53

Table X reports the GDPR compliance check results. We
find that only 53 apps among these 299 apps with privacy
policies have privacy policies fully complying with GDPR.
Meanwhile, there are 13 GDPR violation terms in our check
results: 10 high-risk terms and 3 medium-risk terms. Most app
privacy policies (i.e., 184) miss GDPR roles. The results imply
that the normality of privacy policies of VR apps still needs
to be improved. Privacy policies with no compliance with the
law may expose developers to legal risks.

In contrast to conventional mobile apps, VR apps need
access to massive PII data, including not only device id, name,
and phone number, but also additional highly-sensitive human
biometrics, such as hand coordinates, eye rotation, body shape,
and face expressions (Section III-D). Integrated with VR
app analysis and PII data leaks identification, we further
check whether accessing to this PII sensitive data is explicitly
mentioned in the corresponding privacy policy. In particular,
according to the result of the permission inconsistency check
from the manifest analysis shown in Fig. 11(a), we find that 52
apps with privacy policies do not mention the usage of hand,
eye, body, and face data while they are found to request these
permissions by the manifest analysis. Meanwhile, 44 of these
apps use hand-tracking data but do not state so in their privacy
policies. According to the result of the PII inconsistency
check from the decompiled Java and Smali codes, shown in
Fig. 11(b), we find that most apps with privacy policies (243
apps) do not mention the use of PII data in detail though they
are found to use PII collection method in the code analysis.
Moreover, 192 of these apps used id (e.g., device id) but do not
mention it in their privacy policies. Further, we find that 136
apps have this inconsistency between biometric function usage
and the privacy policy as shown in Fig. 11(a). In addition, 175
of these apps identified hand-tracking data collection methods
from the decompiled C# codes but do not mention them in
their privacy policies. The results show that there exist a
number of irregularities in the privacy policies, which have
not been updated in time to address the privacy concerns of
VR app data collection.

0 30 60 90 120 150 180 210 240
of Apps

Hand Tracking

Eye Tracking

Face Tracking

Body Tracking

Un
m

en
tio

ne
d

Da
ta

 T
yp

e

44(14.72%)

13(4.35%)

10(3.34%)

4(1.34%)

175(58.53%)

58(19.40%)

58(19.40%)

58(19.40%) Unmentioned Permission Data Type
Unmentioned Biometric Data Type

(a) Permission & Biometrics Inconsistency Check

0 50 100 150 200 250
of Apps

id
location

phone
user

password
username

email

Un
m

en
tio

ne
d

PI
I D

at
a

Ty
pe

192(64.21%)
147(49.16%)

77(25.75%)
71(23.75%)

43(14.38%)
41(13.71%)

19(6.35%)

(b) PII Inconsistency Check

Fig. 11. Privacy Policy Inconsistency Check (% indicates proportion of apps
with privacy policy.)

Answer to RQ6: Less than 40% of VR apps offer privacy poli-
cies though 22.74% of them contain contradictory statements.
Meanwhile, 17.73% of 299 VR apps with privacy policies
comply with GDPR regulations, 81.27% of them have no
explicit mention of PII data usage in detail, and about 60%
have inconsistency between human biometrics collection and
privacy policy.

G. RQ7: How concerned are users about the security and
privacy of VR apps?

As mentioned in Section III-E, we collect user reviews from
the SideQuest app store to analyze how users are concerned
about the security and privacy of VR apps. Out of 900 apps, we
find 897 apps with user reviews in SideQuest. After filtering
out non-English reviews and malformed reviews, we collect
7,772 reviews in total. The distribution is shown in Fig. 12(a).
The result shows that 803 VR apps have fewer than 10
reviews. By using a keyword search to extract sensitive-data-
related reviews, we find that there are only 730 reviews. The
distribution is shown in Fig. 12(b). Most VR apps have fewer
than 10 related reviews. This indicates that users may not
be quite concerned about the use of sensitive data. Table XI
reports the distribution of different types of sensitive-data-
related reviews based on different permissions. We find that
most reviews focus on biometric data. This suggests that the
use of VR-specific biometric data still receives much attention
despite the limited number of user reviews. It also indicates
that the privacy policy should focus more on the collection and
usage of biometric data. The review analysis also provides the
corroboration of the VR app analysis and the PII data analysis.

Answer to RQ7: 9.39% of VR apps user review mention
sensitive-data-related information. Most VR apps have less
than 10 reviews. 58.63% of sensitive-data-related reviews
mention biometric data.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 13

0 100 200 300 400 500
of Apps

0

1-10

10-50

50-100

100-500

>500

of
 R

ev
ie

ws
 In

clu
de

d
pe

r A
pp

335

468

74

8

10

2

(a) Distribution of All Reivews

0 100 200 300 400 500 600 700 800
of Apps

0

1-10

10-50

50-100

of

 R
ev

ie
ws

 In
clu

de
d

pe
r A

pp

746

136

13

2

(b) Distribution of Sensitive-Data-Related Reviews

Fig. 12. Review Distribution

H. Discussion

We present two app cases to elaborate on security and
privacy issues and offer several pieces of advice in VR app
development.

