
Auncel: Fair Byzantine Consensus Protocol with
High Performance

Wuhui Chen1,3, Yikai Feng2, Jianting Zhang4, Zhongteng Cai5, Hong-Ning Dai∗6, and Zibin Zheng1
1School of Software Engineering, 2School of Computer Science and Engineering, Sun Yat-Sen University, China

3Pengcheng Laboratory, China 4Department of Computer Science, Purdue University, USA
5 Department of Computer Science and Engineering, Ohio State University, USA
6 Department of Computer Science, Hong Kong Baptist University, Hong Kong

{chenwuh, zhzibin}@mail.sysu.edu.cn, fengyk5@mail2.sysu.edu.cn, zhan4674@purdue.edu, cai.1125@osu.edu, hndai@ieee.org

Abstract—Since the advent of decentralized financial applica-
tions based on blockchains, new attacks that take advantage
of manipulating the order of transactions have emerged. To
this end, order fairness protocols are devised to prevent such
order manipulations. However, existing order fairness protocols
adopt time-consuming mechanisms that bring huge computa-
tion overheads and defer the finalization of transactions to the
following rounds, eventually compromising system performance.
In this work, we present Auncel, a novel consensus protocol
that achieves both order fairness and high performance. Auncel
leverages a weight-based strategy to order transactions, enabling
all transactions in a block to be committed within one consensus
round, without cost computation and further delays. Furthermore,
Auncel achieves censorship resistance by integrating the consensus
protocol with the fair ordering strategy, ensuring all transactions
can be ordered fairly. To reduce the overheads introduced by the
fair ordering strategy, we also design optimization mechanisms,
including dynamic transaction compression and adjustable replica
proposal strategy. We implement a prototype of Auncel based
on HotStuff and construct extensive experiments. Experimental
results show that Auncel can increase the throughput by 6× and
reduce the confirmation latency by 3× compared with state-of-
the-art order fairness protocols.

I. INTRODUCTION

Blockchain is a Byzantine Fault Tolerant (BFT) State Ma-
chine Replication (SMR), of which replicas can maintain an
ever-growing consistent ledger without trusting each other.
With a BFT consensus protocol, a blockchain system main-
tains two intrinsic properties: safety where all honest replicas
output consistent states, and liveness where all transactions are
eventually handled. Both of these properties, however, do not
capture order relationships among transactions, making existing
consensus protocols vulnerable to order manipulation risks
where malicious replicas can manipulate transaction orders
arbitrarily. Many recent works [1]–[3] have shown that order
manipulations can extract tremendous profits from Decentral-
ized Finance (DeFi), affecting the stability of DeFi and even

* Hong-Ning Dai is the corresponding author.
The work described in this paper was supported by the National Key

Research and Development Plan (2021YFB2700302), the National Natural
Science Foundation of China (62172453), the National Natural Science Foun-
dation of Guangdong province (2022A1515010154), the Major Key Project
of PCL (PCL2023AS7-1), and the Pearl River Talent Recruitment Program
(2019QN01X130).

...

…
…

…

Update
Message

Round N Round N + m

tx1 tx2

tx2tx3 tx4

tx5 tx1 tx2

tx1

tx2 tx4

tx3

tx5

tx6
tx7

tx8

tx9

tx1 tx2 tx4

Ordering Graph

: order received by
 enough replicas
: order received by
 a few replicas

… tx1 tx2 tx4 …

(a) Fair transaction order processing in existing protocols

...

Round N Round N + 1

...

tx1 tx2

tx4tx3 tx2

tx5 tx1 tx2

Ordering Graph

tx1

tx3

tx4

tx2

tx1 tx2 tx4

tx6

tx7

tx8
tx6

tx7

tx8

: local ordered tx
: global unordered tx
: global ordered tx

tx8 tx6 tx7

… …

… …

…

…

…

(b) Ideal fair transaction order processing

Fig. 1. Transaction processing in order fairness protocols

threatening the security of consensus protocols. For instance,
Qin et al. [3] shows that an order manipulation called sandwich
attack extracted 174.34M USD in 32 months. Therefore, a
new property that existing BFT protocols strive to achieve
is transaction order fairness. Informally, the order fairness
indicates that transactions are executed and committed in the
same order as the majority of replicas’ receiving orders.

Motivation. To achieve order fairness and prevent order
manipulations, several consensus protocols have been pro-
posed [5]–[7], [9]–[11]. Some of them [5], [11] introduce a
separate ordering stage, in which each transaction is assigned
a tamper-resistant timestamp that will be used as the fair
ordering indicator in the following consensus stage. However, a
timestamp-based solution relies on synchronized clocks, which
inevitably incurs huge costs for synchronizing clocks and is
impractical in a realistic network. Moreover, separating the
ordering stage from consensus is vulnerable to censorship at-
tacks where transactions are refused to be ordered by malicious
replicas, thus compromising order fairness [6]. To tackle this
issue, other schemes [6]–[8] embed fairly ordering into the

TABLE I
COMPARISON OF AUNCEL WITH EXISTING CONSENSUS PROTOCOL

Protocols Order
Fairness Throughput1 Latency1 Byzantine

Threshold2
Censorship
Resistance

No Synchronized
Clocks Required

HotStuff [4] ✗ 22,952 TPS 17 ms n ≥ 3f + 1 ✓ ✓

Pompē [5] ✓ 8,022 TPS 50 ms n ≥ 3f + 1 ✗ ✗

Themis [6] ✓ 2,580 TPS 155 ms n ≥ 4f + 1 ✓ ✓

Aequitas [7] ✓ 4,351 TPS 92 ms n ≥ 4f + 1 ✓ ✓

Rashnu [8] ✓ 6,593 TPS 61 ms n ≥ 4f + 1 ✓ ✓

Auncel (Our Approach) ✓ 20,545 TPS 19 ms n ≥ 4f + 1 ✓ ✓

1 Peak throughput and confirmation latency are measured through experiments conducted on two servers with 100 Mb/s bandwidth. The
network size is 5 and block size is 100.

2 n is the total number of replicas and f is the number of Byzantine replicas.

consensus with an order fairness algorithm. Its main idea is
based on the ordering preferences from all replicas to generate
a transaction ordering graph, where nodes represent transactions
and a direct edge indicates the order of two transactions. This
transaction ordering graph helps capture order fairness among
transactions. In particular, if a sufficiently large number of
replicas receive transaction tx1 before transaction tx2, there
will be an edge from tx1 to tx2 in the ordering graph, indicating
tx1 must be ordered before tx2 after the consensus. However,
due to the byzantine behaviors (where malicious nodes claim
their order preferences arbitrarily) and network delay (that leads
to inconsistency of receiving orders for honest nodes), it is
inevitable to generate ordering cycles as shown in Fig. 1(a).
The ordering cycles will lead to global unordered transactions
that will be deferred to be ordered until the ordering cycles are
eliminated with update messages in the following consensus
rounds. As a consequence, these protocols increase the confir-
mation latency of transactions and cannot achieve order fairness
efficiently.

