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Breast Cancer Classification from Digital
Pathology Images via Connectivity-aware Graph

Transformer
Kang Wang, Feiyang Zheng, Lan Cheng, Hong-Ning Dai, Qi Dou, Jing Qin,Member, IEEE

Abstract— Automated classification of breast cancer
subtypes from digital pathology images has been an ex-
tremely challenging task due to the complicated spatial pat-
terns of cells in the tissue micro-environment. While newly
proposed graph transformers are able to capture more
long-range dependencies to enhance accuracy, they largely
ignore the topological connectivity between graph nodes,
which is nevertheless critical to extract more representative
features to address this difficult task. In this paper, we pro-
pose a novel connectivity-aware graph transformer (CGT)
for phenotyping the topology connectivity of the tissue
graph constructed from digital pathology images for breast
cancer classification. Our CGT seamlessly integrates con-
nectivity embedding to node feature at every graph trans-
former layer by using local connectivity aggregation, in
order to yield more comprehensive graph representations
to distinguish different breast cancer subtypes. In light
of the realistic intercellular communication mode, we then
encode the spatial distance between two arbitrary nodes
as connectivity bias in self-attention calculation, thereby
allowing the CGT to distinctively harness the connectiv-
ity embedding based on the distance of two nodes. We
extensively evaluate the proposed CGT on a large cohort
of breast carcinoma digital pathology images stained by
Haematoxylin & Eosin. Experimental results demonstrate
the effectiveness of our CGT, which outperforms state-of-
the-art methods by a large margin. Codes are released on
https://github.com/wang-kang-6/CGT.

Index Terms— Tissue connectivity, Tissue topology phe-
notyping, Graph Transformer, Cancer classification, Entity
graph

I. INTRODUCTION

Breast cancer is the most commonly diagnosed female
cancer and ranks as the first for cancer mortality in women [1],
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(a) Normal (d) Atypical ductal hyperplasia

(e) Flat epithelial atypia (h) Invasive

(b) Benign (c) Usual ductal hyperplasia

(f) Flat epithelial atypia (g) Invasive

Fig. 1. Eight samples of digital pathology images for breast cancer
classification, illustrating the complicated spatial patterns of cells in
tissue micro-environment among different cancer categories. The upper
row shows the similarities between the different categories. The bottom
row shows the variations between the same categories.

[2]. Recent statistics by the American Cancer Society showed
that breast cancer survival varies significantly by stage at
diagnosis. The 5-year survival rates of USA patients diagnosed
during 2012-2018 were >99% for stage I, 93% for stage II,
75% for stage III, and 29% for stage IV [3]. Early screening
enables a timely risk assessment and expedites an optimal
treatment plan [4], which has proved to be of great significance
in reducing morbidity [5]. In clinical practice, microscopic
analysis by pathology imaging is regarded as the “gold stan-
dard” for the final determination of breast cancer [6]. Manually
screening these pathology images is, however, laborious, time-
consuming, and error-prone [7]. To this end, automated clas-
sification approaches are highly demanded in clinical practice.
It remains a challenging task due to (i) the complicated
spatial patterns of cells in tissue micro-environment among
different cancer categories [8]; (ii) the existence of inter-
class similarities and intra-class variations [9], as illustrated
in the top and bottom row in Fig. 1, respectively; and (iii) the
extremely high resolution of digital pathology images [10],
which may lead to huge computational costs.

Recent studies have demonstrated that graph neural net-
works (GNNs) are promising tools in breast cancer digital
pathology image classification [11], [12]. Different from con-
volutional neural networks (CNNs), GNN-based methods take
graphs built from pathology images as the input for cancer
diagnosis, instead of directly performing on images, which
not only more faithfully reflects the topological characteristics
of the biological entities (e.g., cells, tissues) but also has
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the potential to greatly reduce the computational costs. Most
existing GNN-based methods reconstruct the graphs by tiling
the pathology images into multiple smaller patches and setting
them as graph nodes [13], [14]. However, such a strategy
is incapable of capturing the topological relationships among
the cells and/or tissues, which are important for an intelligent
model to apprehend their distributed patterns to yield satisfac-
tory classification results. In addition, it usually suffers from
selecting optimal patch resolution to obtain a balance between
computational cost and effective feature extraction [10].

To address these limitations, a promising way is to construct
entity graph [15]–[17] by segmenting biological entities in
digital pathology images as graph nodes, such as cells and
tissues. Hence, entity graphs can better reflect topological
distributions and intrinsic interactions of these biological en-
tities. In contrast to cell graphs, tissue graphs are able to
more naturally capture relevant morphological regions, thereby
being more scalable to large pathology images [18] and
consequently reducing the computational cost significantly.
Note that modern GNN-based methods for histological image
analysis are dominated by message-passing GNNs. However,
the message-passing mechanism can only propagate messages
to neighborhood nodes. As a result, the dependencies among
the distant nodes cannot be sufficiently explored.

In order to capture more global long-range dependencies
among graph nodes in GNNs for further improving their repre-
sentation capability, transformer-based GNNs, sometimes also
termed as fully-connected GNNs or graph transformer, have
been investigated and achieved promising performance [19],
[20]. Although this fully-connected mechanism passes mes-
sages among all nodes, it largely neglects the input graph’s
actual connectivity, thereby losing, to some extent, the struc-
tural information of the graph. To tackle this shortcoming,
some recently proposed Transformer-based GNNs attempt to
integrate more structural information into graph representation
to improve their capability [21], [22]. However, two limitations
still remain. First, most existing Transformer-based GNNs
usually incorporate structural information only by injecting
a learnable positional encoding of each node into the input
layer. Since such an injection is, nevertheless, disposable,
this scheme still neglects the effect of the connected nodes
in later training epochs, thus making structural information
difficult to produce effective and profound influence on the
generated representations. Second, when the transformer-based
GNNs calculate the self-attention of a selected node, they
equally treat the other nodes, ignoring the fact that their
spatial distances to the selected node are essential for its
representation.

To this end, we propose a novel connectivity-aware graph
transformer (CGT) for breast cancer classification to suffi-
ciently take connectivity attributes and spatial distance be-
tween tissue regions into account. The input of our method is
the tissue graph constructed from pathology images, instead
of directly using simple pixel information from pathology
images. We summarize the main contributions of this work
as follows:

• We propose the local connectivity aggregation method

to add connectivity embedding to node features at every
graph transformer layer, thereby making it capable of
mapping comprehensive graph representations with the
structural information of breast cancer subtypes.

• In light of the realistic intercellular communication mode,
we propose to encode the spatial distance of a node-
pair as the connectivity bias, to efficiently tame the
connectivity embedding in the self-attention calculation.

• We evaluate the proposed CGT on two publicly annotated
breast pathology image datasets. Extensive experiments
demonstrate the effectiveness of our proposed method,
which consistently outperforms state-of-the-art methods
by a large margin.

