
Journal of Manufacturing Systems xxx (xxxx) xxx

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

Technical paper

Chat with MES: LLM-driven user interface for manipulating garment
manufacturing system through natural language
Zhaolin Yuan a,b,c , Ming Li c,d,e,f ,∗, Chang Liu a, Fangyuan Han a, Haolun Huang h,
Hong-Ning Dai g
a Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
b Shunde Innovation School, University of Science and Technology Beijing, Guangdong, China
c Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
d Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hong Kong, China
e Research Centre for Digital Transformation of Tourism, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
f Centre for Transformative Garment Production, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
g Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
h School of Intelligent Systems Science and Engineering, Jinan University, Zhuhai, China

A R T I C L E I N F O

Keywords:
Interactive Manufacturing Execution System
Large language model
Text2SQL
LLM-Agent
Human-computer interaction

 A B S T R A C T

This paper presents Chat with MES (CWM), an AI agent system, which integrates LLMs into the Manufacturing
Execution System (MES), serving as the ‘‘ears, mouth, and the brain’’. This system promotes a paradigm shift in
MES interactions from Graphical User Interface (GUI) to natural language interface’’, offering a more natural
and efficient way for workers to manipulate the manufacturing system. Compared with the traditional GUI,
both the maintenance costs for developers and the learning costs and the complexity of use for workers are
significantly reduced. This paper also contributes two technical improvements to address the challenges of
using LLM-Agent in serious manufacturing scenarios. The first one is Request Rewriting, designed to rephrase
or automatically follow up on non-standardized and ambiguous requests from users. The second innovation is
the Multi-Step Dynamic Operations Generation, which is a pre-execution planning technique similar to Chain-
of-Thought (COT), used to enhance the success rate of handling complex tasks involving multiple operations.
A case study conducted on a simulated garment MES with 55 manually designed requests demonstrates the
high execution accuracy of CWM (80%) and the improvement achieved through query rewriting (9.1%) and
Multi-Step Dynamic operations generation (18.2%). The source code of CWM, along with the simulated MES
and benchmark requests, is publicly accessible.
1. Introduction

The Manufacturing Execution System (MES) has undergone signifi-
cant evolution since its inception in the late 19th century, becoming
an integral part of modern manufacturing due to its crucial role in
production process management and optimization [1]. With the rapid
development of MES in incorporating more complicated functions and
operational workflows, the methods by which workers interact with
MES warrant more attention [2]. Efficient and friendly interaction will
significantly reduce the workload of workers and the training cost for
new employees.

Since the Graphical User Interface (GUI) appeared [3] , it has
become the primary way for workers to operate an MES. Users ma-
nipulate the graphical elements within a specific system page and
receive feedback from the changeable elements. The GUI is typically

∗ Corresponding author.
E-mail address: ming.li@polyu.edu.hk (M. Li).

developed alongside the core components of the MES by the software
engineering team. Although the GUI has evolved over several decades
and is sufficiently mature, it still suffer some limitations in real develop-
ments and utilization. The first limitation arises from the programmers
responsible for coding. Because MES is a kind of non-standardized and
customized software, it demands substantial labor effort for developing
and maintaining the GUI. Even after project delivery, users may still
present various new requirements and the developers have to intervene
and revise the logic of software and data access interfaces. Many
MES development projects fail and are abandoned by factory users
because the development team refuses to continue maintaining the
systems [4]. The second issue is the learning cost and operational
complexity for users. A new worker must thoroughly learn from the
software guidelines and undergo training before performing operations.
https://doi.org/10.1016/j.jmsy.2025.02.008
Received 4 December 2024; Received in revised form 22 January 2025; Accepted 1
0278-6125/© 2025 The Authors. Published by Elsevier Ltd on behalf of The Socie
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Zhaolin Yuan et al., Journal of Manufacturing Syste
6 February 2025
ty of Manufacturing Engineers. This is an open access article under the CC

ms, https://doi.org/10.1016/j.jmsy.2025.02.008

https://www.elsevier.com/locate/jmansys
https://www.elsevier.com/locate/jmansys
https://orcid.org/0000-0001-5829-8952
https://orcid.org/0000-0003-4119-7340
mailto:ming.li@polyu.edu.hk
https://doi.org/10.1016/j.jmsy.2025.02.008
https://doi.org/10.1016/j.jmsy.2025.02.008
http://creativecommons.org/licenses/by-nc-nd/4.0/

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
In the utilization stage, the workload is also significant due to numerous
repetitive and tedious operations. For systems designed for extremely
complicated manufacturing processes, the cost for developing and using
GUI is much more substantial [5].