Observation. To validate our concern regarding the existing
protocols, we implement the most representative scheme –
Themis [6] on top of the HotStuff protocol [4] and evaluate the
confirmation latency of Themis. Generally, Themis commits
a transaction via several stages: local orders generation, fair
proposing and finalizing order, multi-step message broadcast
and validation as well as deferred updates. Fig. 2 shows
the comparison of confirmation latency between Themis and
HotStuff. We observe that with more replicas and larger block
sizes, the complexity of generating an ordering graph increases,
and more time is required to eliminate ordering cycles in the
ordering graph, consequently leading to a high confirmation
latency. Therefore, to enhance the performance of these order
fairness protocols, a crux is to reduce the complexity of gener-
ating ordering graphs and eliminate ordering cycles efficiently.

Our solution. In this paper, we present Auncel1, a novel
consensus protocol ensuring order fairness for transactions
while achieving high system performance. Fig. 1(b) presents
an overview of processing transactions in Auncel. First, similar
to [6]–[8], Auncel is designed to integrate an order fairness
algorithm into the consensus protocol (§ IV-B). This circum-

1Auncel was an ancient balance scale used for measuring fairness.

5 10 15 20
Number of Replicas

0
25
50
75

100
125
150
175
200

C
on

fir
m

at
io

n
La

te
nc

y
(m

s)

The Rest of Consensus Latency
Local Orders Generation
Fair Propose and Finalize
Deferred Updates
HotStuff Latency

(a) Latency vs varied number of replicas

50 100 150 200
Size of Block(tx number)

0
100
200
300
400
500
600
700
800
900

C
on

fir
m

at
io

n
La

te
nc

y
(m

s)

The Rest of Consensus Latency
Local Orders Generation
Fair Propose and Finalize
Deferred Updates
HotStuff Latency

(b) Latency vs varied block size

Fig. 2. Confirmation latency between HotStuff and order-fairness protocol

vents the assumption of synchronized clocks along with their
synchronized cost. With such a design, Auncel also achieves
censorship resistance, indicating malicious nodes cannot inten-
tionally prevent a transaction from being ordered and com-
mitted. The censorship resistance guarantees that transactions
will be ordered fairly as long as they are received by honest
replicas [6].

Then, we propose a weight-based order fairness algorithm
to generate ordering graphs and eliminate ordering cycles
efficiently (§ IV-C). Its main idea is to order and commit all
transactions of a block in one consensus round. Specifically,
different from previous protocols using the same weight to
depict local order, our algorithm attaches a diverse weight to
transactions based on their positions in a replica’s local order.
This enables replicas to form a linear relative order between
transactions based on these weights, thereby effectively solving
the ordering cycle problem.

While our order fairness algorithm can reduce the confirma-
tion latency compared with the existing works, it also introduces
some communication overheads that are required to establish a
fair order for transactions, including proposing diverse transac-
tion sets of replicas and inevitably processing local orderings
from replicas. To reduce such overheads (§ IV-D), we design
a dynamic transaction compression mechanism to optimize
and simplify transactions and local orderings, which provides
a user-friendly reference model for effectively compressing
transaction sets during the consensus process. Further, we also
adopt an adjustable replica proposal strategy to batch more
transactions, thereby making full use of network bandwidth and
improving performance. In summary, we make the following
contributions in this work:

• Novel Fairness Consensus: We present a novel fairness

consensus protocol and integrate the consensus protocol
with the fair ordering strategy to avoid censorship. Com-
pared with other fairness consensus schemes, our fairness
consensus can achieve both transaction order fairness and
high performance.

• Weight-based Ordering Strategy: We design a weight-
based ordering strategy that can commit all transactions
fairly within one consensus round, significantly reducing
the confirmation latency. Moreover, we present the forma-
tion process of transaction weight and two-stage ordering
in detail. Furthermore, we introduce a dynamic transaction
compression mechanism and an adjustable replica proposal
strategy to mitigate the communication overheads from
achieving order fairness.

• Experiment Evaluation: We implement a prototype of
Auncel bootstrapped from HotStuff. Through both proto-
type experiments and simulations, we show that Auncel
outperforms state-of-the-art baselines in terms of through-
put, scalability, and confirmation latency while still ensur-
ing order fairness.

Comparisons with existing protocols. Table I compares
Auncel with several representative order-fairness protocols.
Built on HotStuff, Auncel can achieve the closest performance
as HotStuff, i.e., 20,000+ transactions per second (TPS) and
19 ms confirmation latency, outperforming the state-of-the-art
order-fairness consensus protocols.

II. RELATED WORK

Order manipulations. Blockchain is a state machine repli-
cation that is driven by a consensus protocol, such as Proof-of-
Work [12] and Byzantine Fault Tolerance [4] protocols. How-
ever, the traditional consensus protocols adopted in both permis-
sioned blockchains [13]–[15] and permissionless blockchains
[16]–[20] have a problem that they cannot prevent the exertion
of manipulative actions on transaction order by malicious repli-
cas. Such order manipulations have been widely explored in
recent years [1]–[3], [21], and have brought millions of dollars
to attackers. For instance, attackers can extract 540M USD in
profits from decentralized finance by injecting transactions or
changing the order of transactions [3].

Censorship-resistant protocols. To address the problem of
order manipulation, recent works [22]–[28] dive into diminish-
ing the ability of block proposers (i.e., leaders) to order trans-
actions. This leads to a so-called censorship-resistant protocol.
Specifically, censorship-resistant protocols prevent malicious
block proposers from only ordering those transactions from
which they can extract profits. Protocols like [22], [23] rely on
encrypted transactions or reputation to defend unfair censorship.
However, attackers can still employ a client IP attack to censor
specific transactions. Besides, there are some works that try to
guard against malicious leaders. Protocols [24], [25] employ a
rotating leader or periodic leader to defend against malicious
leaders, while works [26]–[28] select leader randomly to avoid
consecutive malicious leaders. However, the current leader
still can manipulate transaction ordering without any detection
although the election or rotation is normal. In summary, the

above protocols lack a fair ordering pattern and a mechanism
for detection regarding transactions in a block.