II. RELATED WORKS

In this section, we briefly review the three related research
directions including machine learning in pathology image
classification, message-passing GNNs, and transformer-based
GNNs.

A. Machine Learning in Classifying Pathology Images
Supervised learning has frequently been used in machine

learning for histopathological image analysis [23]–[25]. How-
ever, current pathology images such as whole slide images
(WSIs), contain gigapixels and often lack fine-grained an-
notations of tumor locations. As a result, deep neural net-
works [26]–[28] are prone to leverage a weakly supervised
multiple instance learning (MIL) [29] for histopathological
analysis, which processes pathology images in a patch-wise
manner. Typically, the entire procedure of MIL can be bro-
ken down into two stages: 1) the first step is to create an
instance-level classifier (e.g., CNNs and ViTs) that maps split
patches in square and fix-sized to a series of embedding
vectors and calculates their positive probability; and 2) an
aggregation network is then designed to create a bag-level
feature vector and predict the final classification result of a
pathology image. However, it is tricky to determine the optimal
size of image patches for pathology images under different
resolutions, thereby impeding these methods from capturing
the topological relationships among the cells and/or tissues.

Currently, many researchers resorted to GNNs to describe
tissue composition by incorporating morphology, topology,
and interactions among biologically comprehensible enti-
ties, instead of square patches. For example, CGC-Net [30]
was proposed to convert each large histology image into a
graph, where cell morphology is embedded in the nodes.
Anand et al. [31] proposed to use graph convolutional net-
works (GCNs) for classifying patients into cancerous or non-
cancerous groups on the Breast Cancer Histology Challenge
(BACH) dataset [25]. Sureka et al. [32] modeled histology
tissue as a graph of nuclei and employed robust spatial
filtering (RSF) [33] with a GCN on the BACH dataset.
Pati et al. [9] proposed a multi-level hierarchical entity graph
representation of tissue specimens to model the hierarchical
histological compositions. They also constructed a large cohort
of Haematoxylin & Eosin stained breast pathology image
datasets called BRACS. On the BRACS dataset, Jaume et
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al. [34] introduced a framework using entity-based graph
analysis to provide pathologically understandable concepts,
thereby easing pathologists’ understanding of the graph de-
cisions. Despite their favorable performance, the impacts of
different GNN structures for pathology image classification
have received insufficient attention to date.

B. Message-passing GNNs
Message-passing graph neural networks (MP-GNNs) have

made remarkable success for graph representation learning
in diverse applications such as drug design [35], protein
design [36], social network analysis [37], physics [38] and
medical diagnosis [39]. After GCN [40] was first proposed
to perform convolutions on the graph, Gilmer et al. [41]
proposed a message-passing mechanism to enable the node to
aggregate neighborhood information, which is the cornerstone
of the recent emerging MP-GNNs [42]–[44]. After that, Pati et
al. [45] proposed to use the Graph Isomorphism Network
(GIN) [42], an instance of MP-GNNs, to subtype the breast
cancer using tissue regions as nodes. Anklin et al. [18] pro-
posed the SegGini, an MP-based GNN for weakly supervised
segmentation, to segment tissue regions via the tissue graph.
However, this vanilla message-passing mechanism results in
the aggregation of only 1-hop node features by one GNN layer.

To improve the capability of graph representation, MP-
GNNs either stacked a number of GNN layers or applied
high-order GNN layers to progressively aggregate informa-
tion from distant nodes. Nevertheless, MP-GNNs still have
restricted expressiveness due to two major limitations (1) over-
smoothing [46]–[49], in which all node representations are
prone to converge to a constant after passing through many
stacked GNN layers; and (2) over-squashing [50], in which
the distant node pairs cannot effectively interact using the
message-passing mechanism in a graph since their interaction
messages are directly compressed into the node features of
fixed length. Hence, an urgent demand exists to exploit a new
message-passing mechanism beyond neighborhood aggrega-
tion to yield more comprehensive graph representations.

C. Transformer-based GNNs
Recent studies have shown that Transformers-based GNNs

offer the potential to address the aforementioned issues owing
to the self-attention mechanism proposed in [51]. Specifically,
the self-attention mechanism of the Transformer-based GNNs
enables two arbitrary nodes to interact with information. On
the one hand, the vanilla Transformer-based GNNs consider
the graph nodes as a discrete token sequence without nodes
connecting relationships, empowering the model’s global rea-
soning capability. On the other hand, this self-attention mecha-
nism disregards the intrinsic graph structure, failing to identify
nodes with similar structure (e.g., node degree) and capture
the graph topology. This effect accounts for the reason why
their performance was inferior to that of MP-GNNs in several
tasks [19].

Therefore, it is promising to encode structural information to
Transformer-based GNNs without the adjustment of the Trans-
former architecture. Graph Transformer [20] provided an early

example of how to generalize the Transformer architecture to
graphs, using Laplacian eigenvectors as an absolute encoding
and computing attention on the immediate neighborhood of
each node, rather than on the full graph. SAN [21] also
used the Laplacian eigenvectors for computing an absolute
encoding, but computed attention on the full graph, while dis-
tinguishing between true and created edges. Graphormer [22]
proposed to encode some carefully selected graph theoretic
properties as positional embeddings and attention bias, such
as centrality measures and shortest path distances. Notably,
these GNNs are designed for molecular structure and social
network analysis, which may not be applicable to breast cancer
classification. To the best of our knowledge, our proposed
method is the first transformer-based GNN for breast cancer
classification.

III. METHODS

A. Preliminary
The task of breast cancer classification is, in principle,

a multi-class classification problem. Let G(V,E,H) denote
an attributed-yet-undirected entity graph (i.e.,the tissue graph
in our implementation) constructed from a pathology image,
where V = {v1, v2, · · · , vN} is the set of nodes, E is the set of
edges, and N is the number of nodes (N = |V |). A set of node
features are denoted by H = {h1, h2, · · · , hN} , hi ∈ RF ,
where F is the feature dimension. An edge between two
connected nodes u, v ∈ V is denoted by eu,v . The graph
topology is described by a symmetric adjacency matrix A ∈
RN×N , where Au,v = 1 if eu,v ∈ E. The neighborhood of
node v ∈ V is denoted by N (v) = {u ∈ V |Au,v = 1}.

Given a GNN for multi-class classification with the function
space of F , training this network is to find a classifier
function f ∈ F , which can effectively map the input graph
representations of breast cancer data to appropriate predictions
or scores. The classifier’s role is to assign a label or score to
each input graph, indicating the likelihood of belonging to a
specific breast cancer category. The supervised learning for
breast cancer classification can be defined by the following
empirical risk optimization problem as follows:

argmin
f∈F

1

Nt

Nt∑
i=1

L(f(xi), yi), (1)

where xi, yi represent the input graph and the label of the i-th
training example, respectively. The total number of training
examples is denoted by Nt and L is the loss function for each
training example. Each term in the sum represents the loss for
a specific training example, and the objective is to minimize
the average loss over the entire training set.

