
Benzene: Scaling Blockchain With
Cooperation-Based Sharding

Zhongteng Cai , Junyuan Liang, Wuhui Chen ,Member, IEEE, Zicong Hong ,

Hong-Ning Dai , Senior Member, IEEE, Jianting Zhang , and Zibin Zheng , Fellow, IEEE

Abstract—Sharding has been considered as a prominent approach to enhance the limited performance of blockchain. However, most

sharding systems leverage a non-cooperative design, which lowers the fault tolerance resilience due to the decreased mining power as

the consensus execution is limited to each separated shard. To this end, we present Benzene, a novel sharding system that enhances

the performance by cooperation-based sharding while defending the per-shard security. First, we establish a double-chain architecture

for function decoupling. This architecture separates transaction-recording functions from consensus-execution functions, thereby

enabling the cross-shard cooperation during consensus execution while preserving the concurrency nature of sharding. Second, we

design a cross-shard block verification mechanism leveraging Trusted Execution Environment (TEE), via which miners can verify

blocks from other shards during the cooperation process with the minimized overheads. Finally, we design a voting-based consensus

protocol for cross-shard cooperation. Transactions in each shard are confirmed by all shards that simultaneously cast votes,

consequently achieving an enhanced fault tolerance and lowering the confirmation latency. We implement Benzene and conduct both

prototype experiments and large-scale simulations to evaluate the performance of Benzene. Results show that Benzene achieves

superior performance than existing sharding/non-sharding blockchain protocols. In particular, Benzene achieves a linearly-improved

throughput with the increased number of shards (e.g., 32,370 transactions per second with 50 shards) and maintains a lower

confirmation latency than Bitcoin (with more than 50 shards). Meanwhile, Benzene maintains a fixed fault tolerance at 1/3 even with the

increased number of shards.

Index Terms—Blockchain, sharding, scalability, function decoupling, consensus algorithm

Ç

1 INTRODUCTION

AS a decentralized ledger storing historical transactions,
blockchain can be regarded as a massive decentralized

database. Blockchain has been considered as a disruptive tech-
nology reshaping industrial and business sectors due to its

decentralization, transparency, traceability, and immutability
[1], [2]. However, blockchain systems such as Bitcoin andEther-
eum have poor performance in terms of low transaction
throughput and high latency, comparedwith conventional cen-
tralized payment systems. For example, Bitcoin can process 7
Transactions Per Second (TPS) with a 10-minute latency while
centralized payment systems such as Visa can handle thou-
sands of transactionsper secondwith real-time confirmation [3].
The poor performance hinders blockchain systems from awide
adoption in practice. There have been a myriad of attempts for
scaling up blockchain systems [4], [5], [6], [7], [8], [9]. One of the
most popular and practical approaches to enhance blockchains
is sharding [10]. The basic idea of sharding is to divide the entire
network into different subsets (i.e., shards). Consequently,
workloads of the entire system, including computation, com-
munication, and storage, are distributed among shards to be
executed in parallel. As a result, the throughput of a block-
chain-sharding system can be significantly improved with the
increased number of shards [11]. According to consensus algo-
rithms being adopted, sharding approaches can be further cate-
gorized into Byzantine-Fault-Tolerance (BFT) shards (e.g.,
OmniLedger [12] and RapidChain [13]) and Proof-of-Work
(PoW) shards (e.g.,Monoxide [14]).

1.1 Motivation

Limitations of Existing Sharding Schemes. Most sharding
approaches mainly adopt a non-cooperative design, in which
an independent consensus reaches in each shard without
reliance on other shards. As a result, participants of the con-
sensus protocol are only limited to nodes belonging to a

� Zhongteng Cai, Junyuan Liang, and Wuhui Chen are with the School of
Computer Science and Engineering, Sun Yat-sen University, Guangzhou
510006, China.
E-mail: {caizht3, liangjy53}@mail2.sysu.edu.cn, chenwuh@mail.sysu.edu.
cn.

� Zicong Hong is with Hong Kong Polytechnic University, Hong Kong
SAR, China. E-mail: zicong.hong@connect.polyu.hk.

� Hong-Ning Dai is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong. E-mail: hndai@ieee.org.

� Jianting Zhang is with the Department of Computer Science, Purdue Uni-
versity, West Lafayette, IN 47907 USA. E-mail: zhan4674@purdue.edu.

� Zibin Zheng is with the School of Software Engineering, Sun Yat-sen Uni-
versity, Zhuhai, Guangdong Province 519082, China. E-mail: zhzibin@mail.
sysu.edu.cn.

Manuscript received 21 January 2022; revised 13 October 2022; accepted 27
November 2022. Date of publication 13 December 2022; date of current ver-
sion 27 December 2022.
The work was supported in part by the National Key Research and Develop-
ment Plan under Grant 2021YFB2700302, in part by the National Natural
Science Foundation of China under Grant 62172453, in part by the National
Natural Science Foundation of Guangdong province under Grants
2022A1515010154, 6142006200403, and XM2021XT1084, in part by the
Major Key Project of PCL under Grant PCL2021A06, in part by the Program
for Guangdong Introducing Innovative and Entrepreneurial Teams under
Grant 2017ZT07X355, and in part by the Pearl River Talent Recruitment
Program under Grant 2019QN01X130.
(Corresponding author: Wuhui Chen.)
Recommended for acceptance by R. Tolosana.
Digital Object Identifier no. 10.1109/TPDS.2022.3227198

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023 639

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6536-8979
https://orcid.org/0000-0002-6536-8979
https://orcid.org/0000-0002-6536-8979
https://orcid.org/0000-0002-6536-8979
https://orcid.org/0000-0002-6536-8979
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0001-5689-382X
https://orcid.org/0000-0001-5689-382X
https://orcid.org/0000-0001-5689-382X
https://orcid.org/0000-0001-5689-382X
https://orcid.org/0000-0001-5689-382X
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0002-0161-9716
https://orcid.org/0000-0002-0161-9716
https://orcid.org/0000-0002-0161-9716
https://orcid.org/0000-0002-0161-9716
https://orcid.org/0000-0002-0161-9716
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
mailto:caizht3@mail2.sysu.edu.cn
mailto:liangjy53@mail2.sysu.edu.cn
mailto:chenwuh@mail.sysu.edu.cn
mailto:chenwuh@mail.sysu.edu.cn
mailto:zicong.hong@connect.polyu.hk
mailto:hndai@ieee.org
mailto:zhan4674@purdue.edu
mailto:zhzibin@mail.sysu.edu.cn
mailto:zhzibin@mail.sysu.edu.cn

single shard1. Although non-cooperative sharding schemes
relief workloads imposing on each node compared with
non-sharding systems, they also confront critical security
concerns. First, non-cooperative sharding leads to a lower
fault tolerance due to the separation of honest participants.
Compared with attacking the entire non-sharding system, it
is easier for an adversary to attack a single shard in a shard-
ing system (also known as 1% attack [15]). Consequently,
the fault tolerance resilience of a sharding system is lower
than that of a non-sharding system when adopting the same
consensus algorithm. With respect to BFT-based sharding
schemes, to ensure that each shard can satisfy the intra-
shard fault tolerance with high probability (e.g., 99%), the
sharding system is subject to a lower total fault tolerance.
For instance, OmniLedger [12] has 33% intra-shard fault tol-
erance and 25% total fault tolerance. Regarding PoW-based
sharding schemes, since honest mining power is divided
into isolated shards, the adversary is allowed to conduct 1%
attack by focusing its mining power on a single shard [14].
As proved in Theorem 1 (in Section 5.1.1), the system fault
tolerance decreases from 1/2 in non-sharding Bitcoin to 1/
(s+1) in the non-cooperative sharding system, where s rep-
resents the number of shards. The root cause of the
decreased fault tolerance resilience of non-cooperative
sharding schemes lies in the separation of honest partici-
pants, thereby leading to the decreased mining power.

Second, security challenges further hinder the full opti-
mization of the system performance. For example, the BFT-
based sharding requires the reconfiguration of periodic
epochs to prevent a single shard from being captured by a
slowly adaptive adversary [12]; this demands extra time
costs and in turn weakens the system performance [13].
Moreover, blocks in a PoW-based sharding system need to
wait for more sequential blocks compared with non-shard-
ing systems, since the separation of mining power leads to a
higher probability for a single block being orphaned.

To tackle these challenges, we investigate a cooperation-
based sharding. The basic idea of cooperation-based sharding
is to let different shards cooperate with each other to con-
firm transactions while preserving parallelism. In other
words, each shard reaches a consensus with the participa-
tion of mining power from other shards. Such cooperation
increases the number of participants in the consensus,
thereby enhancing the per-shard security.

Challenges in Cooperation-Based Sharding.Realizing the coop-
eration-based sharding, however, poses the following non-
trivial challenges. (1) How to design a cooperation-based sharding
architecture to realize cross-shard cooperation while preserving par-
allelism? The architecture in previous non-cooperative shard-
ing systems cannot efficiently support the cooperation among
shards. The cooperation-based sharding demands a novel
design, which can enable efficient cross-shard cooperation
while preserving parallelism. (2)How to conduct cross-shard ver-
ification with low per-node overheads? To enable cooperation
among shards, nodes need to verify blocks from other shards.
A trivial approach is to store all historical transactions of other
shards for block verification, thereby causing considerable

storage overheads. Such overheads need to be reduced to
achieve a scalable sharding solution. (3)How to design a cooper-
ation-based consensus protocol to assure the per-shard security?The
cooperation-based sharding needs to design a consensus pro-
tocol utilizing the mining power from multiple shards while
not compromising the systemperformance.