Order fairness protocols. To better prevent order manip-
ulations, many recent works strive to design novel consensus
mechanisms that achieve transaction order fairness. Specifically,
order fairness requires transactions to be executed and commit-
ted in the order same as the majority of replicas’ receiving
orders. Intuitively, order fairness prevents order manipulations
because transaction order is no longer decided by malicious
replicas. Wendy [9] introduces an analogous notion called time-
relative-fairness, but its fairness essentially provides no guar-
antees since it requires synchronized clocks while the honest
clocks may be different locally. Pompē [5] employs median
timestamps of transactions by all replicas to achieve fair order
under synchronized clocks. However, a Byzantine leader is now
able to censor a specific transaction from being delivered and
manipulate the timestamps of some transactions. To avoid this,
there are some protocols like [7], [29] construct a directed graph
to provide ordering correctness of transactions, but they cannot
ensure the transactions to be output finally, satisfying only weak
liveness. Themis [6] leverages a deferred ordering mechanism
to provide stronger liveness than Aequitas [7] but overlooks the
significant performance overhead. Rashnu [8] inherits the fair
ordering and deferred methodology from Themis to only deter-
mine the order of transactions with data dependence, by which
Rashnu can reduce the cost of directed graph building and
sorting. However, all deferred ordering mechanisms adopted by
the above protocols require that transactions have to wait for
updating messages to confirm a fair order in multiple instances
of consensus. As shown in Fig. 2, deferring a transaction to be
ordered and committed will lead to large confirmation latency.

III. SYSTEM AND THREAT MODEL

A. System Model

Auncel is composed of a fixed number of replicas, one of
which is appointed the leader. The actual method of leader
selection is orthogonal to our work. Each replica has a unique
identity. The other replicas in Auncel are responsible for
proposing their own transactions and their orders, verifying the
signature and transaction order from the leader, and assuring
the order fairness of transactions. The leader takes the job of
collecting signatures and local orders from replicas, as well as
proposing transactions order and constructing a fairness block.

Auncel proceeds in rounds/instances. Each round of con-
sensus will create a new block. Similar to previous consensus
protocols [4], [6], [30], [31], we assume a partially synchronous
network, where a message can be delivered to all honest nodes
within an unknown time-bound after some Global Stabilization
Time (GST) [32]. Moreover, Auncel assumes the existence of
digital signatures and a Public Key Infrastructure (PKI) [33].
Additionally, we use a collision-resistant hash function D(·) to
map the message m to a fixed-size digest D(m).

B. Threat Model

In Auncel, there are n replicas that are divided into two
types: honest and malicious replicas. Honest replicas abide

by all protocols in Auncel while malicious (i.e., byzantine)
replicas may violate the protocols in arbitrary manners, such as
tampering, forgery, and interception of the transaction orders or
messages. We assume f out of n replicas are malicious replicas.
Auncel is similar to other order fairness consensus [6]–[8],
requiring n ≥ 4f

2γ−1 + 1 (see § V for detailed proof) to ensure
order fairness in a partially synchronous network where replica
fairness parameter γ denotes the fraction of replicas receiving
transactions in a particular order.

IV. SYSTEM DESIGN

A. System Overview

Auncel is a novel consensus protocol that can achieve order
fairness and high performance. The key components of Auncel
are briefly described as follows.

First, Auncel integrates order fairness to consensus design to
provide censorship resistance, consisting of two mechanisms:
(i) Versatile View Change (VVC) Mechanism that enables the
consensus to launch normally and incorporates a novel function
that allows replicas to propose transactions in advance. (ii) Con-
sistent Sequential Consensus (CSC) Framework that cooperates
with verification to guarantee all transactions and the global
fair order reach consistency between all replicas. The details of
fairness consensus are depicted in § IV-B.

Second, Auncel proposes a weight-based order fairness al-
gorithm, which is conducive to reducing the cost brought by
generating an ordering graph and eliminating ordering cycles.
The workflow contains two phases: (i) Weight Order Phase
obtains a linear weight sequence to denote transaction order,
through transforming the transaction locations into specific
weights. (ii) Final Order Phase further determines all positions
of the weight sequence to obtain the final fair weight sequence
of all transactions. The detailed strategy of order fairness is
presented in § IV-C.

Finally, Auncel presents design refinements to reduce com-
munication overheads brought by fairly ordering, which include
two approaches. (i) We design a dynamic transaction com-
pression mechanism to optimize and simplify transactions and
local ordering, thereby reducing the communication overhead of
consensus. (ii) We devise an adjustable replica proposal strategy
to batch more transactions within a consensus instance, making
full use of the network bandwidth. § IV-D elaborates on the
design refinements in detail.

B. Fairness Consensus Design

1) Versatile View Change (VVC) Mechanism. At the
beginning of each round or when the leader goes wrong, a
view change is executed to select a primary replica to begin
a new view. Our view-change mechanism not only inherits
the features and methods of existing view-change mechanisms
but also elevates itself by incorporating the functionality to
articulate the intention of replicas on transactions as well as
their orderings. In the phase of view change, all replicas are
responsible for proposing New-View messages, each of which
contains a view number and some quorum certificate (QC)
according to the threshold signature scheme [34], such as the

Prepare PreCommit Commit

Leader

Replica1

Replica2

Replica3

Replica4

View-Change

OrderQC PrepareQC LockedQC

Transaction Synchronization
& Order Proposing

Consistent Verification &
Order Finalization

DecideOrder-ProposeView-Change

Fig. 3. Consistent and Fair Consensus Framework

highest SortQC and PrepareQC in the state tree of themselves,
as described in the CSC framework (to be elaborated below).
In addition, all replicas are required to construct a specified
number of transaction lists based on their own transaction
pools. The replicas then package these transaction lists into
New-View messages and send them along with the messages
to the leader. Furthermore, the novel view change mechanism
can adopt a pipeline structure efficiently to confirm multiple
batches of transactions with fair order in parallel. Conversely,
existing representative ordering-fairness mechanisms either are
not compatible with the consensus pipeline or cannot leverage
the pipeline efficiently since they may be blocked for a long
time at one phase if there is no sufficient information regarding
the transactions and their order.

2) Consistent Sequential Consensus (CSC) Framework.
Building upon the VVC mechanism described above, we then
design a CSC framework as illustrated in Fig. 3, where n = 5
and f = 1. This mechanism enables the order fairness of
all transactions within a round in the event of successful
consensus execution, thereby ensuring consistency and liveness,
without the need for additional round information or delays
to supplement ordering messages. Details of these successive
consensus phases are elaborated as follows.

• View-Change: The details of the View-Change function
are given in the VVC Mechanism above.