B. Tissue Graph Construction
We consider tissue regions in a pathology image as nodes

and construct a tissue graph rather than a cell graph for the two
following reasons. First, cancer cells in tumors are embedded
in complex tissues, namely tissue micro-environment, which
consists of immune cells, stromal cells, and blood vessels [18],
[52]. The interactions of these tissue regions in the tissue

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3381239

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 16,2024 at 14:03:02 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2023

1

2

34

5 6

2 3 2 5 1 1

1 2 3 4 5 6

+
2

+
3

+
2

+
5

+
1

+
1

1 2 3 4 5 6

MLP 
head …

Breast Cancer 
Classification

1 2 3 T

Multi-head attention

Norm

MLP

Norm

+

+

*

Input image X

Tissue graph construction

𝑇𝑇𝐺𝐺𝑋𝑋(𝑉𝑉,𝐸𝐸,𝐻𝐻)

𝐷𝐷𝑒𝑒𝑒𝑒(𝑉𝑉)

Inputted connectivity embedding 𝑒𝑒𝑖𝑖
(0)

Inputted node feature ℎ𝑖𝑖
(0)

𝑒𝑒:ℝ1 → ℝ𝐹𝐹

Flatted to a sequence

Node feature

Connectivity embedding (CE)

Initial aggregated CE1 2 3 4 5 6

CLS

× 𝐿𝐿

(a) Local Connectivity Aggregation. (b) Connectivity Bias in Self-attention. 

Graph transformer layers (GTLs)

GTL

𝑒𝑒𝑖𝑖
(ℓ) = 𝑓𝑓𝑒𝑒 𝑒𝑒𝑖𝑖

(ℓ−1), 𝑒𝑒𝑗𝑗
(ℓ−1)

𝑗𝑗∈𝒩𝒩𝑖𝑖

ℎ𝑖𝑖
(ℓ) = GTLℓ 𝑓𝑓ℎ ℎ𝑖𝑖

(ℓ−1), 𝑒𝑒𝑖𝑖
(ℓ) , 𝑓𝑓ℎ ℎ𝑗𝑗

(ℓ−1), 𝑒𝑒𝑗𝑗
(ℓ)

𝑗𝑗∈𝒱𝒱

𝐴𝐴𝑖𝑖𝑗𝑗 =
(ℎ𝑖𝑖𝑊𝑊𝑄𝑄)(ℎ𝑗𝑗𝑊𝑊𝐾𝐾)𝑇𝑇

𝑑𝑑
+ 𝐶𝐶𝜙𝜙(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ℎ𝑖𝑖,ℎ𝑗𝑗 = softmax(𝐴𝐴𝑖𝑖𝑗𝑗)ℎ𝑗𝑗 𝑊𝑊𝑉𝑉

Fig. 2. The illustrative pipeline of how our CGT phenotypes the tissue topology connectivity for histopathological representation in breast cancer
classification. The tissue graph TG(V,E,H) is constructed from the input image as the input of the CGT. The nodes in the tissue graph are flatted
to a sequence added with connectivity embedding, which is then fed to our proposed GTLs. To perform classification, we add an extra learnable
classification token (CLS) to the sequence.

micro-environment exert different selective pressures on the
evolution of cancerous regions. In this regard, pathologists
mainly rely on observing the tissue distribution of the tissue
micro-environment and studying its characteristics to deter-
mine the type and the grade of cancer. Second, a tissue graph
has much fewer nodes than a cell graph, thereby greatly
alleviating the computational cost [53]. In view of the merits,
the tissue graph is constructed to feed our proposed CGT,
consequently encouraging the CGT to efficiently capture and
understand a high-level tissue micro-environment.

For a tissue graph, its nodes V and edges E denote tissue
regions and their relations, respectively. There are two steps
to identify tissue regions from a pathology image x. First,
we use an unsupervised segmentation method, called simple
linear iterative clustering (SLIC) algorithm [54], to initially
group pixels into Nsp non-overlapping superpixels. Second,
by comparing the RGB values of superpixels, several similar
non-overlapping superpixels are merged into one homoge-
neous tissue region that captures meaningful tissue information
(e.g., epithelium, stroma, lumen, necrosis). The centroids of
the merged tissue regions are considered as the nodes V =
{v1, v2, · · · , vN} of the tissue graph.

The feature representation of the tissue regions is ob-
tained by another two-step procedure. First, we employ a
ResNet34 [55], pre-trained on ImageNet dataset [56], to ex-
tract CNN features of each tissue region. Specifically, given
the i-th tissue region, we catch all superpixels belonging to
this tissue region. We iteratively feed a patch in size h × w.
This patch is centered around each superpixel centroid, into
the pre-trained ResNet34 to compute the CNN feature of
each superpixel. Second, the node feature hi corresponding
to the i-th tissue region is obtained by averaging the CNN

features of its constituting superpixels. As such, a set of
H = {h1, h2, · · · , hN} , hi ∈ RF constitutes the node features
of the tissue graph, where F is the feature dimension.

Since the neighboring tissue regions are anticipated to
interact biologically the most, they are set to be connected
in the tissue graph. An edge eu,v is added between two
nodes u, v when their represented tissue regions are adjacent
according to the region adjacency graph [57]. The topology
of the tissue graph is denoted by a binary adjacency matrix
A ∈ RN×N , where Au,v = 1 if two nodes u, v are connected.
Finally, the tissue graph of a pathology image is constructed
as TG(V,E,H).

C. CGT for Histopathological Representation
To represent the histopathological structure of the tissue

graph, we propose the CGT to subtly incorporate connectivity
information of the graph into the model. We devise the CGT
architecture based on the original implementation of the classic
Transformer encoder [51], where the encoder consists of
multiple graph transformer layers (GTLs). Each GTL includes
a multi-head self-attention (MHA) module and a position-wise
feed-forward network (FFN). For the FFN sub-layer, we set
the dimension of the input, the output, and the inner-layer to
be the same as that reported in [22]. The calculation process
of the standard GTL can be expressed as follows:

h′(ℓ) = MHA
(
LN

(
h(ℓ−1)

))
+ h(ℓ−1), (2)

h(ℓ) = FFN
(
LN

(
h′(ℓ)

))
+ h′(ℓ), (3)

where LN is the layer normalization function [58], h(0) is the
input of the first GTL, i.e., the node features of a given tissue
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graph TG(V,E,H), and h(ℓ), ℓ ∈ [1, 2, · · · , L] denotes the
output of the ℓ-th GTL, where L is the number of GTLs.