Case Study. Considering the ethics issue, we have
anonymized the specific names of the apps. Case 1 (MD5
prefix: 4dbd4˜) is a virtual social VR app with over 5,200
downloads on SideQuest. We find that this App has no root
detection implementation. The lack of root detection may
lead to SDI vulnerability and data breaches. We also find
that this app includes the usage of SQL raw query function.
Due to the lack of root detection, the attacker can directly
use administrator privileges to access/modify the database,
resulting in user data leakage. Moreover, it also adopts in-
secure random generators, which may cause a predictable
random number. Attackers can use predictable values to bypass
permission verification. This app also allows clear text traffic,
incurring a risk that a cyber attacker could eavesdrop on
the transmitted data. As for TPL usage, this app has no
vulnerable TPLs but adopts some general TPLs such as
FasterXML-Jackson-Core, jsr305 and java.inject but
does not request any dangerous permission in TPLs. In addi-

TABLE XI
DIFFERENT TYPES OF SENSITIVE-DATA-RELATED REVIEWS

Permissions # of Reviews

Account 53
Bluetooth 2
Calendar 1
Contact 9
Location 167
Mail 22
Media 100
Messages 24
Network 32
Notification 5
Sensor 4
Biometric 428
General 79

tion, despite the identified usage biometric data collection API,
we do not find the corresponding <uses-permission> tag in
the Androidmanifest.xml file, implying that the app does
not apply for the permission while using the corresponding
APIs. We also do not find a statement in our privacy policy
with respect to the collection of such biometric data. The id,
phone, and location data collection are not mentioned
in the privacy policy but are adopted in the source code. In
addition, the privacy policy contains GDPR violations, such as
missing data sharing information and missing top-level links.
It includes 11 reviews, two of which mention sensitive-data-
related information.

Case 2 (MD5 prefix: c2300˜) is another virtual social
VR app with more than 9,500 downloads. We find that the
allow_backup flag in the manifest file is marked as True,
which leads to a data leak risk. We also find that there
exist some insecure encrypt functions by matching pattern
AES/ECB, which indicates the app uses insecure ECB mode
in the Cryptographic encryption algorithm. Moreover, this app
also utilizes some insecure hash functions including MD5-
related hash functions (e.g., Encrypter.MD5), SHA-1-related
functions (e.g., Util.sha1) and so on. A tracker called
Unity3d Ads is also identified in this app. Besides, it lacks
root detection. It also has no vulnerable TPLs but utilizes
general TPLs such as Gson, support-annotataions and
javax.inject. All utilized TPLs do not request dangerous
permissions. From the taint analysis result, we find that there
exists PII data flow from PackageManager function to Log

function. The use of Log function may expose network packet
data to attackers and thus be intercepted by attackers for illegal
activities in the metaverse such as harassment. The location,
password, user, username, and phone data collection are
not mentioned in the privacy policy but they are adopted in
the source code. As for review analysis, this app includes
47 reviews, seven of which mention sensitive data-related
information.

Development Advice. Considering the findings in the case
study, we offer some advice on the development of VR apps.
Advice 1: Set proper secure flags in the manifest file.

Before releasing the app, it is suggested to set the security-
related flags in the Androidmanifest.xml file as False, such
as allow_backup, debuggable, and uses_cleartext_-

traffic. If these flags are True, users’ private behaviors can
be inspected by attackers.
Advice 2: Enable root detection when starting the VR app.

A rooted device may cause the association of app data and
user data [67]. Consequently, invaded malware lurking in the
VR device can steal users’ private information. This can be
even more dangerous in the metaverse, which involves users’
frequent interactions (e.g., transactions of virtual assets).

Advice 3: Do not use insecure hash functions/encryption
algorithms.

Compared with traditional mobile apps, VR apps collect
more diverse data (e.g., video and voice). It is crucial to use
effective encryption methods, such as secure hash functions
(e.g., SHA-256 [68]) and encryption methods, such as RSA
with OAEP padding.
Advice 4: Check data flows used by the trackers.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 14

It is difficult to guarantee the security of these user data sent
to third-party platforms by trackers. Therefore, developers
should check the data flows used by the trackers to ensure no
abuse or misuse.
Advice 5: Use TPLs cautiously during VR app development.

Despite only a limited amount of apps using vulnerable
TPLs and TPLs requesting dangerous permissions, developers
need to carefully adopt TPLs. Developers need to check
the security of TPLs to ensure that there are no known
vulnerabilities, as well as regularly reviewing and updating
libraries to guard against security risks.
Advice 6: Comply with permission requests to collect bio-
metric data.

Developers should comply with specifications for sensitive
data collection, while app stores should strengthen code
audits to prevent similar malware releases. Meanwhile, the
sensitive data collection functions should be regulated to
ensure the user’s right to know how sensitive data is collected
and prevent it from being misused.
Advice 7: Adapt privacy policies to fulfill VR apps’ new
features.

Developers need to develop new privacy policies according
to VR apps’ new features, such as privacy concerns with
immersive social interactions and the collection of human
biometrics. Further, the publication of a privacy policy is
subject to relevant legislation.
Advice 8: Create privacy policies considering users’ con-
cerns.