• Order-Propose: The leader receives (n − f) New-View
messages and calculates the highest QC, referred to as
HighQC, from the received OrderQCs and PrepareQCs,
which can be used to build blocks and recover the consen-
sus at the responding height conveniently like HotStuff [4]
when the consensus crushes down. If successful, OrderQC
and PrepareQC will have the same height. Simultaneously,
the transaction lists received from replicas are verified and
aggregated by the leader as the set of transactions denoted
by curTxs, which need to be determined by replicas in
this round. HighQC and curTxs are then encapsulated as
Tx-Sync message and forwarded to replicas; Upon re-
ceiving the Tx-Sync message, replicas verify the message
and check whether their transactions are lost in curTxs.
If more than (f +1) replicas propose a missing vote for a
certain transaction, it indicates malicious behavior done by
the leader. Otherwise, they build their own local orderings
denoted by LocalOrderings along with the correct vote

as a Sort-Vote message, which is sent to the leader. In
this case, the leader can exhibit a degree of transaction
selection flexibility, such as choosing transactions that
occur more than (n−f) times, thereby avoiding malicious
replicas from sending large transaction lists (potentially
containing corrupt or fake transactions) to exhaust the
bandwidth of the leader.

• Prepare: Upon receiving (n − f) Sort-Vote messages,
the leader collects the signatures and combines them with
the signatures of the transaction set into a new signature.
This merged signature is then formed as OrderQC. Fur-
thermore, the leader consolidates all the LocalOrderings
to form an OrderingMap and forwards them along with
the merged signature as Prepare message. Replicas val-
idate the OrderingMap, sign the Prepare message, and
update the local OrderQC accordingly after receiving the
Prepare message. Then, they send a Prepare-Vote

message to the leader.
• Precommit: Upon receiving (n−f) Prepare-Vote mes-

sages, the leader collects the signatures and combines them
into PrepareQC, which is stored locally. Then, the leader
broadcasts this Prepare QC as part of the Precommit

message to the replicas. Upon receiving the Precommit
message, replicas sign it and update the PrepareQC ac-
cordingly. Subsequently, replicas reply Precommit-Vote

message to the leader.
• Commit: Upon receiving (n−f) Precommit-Vote mes-

sages, the leader collects the signatures and combines them
as the PrecommitQC just like the Precommit phase.
Then, the leader broadcasts this PrecommitQC as Commit
message to the replicas. Upon receiving the Commit

message, replicas sign it and update the LockedQC to the
PrecommitQC. Subsequently, Commit-Vote message will
be sent to the leader. The system will remain locked at this
stage. To speed up consensus confirmation, the leader and
replicas can compute the transaction order in advance with
the ordering-fairness strategy, so they can quickly commit
blocks as soon as they receive enough Commit-Vote

messages and Decide message respectively.
• Decide: Upon receiving (n−f) Commit-Vote messages,

the leader combines the signatures to CommitQC, which
are then broadcast as Decide message to all replicas.
Meanwhile, it leverages the ordering-fairness strategy to
determine the order of transactions if it has not done
so already. Upon receiving the Decide message, repli-
cas conduct the final ordering of transactions with the
ordering-fairness strategy if they have not finish the fair
order. Then, a new round begins.

C. Ordering-Fairness Strategy

Definition 1 (Equal-Order-Fairness). All nodes can propose
their own transaction ordering and their influence on the final
transaction ordering is equal. and the transaction ordering
satisfies to the following rule: given γ > 1

2 , if at least γ
nodes receive transaction tx1 before tx2, then transaction tx2

is placed no later than tx1 in the final transaction ordering.

0 1 4 23 5
0 1 2 43 5
0 2 3 15 4

0 2 3 15 4
0 2 1 43 5

10, 2 3, 4, 5Local Orderings

Medium Tx

Weight Computation

Pre-Sequence Post-Sequence

Weight Order Phase

Final Order Phase

1

2

3

4 4

Fig. 4. Two-Phase Ordering of Fair Ordering Strategy

1) Weight Assignment. In order to satisfy the definition
of fairness as well as eliminate the impact of cycles in the
transaction order dependency graph shown in existing works,
we avoid using graph-based sorting and adopt an ascending
yet progressively diminishing weight to represent the positions
of transactions within each replica’s local ordering, thereby
mitigating the influence of transaction position distance on
sorting. In this way, the likelihood of replica’s manipulation
is reduced and the linear nature of the final transaction order is
intuitively reflected. All transaction locations are converted into
a sequence table of weight values which is used for determining
fair order.

2) Two-Phase Ordering. Based on the weight assignment,
leaders and replicas are responsible for employing two-phase
ordering to handle local orderings and completely achieve or
validate the linear transaction ordering with fairness. By doing
so, they can construct and submit a block within one consensus
round that determines the order of all transactions fairly. To
elaborate on this mechanism, we present an example of two-
phase ordering, as shown in Fig. 4.

• Weight Order Phase: The weight order phase aims to
obtain a fairer transaction ordering sequence based on
the linearization of weight values, which helps the final
order phase reduce the number of compared transactions,
thereby accelerating the sorting process. Firstly, a weighted
formula (W = 1−kd) agreed by all replicas is determined
for the LocalOrderings to assign weights to transaction
ordering, where k ∈ (0, 1) represents the weight fairness
parameter to reflect the degree of fairness in this stage,
and d ∈ N represents the position parameter, indicating the
specific position of each transaction within the local order
of a replica. This results in an ascending yet progressively
diminishing weight, which is advantageous in mitigating
the influence of malicious nodes exploiting the parameter
d, leading to a relatively fair transaction ordering. For
instance, we set k = 1

2 here. Secondly, leaders and
replicas transform each transaction in the Local Orderings
into weight values based on the weight formula, e.g.,
we perform a Weight Computation on the tx4 and get
weight values { 7

8 ,
31
32 ,

63
64 ,

63
64}. Finally, leaders and replicas

calculate the sum of these weight values for each trans-
action, e.g., the weighted sum of tx4 is 122

32 . This process
constructs a weighted sum for each transaction relative to
its position in the local ordering. If two transactions have

the same weight sum, the transactions are then sorted in
ascending order based on the weight sums. Then they are
further sorted in ascending order based on the transaction
ID. As a result, it will yield a linearized transaction list,
e.g., {0, 2, 1, 3, 4, 5}, in relation to the original positions
of all transactions.

• Final Order Phase: The final order phase sequentially
examines and determines the final position of each trans-
action according to the fairness and achieves a deter-
ministic fair transaction ordering, based on the linearized
transaction list obtained from the weight order phase.
Firstly, leaders and replicas select the Medium Tx from the
linearized transaction list, e.g., tx1 in Fig. 4. According
to the fairness definition, they compare the Medium Tx
(tx1) with the other transactions according to their rel-
ative positions in the local orderings. This results in two
transaction sequences: the Pre-Sequence {0, 2}, consisting
of transactions preceding the Medium Tx, and the Post-
Sequence {3, 4, 5}, consisting of transactions succeeding
the Medium Tx. Secondly, the sorting process mentioned
above is recursively applied to the Pre-Sequence {0, 2} and
Post-Sequence {3, 4, 5} until each sub-sequence contains
only one transaction. Finally, all these sub-sequences are
merged together, resulting in the final deterministic and
fair linear transaction order.