1) Connectivity Embedding with Local Connectivity Aggrega-
tion: For each node i, the self-attention mechanism in the
MHA module can be used to calculate the semantic correlation
between the node i and other nodes, implicitly reflecting the
relation between node pairs and the structural information of a
graph. However, such an attention calculation treats any graph
as a fully-connected graph regardless of whether the node pairs
are actually connected in the graph structure, neglecting the
connectivity relationship in the tissue graph.

Therefore, to achieve better connectivity representation from
the prior tissue topology knowledge, we propose to add con-
nectivity embedding (CE) to the node feature for phenotyping
tissue topology. Particularly, we initial learnable connectivity
embedding e

(0)
i ∈ RF at the input layer, which is assigned to

each node based on itself degree as follows:

e
(0)
i = g(Deg(vi)), (4)

where Deg(·) denotes the function to calculate the node degree
and g : R1 → RF denotes the learnable embedding function.
In practice, function g creates a learnable matrix C ∈ RNm×F

to map different degrees to a corresponding embedding, where
Nm is the number of these learnable embeddings. Since the
node with a different number of connected nodes has different
topological information, the proposed CE enables our CGT
to distinguish the connection capability of each node before
calculating the self-attention in CGT.

We then add each CE to its corresponding node feature in
the input layer as follows:

h
(0)
i = fh(hi, e

(0)
i ) = hi + λe

(0)
i , (5)

where fh is the function of adding connectivity embedding and
λ is a penalizing parameter to balance feature scale between
hi and ei.

Note that the standard Transformer-based GNNs consider
that each node is connected with all other nodes. Given a
node embedding h

(ℓ)
i , the update equation for a conventional

GTL is defined as:

h
(ℓ)
i = GTL(ℓ)

(
h
(ℓ−1)
i ,

{
h
(ℓ−1)
j

}
j∈V

)
, ℓ ∈ [1, 2, · · · , L]

(6)
where GTL(ℓ) denotes the functions with learnable parameters
of the ℓ-th GTL, and V denotes all nodes in V except node i.

Unlike the methods, which only add the structural informa-
tion at the first GTL such as [20]–[22], we propose the local
connectivity aggregation (LCA) method to add aggregated CE
to node feature at every GTL as follows:

e
(ℓ)
i = fe

(
e
(ℓ−1)
i ,

{
e
(ℓ−1)
j

}
j∈Ni

)
, (7)

h
(ℓ)
i = GTL(ℓ)

(
fh(h

(ℓ−1)
i , e

(ℓ)
i ),

{
fh(h

(ℓ−1)
j , e

(ℓ)
j )

}
j∈V

)
,

(8)
where e

(ℓ)
i , ℓ ∈ [1, 2, · · · , L] is the inputted CE of the ℓ-th

GTL, fe is the function to aggregate local connectivity, Ni is
the neighborhood of the node i, and h

(ℓ−1)
i , h

(ℓ)
i , e

(ℓ−1)
i , e

(ℓ)
i ∈

RF .

Algorithm 1 The overall process of CGT
Input: Tissue graph TG(V,E,H) constructed from the image
with breast cancer label y; Number of training epochs Ne;
Output: Predicted label ŷ

1: Parameter initialization;
2: for e = 1, 2, · · · , Ne do
3: for all vi ∈ V do
4: e

(0)
i ← g(Deg(vi));

5: h
(0)
i ← fh(hi, e

(0)
i );

6: ϕ (vi, vj)← ∥pi − pj∥2;
7: end for
8: for ℓ = 1, 2, · · · , L do
9: for all vi ∈ V do

10: e
(ℓ)
i ← fe

(
e
(ℓ−1)
i ,

{
e
(ℓ−1)
j

}
j∈Ni

)
;

11:
h
(ℓ)
i ← GTL(ℓ)(fh(h

(ℓ−1)
i , e

(ℓ)
i ),{

fh(h
(ℓ−1)
j , e

(ℓ)
j )

}
j∈V

)
;

12: end for
13: Encode Cϕ(vi,vj) as self-attention bias in the MHA

module;
14: Propagate MHA to the FFN;
15: if ℓ == L then
16: Export the CLS and obtain predicted label ŷ
17: end if
18: end for
19: Update model parameters to minimize L = LCE(ŷ, y)
20: end for

2) Connectivity Bias in Self-attention: Recent studies have
shown that one important mode of intercellular communica-
tion is the release of soluble cyto- and chemokines in the
cellular signaling processes [59], [60]. Once secreted, these
signaling molecules diffuse through the surrounding medium
and eventually bind to neighboring cell receptors whereby
the signal is received, where the spreading speed depends
on their spatial distance. However, most existing transformer-
based GNNs neglect the spatial distance to calculate the self-
attention of a selected node with the other nodes, which is
not applicable to breast cancer classification. In light of this
mode of intercellular communication, we propose to encode
the spatial distance as the connectivity bias (CB) to self-
attention calculation between two nodes, thereby allowing the
CGT to distinctively harness the CE in the graph transformer
architecture.

Let pi, pj denote the centroid positions of node i and node
j, respectively. The spatial distance ϕ of node i and node j is
calculated as follows:

ϕ (vi, vj) = ∥pi − pj∥2, (9)

where ∥∗∥2 is the function of computing 2-norm between two
values.

Given the constructed tissue graph with node features H =
{h1, h2, · · · , hN} , hi ∈ RF (i ∈ 1, 2, · · · , N), we propose to
calculate the self-attention CB-Attn between node i and node
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TABLE I
THE KEY DATA DESCRIPTION FOR THE BRACS DATASET FOR BREAST CANCER CLASSIFICATION, INCLUDING SUBTYPES DISTRIBUTION, STATISTICS

OF TISSUE-GRAPH COMPONENTS, AND ROIS SPLIT STRATEGY. IN DETAIL, THERE ARE THREE DISTRIBUTION METRICS OF ROIS, INCLUDING THE

NUMBER OF ROIS, THE NUMBER OF PIXELS (IN MILLIONS), AND THE RATIO OF MAX PIXEL AND MIN PIXEL. THERE ARE THREE METRICS TO DEPICT

THE DISTRIBUTION OF TISSUE GRAPHS, INCLUDING THE NUMBER OF NODES AND EDGES, AND THE DEGREE OF NODES. MEAN AND STANDARD

DEVIATION ARE ALSO PROVIDED.