According to the result of the review analysis, we find that
some reviews are concerned with sensitive data. The privacy
policy creators should clarify the data collection and usage
so as to ensure that policies are in line with user expectations
and actual utilization.

V. LIMITATION AND THREATS TO VALIDITY

Limitation. The limitation of our research lies in the
integrity of decompiled code. Since some apps are shelled
for anti-cheating purposes, we cannot get the complete de-
compiled code to analyze the API call relationships in all
apps. In addition, the data transmissions between different
data-collection functions and the tracking algorithms are not
open-sourced in the Meta developer documentation. We will
further analyze the call chains of these API functions in the
future, especially for those of biometric data collection.

Threats to External Validity. The threats to external valid-
ity limit the scalability of our approach. In our biometric data
propagation analysis, we mainly focus on VR apps developed
based on Unity though there are other frameworks, such as
UE [69], libGDX [70], and so on. Moreover, we only analyze
VR apps working on Meta Quest 2 while there are some other
popular VR/AR devices, such as the HTC VIVE Pro 2, Sony
Playstation VR 2, and Pico 4, many of which are also Android
or its variants (our tool may also apply to). In short, more types
of VR apps need to undergo security and privacy assessments
in the future.

Threats to Internal Validity. Although we collect 900
VR apps, which are almost 5 × of the state-of-the-art tool
OVRSEEN [10], we will evaluate more VR apps with the

proliferation of VR and metaverse. Moreover, as for the static
analysis for OS-related security and privacy vulnerabilities, we
refer to pre-defined patterns based on [19], and the precision
result they claimed is 96.19%. We manually checked the result
of 20% of the apps and found no false positives, thus reducing
the impact of tool accuracy. The taint analysis adopted in this
work can also lead to some false positives, thereby affecting
the accuracy of the results. To address this issue, we manually
check 20% of the identified paths and find no false positives,
thus mitigating its side effect. With respect to another internal
validity threat caused by the accuracy of the GDPRWise, we
manually sample 50 privacy policy cases to verify the accuracy
of their GDPR compliance detection and find 9 false positives.
We hypothesize three possible reasons: (i) the privacy policy
is written in a non-English language (e.g., Japanese), which
affects its detection accuracy; (ii) the link to the privacy policy
is in PDF format, which is not supported by the service; and
(iii) the link to the privacy policy contains additional external
links. The extent of the impact needs further investigation.

VI. RELATED WORK

Program Analysis of Mobile Apps. Many recent studies
adopt both static tools and dynamic techniques to analyze the
security and privacy vulnerabilities of mobile apps. Lee et al.
[71] proposed a static tool to analyze inter-communication
between Android Java and JavaScript codes. Sandeep [72]
combined deep learning and static analysis to detect Android
malware with high accuracy. Regarding dynamic analysis,
Reardon et al. [73] constructed a testing environment to detect
whether the app bypassed the permission model to access
protected data. Huang et al. [74] proposed a testing framework
based on net packet fuzzing for Android apps. In this paper,
we use static analysis combined with privacy-policy analysis
to perform security and privacy analysis on emerging VR apps.

Security and Privacy Analysis of VR Apps. With the
rapid development of VR devices and metaverse platforms, the
analysis of VR apps has received increasing attention [75]. For
example, Trimananda et al. [10] proposed a method, namely
OVRSEEN to analyze the privacy policies in Meta VR apps
by collecting network traffic and comparing them with the
privacy policies although its dynamic analysis also has limited
coverage for execution paths and unsoundness as indicated
in [76]. Yarramreddy et al. [77] proposed a forensic analysis of
VR social apps to reveal some forensically relevant data from
network traffic and the VR systems. Casey et al. [9] discovered
a new attack against VR systems, which can open the VR
camera without user permission and insert images into users’
vision to distract users’ attention in a virtual environment.
This paper focuses on metaverse-related VR apps with a
comprehensive assessment of their security and privacy status.

Unity-based VR Apps. Since most VR apps have been
developed based on Unity to render 3D environment, achieve
immersive user experience, and collect biometric data, we also
review related work as follows. Shim et al. [78] proposed a
reverse engineering method with a combination of static and
dynamic analysis to analyze malicious Unity apps. This tool
can be used to analyze the native code of Java, C, C++, and

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 15

the Mono layer where the C# code runs. Volokh et al. [79]
proposed a Unity game code logic analysis tool based on static
analysis, which can be used to provide an available action state
set at a game state for players. Zuo et al. [13] conducted an
in-depth analysis of the security of paid implementations in
Unity-based handheld games by designing and implementing
the static tool, namely PaymentScope to automatically identify
vulnerable IAPs in mobile games. In this paper, we design a
variant of PaymentScope to detect not only vulnerable IAPs
but also biometric data usage.

Comparison with our preliminary study. Compared with
our preliminary study presented in [11], we have made three
substantial contributions to this article.

• In addition to what was analyzed in [11], considering that
VR apps also have an ecology of TPL usage similar to
Android apps, we add a module for TPL analysis in the
VR-SP detector. Specifically, we analyze the distribution
of TPLs and the usage of vulnerable TPLs.