D. Design Refinements

1) Dynamic Transaction Compression Mechanism. In the
aforementioned design of our order fairness strategy, sufficient
orders between transactions are conducive to eliminating order-
ing cycles and constructing a fair order of transactions within
one instance of consensus. However, it requires substantial local
orders from replicas, thereby augmenting communication over-
heads [35], [36]. Therefore, we devise a dynamic transaction
compression mechanism to effectively compress transactions of
each consensus round, thus reducing the communication over-
head of consensus and simplifying the process of transaction
verification.

First and foremost, in each round, the leader needs to
construct a unique dynamic transaction hash and binary trans-
action ID mapping table based on the received transactions
that require consensus. Secondly, this table is forwarded to
all replicas, enabling them to easily verify the existence of
transactions and convert between transaction hashes and IDs.
The construction of this mapping table involves compressing
each 256-bit transaction hash into incrementally increasing
binary IDs with only a few bits in size. This approach greatly
simplifies and compresses local orderings, particularly when
there are a large number of replicas and transactions, thereby
leading to a noticeable reduction in communication overhead.
Finally, when the leader constructs the final block and replicas
perform tasks like cleaning the transaction pool, they can utilize
the dynamic mapping table for transaction mapping, ensuring
a convenient and lossless restoration process.

2) Adjustable Replica Proposal Strategy. In the above
design of fair consensus, all replicas are responsible for propos-

ing their own transactions and local ordering, which helps to
enhance order fairness. It raises the problem that the network
bandwidth increases while there is no augmentation in the
number of transaction committed within one consensus round
[30], thus increasing the latency and compromising throughput.
To solve this problem, we develop Auncel with an adjustable
replica proposal strategy to increase the number of transaction
committed in one instance of consensus.

The main idea of the strategy is to leverage the parallelism
of consensus to increase the consensus commission number of
transactions by enhancing the proportion of distinct transactions
proposed by all replicas in each round without affecting latency,
thereby achieving a relatively higher transaction throughput.
Firstly, during the consensus’s initial round, the transactions
proposed by each replica in the View-Change phase remain
identical. Subsequently, in the following round, the leader and
replicas can ascertain the replicas with the highest transaction
ratio in the New-View message of the current round, based on
the transactions in the final consensus block. Finally, they can
then adjust the transaction number proposed by each replica in
the View-Change stage of the subsequent round, in accordance
with their transaction ratios. For instance, nodes with greater
transaction ratios will propose a higher number of transactions
in the upcoming round. This approach elevates the count of
distinct transactions within each round, thereby boosting the
transaction throughput of the consensus.

V. ANALYSIS

In this section, we present a theoretical analysis of the order
fairness, censorship resistance, and liveness of Auncel. Some
arguments are inspired by Themis [6].

Lemma 1. In a partially synchronous network, the order of
transactions is possibly fair only if n ≥ 4f

2γ−1 + 1, where n is
the number of replicas, f is the number of malicious replicas,
and γ is the fraction of replicas receiving transactions in a
particular order.

Proof. Since γ is the fraction of replicas receiving transactions
in a particular order, we decide a specific transaction can rely
on γn replicas. In addition, f replicas might be faulty due to
the partially synchronous network, so the fair order can rely
on (γn − f) replicas. However, f replicas may be malicious
replicas, i.e., only (γn− 2f) replicas are honest definitely. To
determine the order fairness of two transactions, a majority of
replicas must reach an agreement of the same order, that is
γn− 2f ≥ n

2 + 1, namely n ≥ 4f
2γ−1 + 1.

Theorem 1. Auncel guarantees censorship resistance and order
fairness.

Proof. Since n ≥ 4f
2γ−1 + 1, γn − 2f ≥ n

2 + 1, implying that
a majority of replicas’ proposals must be honest. For example,
a majority of replicas in Auncel propose a transaction tx1

and transaction tx2 during View-Change. The leader cannot
censor these transactions by delaying or dropping them since
the majority of replicas will verify them. In addition, there will

be a majority of replicas propose local orderings in which trans-
action tx1 is placed before transaction tx2 through the Tx-Sync
and Sort-Vote, and the order will finally reach an agreement
in Auncel. Since Auncel determined these transactions’ order
in the Weight Order Phase satisfied the notion of majority, it
will achieve order fairness.

Theorem 2. Auncel guarantees liveness.

Proof. In a partially synchronous network, correct client trans-
actions tx1 and tx2 will be received by all replicas. In Tx-Sync

phase of each consensus, there are at least (n − 2f) replicas
receiving tx1 and tx2. For example, γn− 2f ≥ n

2 +1 replicas
propose tx1 before tx2 in their local orderings through a phase
of Tx-Sync and Tx-Vote (as shown in Lemma 1). Since the
order of these two transactions is agreed upon by the majority of
replicas, these orders can be guaranteed in Two-Phase Ordering
and can be committed with a consensus instance, with no need
for further delay or considering any transaction that has not
been proposed. Therefore, Auncel ensures liveness.

VI. EVALUATION

A. Implementation and Settings

We implement a prototype of Auncel bootstrapped from
the HotStuff protocol [4] on top of its open-source libhotstuff
codebase for performance evaluation. We compare our Auncel
with the following existing schemes: 1) HotStuff without any
fairness guarantee [4]; 2) the state-of-the-art fairness solutions:
Themis [6] and its variant protocol Rashnu [8], both of which
are implemented on top of HotStuff [4]. Details about them are
elaborated on § II.

We conduct our experiments on two servers, each of which
is equipped with Intel Xeon Gold 5320 2.20GHz CPUs (26
cores each) and 128GB RAM. These servers have 100 Mb/s
bandwidth and connect with each other through HTTP and
WebSocket. The set of transactions submitted to the system
during each round is generated in advance and follows Zip-
fian distribution [37]. We conduct our evaluation under the
SmallBank benchmark in terms of throughput and latency.
We also conduct simulations leveraging Linux Netem, which
can simulate the performance of implemented systems in a
geo-distributed environment. We want to answer the following
questions through our experiments and simulations:
§ VI-B: Can Auncel achieve excellent performance under
different network environments?
§ VI-C: Can Auncel achieve excellent performance when
ordering large amounts of transactions?
§ VI-D: Can Auncel achieve the same fairness guarantee as
other systems?