Class RoIs Tissue graphs RoIs split
No. RoIs No. Pixels Max /Min pixel No. Nodes No. Edges No. Degree Train Validation Test

Normal 512 2.8±2.7 75.3 107±106 509±545 4.0±6.5 342 86 84
Benign 758 5.7±4.5 97.9 217±233 1012±1236 4.4±8.3 586 87 85
UDH 471 2.4±2.9 180.1 88±93 393±450 4.6±4.8 303 88 80
ADH 568 2.2±2.0 75.3 100±91 480±474 4.3±5.0 405 77 86
FEA 783 1.2±1.1 58.3 45±32 194±159 4.2±3.4 899 85 99
DCIS 749 5.0±5.0 128.6 225±217 1111±1123 4.5±7.2 562 97 90

Invasive 550 8.2±5.4 62.4 423±317 2025±1741 3.2±14.4 366 82 102

Total 4,391 3.9±4.3 235.6 172±217 815±1125 4.1±9.2 3,163 602 626

j in the MHA module as follows:

Aij =
(hiWQ) (hjWK)

T

√
d

+ Cϕ(vi,vj), (10)

CB-Attn(Hij) = softmax(Aij)hjWV , (11)

where Aij denotes Query-Key product matrix and Cϕ(vi,vj) is
the function of mapping the node pair distance ϕ (vi, vj) ∈ R1

to a learnable vector vd ∈ Rd, where d is the feature dimension
of the learnable vector. Moreover, WQ ∈ RF×d,WK ∈
RF×d,WV ∈ RF×d are three projection matrices corre-
sponding to representation Query, Key, Value in the classic
Transformer [51], respectively. Algorithm 1 shows the overall
process of the proposed CGT.

IV. EXPERIMENTS

A. Experimental Setup
1) Dataset: BRACS dataset. We evaluated our CGT on a

large cohort of breast cancer dataset termed BReAst Cancer
Subtyping (BRACS) [9], which contains 4,391 breast tumor
RoIs from 325 H&E breast carcinoma whole slide images.
BRACS dataset was collected from 151 patients between
2019 and 2020, by board-certified pathologists of the Depart-
ment of Pathology at the National Cancer Institute - IRCCS
”Fondazione G. Pascale” in Naples (Italy). All slides were
scanned with an Aperio AT2 scanner at 0.25µm pixel using a
magnification factor of 40× resolution. The RoIs are annotated
into seven categories by three pathologists as: Normal, Benign
including Benign and Usual ductal hyperplasia (UDH), Atyp-
ical including Atypical ductal hyperplasia (ADH), and Flat
epithelial atypia (FEA), Ductal carcinoma in situ (DCIS) and
Invasive. The original split ratio of the training, validation, and
test datasets at the RoI level is 3163:602:626.

BACH dataset. We also evaluated the proposed CGT
on a publicly available digital pathology image dataset,
i.e., the Grand Challenge on BreAst Cancer Histology images
BACH [25]. All images are acquired using a Leica DM
2000 LED microscope and a Leica ICC50 HD camera. These
images are in RGB TIFF format and have a fixed size of
2048 ×1536 pixels, where the pixel scale is 0.42×0.42 µm.
Two medical experts annotated the images into four categories,

TABLE II
MODEL SETTINGS OF THE PROPOSED CGT.

Model settings CGT

GTL Layers 6
Node Hidden Dimension 514
FFN Inner-layer Dimension 256
Attention Heads 6
FFN Dropout 0.1
Attention Dropout 0.1
Embedding Dropout 0.1
Max Epochs 100
Peak Learning Rate 0.0002
Batch Size 4
Warm-up Steps 60K
Learning Rate Decay Linear
Initial learning rate 0.001
Weight Decay 0.001

including Normal, Benign, DCIS, and Invasive. BACH con-
tains the training and test images in the ratio of 400:100.
All patients are from the Porto and Castelo Branco regions
(Portugal). Cases are from Ipatimup Diagnostics and come
from three different hospitals (Hospital CUF Porto, Centro
Hospitalar do Tâmega e Sousa, and Centro Hospitalar Cova da
Beira). The test data was collected from a completely different
set of patients, ensuring a fairer evaluation of the methods.

In contrast, the training dataset and test dataset of BRACS
are almost 10 and 6 times larger than those of BACH,
respectively. BRACS has seven cancer subtypes that cover the
whole histopathological spectrum of breast cancer. ADH and
FEA categories in BRACS represent a significant diagnostic
conundrum that frequently arises in clinical practice due to
their high likelihood of developing into cancer. As shown
in Table I, BRACS holds more variable typical and atypical
hyperplasia subtypes, which are clinically more representative
and resemble a realistic scenario of classifying breast cancer.
Since transformer architecture is deemed to be data-eager
over other deep learning networks, we conduct comparative
experiments on BACH to further evaluate the classification
performance of the proposed CGT on the lightweight dataset.

2) Implementation Details: The implementation includes
three processes: tissue graph construction, node distance com-
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TABLE III
PERFORMANCE IMPROVEMENT COMPARED TO STATE-OF-THE-ART

METHODS ON THE BRACS DATASET USING FIVE-FOLDER

CROSS-VALIDATION. THE RESULTS INCLUDE MEAN VALUE AND

STANDARD DEVIATION OF WEIGHTED F1 SCORES AND ACCURACY FOR

THE TOTAL 7-CLASS CLASSIFICATION. RESULTS ARE PRESENTED IN %.
THE BEST RESULT IS IN BOLD.

Methods Weighted F1 Accuracy

Mean Std Mean Std

TG-PNA [43] 62.63 1.55 63.26 1.83
HACT-Net [9] 69.61 0.98 70.39 1.26
GT [20] 61.79 0.41 62.33 0.67
Graphormer [22] 70.89 1.27 71.36 1.55
HIPT [61] 70.29 0.98 71.01 1.26
CTransPath [62] 69.97 1.73 70.41 1.84
CGT (Ours) 75.74 0.47 76.58 0.75

putation, and breast cancer classification. We implement our
methods using PyTorch [67] and the Deep Graph Library
(DGL) [63]. In the process of tissue graph construction, the
number of non-overlapping superpixels Nsp is chosen to be
500, and other parameters of the SLIC algorithm refer to the
implementation in [9]. We use Cross Entropy Loss to train all
methods with 10−3 learning rate. All methods were trained
for 100 epochs using the Adam optimizer [68], 10−3 weight
decay, and batch size as 4 by default. We let the number
of GTLs be 6, the attention heads of each GTL be 6, and
the hidden dimension of the node feature be 514, such that
the total number of trainable parameters is in the range of
9M. Compared by the classification performance of four LCA
functions (i.e., sum, mean, max, min), we select the sum
function to aggregate l-hop connectivity embedding in each
GTL for the proposed CGT. Experiments are conducted on
a single NVIDIA GeForce GTX 1080TI GPU with 11 GB
memory. Table II reports the detailed model settings.