1.2 Main Results and Contributions

Our Solutions. To tackle these challenges, we present a novel
scalable sharding system, namely Benzene, analogous to the
planar ring structure of the chemical “Benzene”. Our Ben-
zene realizes the cross-shard cooperation with the following
novelties. (1) Benzene decouples system functions to enable coop-
eration while preserving parallelism. Previous sharding sys-
tems [12], [13], [14] couple the functions of both transaction
recording and consensus execution together. Differently, in
Benzene, functions of transaction recording and consensus
execution are separated from each other. Transaction record-
ing is conducted by each shard independently, and consen-
sus execution is conducted by all shards in cooperation.
Moreover, we decouple the blockchain structure to support
different functions. In Benzene, we design a novel double-
chain architecture, which consists of i) proposer chains
assigned for independent transaction recording in each
shard and ii) vote chains assigned for cooperation-based con-
sensus. Proposer chains record transactions, while vote
chains are mainly composed of lightweight block headers.
Such a design enables lightweight cooperation while pre-
serving the concurrency nature of sharding. (2) Benzene
designs cross-shard block-verification mechanism based on Trusted
Execution Environment (TEE). TEEs [16], [17] can be deployed
in each shard to provide cross-shard block-verification serv-
ices. Nodes can directly verify validation proofs provided by
TEEs rather than verifying original proposer blocks (i.e.,
blocks in proposer chains) from other shards. It is worth
mentioning that nodes in the blockchain network do not
have to trust all TEEs as some of them might be compro-
mised by the adversary. Conversely, honest nodes can check
the validity of validation proofs so as to improve the reliabil-
ity. (3) Benzene designs a cooperation-based consensus protocol
based on cross-shard voting. Proposer blocks that have been
authenticated by cross-shard verification are voted by vote
blocks (i.e., blocks in vote chains), which are generated in all
shards. The proposer block with the most number of votes in
each shard will be considered as the consensus result. Such a
protocol introduces more mining power into a single shard,
thereby enhancing the per-shard security. Besides, cross-
shard transactions are confirmed in related shards sequen-
tially. They are first confirmed in the originated shard, sent
to the targeted shard along with related validation proofs,
packaged again in a proposer block and finally get confirmed
in the targeted shard. Forks may occur once a cross-shard
transaction is aborted in the originated shard to preserve
atomicity, but such a situation occurs quite rarely when the
transaction is embedded deep enough in the originated
shard.

Main Results. We implement Benzene and conduct both
intensive prototype experiments and simulations to evalu-
ate its performance with a comparison with the state-of-
the-art sharding/non-sharding schemes. For a high-level

1. Although different shards may process cross-shard transactions
(such as [13]), they do not cooperate in confirming blocks of each indi-
vidual shard.

640 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

presentation, we mainly categorize existing schemes into 1)
traditional non-sharding (such as Bitcoin), 2) voting-based
non-sharding (such as Prism [18]), 3) non-cooperative
sharding and 4) Monoxide [14]. Table 1 shows a comparison
of Benzene with these representative approaches. Benzene
achieves 32,370 TPS and confirms each block with 13
sequential blocks when there are 50 shards (details on the
experimental results to be given in Section 6). Moreover,
Benzene assures a fixed fault tolerance of 1/3 while distrib-
uting the storage overheads among all shards. By contrast,
other approaches cannot achieve a comparable performance
to Benzene. The major reason is explained as follows.
Although the voting-based non-sharding achieves a higher
throughput and lower confirmation latency than Bitcoin-
like systems (traditional non-sharding systems) through
function decoupling, it imposes the same computation and
storage overheads on each node, thereby leading to poor
scalability. Meanwhile, although the non-cooperative shard-
ing scales up traditional non-sharding systems by dividing
the computation and storage overheads, it is subject to a
longer confirmation interval and a decreased fault tolerance
due to the separation of honest mining power. Monoxide
introduces Chu-ko-nu mining, which allows miners to mine
blocks for multiple shards, to protect single shards. How-
ever, it requires miners to store and verify blocks of other
shards, thereby increasing per-node overhead. Differing
from the above approaches, Benzene combines both shard-
ing and function decoupling technologies, and designs ligh-
weight cooperation protocol, to implement cooperation-
based sharding, consequently achieving a considerable
improvement in terms of the throughput and preserving a
fixed fault tolerance with the increment of shards.

Contributions. The main contributions of this paper are
summarized as follows:

� Double-Chain Sharding Architecture.We present the dou-
ble-chain architecture to enable efficient cross-shard
cooperation. We separate transaction-recording from
consensus-execution so as to execute them at different
blockchains. Such a design enables cross-shard cooper-
ation in Benzene without affecting independent trans-
action recording processes in each shard.

� TEE-Assisted Cross-Shard Verification.We leverage TEEs
to provide cross-shard block-verification services,
thereby relieving the communication and storage over-
heads required by cross-shard cooperation. We reduce
the per-node overheads without compromising secu-
rity and decentralization.

� Cooperation-Based Consensus. We present a coopera-
tion-based consensus protocol to assure the per-
shard security and enhance the system performance.
In our protocol, transactions in each shard are con-
firmed by vote blocks which are generated in parallel
among all shards. This design enhances the fault tol-
erance of a single shard and reduces the confirma-
tion latency.

� Experiment Evaluation. We conduct both prototype
experiments and simulations to evaluate the perfor-
mance of Benzene. Our results show that the through-
put of Benzene is linearly improved with the number
of shards increasing to 200 and achieves 32,370 TPS
with 50 shards. Moreover, Benzene achieves a lower
confirmation latency than the traditional non-shard-
ing system with a fixed fault tolerance of 1/3, when
there aremore than 50 shards.

The rest part of this paper is organized as follows. In Sec-
tion 2, we introduce previous studies related with this
paper. Section 3 presents system model and adversary
model of our Benzene. Section 4 describes the system design
of Benzene in detail. Security analysis and performance
analysis of our system are given in Section 5. Experimental
setup and evaluation results are proposed in Section 6.
Finally, we conclude our work in Section 7.

2 RELATED WORK

2.1 Blockchain-Sharding System

A number of blockchain-sharding systems have been pro-
posed and investigated [19], [20], [21], [22], [23], [24], [25]. In
particular, Elastico [26] partitions the network into several
committees to process transactions in parallel while relying on
a final committee to agree on a global result. However, since
each committee in Elastico uses a non-scalable PBFT [27] con-
sensus as its intra-committee consensus, it limits a committee
in a small scale and also leads to a high failure probability [12].
OmniLedger [12] designs a scalable BFT-based consensus
algorithm, namely ByzCoinX, to increase the size of each
shard, consequently reducing the failure probability. How-
ever, OmniLedger is still subject to 33% intra-shard fault toler-
ance and 25% total fault tolerance, which is the same as
Elastico [13]. To increase the fault tolerance, RapidChain [13]
runs an intra-shard BFT-based consensus with 50% fault toler-
ance in a synchronous network though such an approach is
only suitable for a small-scale shard. By contrast, Benzene can
guarantee the high node scalability with PoW-based consen-
sus [28]. Dang et al. [29] apply sharding to permissioned

TABLE 1
Comparison of Benzene With Other Sharding/Non-Sharding Blockchain Protocols

Protocols Throughput
(TPS)

Confirmation
Interval

Fault
Tolerance

StorageScalability Function
Decoupling

Traditional non-sharding (Bitcoin) 2,780 15 1/2 X ✗ ✗
Voting-based non-sharding
(Prism)

6,170 3 1/2 X ✗ ✓

Non-cooperative sharding 9,330 89 1=ðsþ 1Þ X=s ✓ ✗
Monoxide 9,260 15 1/2 X ✓ ✗
Benzene (this paper) 32,370 13 1/3 X=s ✓ ✓

of nodes = 2,000; Fault tolerance = 1/4;# of shards = s; Total storage overhead =X.

CAI ETAL.: BENZENE: SCALING BLOCKCHAIN WITH COOPERATION-BASED SHARDING 641

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

blockchain system, therefore achieves a high performance.
Specifically, it assumes that each node has a trusted hardware
for maintaining logs of consensus messages, therefore ensures
that BFT protocols can achieve higher fault tolerance to avoid
a single shard from being compromised. By contrast, Benzene
support permissionless environment and do not require every
miner to have a trusted hardware.

Some recent works concentrate on optimizing block-
chain sharding systems in specific application scenarios.
For instance, Chainspace [20] and Tao et al. [21] focus on
supporting smart contracts upon the sharding infrastruc-
ture, while the latter one explores methods to minimize
cross-shard overheads. CoSplit [24] maximizes the degree
of parallelization when transactions in a sharding system
manipulate on the same states of smart contracts. Ether-
eum proposed a Danksharding scheme based on Proof-of-
Stake consensus, in which there are no disjoint shards. Vali-
dators check the availability of the same block through Data
Availability Sampling, so they do not have to download the
whole contents of the block to check its availability. In com-
parison, validators in Benzene are still partitioned into dis-
joint shards and verify the whole contents of blocks, but can
still be adopted in a system, which mainly concentrates on
checking the availability of the data.

However, most approaches mentioned above are non-
cooperative sharding, in which the consensus in each
shard is reached independently by disjoint sets of nodes.
Although Monoxide [14] proposes Chu-ko-nu Mining
based on PoW mechanism to allow nodes to participate in
the consensus process of other shards, it requires more
per-node storage overheads or centralized nodes, to guar-
antee its security. By contrast, our Benzene imposes fewer
overheads and meanwhile does not rely on any centralized
nodes to preserve security.

2.2 TEE in Blockchain

As an isolated environment in processor, a TEE can protect the
privacy and ensure the integrity of both data and codes
inside [30]. Typical examples of TEEs include Intel SGX [31],
ARM Trustzone [32], etc. Numerous studies have introduced
TEEs into the blockchain system. The functionalities of TEEs in
blockchain systems include acting as random sources and sup-
porting privacy-preserving applications, etc. Take BITE [33] an
example, in which TEEs verify transactions for light clients
without revealing privacy. Meanwhile, Dang et al. [29] utilize
Intel SGX in a BFT-based sharding system to serve for shard
formation and consensus. Teechain [34] leverages TEEs to
eliminate misbehaving parties and establish a more perform-
ant payment channel network. Other proposals such as [35],
[36], [37] leverage TEEs to support the execution of smart con-
tracts. For instance, Ekiden [35] proposes an off-chain contract
executionmethod, throughwhich smart contracts are executed
in TEEs with privacy protection. It is worth mentioning that
TEEs in our Benzene are responsible for verifying blocks.