B. Performance in different network environments

Network scale. We measure the throughput and confirmation
latency of the aforementioned four consensus mechanisms with
different network scale. The block size is 100 transactions.
The network scale increases from 5 replicas to 35 replicas.
Fig. 5 shows that the throughput of all four consensus schemes
decreases while their confirmation latency increases as the

5 10 15 20 25 30 35
Number of Replicas

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (K

TP
S) Themis

Rashnu
Auncel
HotStuff

(a) Throughput vs network scale

5 10 15 20 25 30 35
Number of Replicas

0

100

200

300

400

C
on

fir
m

at
io

n
La

te
nc

y
(m

s)

Themis
Rashnu

Auncel
HotStuff

(b) Latency vs network scale

Fig. 5. Throughput and latency under varying network scale

20 30 40 50 60
Extra Latency for Communication (ms)

0

1

2

3

4

Th
ro

ug
hp

ut
 (K

TP
S)

Themis
Rashnu

Auncel
HotStuff

(a) Throughput vs injected latency

20 30 40 50 60
Extra Latency for Communication (ms)

100
200
300
400
500
600
700
800

C
on

fir
m

at
io

n
La

te
nc

y
(m

s)

Themis
Rashnu

Auncel
HotStuff

(b) Latency vs injected latency

Fig. 6. Throughput and latency with varying injected latency

network scale increases. Among all the compared fairness
schemes, our Auncel achieves the highest throughput and lowest
latency, which is very close to the performance of HotStuff.
When there are 5 replicas in the network, the throughput
of Auncel is 20,545 transactions per second (TPS), which is
about 3× higher than Rashnu and 8× higher than Themis.
When the network scale increases, the latency of Themis and
Rashnu significantly increases, further enlarging the gap with
Auncel. For instance, at a replica number of 35, our latency
is 119.535 ms, whereas Themis reaches 324.060 ms, almost
doubling the gap observed at 5 replicas. This is because that
Auncel avoids multi-step updates adopted by Themis, hence
avoiding the corresponding communication overheads, which
is more significant in a larger network. Although Rashnu
attempts to mitigate the cost of graph building and sorting
by reducing the number of transactions sorted in each round,
its reliance on the graph-based sorting algorithm still incurs
high computational costs associated with cycle detection and
elimination, consequently resulting in considerable latency.

Communication latency. We measure the performance of
the implemented systems in a more distributed environment
through injecting additional latency to the network. Fig. 6 de-
picts the throughput and latency with varying extra injected la-
tency in simulations. The throughput of all protocols decreases
and the latency increases when the extra latency increases from
20 ms to 60 ms. However, the change of the performance of
Auncel is not as pronounced as that of Themis and Rashnu.
For example, the confirmation latency of Themis and Rashnu
both increase about 300 ms as the extra latency increase from
20 ms to 60 ms, while that of Auncel increases about 240
ms. This is because that the additional latency significantly
prolongs the time consumed by update operations of Themis
and Rashnu while Auncel has no additional updates or other
communication-intensive operations.

Fairness parameter. We then evaluate the impact of replica

1.0 0.9 0.8 0.7 0.6
Replica Fairness Parameter

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (K

TP
S)

0
25
50
75
100
125
150
175
200

C
on

fir
m

at
io

n
La

te
nc

y
(m

s)

Latency(Auncel)
Latency(Rashnu)
Latency(Themis)

Throughput(Auncel)
Throughput(Rashnu)
Throughput(Themis)

Fig. 7. Throughput & Latency vs
replica fairness parameter

400 800 1200 1600 2000
Number of Concurrently Outstanding Transactions

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

Th
ro

ug
hp

ut
 (K

TP
S)

Themis
Rashnu

Auncel
HotStuff

Fig. 8. Throughput vs number of con-
currently outstanding transactions

25 50 100

200

400

800

Block Size (transaction number)

0
5

10
15
20
25
30
35
40

Th
ro

ug
hp

ut
 (K

TP
S)

Themis
Rashnu

Auncel
HotStuff

(a) Throughput vs block size

25 50 100

200

400

800

Block Size (transaction number)

101

102

103
C

on
fir

m
at

io
n

La
te

nc
y

(m
s) Themis

Rashnu
Auncel
HotStuff

(b) Confirmation Latency vs block size

Fig. 9. Throughput and latency with varying block sizes
fairness parameter γ on the performance of the three order
fairness approaches. γ influences the number of byzantine
nodes and indirectly affecting the consensus process. For a
fair comparison, we select the same replica fairness parameters
for three systems and compare their performance under the
same settings, with γ ∈ {1.0, 0.9, 0.8, 0.7, 0.6}. As we have
elaborated in § V, the network size is related to γ, i.e.,
n = 4f

2γ−1 + 1, which means stronger fairness requirement
demands larger network. As depicted in Fig. 7, reducing the
fairness parameter and enlarging the network scale decreases
the overall throughput and increases the latency due to the
increased communication overheads between replicas, which
is similar to our observation in Fig. 5. Since Rashnu and
Themis require the update operations to finalize the order and
hence introducing additional latency, Auncel can achieve better
performance through avoiding such overheads.

Concurrently outstanding transactions. We measure the
impact of the number of concurrently outstanding transactions
(max-async), i.e., the number of transactions not yet committed
at a time, on performance. In simulations, we set the network
size to 10 and block size to 100. Max-async ranges from
400 to 2000. As depicted in Fig. 8, the throughput of all
systems increase as max-async raises at first. This is because
that replicas can process the increased number of transactions in
parallel, thereby contributing to the increased overall through-
put. However, with the increasing max-async, the throughput
of Themis and Rashnu then decreases while that of Auncel
remains stable, slightly lower than HotStuff. This is because
that when max-asyns increases, different replicas will propose
more diverse local orders, which decreases the performance
of the ordering algorithm of Themis and Rashnu. Meanwhile,
when the block size and network scale remain constant, the
processing capability of Auncel will finally reach its maximum,
thus resulting in the stable throughput.

C. Performance under different block settings

Block size. Fig. 9 depicts the performance of different
systems with the increased block size. The network scale is

25 50 100

200

400

800

Block Size (transaction number)

0
1
2
3
4
5
6
7

Th
ro

ug
hp

ut
 (K

TP
S)

Themis
Rashnu
Auncel
HotStuff

(a) Throughput vs block size

25 50 100

200

400

800

Block Size (transaction number)