Advanced software engineering methods are suggested to address
challenges in development and implementation. From the perspective
of reducing the labor cost of software development and maintenance,
emerging software development techniques have explored paradigms
such as no-code [6] and low-code [7] development platforms. However,
these platforms face usability–plasticity dilemma. Component encap-
sulation allows non-programmers to swiftly create a software system
through drag-and-drop interfaces. However, excessive encapsulation
will adversely affect extensibility, making it impossible to meet cus-
tomized needs. From a worker’s experience standpoint in relation to
usage, Robotic Process Automation (RPA) [8] has garnered substantial
interest as a means of automating repetitive and labor-intensive busi-
ness processes through software bots. However, the functions of most
RPA engines are generally limited to specific workflows and certain GUI
pages. They merely serve as supplemental tools to the GUI rather than
substitutes for addressing the underlying drawbacks of GUI.

Recent advances in large language models (LLMs) have the poten-
tial to revolutionize the interaction between humans and information
systems. This can be achieved by understanding the user requirements
expressed in natural language and invoking the services within the
information system. Some successful cases have been observed in Web
Shopping [9] and Web Browsing [10]. Accessing an MES through a
conversational interface powered by an LLM is straightforward. How-
ever, manufacturing is a typical serious and complicated scenario. It
introduces two technical challenges when utilizing LLMs to manipulate
a MES. First, the inherent flexibility of natural language often leads
to ambiguity in user input [11]. It contradicts the need for precise
instructions, which are essential for reliable operations in MES. An
important research topic is enabling LLM systems to identify accurate
information from incorrect or ambiguous queries. From the perspective
of handling a request, a user request may involve numerous database
operations and service calls, presenting a challenge for existing LLMs
to accurately execute all steps. Manufacturing is a serious application
domain and many operations involve atomicity and transactional prop-
erties. For the LLM Agent, the procedure for processing requests and the
operations it executes have to be governed by pre-established factory
management guidelines. Inaccurate operations can lead to severe conse-
quences. These two issues must be addressed before using an LLM-based
interface to manipulate the real MES.

This paper presents a system entitled ‘‘Chat with MES’’ (CWM) to
replace the traditional GUI of MES with conversational interactions.
Fig. 1 presents the differences between using CWM and traditional GUI
to manipulate MES. The CWM obviates the necessity for developing
both front-end and back-end software, in addition to reducing the ex-
penses associated with system maintenance. Furthermore, we propose
two technical advancements to address the challenges associated with
ambiguous user inputs and complicated tasks. (1) Query Rewriting:
This module addresses the problem of ambiguous and inaccurate user
inputs by maintaining a private context base to record named entity
information and rewrite users’ requests. (2) Multi-step Dynamic Op-
erations Planning and Execution: To effectively handle complicated
user requests, the Multi-step Dynamic Operations Planning and Execu-
tion pre-plans a chain of basic executable operations with parameter
placeholders and execute the operations one-by-one. Each operation
involves either invoking a service from the MES’s predefined services
pool, generating an SQL command for direct access to the production
database, or performing reasoning and inference based on context. The
initial decomposition significantly enhances the controllability and reli-
ability of the LLM and facilitates the incorporation of prior knowledge.
We evaluated the CWM on a simulated garment MES and a manu-
ally designed questions-and-answers dataset involving 55 requests. The
garment manufacturing execution system (MES) is equipped with a
2
relational database consisting of 16 tables, encapsulating the typical
entities encountered in actual garment production. The designed re-
quests encompass the major cases that may arise during actual use by
the two user roles: workers, and managers. The quantitative findings
indicate a high execution accuracy of the CWM at 80%, along with
the enhancement achieved through query rewriting, which contributes
an improvement of 9.1%, and the generation of Multi-Step Dynamic
operations, which results in an advancement of 18.2%.

The contributions of this paper are threefold.
(1) We propose ‘‘Chat with MES’’, a novel MES operation paradigm

that provides users with an interface for manipulating the MES system
via natural language.

(2) The Multi-step Dynamical Operations Generation is proposed
to handle complex user queries by executing a sequence of basic
operations. This technique ensures the controllability and reliability of
CWM in serious manufacturing scenarios.