Recent studies have investigated approaches to address
challenges when incorporating TEEs into blockchains [34],
[38], [39]. Some attacks targeting at TEEs, e.g., rollback
attacks [40], may threaten the security guarantees of TEE-
blockchain systems [34]. Similar to TEE-based contract exe-
cution engines, Benzene needs to avoid security challenges

like rollback attacks. In particular, Benzene designs the
appropriate TEE deployment and blockchain-based super-
vision to protect TEE security. As a result, Benzene does not
require participants to trust all TEEs, thereby eliminating
the cost of preserving consistency among multiple TEEs.

3 SYSTEM AND ADVERSARY MODEL

3.1 System Model

We assume an open peer-to-peer network that allows all
nodes to join or leave at any time. The entire network is
divided into s shards. Each joining node that initially gener-
ates an address is randomly assigned to a shard. The block-
chain maintains accounts owned by users. Each account
records some states, like the balance value. Each account
belongs to a specific shard. Users can generate transactions
to manipulate these accounts. We denote a transaction by
TxhS; t;D; ni, which represents the nth transaction gener-
ated by source account S conducting operations t upon des-
tination account D. The operations can be token transfer,
state manipulation, etc. Assume that S belongs to Shard A.
If accountD also belongs to Shard A, then such a transaction
is a local transaction; otherwise, it is a cross-shard transaction.
Some of the nodes in the network are equipped with TEE
hardware.

3.2 Adversary Model

Adversaries can initiate several typical attacks. Consider an
adversary who occupies a specific fraction of the total min-
ing power [41]. The adversary can decide what to do with
the information received from the network [18] and how to
make use of its own mining power (e.g., focusing its mining
power on a specific shard to conduct 1% attack [14]). More-
over, the adversary can deploy TEEs on its nodes and offer
verification services to miners in the same shard. Such TEEs
can be correctly initialized. But the adversary may decide
what messages received by TEEs, or restart TEEs and pro-
vide correctly-encrypted yet stale states (i.e., conducting
rollback attacks) to disturb its execution results [39]. In con-
clusion, the adversary can mislead TEEs to generate execu-
tion results with states deviated from the newest consensus
results.

4 COOPERATION-BASED SHARDING SYSTEM

4.1 System Overview

Benzene is a novel blockchain sharding system with a coop-
eration-based consensus protocol. Fig. 1 depicts key compo-
nents of Benzene. Benzene is composed of a double-chain
architecture, in which each shard maintains two types of
blockchains to conduct two decoupled functions: 1) pro-
poser chains record transactions and 2) vote chains conduct
cooperation-based consensus. To realize cross-shard coop-
eration, each shard conducts cross-shard verification to ver-
ify proposer blocks of other shards. Tasks of authenticating
block contents are delegated to TEEs, thereby incurring
fewer storage and computation overheads at ordinary
nodes. The cooperation-based consensus is realized through
cross-shard voting. Each shard confirms proposer blocks
according to vote blocks generated in all shards. We first
elaborate on key components of Benzene as follows.

642 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

Double-Chain Architecture. Benzene enables cross-shard
cooperation by function decoupling on top of the double-
chain architecture. In particular, Benzene decouples the
transaction-recording functions from the consensus-execu-
tion functions by proposer chains and vote chains, respec-
tively. Each shard has one proposer chain and one vote
chain. Proposer chains are composed of proposer blocks that
record transactions related to the same shard. Vote chains
are composed of vote blocks, which participate in cross-shard
voting consensus protocol to confirm proposer blocks on
proposer chains. We will further elaborate on the double-
chain architecture in Section 4.2.

Cross-Shard Verification. To accomplish cooperation-based
consensus, miners in a shard have to affirm the correctness
of proposer blocks in other shards. Benzene designs a cross-
shard verification mechanism integrated with TEEs
deployed by nodes that are willing to provide authentica-
tion services. TEEs verify proposer blocks of the same shard
and give validation proofs. Both headers of proposer blocks
and validation proofs are broadcast among all shards. Min-
ers in other shards conduct cross-shard verification through
verifying proofs produced by TEEs before generating vote
blocks. With the adoption of TEEs, miners in other shards
are not necessary to verify block contents themselves but
verify the validation proofs instead. Therefore, they do not
need to store the complete historical transaction records of
other shards so that storage overheads can be saved. Sec-
tion 4.3 will describe the cross-shard verification mecha-
nism in detail.

Cross-Shard Voting Consensus. The aim of cross-shard
voting consensus is to confirm a unique proposer block in
each shard according to vote blocks that have been mined
in all shards. The cross-shard voting consensus consists of
three phases: (1) transaction-recording phase, (2) vote-genera-
tion phase, and (3) block-confirmation phase. In the transaction-
recording phase, proposer blocks recording transactions are
generated by miners. More than one proposer blocks may
be simultaneously generated in each shard (like Block A
and Block B of Shard 1 in Fig. 1), thereby incurring forks,
which will nevertheless be resolved by vote blocks later.
TEEs verify newly-mined proposer blocks, and validation
proofs generated by TEEs will be sent to the entire network,
as depicted by blue dotted arrows in Fig. 1. In the vote-gen-
eration phase, miners verify validation proofs from all
shards to check the validity of proposer blocks, without the
need for downloading whole block contents, and mine vote
blocks so as to vote for one proposer block in each shard, as
depicted by red arrows in Fig. 1. Vote blocks are also

broadcast across the entire network. In the block-confirma-
tion phase, the proposer block containing the most number
of votes within each shard is confirmed (e.g., the Block B in
Shard 1). Each shard synchronizes vote chains from all
shards to recognize the voting results at the same height (i.e.,
the distance from a block to the genesis block). A unani-
mous distributed ledger is thus generated out of the con-
firmed proposer block.

Cross-shard voting consensus enhances the fault toler-
ance of a single shard while preserving high performance.
The enhanced fault tolerance mainly owes to the mining
power brought by vote blocks into every single shard.
Meanwhile, vote blocks are also generated in a parallel so as
to greatly reduce the confirmation latency compared with
Bitcoin that confirms a block with sequential blocks on a sin-
gle chain [18], [42]. Section 4.4 will give a thorough descrip-
tion of cross-shard voting consensus protocol.

4.2 Double-Chain Architecture for Function
Decoupling

Benzene separates functions of transaction recording and
consensus execution that are coupled together in traditional
blockchains like Bitcoin so to achieve cross-shard coopera-
tion. Decoupled functions are conducted by a double-chain
architecture. In the double-chain architecture, each shard
maintains two blockchains: a proposer chain and a vote
chain. A proposer chain records transactions in its shard
concurrently while a vote chain cooperates with other vote
chains to confirm blocks on the proposer chain. The pro-
poser chain of Shard I is denoted by PCI with PCI

h being
the block at height h. Similarly, VCI denotes the vote chain
in Shard I with VCI

h being its hth block, where a term with a
widehat represents the header of a block or a chain of block
headers (e.g., dVCI

h and dVCI). Some related characteristics
are summarized in Table 2.

4.2.1 Proposer Chain

Being responsible for recording transactions in each shard, a
proposer chain is composed of proposer blocks linked by
back-hashes. After receiving and verifying transactions in
the same shard, a miner can pack transactions in the form of
a Merkle tree and find a nonce that fulfills the PoW target to
mine a valid proposer block. The PoW target is shared
among diverse shards. Multiple proposer blocks may exist
in a shard at the same time similar to the occurrence of forks
in Bitcoin though they will later be resolved by the coopera-
tion-based consensus. We specify an unconfirmed proposer

Fig. 1. The architecture of Benzene.

TABLE 2
Blockchain Characteristics

PCI=VCI The proposer chain / vote chain in the
Ith shard.

PCI
h=VC

I
h The proposer block / vote block at

height h on PCI=VCI .
PCI

h;i The ith proposer block at height h on
PCI (fork exists).dPCI

h =
dPCI = dVCI

h =
dVCI The header of the referred block or

blockchain.
s The total number of shards.

CAI ETAL.: BENZENE: SCALING BLOCKCHAIN WITH COOPERATION-BASED SHARDING 643

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

block as PCK
h;i, with K being the shard index, h being the

block height, and i being the index among proposer blocks
with the same K and h. Take Fig. 2 as an example, in which
two proposer blocks PCN

h;1 and PCN
h;2 (at the same height)

are mined in Shard N . Proposer blocks are then verified by
TEEs and their headers (e.g., dPC1

h to dPCN
h;2) are broadcast to

all remaining shards to receive votes from Shard 1 to Shard
N . Each shard also maintains headers of the proposer chains
of other shards to record consensus results.

4.2.2 Vote Chain

Vote chains enable cross-shard cooperation among all
shards through voting upon proposer chains. A vote chain
is composed of linked vote blocks, which are generated
through the PoW process. A vote block represents a vote
upon s headers of proposer blocks, each of which belongs to
a unique shard among all s shards. Fig. 2 depicts that the lat-
est vote block VC1

h in Shard 1 casts votes upon headers of pro-

poser blocks in all shards, i.e., from dPC1
h of Shard 1 to dPCN

h;1

of Shard N . The vote block constructs a Merkle tree based on
the hash values of headers of s proposer blocks. The Merkle
root is included in the vote block header. If a fork occurs on a
vote chain, it will be resolved according to the longest-chain-
rule similar to Bitcoin [43], [44]. Although a single vote chain
may be reversed by the attacker, it will have little effect on
the proposer chain, since the proposer chain relies on the
overall effects contributed by all vote chains. We will prove
later in Section 5.2.1 that the overall effect of multiple vote
chains can make each proposer chain have shorter confirma-
tion latency compared with Bitcoin to achieve the same
reversal probability when there are more than 40 shards.
Vote blocks are broadcast to the whole network to help each
shard acknowledge the consensus results. Since each vote
block is negligible in size (i.e., a vote block is much smaller
than a proposer block as in Section 5.2.3), it will not affect the
scalability of the system. Each shard maintains all s vote
chains to verify the latest vote blocks and make historical
consensus results auditable.

4.3 Cross-Shard Verification Mechanism

In the cooperation-based architecture of Benzene, an hon-
est miner has to guarantee the validation of proposer
blocks in other shards before casting votes on them. In
other words, a cross-shard verification is necessary. A triv-
ial approach to achieve this goal is to store blockchain
records of other shards and verify proposer block contents
themselves while it causes considerable overheads since
miners have to store all historical transactions and verify

proposer blocks from all shards. To reduce both computa-
tion and storage overheads, we adopt TEEs to provide
validation proofs for achieving the cross-shard block-
verification.