• To understand users’ concerns about app security and pri-
vacy issues, we add a module for analyzing user reviews
to the VR-SP detector. Using this module we collected
7,772 comments and used keyword search methods to
deeply analyze user perceptions of security, privacy, and
the usage of biometric data.

• We significantly scale the number of detected apps of
our VR-SP detector from 500 to 900, thereby achieving
a more comprehensive coverage of app types.

VII. CONCLUSION

With the proliferation of diverse VR devices and the increas-
ing attention of the metaverse in recent years, VR apps have
received a boosted development and proliferation. Although
numerous VR apps have been released, little attention has
been paid to the security and privacy issues of emerging VR
apps. In this paper, we have developed a security and privacy
assessment tool, namely the VR-SP detector for VR apps. The
VR-SP detector has been implemented with the integration
of program static analysis, privacy policy analysis methods,
and review analysis methods. Using the VR-SP detector, we
have conducted the security and privacy assessment of 900
popular VR apps. Our analytical results have revealed impor-
tant security and privacy issues of existing metaverse-related
VR apps. Based on our findings, we have made development
recommendations for future VR apps with security and privacy
preservation.

In the future, we will adopt dynamic testing to address the
limitations caused by static analysis and shelling. Therefore,
we can achieve a detailed security and privacy assessment. We
will also integrate more tools to analyze VR apps running on
top of diverse VR devices and VR apps developed by different
languages (e.g., JavaScript).

REFERENCES

[1] I. Wohlgenannt, A. Simons, and S. Stieglitz, “Virtual reality,” Business
& Information Systems Engineering, vol. 62, pp. 455–461, 2020.

[2] F. B. Insights. (2023) Virtual reality market size, share and COVID-19
impact analysis, by component (hardware, software, and content),
by device type (head mounted display (HMD), VR simulator, VR
glasses, treadmills and haptic gloves, and others), by industry (gaming,
entertainment, automotive, retail, healthcare, education, aerospace
and defense, manufacturing, and others), and regional forecast,
2023-2030. [Online]. Available: https://www.fortunebusinessinsights.
com/industry-reports/virtual-reality-market-101378

[3] S. Mystakidis, “Metaverse,” Encyclopedia, vol. 2, no. 1, pp. 486–497,
2022. [Online]. Available: https://www.mdpi.com/2673-8392/2/1/31

[4] A. Christopher Santoso and P. Santoso, “Aplikasi ruangan maya
berbasis Android OS pada headset virtual reality Oculus Quest 2,”
Jurnal FORTECH, vol. 3, no. 2, p. 51–56, Sep. 2022. [Online].
Available: https://journal.fortei7.org/index.php/fortech/article/view/357

[5] J. Hui, Y. Zhou, M. Oubibi, W. Di, L. Zhang, and S. Zhang, “Research
on art teaching practice supported by virtual reality (VR) technology
in the primary schools,” Sustainability, vol. 14, no. 3, 2022. [Online].
Available: https://www.mdpi.com/2071-1050/14/3/1246

[6] Y. Huang, Y. J. Li, and Z. Cai, “Security and privacy in metaverse: A
comprehensive survey,” Big Data Mining and Analytics, vol. 6, no. 2,
pp. 234–247, 2023.

[7] T. Mustafa, R. Matovu, A. Serwadda, and N. Muirhead, “Unsure how
to authenticate on your VR headset? come on, use your head!” in
Proceedings of the Fourth ACM International Workshop on Security
and Privacy Analytics, ser. IWSPA ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 23–30. [Online].
Available: https://doi.org/10.1145/3180445.3180450

[8] M. Vondráček, I. Baggili, P. Casey, and M. Mekni, “Rise of the
metaverse’s immersive virtual reality malware and the man-in-the-room
attack & defenses,” Computers & Security, vol. 127, p. 102923, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404822003157

[9] P. Casey, I. Baggili, and A. Yarramreddy, “Immersive virtual reality
attacks and the human joystick,” IEEE Transactions on Dependable and
Secure Computing, vol. 18, no. 2, pp. 550–562, 2021.

[10] R. Trimananda, H. Le, H. Cui, J. T. Ho, A. Shuba, and
A. Markopoulou, “OVRseen: Auditing network traffic and privacy
policies in Oculus VR,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
3789–3806. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/trimananda

[11] H. Guo, H.-N. Dai, X. Luo, Z. Zheng, G. Xu, and F. He, “An empirical
study on Oculus virtual reality applications: Security and privacy
perspectives,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639082

[12] C. Cortés, P. Pérez, and N. Garcı́a, “Unity3d-based app for 360VR
subjective quality assessment with customizable questionnaires,” in 2019
IEEE 9th International Conference on Consumer Electronics (ICCE-
Berlin), 2019, pp. 281–282.

[13] C. Zuo and Z. Lin, “Playing without paying: Detecting vulnerable
payment verification in native binaries of Unity mobile games,” in 31st
USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 3093–3110. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/zuo

[14] R. Cheng, N. Wu, S. Chen, and B. Han, “Reality check of metaverse: A
first look at commercial social virtual reality platforms,” in 2022 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), 2022, pp. 141–148.

[15] S.-M. Park and Y.-G. Kim, “A metaverse: Taxonomy, components,
applications, and open challenges,” IEEE Access, vol. 10, pp. 4209–
4251, 2022.