(3) An experimental environment was established using a simu-
lated garment manufacturing system. Furthermore, a new question-
and-answer dataset comprising 55 manually crafted requests was cre-
ated to serve as a new benchmark for operating a MES through con-
versation. The evaluation of the CWM demonstrates an impressive
execution success rate of 80%, significantly exceeding the original
GPT-4’s performance, which registers at 60%.

The subsequent sections are organized as follows: Section 2 provides
a review of existing literature concerning user interfaces within MES, as
well as the application of Large Language Models (LLM) in manufactur-
ing processes and techniques associated with LLM. Section 3 depicts the
technical details of CMS including the Query Rewriting and Multi-step
Dynamical Operations Generation. The experiment Section 4 provides
an introduction to the simulated garment manufacturing system used
for testing, along with the corresponding Q/A dataset. Next, the ex-
perimental results and analysis are presented. Section 5 discusses the
limitations of CWM and provides insight into future research. Finally,
Section 6 concludes this article.

2. Related work

2.1. Limitations in human-MES interaction

An integrated management interface is indispensable for each MES
to ensure that the distinct components are systematically organized
and accessible. Graphical user interface (GUI) serves to convey infor-
mation to users and facilitate human decision-making in production
management [12]. This section examines recent research concerning
the creation and utilization of GUI.

In development terms, manufacturing is a tailored scenario, requir-
ing customization of transaction logic and the GUI for each factory. To
address the significant cost associated with customized development,
many software development techniques have explored paradigms such
as no-code [6] and low-code [7] development platforms. These plat-
forms integrate tools for a specific kind of applications and enable end
developers to create and configure corresponding applications by them-
selves, such as ERP, MES, and digital twin systems [13]. Although these
techniques are known to be easily developed, deployed, and main-
tained, they nevertheless face limitations in extensibility, rendering
them unsuitable for complicated manufacturing scenarios [6].

In the utilization perspective, intricate manufacturing systems are
associated with significant learning expenses and operational complex-
ities for users. As a revolutionary technique to simplify the operational
processes and enhance user experience, Robotic Process Automation
(RPA) [8] has garnered substantial interest as a means of automat-
ing repetitive and labor-intensive business processes through software
bots. Recent work by Holzinger et al. [14] highlights the importance
of human-centered Artificial intelligence (AI) interfaces. Current RPA
systems are most designed to adhere to pre-defined rules and work-
flows of the GUI [15]. These functionalities are typically implemented

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Fig. 1. The comparison between the traditional GUI-based framework and CWM.
through drag-and-drop interfaces, screenplay recording, or automation
frameworks such as Selenium [16]. The systems are intrinsically
system-centered, instead of human-centered. Users must passively
adhere to the rules and provide specific information, yet they
cannot actively express their desires [15]. Meanwhile, RPA re-
mains dependent on GUI interfaces, the cost of developing GUI
is unavoidable. Recent years have witnessed remarkable progress in
computer vision, LLM, and LLM-Agent, which have opened up new
possibilities for integrating LLMs with RPA systems towards enabling
them to perceive and autonomously interact with complex applications.
AI can be incorporated into the interface layer for MES to create better
user-friendly experiences. Mantravadi et al. [17] proposed the concept
of AI-based chatbot assistance, which aims at production coordination
by assisting the shop floor workforce and providing easy information
extraction in manufacturing. Their developed prototype shows that
MES users can benefit from an interactive chatbot by creating more
dynamic and free experiences. Colabianchi et al. [18] presented an
integrated conceptual architecture to develop industrial conversational
agents and illustrated the elements needed for the development. They
also overlooked the application of LLMs in manufacturing conversation
systems. The research discussed above primarily stays at the con-
ceptual or prototype development stage. A significant gap exists
between the conceptual design and the development of a fully
operational conversational manufacturing system.

2.2. LLM-based Text2SQL

One primary function of MES is managing the production data
by accessing the production databases. To address the wide range
of potential queries from users, the proposed CWM will act as a
database operating agent between the user and the database. Text2SQL
parsing [19] aims at converting natural language questions into ex-
ecutable SQLs. Recent advances in large language models (LLMs),
such as GPT-4 and Claude-2 have shown impressive results in this
task. Some production-ready projects are also developed, such as DB-
3
GPT [20] and sqlcoder.1 However, according to the test results from a
large-scale Text2SQL benchmark, the most effective Text2SQL models
achieve 54.89% in execution accuracy, whereas human experts achieve
approximately 92.96% [21].