4.3.1 Security Challenges of TEE

However, the direct incorporation of TEEs into block-
chains also poses two challenges in assuring the correct-
ness of the cross-shard verification: (C1) The weak
availability of TEEs since a TEE can be crashed by its owner
at any time; (C2) The fragile guarantee of the latest blockchain
state. First, a TEE may suffer from the rollback attack due
to the execution of the stale states [40], [45], consequently
violating its execution results [39], [40]. Consider a case
that a TEE has updated its state stored in the disk with
successively confirmed proposer blocks. When the TEE is
restarted by the adversary, the run-time memory is
cleared and the TEE requires the latest state. The adver-
sary then provides a stale state (though correctly sealed),
thereafter making further verification results deviate
from the current consensus results. Second, even for TEEs
not being restarted by the adversary, they may also exe-
cute on an incorrect state. For instance, a TEE may be pro-
vided with an orphaned block so that it maintains an
outdated or incorrect state, which is not consistent with
the latest consensus result.

4.3.2 Design of Verification Mechanism

We design a cross-shard verification mechanism, which
tackles the above challenges of TEEs. Our solutions can be
summarized into the following aspects.

An Appropriate TEE Deployment to Address C1. We lever-
age Intel SGX [31] for the implementation of TEE. In partic-
ular, a miner deploys Intel SGX on its node. As an isolated
container of codes, the enclave in Intel SGX is initialized
with the blockchain states and verification codes. The key
pair is generated for the further encryption process. Intel
SGX ensures a correct initialization of given codes through
remote attestation [38], [46], [47]. Both attestation results
and public keys of TEEs are publicly available so that the
execution of TEEs will not deviate from the pre-defined
verification codes after verifying attestation results since
the integrity of initial codes in TEEs is ensured (not tam-
pered by the adversary). Meanwhile, all these TEEs can
verify blocks independently with locally stored states, con-
sequently allowing miners to obtain verification services
from an arbitrary number of TEEs. Moreover, this design
also guarantees the fault tolerance because of the following
refinements. (a) Each TEE can be interchangeable (e.g.,
replacing a failed TEE) by adopting a stateless design.
TEEs require the latest states of blockchain when verifying
proposer blocks. Further, a proof-of-publication can ensure
that the state has been confirmed by the consensus proto-
col [35]. (b) Miners can require the latest states of the
related accounts from the targeted shard and then manu-
ally verify proposer block contents even when TEE serv-
ices are not accessible.

Supervision-Based Verification to Tackle C2. The basic idea
of supervision-based verification is to allow miners in other
shards to distinguish suspicious validation proofs from

Fig. 2. Proposer chains and vote chain.

644 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

correct ones even though TEEs cannot guarantee to always
fetch the latest state. The process of supervision-based veri-
fication is depicted in Fig. 3. Each time a proposer block that
is successfully mined will be forwarded to the TEE of the
same shard for verification (Step �1). The TEE checks
whether a proposer block is valid according to both pre-
loaded codes and locally maintained states. If such a block
is valid, the TEE returns a digital signature as its validation
proof (Step�2). The miner then sends the header of its pro-
poser block and the validation proof to all shards (Step�3).
Preloaded verification codes require the TEE to include the
hash values of the latest proposer block headers in the vali-
dation proof. Since the header of the latest proposer block is
broadcast and maintained by the whole network, all nodes
can verify its hash value independently (Step �4). If the
hash value in the TEE signature is consistent with locally
stored records, then miners will trust this block and vote for
it. Otherwise, the block may be authenticated with the out-
dated or orphaned state and will consequently be rejected
by honest miners.

4.4 Cross-Shard Voting Consensus Protocol

The cross-shard voting consensus protocol aims to confirm
both local transactions and cross-shard transactions.

4.4.1 Confirming Local Transactions

The basic goal of consensus protocol is to decide one unique
proposer block in each shard. For each Shard I (I ¼ 1;
2; � � �; s), the cooperation-based consensus decides a unique
proposer block PCI

h at the height h with given vote blocks
VC1

h, VC
2
h, � � �, VCs

h. Proposer block PCI
h at height h in turn

gives a unique order of transactions in Shard I. Algorithm 1
and Fig. 4 describes the three major phases of the consensus
protocol.

Algorithm 1. Cooperation-Based Consensus Protocol

1) Transaction-Recording

a) Miner in Shard I generates PCI
h;i based on PCI

h�1;
b) Sends PCI

h;i to a TEE deployed in Shard I;
c) The TEE returns a validation proof;
d) Broadcasts the proposer block header dPCI

h;i and its
validation proof to all shards.

2) Vote-Generation

a) Miner receives sets of proposer block headers and
their validation proofs from all shards;

b) Verifies each proposer block header dPCK
h;i according

to its validation proof and header of the proposer
chain dPCK (K ¼ 1; 2; � � �; s);

c) Picks a valid proposer block from each shard to
mines VCI

h;
d) Broadcasts VCI

h among the entire network.
3) Block-Confirmation

a) Miner receives vote blocks from all shards;
b) Verifies vote block VCK

h with locally stored proposer
block headers and vote chain VCK (K ¼ 1; 2; � � �; s);

c) Calculates how many votes are received by proposer
blocks in each shard, and the one with the most num-
ber of votes will be confirmed;

d) Miners and TEEs in each Shard I execute all related
transactions ordered by proposer block PCI

h.

Transaction Recording. In this phase, miners package
transactions, mine proposer blocks, send these proposer
blocks to TEEs for verification, and finally send information
needed for cross-shard verification to other shards. After
receiving transactions related to the same shard, a miner in
Shard I generates proposer block PCI

h;i and sends it to a
TEE for verification. The TEE returns a validation proof if
the block is valid. The validation proof also contains the
hash values of the latest headers of the confirmed proposer
block (e.g., dPCI

h�1) stored in the TEE to prove that states in
the TEE have been updated to the latest version. Both the
proposer block header dPCI

h;i and its proof are propagated
among the entire network. Multiple proposer blocks may be
authenticated and broadcast simultaneously since more
than one TEEs are working in parallel. Fig. 4a shows that
two proposer blocks PC1

h;1 and PC1
h;2 are authenticated in

Shard 1. Both of them are then to be possibly confirmed by
vote blocks.

Fig. 3. TEE verification process.

Fig. 4. The cooperation-based consensus protocol.

CAI ETAL.: BENZENE: SCALING BLOCKCHAIN WITH COOPERATION-BASED SHARDING 645

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

Vote Generation. In this phase, miners verify proofs of
proposer blocks from all shards and generate vote blocks to
cast votes on these proposer blocks. After the transaction-
recording phase, miners will receive headers of valid pro-
poser blocks dPCK

h;i (K ¼ 1; 2; � � �; s) and their validation
proofs from all shards. Each miner can independently verifydPCK

h;i and its validation proof with the locally-stored head-
ers of proposer chains and the locally-stored TEE key. Spe-
cifically, the miner will check whether the hash values of
the latest confirmed proposer blocks which are included in
the validation proof is consistent with its local records. Each
miner picks one proposer block header from each shard. A
set of chosen headers are formed and a new vote block VCI

h

is mined accordingly. Such a vote block casts votes upon
totally s proposer block headers, each of which comes from
a different shard. Consider Fig. 4b as an example, in which
the vote block in Shard 1 (i.e., VC1

h) votes for dPC1
h;2 while

both VC2
h in Shard 2 and VC3

h in Shard 3 vote for dPC1
h;1

instead. Vote blocks will then be broadcast globally.
Block Confirmation. In this phase, miners receive vote

blocks from all shards, and confirm the proposer block,
which has gained the most number of votes. After receiving
vote blocks VCK

h (K ¼ 1; 2; � � �; s) from each shard, miners
verify it through locally-stored headers of proposer blocks
and the vote chain VCK . For example, miners check whether
proposer blocks’ headers included in the vote block VCK

h are
authenticated and whether the predecessor of VCK

h is valid.
Upon receiving headers of proposer blocks and vote blocks,
every node can calculate how many votes are gained by
each proposer block header; the number of votes is at most
s. For the set of all proposer block headers in Shard K
(K ¼ 1; 2; � � �; s) at height h, the header with the most num-
ber of votes will be confirmed and appended to the pro-
poser chain PCK . For instance, as shown in Fig. 4c, PC1

h;1

gets two votes while PC1
h;2 gets only one, thereby PC1

h;1

being confirmed and appended to PC1. If multiple proposer
blocks have the same number of votes, then the proposer
block with the smallest hash value will be determined as
the consensus result. Miners and TEEs can then update
locally-stored ledgers by executing transactions ordered by
the proposer block of the same shard.

Fork Resolution. Another issue is fork resolution. The con-
firmed proposer block at each height can always be unique
if no fork occurs on vote chains. However, the occurrence of
forks on vote chains can affect the consensus results. For
example, in Fig. 5, a fork exists on the vote chain VC2 and
influences the consensus result on the proposer chain PC1.
PC1

h;1 gains two votes: VC1
h and VC2

h;1. PC
1
h;2 also gains two

votes: VC2
h;2 and VC3

h. We have to solve the fork on VC2 and
then decide which proposer block gains the most number of
votes. We first separate the first confirmation from the final
confirmation. The first confirmation is the status that vote
blocks of all shards at the same height have been generated
though a forkmay exist on vote chains. Thus, a proposer block
has the probability to be orphaned later even if it gains more
votes than others at present. But the systemwill not halt. After
the first-confirmation, miners will continue to generate new
proposer blocks and vote blocks, even if forks may exist on
vote chains. We adopt the longest-chain rule to address forks
similar to Bitcoin and Prism [18]. For example, in Fig. 5, VC2

h;1

is on the longest chain. As a result, VC2
h;2 is discarded and

PC1
h;1 has the highest number of votes. We define that a pro-

poser block is final-confirmedwhen each vote block at the same
height is followed by at least z sequential blocks. The longest
chain followed by z sequential blocks ensures that the vote
block will not be reversed with a high probability, thereby in
turn limiting the reversal probability of proposer chains.
Transaction confirmation is also advised not to be earlier than
the final confirmation of the related proposer block. The selec-
tion of z valuewill be given in Section 5.2.1.