[16] T. Huynh-The, Q.-V. Pham, X.-Q. Pham, T. T. Nguyen, Z. Han,
and D.-S. Kim, “Artificial intelligence for the metaverse: A survey,”
Engineering Applications of Artificial Intelligence, vol. 117, p.
105581, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0952197622005711

[17] J. Lee, “A study on the intention and experience of using the metaverse,”
Jahr: Europski časopis za bioetiku, vol. 13, no. 1, pp. 177–192, 2022.

[18] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and
M. Daneshmand, “A survey on metaverse: the state-of-the-art, technolo-
gies, applications, and challenges,” arXiv preprint arXiv:2111.09673,
2021.

[19] R. Sun, W. Wang, M. Xue, G. Tyson, S. Camtepe, and D. C. Ranasinghe,
“An empirical assessment of global COVID-19 contact tracing applica-

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378
https://www.mdpi.com/2673-8392/2/1/31
https://journal.fortei7.org/index.php/fortech/article/view/357
https://www.mdpi.com/2071-1050/14/3/1246
https://doi.org/10.1145/3180445.3180450
https://www.sciencedirect.com/science/article/pii/S0167404822003157
https://www.sciencedirect.com/science/article/pii/S0167404822003157
https://www.usenix.org/conference/usenixsecurity22/presentation/trimananda
https://www.usenix.org/conference/usenixsecurity22/presentation/trimananda
https://doi.org/10.1145/3597503.3639082
https://www.usenix.org/conference/usenixsecurity22/presentation/zuo
https://www.sciencedirect.com/science/article/pii/S0952197622005711
https://www.sciencedirect.com/science/article/pii/S0952197622005711

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 16

tions,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), 2021, pp. 1085–1097.

[20] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination method for
android malware detection based on control flow graphs and machine
learning algorithms,” IEEE Access, vol. 7, pp. 21 235–21 245, 2019.

[21] G. Bai, J. Sun, J. Wu, Q. Ye, L. Li, J. S. Dong, and S. Guo, “All your
sessions are belong to us: Investigating authenticator leakage through
backup channels on android,” in 2015 20th International Conference on
Engineering of Complex Computer Systems (ICECCS), 2015, pp. 60–69.

[22] A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in writing
android manifests: An empirical study of configuration errors,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), 2017, pp. 25–36.

[23] A. Possemato and Y. Fratantonio, “Towards HTTPS everywhere
on android: We are not there yet,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 343–360. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/possemato

[24] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp.
2027–2051, 2016.

[25] G. LaMalva and S. Schmeelk, “Mobsf: Mobile health care Android
applications through the lens of open source static analysis,” in 2020
IEEE MIT Undergraduate Research Technology Conference (URTC),
2020, pp. 1–4.

[26] H. Darvish and M. Husain, “Security analysis of mobile money applica-
tions on Android,” in 2018 IEEE International Conference on Big Data
(Big Data), 2018, pp. 3072–3078.

[27] F. H. Shezan, S. F. Afroze, and A. Iqbal, “Vulnerability detection
in recent Android apps: An empirical study,” in 2017 International
Conference on Networking, Systems and Security (NSysS), 2017, pp.
55–63.

[28] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of SQL
injection attack using machine learning techniques: A systematic
literature review,” Journal of Cybersecurity and Privacy, vol. 2,
no. 4, pp. 764–777, 2022. [Online]. Available: https://www.mdpi.com/
2624-800X/2/4/39

[29] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and
S. Fahl, “Why Eve and Mallory still love Android: Revisiting
TLS (in)security in Android applications,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug. 2021,
pp. 4347–4364. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/oltrogge

[30] J. P. Hughes and W. Diffie, “The challenges of IoT, TLS, and random
number generators in the real world: Bad random numbers are still with
us and are proliferating in modern systems.” Queue, vol. 20, no. 3, p.
18–40, jul 2022. [Online]. Available: https://doi.org/10.1145/3546933

[31] A. R. Sai, J. Buckley, and A. Le Gear, “Privacy and security analysis
of cryptocurrency mobile applications,” in 2019 Fifth Conference on
Mobile and Secure Services (MobiSecServ), 2019, pp. 1–6.

[32] D. J. Leith and S. Farrell, “Contact tracing app privacy: What data is
shared by Europe’s gaen contact tracing apps,” in IEEE INFOCOM 2021
- IEEE Conference on Computer Communications, 2021, pp. 1–10.

[33] V. Ang and L. K. Shar, “COVID-19 one year on – security and privacy
review of contact tracing mobile apps,” IEEE Pervasive Computing,
vol. 20, no. 4, pp. 61–70, 2021.

[34] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Modelling
analysis and auto-detection of cryptographic misuse in Android appli-
cations,” in 2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing, 2014, pp. 75–80.