28

29

210

211

212

C
on

fir
m

at
io

n
La

te
nc

y
(m

s) Themis
Rashnu
Auncel
HotStuff

(b) Confirmation Latency vs block size

Fig. 10. Throughput and latency in various block sizes in a simulated setting

5. The block size doubles each time, increasing from 25 to
800 transactions. Fig. 9(a) shows a similar trend between the
throughput of Auncel and HotStuff, which increase as the block
size raises. Conversely, Rashnu and Themis exhibit a declining
trend in throughput, significantly lower than Auncel. When each
block contains 800 transactions, Auncel achieves a throughput
of 25,268 TPS, while Rashnu and Themis only obtain 4,152
and 793 TPS, respectively. This discrepancy arises because the
number of transactions for fair sorting also increases when
the block size increases. Our sorting algorithm boasts a low
complexity when sorting transactions, without the need to
detect complex circles. Meanwhile, Rashnu and Themis are
fundamentally unable to avoid the expensive update operations
caused by the increasing number of transactions, resulting in
severe degradation of performance. It is worth mentioning that
Auncel’s throughput surpasses HotStuff’s when the block size
is 100, thanks to the efficacy of the proposed VVC mechanism
(as shown in § IV-B) and Adjustable Replica Proposal Strategy
(as shown in § IV-D), enabling replicas to propose and submit
more transactions per round. However, in subsequent cases,
Auncel’s throughput diminishes even below HotStuff’s due to
the increased overhead in transaction sorting brought about by
larger block sizes. Fig. 9(b) plots confirmation delay versus the
varied block size. Our Auncel avoids frequent update operations
and hence achieves the lowest latency among all fair consensus
protocols, even with a large block size. The increment of the
latency of Auncel is slower than that of Rashnu and Themis.
When the block size is 800, the latency of Auncel is only
106.083ms, which is approximately 1

19 of Themis’ latency
(1,987ms) in the same scenario.

We also measure the impact of varied block sizes while
injecting an extra 60 ms latency to the underlying network
through simulations. The results are depicted in Fig. 10. Com-
pared with the experiments in Fig. 9 without extra latency,
the system performance change differently as the block size
increases. The throughput of Auncel and HotStuff improve
more rapidly compared with Rashnu, while Themis’s through-
put first rises and then descends. It is worth mentioning that
the throughput of Auncel and Rashnu continuously increase
in the simulated environment while remaining stable in the
experiments depicted in Fig. 9(a). This is because that when the
network has higher communication latency, more proportion of
the confirmation latency is caused by communication between
nodes compared with that caused by sorting transactions. As
a result, a larger block can increase the proportion of compu-

10% 30% 50%
Discrepancy Rate

0.0

2.5

5.0

7.5

10.0

12.5

Th
ro

ug
hp

ut
 (K

TP
S)

Themis
Rashnu
Auncel

(a) Throughput vs discrepancy rate

10% 30% 50%
Discrepancy Rate

0

100

200

300

400

C
on

fir
m

at
io

n
La

te
nc

y
(m

s) Themis
Rashnu

Auncel

(b) Latency vs discrepancy rate

Fig. 11. Throughput and latency under various discrepancy rate

tation compared with communication and can lead to higher
throughput. In contrast, large block size may not be beneficial
to throughput since computation overheads become higher than
communication overheads when the underlying latency is low,
as demonstrated in Fig. 9(a). The update operations of Themis
and Rashnu highly rely on communication between replicas,
and Rashnu reduces the overheads by reducing transactions
to be ordered. As a result, Rashnu achieves slightly better
performance than Themis while both of them suffer from huge
overheads. In comparison, Auncel achieves better performance.
When the block size is 800, Auncel achieves 2× and 7×
higher throughput and lower latency compared with Rashnu
and Themis, respectively.

Discrepancy rate. We evaluate the impact of the degree of
discrepancy between sets of transactions received by different
replicas, namely discrepancy rate. The discrepancy rate is
calculated by comparing the set of transactions proposed by
each replica with that proposed by a specific replica. The
network scale is 15 and each replica will propose a batch of
transactions from the transaction pool with discrepancy rates of
10%, 30%, and 50%. Fig. 11 depicts the performance of these
fairness consensus schemes with the increased discrepancy rate.
Fig. 11(a) shows that Auncel outperforms Themis and Rashnu
in terms of throughput. When the discrepancy rate increases,
Auncel’s throughput shows an upward trend while Themis and
Rashnu’s throughput declines. This is because a large discrep-
ancy rate requires Themis and Rashunu to conduct deferred
updates for fair sorting. Conversely, Auncel incorporates the
Adjustable Replica Proposal Strategy (as depicted in § IV-D)
that allows replicas to propose and submit more transactions
per consensus, leading to the increased throughput. Fig. 11(b)
shows the latency of these fairness consensus schemes increases
as the discrepancy rise. The reason is that deferred updates in
Themis and Rashnu prolongs the time while Auncel requires
slightly more time to process more transactions.

D. Fairness comparison

Firstly, We measure the degree of order fairness of our two-
phase ordering compared with Themis which can achieve order
fairness. We employ the Rank Biased Overlap (RBO) method-
ology [38] to measure the similarity between two transaction
orderings so as the degree of order fairness is quantified. RBO is
achieved by calculating the intersection size of corresponding
sets at varying depths to derive the similarity. A value of 1
for RBO signifies complete equality between two ranking lists,

TABLE II
CONFIRMATION LATENCY AND FAIRNESS COMPARISON WITH/WITHOUT

THE SECOND PHASE OF AUNCEL’S ORDER FAIRNESS

W/O Final Order W Final Order

Block Size Latency
RBO between Two-Phase

Latency
k = 1

2
k = 1

4
k = 1

8

100 14.201 0.987 0.988 0.989 16.409

200 24.127 0.985 0.987 0.987 28.039

300 34.924 0.982 0.983 0.985 40.356

400 45.964 0.978 0.980 0.983 52.998
1 Block size is the number of transaction, Latency is confirmation latency

measured in milliseconds(ms), k represents weight fairness parameter.

with a higher value close to 1 indicating higher similarity.
We compute and compare the RBO values under the block
size varying from 100 to 400 with Themis only to assess
the order of identical transaction set. We conduct each set of
experiments 50 times and the results reveal that the RBO values
are consistently 1 since we both share a consistent concept of
fairness in transaction ordering.

Secondly, we evaluate the effect of weight fairness parameter
k on the fairness between two phases of our fair ordering
strategy and conduct each set of experiments 20 times. The
result under various block sizes shown in Table II. We observe
that the average values of RBO are close to 1 under different
block sizes, indicating these two transaction sequences are
highly similar in the real network. Though the sequences are
not completely identical, the similarity is remarkably high, with
only a few transactions undergoing position changes. The value
of RBO gradually increases as k decreases. This is because the
reduction in k weakens the influence of position, significantly
enhancing the fairness degree of the first phase.

In summary, we conclude that the first phase of our ordering-
fairness strategy can achieves a high level of fairness. Besides,
we conduct experiments to evaluate the confirmation latency
with and without the Final Order Phase of our consensus. The
result, as shown in Table II, indicates that under these block
sizes, the reduced latency accounts for approximately 13% of
the total latency. This suggests that we can enhance the overall
performance of fairness consensus by using only the first phase
(weight order phase) if a small fraction of the fairness loss can
be tolerated.