4.4.2 Confirming Cross-Shard Transactions

In Benzene, the cross-shard transaction processing aims at
achieving eventual atomicity with a two-phase confirmation.
The confirmation of a cross-shard transaction can be seen as
the execution of two phases: the first phase manipulates
states in the source shard and the second phase manipulates
states in the destination shard. Eventual atomicity indicates
that such two phases will be finished by incentivized miners
eventually and therefore atomicity is preserved [14].

Fig. 6 depicts the procedure of confirming cross-shard
transactions. During the first phase, cross-shard transac-
tions are recorded in a proposer block (e.g., PC1

h in Fig. 6) in
the source shard and are confirmed for the first time (Steps�1 -�2). After that, cross-shard transactions, along with their
Merkle tree paths in the proposer block are sent to the desti-
nation shard (Step �3). The miner in Shard 2 affirms that
those cross-shard transactions have been collected in a con-
firmed proposer block and then collects them in a new pro-
poser block (Step�4). If such proposer block (e.g., PC2

hþn in
Fig. 6) is confirmed in the consensus protocol (Step�5), then
cross-shard transactions are also confirmed.

Fig. 5. Fork resolution.

Fig. 6. Processing cross-shard transactions.

646 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

Such two phases are accomplished asynchronously. We
can optimistically expect that cross-shard transactions can
finally be confirmed in the destination shard and therefore
all two phases are finished, since all miners are motivated
by incentives to package all transactions, which are valid
but are not yet included on chain, similar to other PoW-
based systems like Bitcoin [14], [43]. Even when the
proposer block containing a cross-shard transaction is
orphaned in the destination shard, such a cross-shard trans-
action may be packaged later by other proposer blocks and
hence may be confirmed again afterwards, which still satis-
fies the Eventual Atomicity.

If a fork leads to the failure of the first phase (i.e., a corre-
sponding proposer block recording the cross-shard transac-
tion is orphaned), the second phase will also fail, which is
accomplished by invalidating the previous block and creat-
ing a new fork. Miners can check whether a fork occurs in
other shards and whether cross-shard transactions are still
valid, since they can record block headers of other shards to
check the longest chain and can verify whether TEE proofs
which authenticated cross-shard transactions are still based
on the valid states. Miners will rollback their ledger states,
which can be accelerated by checkpoint blocks similar to
[14]. Such a rollback rarely occurs as long as we require that
a cross-shard transaction has to be embedded in the source
shard deep enough before confirming it in the destination
shard.

We can optimize the confirmation process of cross-shard
transactions by processing them in batches. We design a
new type of block called a transaction block. A transaction
block packages transactions with the same source shard and
the same destination shard. For instance, a transaction block
may record cross-shard transactions from Shard A towards
Shard B. Transaction blocks are not organized in a chain
structure. Instead, transaction blocks are organized in a
Merkle Tree and included in a proposer block. Transaction
blocks can be verified by TEEs to accomplish cross-shard
verification. Each time a proposer block is confirmed in the
source shard, transaction blocks included in it will be
sent to their destination shard, along with their paths in
the Merkle Tree and validation proofs so as to accom-
plish the verification and confirmation process of cross-
shard transactions.

5 SYSTEM ANALYSIS

5.1 Security Analysis

5.1.1 Fault Tolerance Analysis

We assume that an adversary intends to reverse the consen-
sus results. In the non-cooperative sharding system, the
adversary will attempt to mine a longer fork on the chain of
a single shard. In Benzene, the adversary has to confirm
another proposer block by mining longer vote chains among
half of the shards. We prove that Benzene achieves a fixed
fault tolerance while the non-cooperative sharding suffers
from the decreased fault tolerance with the increased num-
ber of shards.

Theorem 1. The fault tolerance of the non-cooperative sharding
system is 1

sþ1 with s being the number of shards, while Benzene
achieves 1

3 with any number of shards.

Proof. The system fault tolerance of the non-cooperative
sharding system depends on the relative mining power of
the adversary distributed on a single chain in a shard.
Assume that the mining power controlled by the adver-
sary MA occupies b fraction of the total mining power M
in the entire network, i.e.,MA ¼ bM. Denoting the mining
power of honest miners by MH , we have MH ¼ ð1� bÞM.
We then calculate the average mining power imposed on
a chain by the adversary and honest miners with equa-
tions given as follows,

MH ¼ MH

s
¼ ð1� bÞM

s
; (1a)

M
A
¼ MA

1
¼ bM: (1b)

tu
Let p be the probability that an honest miner mines the

latest block on the chain of a specific shard, and q be the
probability that the adversary mines it. On a specific chain,
q
p is equal to the proportion ofM

A
toMH . We then have:

q

p
¼ M

A

MH

¼ bs

1� b
: (1c)

When q
p > 1, the attacker can always reverse the consensus

results from any historical block in a period that is long
enough. When q

p � 1, we get b � 1
sþ1 , which apparently

decreases with the increased number of shards.
By contrast, the system fault tolerance of Benzene

depends on the relative mining power of the adversary dis-
tributed on vote chains. Denoting the mining power con-
trolled by the adversary by M 0

A, we have M 0
A ¼ bM 0.

Denoting the mining power of honest miners by M 0
H , we

have M 0
H ¼ ð1� bÞM 0. Assume that the honest mining

power is equally distributed among s vote chains, while
malicious mining power is equally distributed among s=2
vote chains. On each vote chain targeted by the adversary,
there is M 0

H=s honest mining power and
M0

A
s=2 malicious min-

ing power. We can calculate the mining power proportion
by following the same methods. Particularly, we have:

M 0
H
¼ M 0

H

s
¼ ð1� bÞM 0

s
; (2a)

M 0
A
¼ M 0

A

s=2
¼ 2bM 0

s
; (2b)

q0

p0
¼

M 0
A

M 0
H

¼ 2b

1� b
: (2c)

When q0
p0 � 1, we have b � 1

3 , indicating that Benzene can
tolerate at most 1

3 adversarial mining power, which does not
depend on the number of shards. tu

5.1.2 TEE Security

We now prove that the integrity of the distributed ledger of
Benzene is ensured even with attacks aiming at TEEs.
Attackers can be any nodes in the network attempting to
compromise any deployed TEE. We mainly consider that
the adversary attempts to compromise the TEE deployed on
its own node since it is the most possible way to successfully
launch an attack. The owner of the targeted TEE can launch

CAI ETAL.: BENZENE: SCALING BLOCKCHAIN WITH COOPERATION-BASED SHARDING 647

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

two types of attacks: (A1) The adversary tries to crash the
TEE or hold the communication messages to make verifica-
tion proofs be inaccessible; (A2) The adversary conducts the
rollback attack or sends invalid blocks to the TEE with an
expectation that the TEE will generate a verification proof
incompatible with the current consensus results.

To address (A1), miners can fetch verification results from
other accessible TEEs as mentioned in Section 4.3.2. Mean-
while, consensus participants in other shards can also down-
load historical transactions to verify proposer block contents.
To tackle (A2), miners can pick out invalid proofs through
verifying the included hash values of the latest states. After
synchronizing vote chains and headers of proposer chains
from all shards, miners can keep tracking the consensus
results in all shards. Since the attacker cannot tamper with
verification codes encapsulated in the enclave, the hash val-
ues of states that have been stored in the compromised TEE
and been deviated from the consensus results will be discov-
ered in the proof, as mentioned in Section 4.3.2. As a result,
proposer blocks with invalid proofs will not be voted by hon-
est participants. Thus, the distributed ledger will not be
affected.

5.2 Performance Analysis

5.2.1 Confirmation Latency

In Benzene, forks on vote chains can lead to the orphaned
proposer blocks. Forks can be resolved by the longest chain
rule as mentioned in Section 4.4. To make the probability of
a proposer block being orphaned in the future be as low as
�, we wait until all the vote blocks at the same height are fol-
lowed by successive z blocks. The time period of z block
intervals is referred to as the confirmation latency. We now
measure the selection of z with the given proportion of
adversarial mining power b and the number of shards s.
Assuming b ¼ 0:25, we can calculate the reversal probabil-
ity P for the vote block that is z-deep according to the fol-
lowing equation as given by [43]:

P ¼ 1�
Xz
k¼0

�ke��

k!
1�

� q

p

�ðz�kÞ� �
: (3)

The reversal probability of a proposer block when all related
vote blocks in s shards are z-deep is as follows:

� ¼
Xs
i¼s

2

s

i

� �
Pið1� P Þs�i: (4)

Table 3 presents the results of the minimized z with
�40:001. We observe from Table 3 that z drops as s raises.
The value of z in Bitcoin with the same parameters (i.e., b ¼
0:25, � ¼ 0:001) is 15, which is larger than z in Benzene
when s > 40. Although sharding weakens the security of
each shard and in turn affects the confirmation latency, the
cross-shard cooperation provides a comparable and even

lower confirmation latency compared with non-sharding
systems.

5.2.2 Bandwidth Consumption

The TEE verification reduces the network-bandwidth con-
sumption in the cooperation-based protocol. Let PCA be a
proposer block in Shard A and dPCA be its header. Proposer
block PCA is propagated within Shard A, consequently con-
suming the inner-shard bandwidth. AfterPCA being verified
by a TEE and attached with a validation proof, both its
header dPCA and the validation proof are propagated to the
whole network. This process thus consumes the inter-shard
bandwidth. The vote block is also globally broadcast. SincedPCA , validation proof, and vote blocks are small in terms of
size, they consume less bandwidth compared with proposer
blocks. Meanwhile, cross-shard transactions and their Mer-
kle proofs are only sent to their destination shards rather
than being broadcast among the whole network, thereby
reducing the consumption of inter-shard bandwidth. For
example, a proposer block with 4,000 transactions is about
1MB. In comparison, broadcasting cooperation-related data,
including TEE proofs and vote blocks, consumes about 87KB
with 50 shards. Therefore, lightweight cooperation-based
data will not significantly consume cross-shard bandwidth.