[35] S. Yoo and X. Chen, “Secure keyed hashing on programmable
switches,” in Proceedings of the ACM SIGCOMM 2021 Workshop on
Secure Programmable Network INfrastructure, ser. SPIN ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
16–22. [Online]. Available: https://doi.org/10.1145/3472873.3472881

[36] H. Zhang, D. She, and Z. Qian, “Android root and its providers:
A double-edged sword,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
New York, NY, USA: Association for Computing Machinery, 2015,
p. 1093–1104. [Online]. Available: https://doi.org/10.1145/2810103.
2813714

[37] K. Kollnig, P. Dewitte, M. V. Kleek, G. Wang, D. Omeiza,
H. Webb, and N. Shadbolt, “A fait accompli? an empirical study into
the absence of consent to Third-Party tracking in Android apps,” in
Seventeenth Symposium on Usable Privacy and Security (SOUPS 2021).
USENIX Association, Aug. 2021, pp. 181–196. [Online]. Available:
https://www.usenix.org/conference/soups2021/presentation/kollnig

[38] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate
detection of third-party libraries in Android apps,” in Proceedings
of the 38th International Conference on Software Engineering
Companion, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 653–656. [Online]. Available:
https://doi.org/10.1145/2889160.2889178

[39] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in Android and its security applications,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 356–367. [Online]. Available: https:
//doi.org/10.1145/2976749.2978333

[40] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,
and Y. Liu, “Automated third-party library detection for Android ap-
plications: Are we there yet?” in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020, pp. 919–
930.

[41] U. Technologies. Unity documentation - 2d or 3d projects. (2023,
March 24). [Online]. Available: https://docs.unity3d.com/

[42] I. Epic Games. Unreal Engine. (2023, July 24). [Online]. Available:
https://www.unrealengine.com/

[43] A. Desnos and G. Gueguen. (2018) Androguard documentation.
[Online]. Available: https://androguard.readthedocs.io/en/latest/

[44] X. Yang and X. Zhang, “A study of user privacy in Android mobile AR
apps,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’22. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3551349.3560512

[45] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards discovering
and understanding task hijacking in Android,” in Proceedings of the
24th USENIX Conference on Security Symposium, ser. SEC’15. USA:
USENIX Association, 2015, p. 945–959.

[46] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Comput. Surv., vol. 49, no. 1,
Apr. 2016. [Online]. Available: https://doi.org/10.1145/2886012

[47] I. F. Elashry, O. S. Farag Allah, A. M. Abbas, and S. El-Rabaie, “A
new diffusion mechanism for data encryption in the ECB mode,” in
2009 International Conference on Computer Engineering & Systems,
2009, pp. 288–293.

[48] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo,
“LibD: Scalable and precise third-party library detection in Android
markets,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017, pp. 335–346.

[49] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang,
“LibScan: Towards more precise third-party library identification for
Android applications,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023,
pp. 3385–3402. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/wu-yafei

[50] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: analyzing the
Android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
217–228. [Online]. Available: https://doi.org/10.1145/2382196.2382222

[51] F. Nusrat, F. Hassan, H. Zhong, and X. Wang, “How developers
optimize virtual reality applications: A study of optimization commits
in open source Unity projects,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 473–485.

[52] (2020) dnSpy. [Online]. Available: https://github.com/dnSpy/dnSpy
[53] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[54] C. Chang, H. Li, Y. Zhang, S. Du, H. Cao, and H. Zhu, “Automated
and personalized privacy policy extraction under GDPR consideration,”
in Wireless Algorithms, Systems, and Applications, E. S. Biagioni,
Y. Zheng, and S. Cheng, Eds. Cham: Springer International Publishing,
2019, pp. 43–54.

[55] L. Verderame, D. Caputo, A. Romdhana, and A. Merlo, “On the
(un)reliability of privacy policies in Android apps,” in 2020 International
Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–9.

[56] J. Benjumea, J. Ropero, O. Rivera-Romero, E. Dorronzoro-Zubiete,
and A. Carrasco, “Assessment of the fairness of privacy policies of

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

https://www.usenix.org/conference/usenixsecurity20/presentation/possemato
https://www.usenix.org/conference/usenixsecurity20/presentation/possemato
https://www.mdpi.com/2624-800X/2/4/39
https://www.mdpi.com/2624-800X/2/4/39
https://www.usenix.org/conference/usenixsecurity21/presentation/oltrogge
https://www.usenix.org/conference/usenixsecurity21/presentation/oltrogge
https://doi.org/10.1145/3546933
https://doi.org/10.1145/3472873.3472881
https://doi.org/10.1145/2810103.2813714
https://doi.org/10.1145/2810103.2813714
https://www.usenix.org/conference/soups2021/presentation/kollnig
https://doi.org/10.1145/2889160.2889178
https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1145/2976749.2978333
https://docs.unity3d.com/
https://www.unrealengine.com/
https://androguard.readthedocs.io/en/latest/
https://doi.org/10.1145/3551349.3560512
https://doi.org/10.1145/2886012
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-yafei
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-yafei
https://doi.org/10.1145/2382196.2382222
https://github.com/dnSpy/dnSpy
https://doi.org/10.1145/2594291.2594299

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 17

mobile health apps: Scale development and evaluation in cancer apps,”
JMIR Mhealth Uhealth, vol. 8, no. 7, p. e17134, Jul 2020. [Online].
Available: https://doi.org/10.2196/17134