3) Competitors: We compare our method against three
groups of methods: message-passing GNNs, transformer-
based GNNs, and vision transformers-based methods.
Message-passing GNNs includes Patch-GNN [13], CG-
PNA [43], TG-PNA [43], CGC-Net [30], and HACT-Net [9].
Transformer-based GNNs include GT [20], SAN [21], and
Graphormer [22]. Vision transformers-based methods include
HIPT [61] and CTransPath [62]. As mentioned before, Patch-
GNN employs the patch graph as its input, whereas other
GNNs use entity graphs. CG-PNA and CGC-Net employ the
cell graph, and HACT-Net employs the hierarchical graph
concatenated by the cell graph and tissue graph. Vision
transformers-based methods directly use pathology images.
The remaining competitors, as well as the proposed CGT, em-
ploy the tissue graph as their input. For a fair comparison, we
adopted the same experimental settings when implementing
these methods, and their hyperparameters were chosen to be
the recommended values by their authors.

B. Experimental Results

1) Improvement over SOTAs on BRACS dataset using cross-
validation: We first demonstrate our CGT works better than

existing state-of-the-art (SOTA) methods for breast cancer
classification. We provide classification accuracy to evaluate
overall breast cancer classification performance on the BRACS
dataset. Since the BRACS dataset has a large range of data
variation in different classes (reported in Table I), we also
utilize the weighted F1 score for performance evaluation. The
weighted F1 score assigns different weights to each class
based on their relative frequencies, so that the performance
of minority classes is given more importance and is not
overshadowed by the majority classes. The mean and standard
deviation of per-class metrics are reported to indicate the
distribution of classification results.

As shown in Table III, the classification result is produced
by using five-fold cross-validation, i.e., four-fold for training
and one-fold for testing. The implementation details including
the loss function, learning rate, the optimizer, the training
epochs, and so on, were the same as ours (reported in Sec. IV-
A.2). We can see from Table III that the proposed algorithm
works better than SOTA methods including message-passing
GNNs, transformer-based GNNs, and vision transformers-
based methods according to weighted F1 score and accuracy.
This experimental finding signifies that the proposed algorithm
is able to boost breast cancer classification performance,
even though the dataset holds numerous variable typical and
atypical hyperplasia subtypes.

2) Improvement over SOTA GNNs on BRACS dataset: We
compare the performance improvement of different methods
on the BRACS dataset using the original data split, as shown
in Table IV. We utilize the weighted F1 score on the BRACS
dataset as the classification performance metric. Each model is
trained three times by random weight initialization, exploiting
potential classification performance sensitivity to initialization.
The mean and standard deviation of per-class F1 scores are
also provided.

From Table IV, we observe that our method consistently
yields better performance than all competitors in weighted F1
score, implying that our method achieves the best breast cancer
classification. Among message-passing GNNs, CG-PNA and
TG-PNA perform better than Patch-GNN, indicating that tradi-
tional patch-wise GNNs are inferior to topological entity-based
paradigms. TG-PNA obtains a higher performance gain than
CG-PNA, demonstrating that using tissue graphs can obtain
superior performance gains although their GNN backbones are
identical such as the PNA herein. HACT-Net achieves the best
results in message-passing GNNs but is still inferior to our
CGT, confirming that the simple concatenation of cell graphs
and tissue graphs is deficient to yield more comprehensive
graph representations. Among transformer-based GNNs, GT,
SAN, and Graphormer obtain a better performance than most
of the message-passing GNNs except HACT-Net, thereby
signifying the superiority of transformer-based GNNs. Our
CGT surpasses the message-passing and transformer-based
GNNs, demonstrating its better efficacy to phenotype the tissue
topology for breast cancer classification.

As shown in Table V, the performance improvement of our
proposed CGT is compared with three domain expert pathol-
ogists on the BRACS test dataset. We report the mean and
standard deviation of per-class F1 scores, weighted F1 scores,
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TABLE IV
PERFORMANCE IMPROVEMENT COMPARED TO DIFFERENT METHODS ON THE BRACS TEST DATASET, INCLUDING MEAN AND STANDARD DEVIATION

OF PER-CLASS F1 SCORES AND WEIGHTED F1 SCORES FOR TOTAL 7-CLASS CLASSIFICATION. RESULTS ARE PRESENTED IN %. THE BEST RESULT

IS IN BOLD AND THE SECOND BEST RESULT IS IN BLUE.

Methods Normal Benign UDH ADH FEA DCIS Invasive Weighted F1

Patch-GNN [13] 52.53±3.27 47.57±2.25 23.67±4.65 30.66±1.79 60.73±5.35 58.76±1.15 81.63±2.17 52.10±0.61
CGC-Net [30] 30.83±5.33 31.63±4.66 17.33±3.38 24.50±5.24 58.97±3.56 49.36±3.41 75.30±3.20 43.63±0.51
CG-PNA [43] 58.77±6.82 40.87±3.05 46.82±1.95 39.99±3.56 63.75±10.48 53.81±3.89 81.06±3.33 55.94±1.01
TG-PNA [43] 63.59±4.88 47.73±2.87 39.41±4.70 28.51±4.29 72.15±1.35 54.57±2.23 82.21±3.99 56.62±1.35
HACT-Net [9] 61.56±2.15 47.49±2.94 43.60±1.86 40.42±2.55 74.22±1.41 66.44±2.57 88.40±0.19 61.53±0.87

GT [20] 59.48±1.19 46.43±2.46 23.12±0.04 35.93±2.60 71.51±0.31 63.78±2.24 85.57±3.88 56.64±0.18
SAN [21] 56.81±0.56 54.79±3.10 29.82±8.46 45.04±1.50 69.61±0.32 67.97±0.93 78.51±4.22 58.63±0.49

Graphormer [22] 58.51±4.25 58.74±0.56 37.11±7.80 47.87±1.82 68.49±1.11 69.40±1.96 83.93±2.85 61.70±1.11
CGT (Ours) 65.56±0.42 56.71±1.83 47.12±0.29 50.47±1.15 75.06± 0.06 74.78±0.36 89.59±0.36 66.54±0.43

TABLE V
PERFORMANCE IMPROVEMENT COMPARISON BETWEEN DOMAIN EXPERT PATHOLOGISTS AND PROPOSED CGT ON THE BRACS TEST DATASET,

INCLUDING MEAN AND STANDARD DEVIATION OF PER-CLASS F1 SCORES, WEIGHTED F1 SCORES, AND WEIGHTED ACCURACY FOR TOTAL 7-CLASS

CLASSIFICATION. RESULTS ARE PRESENTED IN %. THE BEST RESULT IS IN BOLD.