5.2.3 Storage Consumption

Most of the storage in each shard is consumed by shard-spe-
cific contents, such as the state of accounts, vote chain VCI ,
and proposer chain PCI . Fewer contents are required to be
duplicated among all shards compared with shard-specific
ones. Considering the storage in Shard I, nodes have to
store vote chains VCK in remaining ðs� 1Þ shards to vali-
date consensus results, and headers of ðs� 1Þ proposer
chains dPCK to confirm cross-shard transactions. Blockchain
storage can be further reduced to 2s blocks by adopting a
similar design to [48], in which each chain is compacted to a
single latest block. Key values of TEEs in all shards are also
stored to verify validation proofs of proposer blocks.
According to our analysis, proposer blocks containing all
referred transactions consume more than 13,000 KB, while
vote blocks consume less than 10 KB when there are 20
shards, much smaller than proposer blocks. Although the
vote block size also grows with the increased number of
shards, its storage overhead can be ignored compared with
proposer blocks.

6 EVALUATION

We conduct both prototype experiments and large-scale
simulations to evaluate the performance of the proposed
Benzene in a wide range of the network size.

6.1 Experimental Setup

We first implement a prototype of our Benzene and conduct
experiments to evaluate its performance. In particular, we
construct a blockchain prototype system based on four
high-performance servers with up to 100 node instances.
Meanwhile, we implement TEE verification codes in Intel
SGX, which is deployed at a computer with 2.80 GHz CPU
with SGX-enabled BIOS support. Typically, a blockchain

TABLE 3
Vote Block Confirmation Latency

Number of shards 20 30 40 50 100 200 500
Minimized z 17 15 14 13 11 9 8

648 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

system can be abstracted and divided into four layers:
application layer, data layer, consensus layer and network
layer [49]. In the application layer, we implement functions
of maintaining accounts. Each account stores balance values
of users, and are manipulated according to confirmed trans-
actions transferring tokens between accounts. In the data
layer, we implement data structures of transactions and two
types of blockchains. Each transaction includes an input
address, an output address, and the value of transferred
tokens. The size of each transaction is 250 bytes. We choose
ECDSA to create digital signatures and SHA-256 in the
hashlib package as the hash function linking blocks. Each
proposer block contains 20,000 transactions on average.
Each vote block packages proposer block headers and gen-
erates a Merklre Tree with the merkletools package. In the
consensus layer, we implement the cooperation protocol
based on the PoW consensus. Participants perform mining
process to mine the valid proposer blocks and vote blocks,
and decide the consensus results according to the voting-
based algorithm. In the network layer, we implement block-
chain network. We use multi-threading in Python to imple-
ment nodes working in parallel and we use MPI (Message
Passing Interface) for Python to ensure the communication
between miners. Nodes are randomly assigned to different
shards according to their addresses. Each node mines blocks
and requires TEE verification services to conduct cross-
shard verification. Moreover, each node maintains a mem-
ory pool to store valid but yet unconfirmed blocks to accel-
erate the verification process, similar to Bitcoin [43]. We
follow some typical configurations. The bandwidth of each
node is 30Mbps and the end-to-end latency is 100 ms. The
block interval for each block is about 15 seconds [14].

We implement two blockchain system prototypes for
comparing with our Benzene. In particular, we implement
a non-cooperative sharding scheme, namely Non-Coop
Sharding, which is a PoW-based sharding system with the
exclusion of the cross-shard cooperation. In Non-Coop
Sharding, miners only process transactions of the same
shard and maintain a single chain in each shard. Mean-
while, we also implement a non-sharding scheme, namely
Non-Sharding, which confirms transactions with multiple
vote chains mining in parallel, similar to the consensus
protocol in Prism [18]. In Non-Sharding, there are one pro-
poser chain and multiple vote chains in the system. The
number of vote chains is equal to the number of shards in
Benzene for fair comparison. In prototype experiments,
each shard of Benzene contains 5 nodes and 1 TEE. Regard-
ing Non-Coop Sharding, the 1/4 fault tolerance limitation
causes only 2 shards being allowed according to our analy-
sis in Section 5.1.1.

We also conduct simulations to further evaluate the per-
formance of Benzene and other baselines with up to 2,500
nodes and 500 shards. We simulate three baseline schemes:
Monoxide, Non-Coop Sharding and Non-Sharding (Prism).
Benzene and Monoxide distribute 5 nodes in each shard
while Non-Coop Sharding has two shards to achieve the
same 1/4 fault tolerance as Benzene. The simulated network
has the same settings (e.g., bandwidth, latency, and block
size) as the prototype experiments. We simulate the random
block creation and TEE verification processes to get a precise
estimation of the execution time. The block interval is

re-tuned to 20 seconds to cover the time of both block genera-
tion and TEE verification. The end-to-end latency also fol-
lows random distribution with its mean being 0.1 sec [14],
and the latency for transactions being broadcast to all shards
increases logarithmically with the number of nodes [50].

6.2 Scalability Evaluation

We want to evaluate the scalability of Benzene and answer
the following question:

� Can Benzene achieve better performance as the num-
ber of shards increases?

To answer this question, we measure the throughput and
latency in both prototype experiments and simulations,
with the increased number of shards.

Throughput. We first evaluate the system throughput in
prototype experiments. We measure TPS of Benzene with 4,
8, 12, 16, and 20 shards; each shard contains 5 nodes and 1
TEE. When measuring the practical throughput, we avoid
repeatedly counting on the duplicated transactions in pro-
poser blocks and cross-shard transactions. Fig. 7 shows that
TPS of Benzene can linearly scale with the increased num-
ber of shards. For example, Benzene achieves 11,810 TPS
with 20 shards. To evaluate the scalability of Benzene in a
large scale network, we evaluate its throughput by simula-
tions. The number of shards is increased from 4 to 500 with
each shard containing 5 miners and 1 TEE. Results in Fig. 8
demonstrate that the throughput of Benzene can scale
almost linearly with the enlarged network, e.g., achieving
40� increment from 4 shards to 200 shards. This further
demonstrates that Benzene can achieve a highly-scalable
throughput despite the slightly-increased cross-shard com-
munication overhead. Moreover, we measure the perfor-
mance of Benzene beyond 200 shards and observe that the
increment of throughput starts to stop at around 400 shards.

Fig. 7. Throughput in prototype experiments.

Fig. 8. Throughput evaluated by simulations.

CAI ETAL.: BENZENE: SCALING BLOCKCHAIN WITH COOPERATION-BASED SHARDING 649

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

This is because we assume that the number of deployed
TEEs is limited in simulations, therefore leading to a maxi-
mal number of blocks that can be verified per second.

First-Confirming Latency. In Benzene, each proposer block
has to be confirmed by vote blocks, each of which has to
wait for sequential vote blocks before being finally con-
firmed. The first-confirming latency is the time interval
from the time when a proposer block is successfully mined
to the time when it receives enough vote blocks at the same
height. Fig. 9 shows the average first-confirming latency in
prototype experiments and error bars show the maximal
and minimal first-confirming latency. First-confirming
latency increases with the increased number of shards. This
is reasonable since more shards lead to a larger network
and in turn require more time in block propagation.

Confirmation Latency. The confirmation latency is the time
interval from the time when a proposer block is mined to
the time when it is finally confirmed by sequential z vote
blocks. Giving a fixed low probability � of the proposer
chain being reversed, the value of z depends on the number
of shards s as well as the fault tolerance bwhere the calcula-
tion of z value can be referred to Section 5.2.1. We measure
the confirmation latency with b ¼ 1=4, � ¼ 0:001 and the dif-
ferent number of shards. Fig. 10 shows average confirma-
tion latency in prototype experiments and error bars show
the maximal and minimal confirmation latency. The confir-
mation latency shows fluctuation since the value of z
decreases while the network propagation latency increases.
Moreover, to reveal how the latency varies in a broader
range of the network size, we measure the confirmation
latency from 4 to 200 shards through simulations. We also
compare the confirmation latency of Benzene with that of
Bitcoin in simulations. Fig. 11 shows that the confirmation
latency drops at first while maintaining a stable level when
the number of shards increases to hundreds. This is mainly

owed to the decreased z value. Moreover, when there are
more than 50 shards, Benzene can achieve a lower confirma-
tion latency compared with the Bitcoin-like system. This
is because Bitcoin requires z ¼ 15 while Benzene with 50
shards achieves z ¼ 13 and further drops to about 9 as the
number of shards increases to 200 when � ¼ 0:001 and
b ¼ 0:25.

Takeaway. The throughput of Benzene will increase line-
arly from 4 shards to 200 shards. Besides, the confirmation
latency will remain at a stable level.

6.3 Performance Comparison

Wewant to compare the performance of Benzene with other
baselines and answer the following question:

� Can Benzene achieve better performance than other
baselines while preserving the same fault tolerance?

Throughput Comparison in Prototype Experiments. We com-
pare our Benzene with Non-Coop Sharding, and Non-
Sharding schemes in terms of TPS with the same fault-toler-
ance value 1/4 and the same number of nodes. We conduct
experiments on Benzene with 8, 10, 12, and 14 shards.
Fig. 12 plots the results of prototype experiments. Due to
the latency caused by the TEE verification, TPS of Benzene
is slightly lower than that of Non-Coop Sharding at the
beginning. But, Benzene obtains a more rapid improvement
when the number of nodes increases, e.g., achieving a
higher TPS with 50 nodes than both Non-Coop Sharding
and Non-Sharding. This is because Benzene can scale to
more shards while preserving security, therefore achieving
better performance. In comparison, Non-Coop Sharding
cannot be fully scaled due to its decreasing fault tolerance.
Although the performance of Non-Sharding may be slightly
increased with more nodes, such increase is not comparable
with the performance enhancement brought by sharding.

Fig. 9. First confirming latency in prototype experiments.

Fig. 10. Confirmation latency in prototype experiments.

Fig. 11. Confirmation latency in simulations.

Fig. 12. Throughput comparison in prototype experiments.

650 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

Throughput Comparison in Simulations. Moreover, we also
evaluate Benzene with a comparison with other baselines in
a larger scale network with a fixed fault tolerance through
simulations. All approaches are tested under 150, 200, 250,
and 300 nodes while preserving 1/4 fault tolerance. As
shown in Fig. 13, the TPS of Benzene scales up much faster
than those of other approaches, whose TPS just slightly
increases with the increased number of nodes. This is
mainly because Benzene can scale up to more shards with-
out compromising security while Non-Coop Sharding can-
not. Monoxide can scale to more shards, but it requires
miners to download and verify blocks from other shards,
making its performance similar to Non-Coop Sharding.
Although Non-Sharding adopting the voting-based consen-
sus can increase the throughput and reduce the latency,
such performance improvement is not comparable with the
improvement brought by sharding schemes. Benzene com-
bines the advantages of both voting-based consensus and
sharding schemes at the same time, thereby achieving a bet-
ter performance.