[57] S. Liao, C. Wilson, L. Cheng, H. Hu, and H. Deng, “Measuring the
effectiveness of privacy policies for voice assistant applications,” in
Annual Computer Security Applications Conference, ser. ACSAC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
856–869. [Online]. Available: https://doi.org/10.1145/3427228.3427250

[58] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck,
B. Reaves, K. Singh, and T. Xie, “PolicyLint: Investigating internal
privacy policy contradictions on Google Play,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 585–602. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/andow

[59] H. Li, L. Yu, and W. He, “The impact of GDPR on global
technology development,” Journal of Global Information Technology
Management, vol. 22, no. 1, pp. 1–6, 2019. [Online]. Available:
https://doi.org/10.1080/1097198X.2019.1569186

[60] G. BV. (2023) GDPRWise policy checker. [Online]. Available:
https://gdprwise.eu/policy-checker/

[61] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short text, large
effect: Measuring the impact of user reviews on Android app security
& privacy,” in 2019 IEEE Symposium on Security and Privacy (SP),
2019, pp. 555–569.

[62] Y. Wu, C. Shi, T. Zhang, P. Walker, J. Liu, N. Saxena, and Y. Chen,
“Privacy leakage via unrestricted motion-position sensors in the age of
virtual reality: A study of snooping typed input on virtual keyboards,” in
2023 IEEE Symposium on Security and Privacy (SP), 2023, pp. 3382–
3398.

[63] B. Andow, S. Y. Mahmud, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and S. Egelman, “Actions speak louder than words:
Entity-Sensitive privacy policy and data flow analysis with PoliCheck,”
in 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 985–1002. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/andow

[64] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Understanding
the evolution of android app vulnerabilities,” IEEE Transactions on
Reliability, vol. 70, no. 1, pp. 212–230, 2021.

[65] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu,
“Show me the money! finding flawed implementations of third-party in-
app payment in android apps.” in 2017 Network and Distributed System
Security (NDSS) Symposium, 2017.

[66] H. Zhou, H. Wang, Y. Zhou, X. Luo, Y. Tang, L. Xue, and
T. Wang, “Demystifying diehard Android apps,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’20. New York, NY, USA: Association
for Computing Machinery, 2021, p. 187–198. [Online]. Available:
https://doi.org/10.1145/3324884.3416637

[67] S.-T. Sun, A. Cuadros, and K. Beznosov, “Android rooting: Methods,
detection, and evasion,” in Proceedings of the 5th Annual ACM
CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices, ser. SPSM ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 3–14. [Online]. Available:
https://doi.org/10.1145/2808117.2808126

[68] A. W. Appel, “Verification of a cryptographic primitive: Sha-256,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, apr 2015. [Online].
Available: https://doi.org/10.1145/2701415

[69] W. Qiu and A. Yuille, “Unrealcv: Connecting computer vision to unreal
engine,” in Computer Vision – ECCV 2016 Workshops, G. Hua and
H. Jégou, Eds. Cham: Springer International Publishing, 2016, pp.
909–916.

[70] L. Stemkoski, The LibGDX Framework. Berkeley, CA: Apress,
2015, pp. 13–46. [Online]. Available: https://doi.org/10.1007/
978-1-4842-1500-5 2

[71] S. Lee, J. Dolby, and S. Ryu, “Hybridroid: Static analysis
framework for Android hybrid applications,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 250–261. [Online]. Available:
https://doi.org/10.1145/2970276.2970368

[72] S. HR, “Static analysis of Android malware detection using deep
learning,” in 2019 International Conference on Intelligent Computing
and Control Systems (ICCS), 2019, pp. 841–845.

[73] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the Android permissions system,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX

Association, Aug. 2019, pp. 603–620. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/reardon

[74] X. Huang, A. Zhou, P. Jia, L. Liu, and L. Liu, “Fuzzing the android
applications with http/https network data,” IEEE Access, vol. 7, pp.
59 951–59 962, 2019.

[75] S. Li, Y. Wu, Y. Liu, D. Wang, M. Wen, Y. Tao, Y. Sui, and Y. Liu, “An
exploratory study of bugs in extended reality applications on the web,”
in 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), 2020, pp. 172–183.

[76] D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy, “Optimistic
hybrid analysis: Accelerating dynamic analysis through predicated
static analysis,” SIGPLAN Not., vol. 53, no. 2, p. 348–362, mar 2018.
[Online]. Available: https://doi.org/10.1145/3296957.3177153

[77] A. Yarramreddy, P. Gromkowski, and I. Baggili, “Forensic analysis of
immersive virtual reality social applications: A primary account,” in
2018 IEEE Security and Privacy Workshops (SPW), 2018, pp. 186–196.

[78] J. Shim, K. Lim, S.-j. Cho, S. Han, and M. Park, “Static and dynamic
analysis of Android malware and goodware written with Unity frame-
work,” Security and Communication Networks, vol. 2018, 2018.

[79] S. Volokh and W. G. Halfond, “Static analysis for automated
identification of valid game actions during exploration,” in Proceedings
of the 17th International Conference on the Foundations of Digital
Games, ser. FDG ’22. New York, NY, USA: Association for
Computing Machinery, 2022. [Online]. Available: https://doi.org/10.
1145/3555858.3555898

Hanyang Guo is a Ph.D. student at the School of
Software Engineering, Sun Yat-sen University. He
is also a visiting student at the Department of Com-
puter Science, Hong Kong Baptist University. His
research interests include VR/AR software reliability
and AI for software engineering.