Method Normal Benign UDH ADH FEA DCIS Invasive Weighted F1 Accuracy

Pathologist 1 67.53 53.92 41.90 36.00 19.13 71.59 94.00 55.30 56.71
Pathologist 2 47.83 52.94 25.00 35.37 65.22 68.00 94.00 57.07 57.99
Pathologist 3 39.66 49.59 49.43 42.29 54.12 65.19 89.47 56.71 56.55

Pathologist statistics 51.57±11.70 52.15 ±1.85 38.78 ±10.22 37.89 ±3.12 46.16 ±19.64 68.26 ±2.62 92.49 ±2.14 56.36 ±0.76 57.08 ±0.64
CGT (Ours) 65.56±0.42 56.71±1.83 47.12±0.29 50.47±1.15 75.06± 0.06 74.78±0.36 89.59±0.36 66.54±0.43 67.32±0.35

Node importance: Low High

(b) Tissue regions of ADH

(f) Tissue regions of DCIS

(d) Tissue regions of FEA

(h) Tissue regions of IC

(a) Tissue graph of ADH

(e) Tissue graph of DCIS

(c) Tissue graph of FEA

(g) Tissue graph of IC

Fig. 3. The interpretation of our CGT using GraphGradCAM with four sample tissue graphs for 7-class breast cancer classification on the BRACS
dataset. The sample tissue graphs with GraphGradCAM maps include (a) ADH, (c) FEA, (e) DCIS, and (g) IC, where partially enlarged figures are
also provided. (b) (d) (f) (h) show the corresponding tissue regions with different importance scores.

and weighted accuracy for each independent pathologist. The
united statistics of the three pathologists are also presented
to benchmark our CGT. It is obvious that the classification
performance of our CGT exceeds all domain expert patholo-
gists in subtyping normal, ADH, and FEA. The CGT achieves
comparable performance in classifying Benign, UDH, and
DCIS categories. Compared with pathologists’ statistics, the
lower standard deviations of our CGT signify its superior and

stable classification performance in breast cancer.
3) Improvement over the ensemble and single networks on

BACH dataset: We further compare the performance im-
provement of different methods on the BACH dataset, as
shown in Table VI. The network types of these competitors
are divided into two groups: ensemble networks and single
networks [25]. Our prediction results are yielded by the
organizers of the BACH challenge for a pair comparison. It
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TABLE VI
PERFORMANCE IMPROVEMENT COMPARED TO THE ENSEMBLE AND

SINGLE NETWORKS USING THE BACH TRAIN AND TEST DATASET. WE

REPORT THE MEAN AND STANDARD DEVIATION OF ACCURACY FOR A

TOTAL 4-CLASS CLASSIFICATION. RESULTS ARE PRESENTED IN %.

Network types Methods Accuracy

Ensemble networks [25]

Wang et al. [63] 95.00
Marami et al. [64] 94.00

Chennamsetty et al. [65] 87.00
Brancati et al. [66] 86.00

Single networks

HACT-Net [9] 91.00
SAN [21] 89.00

Graphormer [22] 90.00
CGT (Ours) 92.00

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

5 6

5 8

6 0

6 2

6 4

6 6

6 8

We
igh

ted
 F1

 sc
ore

λ

Fig. 4. The classification performance comparison of the proposed
CGT variants using different values of hyperparameter λ on the BRACS
test dataset. The histogram includes the mean and standard deviation
of weighted F1 scores for the 7-class classification.

can be seen that our CGT achieves the best classification
performance among single networks and comparable accuracy
in ensemble networks. The comparative result validates the
breast cancer classification capability of the proposed CGT
on the lightweight dataset. Although ensemble networks adopt
multiple networks to generate prediction results, they also
require more computation resources than single networks. The
result demonstrates that our CGT can accurately classify breast
cancer subtypes with a modest computation cost.

4) Explainability to Pathologists: To provide the explanations
of our CGT to pathologists, a post-hoc gradient-based feature
analysis approach termed GraphGradCAM [69] is adopted
to highlight the nodes in the tissue graph, as well as their
corresponding regions. As shown in Fig. 3, the nodes and cor-
responding regions in tissue graphs are represented in different
colors, according to their importance levels in the breast cancer
classification. We observe in Figs. 3 (b) (d) (f) (h) that Our
CGT focuses on the necrotizing tissue regions and tumorous
epithelium in the tissue graph while ignoring the less important
cell stroma. Interestingly, this observation indicates that our
CGT can mimic the realistic pathological diagnosis for breast
cancer, where the pathologists highly rely on the presence
and morphological features of breast lesions to diagnose the
corresponding cancer subtypes [7]. These explanations also

TABLE VII
ABLATION STUDY RESULTS ON THE BRACS DATASET USING LOCAL

AGGREGATION AND ATTENTION BIAS. #PARAM IS THE NUMBER OF

NETWORK PARAMETERS. RESULTS ARE PRESENTED IN %. THE BEST

RESULT IS IN BOLD.

Local aggregation Attention bias #param. Weighted F1
CE LCA LFA CB SPD

- - - - - 7904741 54.44±0.89
✓ - - - - 8431077 59.76±0.37
- - ✓ - - 7904741 41.38±1.35
- - - ✓ - 7907813 61.43±0.47
- - - - ✓ 7910885 56.28±2.75
✓ - - ✓ - 8434149 63.31±1.24
✓ ✓ - - - 8431077 62.03±0.81
✓ ✓ - - ✓ 8437221 63.09±0.31
✓ ✓ - ✓ - 8434149 66.54±0.43

enable pathologists to locate the relevant diagnostically tissue
regions, consequently holding the potential to help pathologists
assess their cancerization risks.

5) Hyperparameter Selection: The hyperparameter λ given
in Eq. (5) is utilized to balance the scale between node features
and their connectivity embeddings. Aiming to determine its
best value, we conduct experiments with six λ values: 0.5,
1.0, 1.5, 2.0, 2.5, and 3.0 on the BRACS dataset. Fig. 4 shows
that our method yields the highest mean of weighted F1 scores
and its minimum weighted F1 score is still superior to that of
other methods when λ = 2. Hence, we let λ be 2 in all other
experiments.

C. Ablation Study

1) Local Connectivity Aggregation: To investigate the effect
of the main components in our method: CE, LCA, and CB,
we design several variants of the proposed CGT. The baseline
method is the variant of the proposed CGT using no local
aggregation or attention bias.

To compare with LCA, we design a variant using local fea-
ture aggregation (LFA), which only aggregates node features
instead of CE. As reported in Table VII, adding CE to the node
feature without LCA obtains a better result than the baseline.
The variant of CE with LCA achieves a significant perfor-
mance improvement over the variant of LFA (62.03±0.81 vs.
41.38±1.35), while the performance of the variant of LFA is
inferior to that of the baseline (41.38±1.35 vs. 54.44±0.89). It
indicates that only aggregating node features can offer limited
benefits in classifying breast cancer, which is attributed to that
an operation of local feature aggregation is equal to a message-
passing GNN layer. The message-passing mechanism incurs
the problem of over-smoothing and over-squashing based on
the aforementioned analysis, thereby leading to its inferior
performance. Our full model (i.e., CE+LCA+CB) yields a
higher weighted F1 score than the variant using CE and CB,
signifying that the proposed local connectivity aggregation is
able to effectively map the structural information of tissue
graphs to comprehensive histological representations. We can
also see that the proposed LCA requires no extra network
parameter, demonstrating the computation efficiency of the
proposed CGT for breast cancer classification.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3381239

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 16,2024 at 14:03:02 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2023

Data distribution of graphs in different densityInput graph

Number of graph nodes
N

um
be

r o
f t

is
su

e 
gr

ap
hs

Number of graph nodes

N
um

be
r o

f t
is

su
e 

gr
ap

hs

Number of graph nodes

N
um

be
r o

f t
is

su
e 

gr
ap

hs
Degree of graph node

D
en

si
ty

Degree of graph node

D
en

si
ty

Degree of graph node

D
en

si
ty

Breast cancer classification result

Sparser graph

Base graph

Denser graph

Fig. 5. The ablation result of the proposed CGT using the input graphs with diverse graph structures, i.e., sparser, base, and denser graphs. The
data distributions of these different types of graphs are provided in the middle region, including the number and degree of nodes. The region of the
breast cancer classification result contains three corresponding interpretation maps and a mean F1 score histogram.