Average Waiting Time for Transactions. We compare the
average latency of a transaction from the generation (i.e.,
being submitted by users to the network) to the first confir-
mation among four simulated approaches: Benzene, Monox-
ide, Non-Coop Sharding, and Non-Sharding. Such latency
can reflect the system efficiency of processing transactions.
All four approaches are tested with 50 nodes. We generate
transactions under the varied transaction frequency, i.e.,
from 1,000 transactions per second to 10,000 transactions per
second. Fig. 14 shows that the latency in all four approaches
remains stable initially, and continuously increaseswhen the
transaction-generation frequency exceeds a specific level.
This is because when the transaction-generation frequency is
higher than the system processing capacity, a group of the
generated transactions have to wait in transaction pools,

thereby prolonging the latency of being packed. Further,
Non-Sharding first reaches its performance bottleneck, fol-
lowed by Non-Coop Sharding and Monoxide. By contrast,
Benzene is the last one reaching the bottleneck owing to its
fully-utilized capacity even when more than 6,000 transac-
tions are submitted to the network per second.

Storage and Bandwidth. We compare the average storage and
bandwidth consumption per transaction and per node of Ben-
zene with those of other baselines. In simulations, we divide the
total storage andbandwidth consumption among thewhole net-
work by the total amount of transactions and the number of
nodes. Such a metric can describe howmany additional resour-
ces are requiredwhen a new transaction is submitted to the sys-
tem.Moreover,we divide such average consumption to that of a
non-sharding scheme to illustrate howmany times of reduction
a sharding system can achieve by distributing storage and band-
width overheads among shards. All baselines are tested from 5
nodes to about 100 nodes. Both Figs. 15 and 16 demonstrate that
Benzene requires less than 1/4 of the average storage and band-
width consumption comparedwith non-sharding schemes, and
achieves lower resource consumption compared with other
sharding schemes. Reasons behind these observations are as fol-
lows. In non-sharding Prism, the storage and bandwidth con-
sumption are equally imposed on all nodes. When the number
of nodes increases, the average storage and bandwidth con-
sumption remain stable. Non-Coop Sharding partitions such
workloads into shards.However, such reduction is limited since
it cannot scale to more shards when the number of nodes
increases due to its weak fault tolerance. InMonoxide,miners in
one shard store, verify, and pack transactions in other shards to
protect the per-shard security. In other words, Monoxide
increases the storage and bandwidth overheads to preserve
security. By contrast, Benzene can partition storage and band-
widthworkloads into shards as far as possiblewhen the number
of nodes increases, without adding considerable overheads to
preserve security.

Fig. 13. Throughput comparison in simulations.

Fig. 14. Average latency of submitted transactions.

Fig. 15. Average storage consumption reduction.

Fig. 16. Average bandwidth consumption reduction.

CAI ETAL.: BENZENE: SCALING BLOCKCHAIN WITH COOPERATION-BASED SHARDING 651

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

Takeaway. Users can scale Benzene to numerous shards while
preserving a fixed fault tolerance. Moreover, Benzene can
effectively distribute the storage and bandwidth overhead
among shards. Therefore, Benzene can achieve better perfor-
mance with less resource consumption compared with other
baselines.

6.4 Parameter Evaluation

We want to answer the following question:

� How will the performance metric of Benzene vary
when we change some parameter settings?

Block Interval. To measure the impact of the block interval
on TPS, we measure the TPS according to different intervals
of the proposer block creation in prototype experiments. We
simulate the block creation process to fulfill the adjustment of
block creation interval. Our experiments are conducted under
4, 8 and 16 shards. Fig. 17 plots the TPS versus the block inter-
val. The experimental results show that the throughput
slightly decreases when the block interval extends. This is
becauseminers have to spendmore timeongenerating a valid
proposer block for a longer block interval, thereby limiting the
computation capacity consumed on packing transactions.
However, such impact can almost be ignored when the inter-
val increases from 10 seconds to 25 seconds. Moreover, more
shards lead to a higher TPS; this is consistent with our obser-
vationmentioned above.

Bandwidth.We also measure the varied throughput under
different bandwidth configurations through simulations.
Fig. 18 shows that the throughput of Benzene with 100
shards increases from about 20,000 TPS to 40,000 TPS when
the per-node bandwidth raises from 5Mb/s to 30Mb/s.

Takeaway. The throughput of Benzene can be increased
when the block interval decreases or the bandwidth increases.

Users can select parameters to balance the trade-off between
the performance and the security/costs.

6.5 Security Evaluation

We evaluate the security of Benzene with regard to forks on
blockchains [51]. We aim to evaluate the security of Benzene
by answering the following question:

� Can Benzene preserve security by ensuring a low
fork rate?

Fork Rate Without Attackers. First, we evaluate the fork
rate on proposer chains with varied block intervals in simu-
lations. The fork rate is calculated by dividing the number
of forks to the number of block intervals [52]. Fig. 19 illus-
trates that the fork rate decreases when the block interval
prolongs. Fewer than 20% of consensus epochs will have
forks with 20 shards when the block interval is 20 seconds.
Moreover, more shards lead to a higher fork rate since it
takes more time to broadcast blocks and thus increases the
probability of another valid proposer block being success-
fully mined. But this ephemeral phenomenon is acceptable
since forks will soon be resolved by vote blocks.

Probability of Successful Attack. Moreover, we evaluate the
fork on proposer chains caused by adversarial attacks with
varied fraction of malicious mining power in simulations.
Malicious nodes can focus their mining power on half of the
vote chains to cause a fork on the proposer chain. We mea-
sure the probability that such an attack occurs with different
values of attacker fraction and the varied number of shards.
Each vote block has to wait for sequential 6 blocks before
being confirmed, i.e., the same as Bitcoin. An attack is suc-
cessfully conducted only when more than half of the vote
blocks are orphaned since the attacker mines a longer chain.
Fig. 20 shows that the attack probability is limited to a
low level (almost 0 when less than 22% mining power is

Fig. 17. Throughput under varied block interval.

Fig. 18. Throughput under different bandwidth.

Fig. 19. Fork rate with varied block interval.

Fig. 20. Attack rate with varied attacker fraction.

652 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

malicious, and only 0.05 when the attacker fraction is 0.26)
and increases when approaching 1/3 fault tolerance. More-
over, the existence of more shards leads to a lower probabil-
ity of Benzene being attacked; this is consistent with our
previous analysis in Section 5.

Takeaway. For honest participants, the fork rate can be
reduced as the block interval increases. Besides, the proba-
bility of an adversary successfully launching attacks by
reversing consensus results is low when less than 26% min-
ing power is malicious.

7 CONCLUSION

We propose Benzene, a sharding protocol based on cross-
shard cooperation to enhance system security and perfor-
mance. Unlike previous sharding approaches, Benzene
allows multiple shards to cooperate with each other in the
consensus protocol, consequently enhancing the system
fault tolerance. Benzene has three key novel designs: i) a
double-chain architecture to separate the transaction-record-
ing function from the consensus-execution function, ii) a
cross-shard verification mechanismwith TEEs to minimize per-
node overhead, iii) a voting-based consensus to realize cross-
shard cooperation upon the task of consensus-execution.
With double-chain architecture, each shard can record
transactions independently while participating in consensus
execution of other shards. Miners in each shard verify
blocks from other shards with the minimized overhead, and
cast votes to confirm those blocks in the voting-based con-
sensus. Such a design enables a fully scaling of the system
while achieving a fixed 1/3 fault tolerance. Moreover, vot-
ing-based consensus provides a shorter confirmation
latency compared with previous single-chain PoW-based
protocols (e.g., Nakamoto protocol). Experiments show that
the throughput of Benzene can be linearly improved (i.e.,
32,370 TPS with 50 shards) with the number of shards
increasing to 200. Moreover, Benzene can achieve a lower
confirmation latency than non-sharding Bitcoin while
achieving the same security guarantee, even when the
sharding technique weakens the system fault tolerance.
Finally, Benzene requires less storage and bandwidth con-
sumption on defending per-shard security, and maintains a
low fork probability since voting-based consensus limits the
occurrence of forks.

REFERENCES

[1] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “Caper: A cross-appli-
cation permissioned blockchain,” Proc. VLDB Endow., vol. 12,
no. 11, pp. 1385–1398, 2019.

[2] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future
trends,” in Proc. IEEE Int. Congr. Big Data, 2017, pp. 557–564.

[3] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
in Proc. Symp. Netw. Distrib. Syst. Secur. Symp., 2016, pp. 1–14.

[4] H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in Proc. 27th
USENIX Secur. Symp., 2018, pp. 1353–1370.

[5] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-NG: A
scalable blockchain protocol,” in Proc. 13th Usenix Conf. Netw. Syst.
Des. Implementation, 2016, pp. 45–59.

[6] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in Proc. 26th Symp. Operating Syst. Princ., 2017, pp. 51–68.

[7] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure, fair and
scalable open blockchain,” in Proc. IEEE 42nd Symp. Secur. Privacy,
2021, pp. 466–483.

[8] Y. Buchnik and R. Friedman, “Fireledger: A high throughput
blockchain consensus protocol,” in Proc. VLDB Endowment,
vol. 13, no. 9, pp. 1525–1539, 2020.

[9] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A survey of
state-of-the-art on blockchains: Theories, modelings, and tools,”
ACM Comput. Surv., vol. 54, no. 2, pp. 1–42, 2021.

[10] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “SoK: Sharding on
blockchain,” in Proc. 1st ACM Conf. Adv. Financial Technol., 2019,
pp. 41–61.

[11] J. Hellings and M. Sadoghi, “Byshard: Sharding in a byzantine
environment,” Proc. VLDB Endowment, vol. 14, pp. 2230–2243,
2021.