VII. CONCLUSION

This paper presents Auncel, a novel consensus protocol that
can preserve order fairness and high performance. We design a
weight-based sorting algorithm to allow blocks to be committed
efficiently. We also integrate the ordering algorithm with the
consensus protocol to avoid censorship attacks. Evaluation
results show that Auncel can increase the throughput by 6× and
reduce the confirmation latency by 3× compared with state-of-
the-art protocols while preserving the similar degree of fairness.
In the future work, we plan to study constant-size SNARKs on
order fairness in a real world-spanning system with more large-
scale nodes and further optimize communication and enhance
performance.

REFERENCES

[1] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges,” in IEEE SP, 2020, pp.
910–927.

[2] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency
trading on decentralized on-chain exchanges,” in IEEE SP, 2021, pp. 428–
445.

[3] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?” in IEEE SP, 2022, pp. 198–214.

[4] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff:
Bft consensus with linearity and responsiveness,” in ACM PODC, 2019,
pp. 347–356.

[5] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine ordered
consensus without byzantine oligarchy,” in OSDI, 2020, pp. 633–649.

[6] M. Kelkar, S. Deb, S. Long, A. Juels, and S. Kannan, “Themis: Fast,
strong order-fairness in byzantine consensus,” in ACM CCS, 2023, pp.
475–489.

[7] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-fairness for
byzantine consensus,” in CRYPTO, 2020, pp. 451–480.

[8] M. J. Amiri, H. Nagda, S. P. Singhal, and B. T. Loo, “Rashnu:
Data-dependent order-fairness.” [Online]. Available: https://www.seas.
upenn.edu/∼mjamiri/papers/rashnu.pdf

[9] K. Kursawe, “Wendy grows up: More order fairness,” in FC Workshops,
2021, pp. 191–196.

[10] G. Wang, L. Cai, F. Gai, and J. Niu, “Phalanx: A practical byzantine
ordered consensus protocol,” arXiv preprint arXiv:2209.08512, 2022.

[11] J. Zhang, W. Chen, S. Luo, T. Gong, Z. Hong, and A. Kate, “Front-
running attack in sharded blockchains and fair cross-shard consensus,”
NDSS, 2024.

[12] R. Zhang, D. Zhang, Q. Wang, S. Wu, J. Xie, and B. Preneel, “Nc-max:
Breaking the security-performance tradeoff in nakamoto consensus,” in
NDSS, 2022, pp. 1–18.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in EuroSys, 2018, pp. 1–15.

[14] Q. Wang and R. Li, “A weak consensus algorithm and its application to
high-performance blockchain,” in IEEE INFOCOM, 2021, pp. 1–10.

[15] X. Qi, “S-store: A scalable data store towards permissioned blockchain
sharding,” in IEEE INFOCOM, 2022, pp. 1978–1987.

[16] J. Zhang, Z. Hong, X. Qiu, Y. Zhan, S. Guo, and W. Chen, “Skychain:
A deep reinforcement learning-empowered dynamic blockchain sharding
system,” in ICPP, 2020, pp. 1–11.

[17] Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A layered sharding
blockchain system,” in IEEE INFOCOM, 2021, pp. 1–10.

[18] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo,
“Brokerchain: A cross-shard blockchain protocol for account/balance-
based state sharding,” in IEEE INFOCOM, 2022, pp. 1968–1977.

[19] Z. Cai, J. Liang, W. Chen, Z. Hong, H.-N. Dai, J. Zhang, and Z. Zheng,
“Benzene: Scaling blockchain with cooperation-based sharding,” IEEE
TPDS, vol. 34, no. 2, pp. 639–654, 2022.

[20] Z. Hong, S. Guo, E. Zhou, J. Zhang, W. Chen, J. Liang, J. Zhang, and
A. Zomaya, “Prophet: Conflict-free sharding blockchain via byzantine-
tolerant deterministic ordering,” in IEEE INFOCOM, 2023, pp. 1–10.

[21] R. McLaughlin, C. Kruegel, and G. Vigna, “A large scale study of the
ethereum arbitrage ecosystem,” in USENIX Security, 2023.

[22] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rottenstreich,
R. Tamari, and D. Yakira, “A fair consensus protocol for transaction
ordering,” in IEEE ICNP, 2018, pp. 55–65.

[23] L. Heimbach, E. Schertenleib, and R. Wattenhofer, “The potential of
self-regulation for front-running prevention on dexes,” arXiv preprint
arXiv:2306.05756, 2023.

[24] A. Yakovenko, “Solana: A new architecture for a high performance
blockchain v0. 8.13,” Whitepaper, 2018.

[25] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the libra blockchain,” The Libra Assn., Tech. Rep, vol. 1,
no. 1, 2019.

[26] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in SOSP, 2017, pp.
51–68.

[27] K. Lev-Ari, A. Spiegelman, I. Keidar, and D. Malkhi, “Fairledger:
A fair blockchain protocol for financial institutions,” arXiv preprint
arXiv:1906.03819, 2019.

[28] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the
permissionless model,” in DISC, 2017, p. 6.

[29] C. Cachin, J. Mićić, N. Steinhauer, and L. Zanolini, “Quick order
fairness,” in FC, 2022, pp. 316–333.

[30] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure, fair and scalable
open blockchain,” in IEEE SP, 2021, pp. 466–483.

[31] W. Chen, Z. Yang, J. Zhang, J. Liang, Q. Sun, and F. Zhou, “Enhancing
blockchain performance via on-chain and off-chain collaboration,” in
ICSOC, 2023, pp. 393–408.

[32] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[33] J. Buchmann, E. Karatsiolis, A. Wiesmaier, and E. Karatsiolis, Introduc-
tion to public key infrastructures. Springer, 2013, vol. 36.

[34] V. Shoup, “Practical threshold signatures,” in EUROCRYPT, 2000, pp.
207–220.

[35] Y. Han, C. Li, P. Li, M. Wu, D. Zhou, and F. Long, “Shrec: Bandwidth-
efficient transaction relay in high-throughput blockchain systems,” in
ACM SOCC, 2020, pp. 238–252.

[36] V. B. Mišić, J. Mišić, and X. Chang, “Reducing the number of transaction
messages in bitcoin,” Peer-to-Peer Networking and Applications, vol. 15,
no. 1, pp. 768–782, 2022.

[37] C. Tullo and J. Hurford, “Modelling zipfian distributions in language,” in
Proceedings of language evolution and computation workshop/course at
ESSLLI, 2003, pp. 62–75.

[38] A. Sarica, A. Quattrone, and A. Quattrone, “Introducing the rank-biased
overlap as similarity measure for feature importance in explainable
machine learning: A case study on parkinson’s disease,” in International
Conference on Brain Informatics. Springer, 2022, pp. 129–139.