2) Connectivity Bias: To compare with CB, we design the
variants by using shortest path distance (SPD) reported in [22]
as another type of attention bias. Without any local aggregation
operation, we can see from Table VII that the variant of
CB achieves a better performance gain (61.43±0.47) than the
baseline (54.44±0.89) and the variant of SPD (56.28±2.75).
Also, the variant of CB outperforms most of the message-
passing and transformer-based GNNs in Table IV, demon-
strating that breast cancer classification indeed benefits from
the proposed CB as the attention bias. It is observed that
the variant of using CE and CB simultaneously works bet-
ter than the variants of using independent connectivity at-
tribute, i.e., the variant of CE and the variant of CB. The
result validates the effectiveness of adding adequate structural
information of the tissue graph to transformer-based GNNs
for capturing histopathological representation. Our full model
(i.e., CE+LCA+CB) surpasses other variants, conveying that
the main components in our method are necessary and mu-
tually reinforced for histopathological representation in breast
cancer classification.

3) Graph Structure: Our proposed connectivity attributes
including CE and CB, as demonstrated in the ablation study
before, have significant effects on model performance for
breast cancer classification. CE encodes graph topology by
adding learnable connectivity embedding into node features,
which is initialized by graph node degree. Additionally, CB
aggregates spatial distance between two nodes by mapping
the node pair distance to a learnable vector while calculating
the self-attention among nodes. It is noted that our proposed
CE and CB highly depend on the structure of the input
graph, e.g., the number and degree of nodes, and the denseness
or sparseness of the graph.

Hence, we here conduct ablation experiments on the in-
put graphs with different densities, to evaluate the effect
of diverse graph structures on the proposed CGT. In detail,
we construct three types of tissue graphs from the same
pathology image on the BRACS dataset, by changing the
number of non-overlapping superpixels Nsp to 300, 500, and
700 respectively, as described in Sec. III-B. Fig. 5 depicts
three example input graphs, which are generated by the same
DCIS image from Fig. 3(e). According to their node amounts,
the constructed three types of tissue graphs are named sparser
graph, base graph, and denser graph. The data distributions
of the three types of tissue graphs are provided in Fig. 5,
exhibiting their variance in the number and degree of nodes.

Except for the number of non-overlapping superpixels Nsp,
the implementation details such as the loss function, learn-
ing rate, the optimizer, and the training epochs, were the
same as ours as reported in Sec. IV-A.2. The breast cancer
classification result is produced by using five-fold cross-
validation, i.e., four-fold for training and one-fold for testing.
We can see from Fig. 5 that the base graph performs better
than the sparser graph and denser graph, in terms of per-class
F1 score and weighted F1 score. Although the sparser graph
yields the lowest weighted F1 score, we observed that it still
outperforms the second-best model (72.0 vs. 70.89) in Table
III. We provide three interpretation maps corresponding to the
sparser graph, base graph, and denser graph, respectively, as
shown in Fig. 5. It is observed that the importance scores of
biological regions in the sparser graph are much closer and
higher than those of other graphs. Meanwhile, the importance
scores of biological regions in the denser graph are also close
but lower. This experimental finding indicates that the sparser
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and denser graphs may contain less or more irrelevant infor-
mation or noise, resulting in undesirable breast classification
performance. The graph with the appropriate node amount
could provide more representative features in pathological
images, boosting the diagnosis performance of breast cancer.
We thus let the number of non-overlapping superpixels Nsp

be 500 in our proposed CGT.

V. CONCLUSION

Automated classification of breast cancer subtypes from
digital pathology images is an extremely challenging task
due to the complicated spatial patterns of cells in the tissue
micro-environment. In this paper, we have presented CGT, a
connectivity-aware graph transformer for breast cancer classi-
fication by phenotyping the topology connectivity of the tissue
graph constructed from digital pathology images. The two
contributions are summarized as: (i) Our CGT leverages the
graph transformer architecture to add connectivity embedding
at every graph transformer layer by using local connectivity
aggregation, thereby mapping the comprehensive graph repre-
sentations to breast cancer subtypes. (ii) The spatial distance
is further encoded to the connectivity bias in self-attention
calculation between two arbitrary nodes in a tissue graph, to
efficiently capture and distinguish nodes’ connectivity relation-
ships.

We evaluated this novel network on the BRACS dataset
which is a large cohort of annotated tissue RoIs from Haema-
toxylin & Eosin stained breast carcinoma digital pathology
images. Our CGT is demonstrated to surpass state-of-the-art
methods, indicating its better efficacy to phenotype the tissue
topology for breast cancer classification. Further compared
with pathologists’ statistics, the lower standard deviations of
our CGT signify its superior and stable classification perfor-
mance. Various experiments are also conducted on a publicly
available digital pathology image dataset BACH, signifying
our CGT holds the potential to accurately classify pre-cancer
subtypes with a modest computation cost. A comprehensive
ablation study conveys that the main components (i.e., con-
nectivity embedding with local connectivity aggregation, and
connectivity bias in our method are necessary and mutually
reinforce histopathological representation in breast cancer
classification.

By constructing entity graphs from different digital pathol-
ogy images, our CGT can be potentially applied to the diagno-
sis of other cancer types. While the proposed CGT has shown
promising results, there are still some limitations. WSI-level
image classification would be ideal for clinical practice, but
our proposed CGT is validated on patch-level image datasets.
It is worth noting that our method can be easily modified
as instance-level feature extractors for arbitrary MIL methods,
highlighting the potential for WSI-level classification. In future
research, we will consider addressing how clinical informa-
tion, such as patient demographics, medical history, and gene
sequence, can be integrated into our method, and how it can
contribute to improving real-world diagnostic processes and
patient outcomes.
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[13] B. Aygüneş, S. Aksoy, R. G. Cinbiş, K. Kösemehmetoğlu, S. Önder,
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