[12] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B.
Ford, “OmniLedger: A secure, scale-out, decentralized ledger via
sharding,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 583–598.

[13] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
blockchain via full sharding,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2018, pp. 931–948.

[14] J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in Proc. 16th USENIX Symp.
Netw. Syst. Des. Implementation, 2019, pp. 95–112.

[15] V. Buterin, “Ethereum sharding faq,” 2019. Accessed: April 01,
2021. [Online]. Available: https://github.com/ethereum/wiki/
wiki/ShardingFAQ

[16] F. McKeen et al., “Innovative instructions and software model for
isolated execution,” in Proc. 2nd Int. Workshop Hardware Architec-
tural Support Secur. Privacy, 2013, Art. no. 10.

[17] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal
hardware extensions for strong software isolation,” in Proc. 25th
USENIX Secur. Symp., 2016, pp. 857–874.

[18] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the blockchain to approach physical limits,” in Proc.
ACMSIGSACConf. Comput. Commun. Secur., 2019, pp. 585–602.

[19] Z. Hong, S. Guo, P. Li, and C. Wuhui, “Pyramid: A layered shard-
ing blockchain system,” in Proc. IEEE Int. Conf. Comput. Commun.,
2021, pp. 1–10.

[20] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Dane-
zis, “Chainspace: A sharded smart contracts platform,” in Proc.
25th Annu. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[21] Y. Tao, B. Li, J. Jiang, H. C. Ng, C. Wang, and B. Li, “On sharding
open blockchains with smart contracts,” in Proc. IEEE 36th Int.
Conf. Data Eng., 2020, pp. 1357–1368.

[22] S. Li, M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan, and P. Vis-
wanath, “Polyshard: Coded sharding achieves linearly scaling
efficiency and security simultaneously,” in Proc. IEEE Int. Symp.
Inf. Theory, 2020, pp. 203–208.

[23] M. J. Amiri, D. Agrawal, and A. El Abbadi, SharPer: Sharding Per-
missioned Blockchains Over Network Clusters. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 76–88.

[24] G. P̂ırlea, A. Kumar, and I. Sergey, “Practical smart contract
sharding with ownership and commutativity analysis,” in Proc.
42nd ACM SIGPLAN Int. Conf. Program. Lang. Des. Implementation,
2021, pp. 1327–1341.

[25] P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, and H. Zhang,
“Meepo: Sharded consortium blockchain,” in Proc. IEEE 37th Int.
Conf. Data Eng., 2021, pp. 1847–1852.

[26] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Sax-
ena, “A secure sharding protocol for open blockchains,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 17–30.

[27] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proc. 3rd Symp.Operating Syst. Des. Implementation, 1999, pp. 173–186.

[28] M. Vukoli�c, “The quest for scalable blockchain fabric: Proof-of-
work versus. bft replication,” in Proc. Int. Workshop Open Problems
Netw. Secur., 2015, pp. 112–125.

[29] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C.
Ooi, “Towards scaling blockchain systems via sharding,” in Proc.
Int. Conf. Manage. Data, 2019, pp. 123–140.

[30] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: SGX-
based high performance BFT,” in Proc. 12th Eur. Conf. Comput.
Syst., 2017, pp. 222–237.

[31] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptol.
ePrint Arch., vol. 2016, 2016, Art. no. 86.

[32] T. Alves, “Trustzone : Integrated hardware and software security,”
Inform. Quarterly, vol. 3, pp. 18–24, 2004.

CAI ETAL.: BENZENE: SCALING BLOCKCHAIN WITH COOPERATION-BASED SHARDING 653

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ethereum/wiki/wiki/ShardingFAQ
https://github.com/ethereum/wiki/wiki/ShardingFAQ

[33] S. Matetic, K. W€ust, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “BITE: Bitcoin lightweight client privacy using trusted
execution,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 783–800.

[34] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: A secure payment network with asynchronous blockchain
access,” inProc. 27th ACMSymp.Operating Syst. Princ., 2019, pp. 63–79.

[35] R. Cheng et al., “Ekiden: A platform for confidentiality-preserv-
ing, trustworthy, and performant smart contracts,” in Proc. IEEE
Eur. Symp. Secur. Privacy, 2019, pp. 185–200.

[36] P. Das et al., “Fastkitten: Practical smart contracts on bitcoin,” in
Proc. 28th USENIX Secur. Symp., 2019, pp. 801–818.

[37] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti,
“Trusted computing meets blockchain: Rollback attacks and a
solution for hyperledger fabric,” in Proc. IEEE 38th Symp. Reliable
Distrib. Syst., 2019, pp. 324–333.

[38] Y. Yan, “Confidentiality support over financial grade consortium
blockchain,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020,
pp. 2227–2240.

[39] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti,
“Blockchain and trusted computing: Problems, pitfalls, and a
solution for hyperledger fabric,” 2018, arXiv:1805.08541.

[40] S. Matetic et al., “Rote: Rollback protection for trusted execution,” in
Proc. 26thUSENIXSecur. Symp. USENIX Secur., 2017, pp. 1289–1306.

[41] H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: Blockchain Scaling
Made Simple,” in Proc. IEEE Symp. Secur. Privacy, 2020, pp. 90–105.

[42] G. Wang, S. Wang, V. K. Bagaria, D. Tse, and P. Viswanath,
“Prism removes consensus bottleneck for smart contracts,” in
Proc. IEEE Crypto Valley Conf. Blockchain Technol., 2020, pp. 68–77.

[43] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008. [Online]. Available: http://bitcoin.org/bitcoin.pdf

[44] A. Dembo et al., “Everything is a race and nakamoto always
wins,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
pp. 859–878.

[45] M. Brandenburger and C. Cachin, “Challenges for combining
smart contracts with trusted computing,” in Proc. 3rd Workshop
Syst. Softw. Trusted Execution, 2018, pp. 20–21.

[46] G. Chen, Y. Zhang, and T.-H. Lai, “Opera: Open remote attes-
tation for intel’s secure enclaves,” in Proc. Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2019, pp. 2317–2331.

[47] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technol-
ogy for cpu based attestation and sealing,” in Proc. 2nd Int. Workshop
Hardware Architectural Support Secur. Privacy, 2013, Art. no. 7.

[48] B. Bunz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light
clients for cryptocurrencies,” in Proc. IEEE Symp. Secur. Privacy,
2020, pp. 928–946.

[49] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ether-
eum systems security: Vulnerabilities, attacks, and defenses,”
ACM Comput. Surv., vol. 53, no. 3, pp. 1–43, 2020.

[50] A. Montresor, “Gossip and epidemic protocols,” Wiley Encyclope-
dia Elect. Electron. Eng., vol. 1, pp. 1–15, 2017.

[51] G. Bissias and B. N. Levine, “Bobtail: Improved blockchain secu-
rity with low-variance mining,” in Proc. Symp. Netw. Distrib. Syst.
Secur., 2020, pp. 1–16.

[52] C. Decker and R. Wattenhofer, “Information propagation in the
bitcoin network,” in Proc. IEEE P2P Proc., 2013, pp. 1–10.

Zhongteng Cai received the BS degree from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2020. He is cur-
rently working toward the MS degree with Sun
Yat-sen University, Guangzhou, China. His cur-
rent research interests include blockchain tech-
nologies and consensus algorithms.

Junyuan Liang received theMS degree fromSun
Yat-sen University, Guangzhou, China, in 2022.
He is currently working toward the PhD degree
with Sun Yat-sen University. He is working on
edge computing and blockchain system, in partic-
ular on storage, payment channel network and
sharding in blockchain.

Wuhui Chen (Member, IEEE) received the bach-
elor’s degree from Northeast University, She-
nyang, China, in 2008, and the master’s and PhD
degrees from the University of Aizu, Aizu–Waka-
matsu, Japan, in 2011 and 2014, respectively.
From 2014 to 2016, he was a Research Fellow
with the Japan Society for the Promotion of Sci-
ence, Japan. From 2016 to 2017, he was a
Researcher with the University of Aizu. He is cur-
rently an associate professor with Sun Yat-Sen
University, Guangzhou, China. His research inter-
ests include edge/cloud computing, cloud robot-
ics, and blockchain.

ZicongHong received theBEng degree in software
engineering with the School of Data and Computer
Science, Sun Yat-sen University. He is currently
working toward the PhD degree in the Department
of Computing, Hong Kong Polytechnic University.
His current research interest includes Blockchain,
Game Theory, Internet of Things, and Edge/Cloud
Computing.

Hong-Ning Dai (Senior Member, IEEE) received
the PhD degree in computer science and engi-
neering from the Department of Computer Sci-
ence and Engineering, Chinese University of
Hong Kong. He is currently with the Department
of Computer Science, Hong Kong Baptist Univer-
sity, Hong Kong, as an Associate Professor. His
current research interests include blockchain and
the Internet of Things. He has served as associ-
ate editors of IEEE Transactions on Intelligent
Transportation Systems, IEEE Transactions on

Industrial Informatics, IEEE Systems Journal, and IEEE Access. He is a
member of the ACM.

Jianting Zhang received the bachelor’s andmas-
ter’s degrees from Sun Yat-Sen University, China,
in 2019 and 2022, respectively. He is currently
working toward the PhD degree with Purdue Uni-
versity. His research interest focus on blockchain,
smart contracts, and consensus algorithms.

Zibin Zheng (Fellow, IEEE) is currently a professor
and the Deputy Dean with the School of Software
Engineering, Sun Yat-sen University, Zhuhai, China.
He authored or coauthored more than 200 interna-
tional journal and conference papers, including one
ESI hot paper and six ESI highly cited papers.
According to Google Scholar, his papers have more
than 15 000 citations. His research interests include
blockchain, software engineering, and services
computing. He was the BlockSys’19 and Collabora-
teCom16 General Co-Chair, SC2’19, ICIOT18 and

IoV14 PCCo-Chair. He is a Fellow of the IET. He was the recipient of several
awards, including the Top 50 Influential Papers in Blockchain of 2018, the
ACM SIGSOFT Distinguished Paper Award with ICSE2010, the Best Stu-
dent Paper Awardwith ICWS2010.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

654 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:57:22 UTC from IEEE Xplore. Restrictions apply.

http://bitcoin.org/bitcoin.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