Hong-Ning Dai is currently with the Department of
Computer Science at Hong Kong Baptist University,
Hong Kong as an associate professor. He obtained
the Ph.D. degree in Computer Science and Engineer-
ing from Department of Computer Science and En-
gineering at the Chinese University of Hong Kong.
His current research interests include the Internet
of Things, blockchain and extended reality (XR)
technologies. He has published more than 250 papers
in top-tier journals and conferences with 23000+
citations. He has served as an associate editor for

IEEE Communications Survey and Tutorials, IEEE Transactions on Intelligent
Transportation Systems, IEEE Transactions on Industrial Informatics, IEEE
Transactions on Industrial Cyber-Physical Systems, abd Ad Hoc Networks. He
is also a senior member of Association for Computing Machinery (ACM).

Xiapu Luo is a professor at the Department of Com-
puting, the Hong Kong Polytechnic University. His
research focuses on Blockchain and Smart Contracts
Security, Mobile and IoT Security, Network Security
and Privacy, and Software Engineering with papers
published in top-tier security, software engineering,
and networking conferences and journals. His re-
search led to more than ten best/distinguished pa-
per awards, including ACM CCS’24 Distinguished
Paper Award, four ACM SIGSOFT Distinguished
Paper Awards, Best DeFi Papers Award 2023, Best

Paper Award in INFOCOM’18, Best Research Paper Award in ISSRE’16, etc.
and several awards from the industry. He received the BOCHK Science and
Technology Innovation Prize (FinTech) 2023 for his contribution to blockchain
security. He is an ACM Distinguished Member for his research in safeguarding
blockchain and smart contracts along with Android and its applications.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.2196/17134
https://doi.org/10.1145/3427228.3427250
https://www.usenix.org/conference/usenixsecurity19/presentation/andow
https://doi.org/10.1080/1097198X.2019.1569186
https://gdprwise.eu/policy-checker/
https://www.usenix.org/conference/usenixsecurity20/presentation/andow
https://www.usenix.org/conference/usenixsecurity20/presentation/andow
https://doi.org/10.1145/3324884.3416637
https://doi.org/10.1145/2808117.2808126
https://doi.org/10.1145/2701415
https://doi.org/10.1007/978-1-4842-1500-5_2
https://doi.org/10.1007/978-1-4842-1500-5_2
https://doi.org/10.1145/2970276.2970368
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://doi.org/10.1145/3296957.3177153
https://doi.org/10.1145/3555858.3555898
https://doi.org/10.1145/3555858.3555898

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, AUGUST 2024 18

Gengyang Xu is currently a student pursuing his
bachelor’s degree at the Department of Computer
Science, Hong Kong Baptist University. His research
interests include intelligent software engineering,
virtual reality and software security.

Fengliang He is is a Ph.D. student at the Department
of Computer Science, Hong Kong Baptist Univer-
sity. His research interest includes VR/AR system
security.

Zibin Zheng is currently a Professor and the Dean
of the School of Software Engineering, at Sun Yat-
sen University, Zhuhai, China. He authored or co-
authored more than 200 international journal and
conference papers, including one ESI hot paper and
ten ESI highly cited papers. According to Google
Scholar, his papers have more than 44,000 citations.
His research interests include blockchain, software
engineering, and services computing. He was the
BlockSys’19 and CollaborateCom16 General Co-
Chair, SC2’19, ICIOT18 and IoV14 PC Co-Chair.

He is a Fellow of the IEEE and the IET. He was the recipient of several
awards, including the Top 50 Influential Papers in Blockchain of 2018, the
ACM SIGSOFT Distinguished Paper Award at ICSE2010, the Best Student
Paper Award at ICWS2010.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3553283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 31,2025 at 07:39:09 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background of VR Apps
	Taxonomy of VR apps
	VR App Security and Privacy Vulnerabilities
	OS-related Security and Privacy Vulnerabilities
	VR-platform-related Security and Privacy Vulnerabilities

	Methodology of VR-SP Detector
	App Collection
	VR App Analysis
	Manifest Analysis
	Detecting OS-related Security and Privacy Vulnerabilities
	Identifying VR-platform-related Security and Privacy Vulnerabilities

	PII Data Leaks Identification
	Privacy Policy Analysis
	Review Analysis

	Experiments and Results
	RQ1: What is the manifest vulnerability profile of VR apps?
	RQ2: What are VR apps' major OS-related security and privacy vulnerabilities?
	RQ3: What is the usage of TPL by VR apps?
	RQ4: What are VR apps' major VR-platform security and privacy vulnerabilities?
	RQ5: To what extent is PII data leaked?
	RQ6: How do the VR app developers comply with the privacy policies?
	RQ7: How concerned are users about the security and privacy of VR apps?
	Discussion

	Limitation and Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Hanyang Guo
	Hong-Ning Dai
	Xiapu Luo
	Gengyang Xu
	Fengliang He
	Zibin Zheng