Intrinsically, Text2SQL is a code generation technology that trans-
forms detailed and precise natural language requests into SQL com-
mands. In practical applications, it must incorporate business-related
prior knowledge alongside Text2SQL to accurately identify users’ re-
quirements and generate executable SQL commands. By designing
specific workflows and incorporating additional knowledge through
prompt engineering, the performance of Text2SQL in practical appli-
cations has been improved significantly. As an extension of Text2SQL,
ChatBI is proposed to convert Natural Language to Business Intelli-
gence [22], effectively addressing challenges related to a large number
of columns. To address complex queries requiring multi-step database
operations rather than a single SQL command, ChatDB [23] and Din-
SQL [24] augment LLMs to generate multi-step and dynamical SQL
instructions for database manipulation. However, existing LLM-based
business intelligence systems are generally applied in
non-intrusive data query scenarios to avoid the catastrophic con-
sequences of hallucinatory data editing. In our study, manipulat-
ing MES inevitably involves a number of update, insert, and delete
operations. The chosen operations and their sequence must be ab-
solutely accurate. This places extremely high requirements on the
agent. Not only does the agent need to understand all database’s
schema and their relationships, but it also needs to follow the
production guidelines. The experimental section demonstrates
that current leading general LLMs lack the ability to manage these
intricate tasks.

1 https://github.com/defog-ai/sqlcoder.

https://github.com/defog-ai/sqlcoder

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Fig. 2. Technical framework of CWM.
2.3. Application of LLM in manufacturing systems

In the context of Industry 4.0, the rapid emergence of LLM has
brought forth transformative solutions for manufacturers in processing
and leveraging their data efficiently. LLMs are increasingly being used
as conversational agents, serving as an intuitive interface between
humans and the manufacturing environment [18]. This section aims to
analyze the differences between this paper and other studies that apply
large models in the manufacturing scenarios. Sun et al. [25] propose an
AI-driven digital-twin (DT) multi-agent architecture powered by LLMs
to enhance equipment maintenance scenarios, offering novel insights
into predictive and preventive maintenance strategies. Furthermore,
the application of LLMs extends beyond conversational agents and into
more specialized areas such as robotics programming. In a ROS (Robot
Operating System) environment, Xia et al. demonstrate how LLM-
driven code generation can be harnessed to enable more efficient robot
operations [26]. Li et al. [27] further explore the integration of LLMs
with Knowledge Graphs, leveraging the symbiotic relationship between
these technologies to aid in sourcing and identifying smaller manu-
facturing partners. Additionally, Xu et al. [28] incorporate LLMs in
collaborative design processes where LLMs generate design prompts for
tools like DALL-E, facilitating the rapid and seamless creation of precise
visual schemes. In the realm of industrial sustainability, Wu introduces
the ProcessCarbonAgent framework, which uses LLMs to analyze root
causes of carbon emissions and improve decision-making for industrial
emission management [29]. These studies illustrate the transforma-
tive influence LLMs hold within numerous aspects of manufacturing,
ranging from robot manipulation and design collaboration to supply
chain enhancement and cause analyses. The LLM functions not only as
a chatbot or writer but also as a coordinator that integrates services
and processes information from multiple sources. Table 1 highlights
the differentiating factors of CWM in comparison to preceding research
efforts. Given that each related work addresses unique research ques-
tions, we analyze the capabilities of LLMs that are employed. CWM
represents the first dialogue-oriented open-source framework endowed
with functionalities including Code Generation, database access, and
Tool invocation.

3. Chat with MES

The overall framework of CWM is illustrated in Fig. 2. Upon receiv-
ing a textual request from the user, the CWM undergoes three stages,
Request Rewriting, Multi-Step Dynamical Operations Generation, and
Responses Generation. To eliminate ambiguities from the user’s original
4
Table 1
Comparison of LLM-based applications in the field of manufacturing.
 Objective Ref. Chat Text gen-

eration
Code gen-
eration

SQL gen-
eration

Tool
invocation

 Conversational
chatbot

[18] ✓ × × × ×

 Equipment
maintenance

[25] × ✓ × × ×

 Answering
queries &
generating robot
code

[26] ✓ × ✓ × ×

 Manufacturing
service discovery

[27] ✓ × × ✓ ×

 Collaborative
design

[28] ✓ ✓ × × ×

 Carbon emission
management

[29] ✓ ✓ × × ×

 Chatting with
MES

Ours ✓ ✓ ✓ ✓ ✓

commands, the Request Re-writer uses an LLM to substitute entities
in the request with precise descriptions that can be indexed in the
database. The Multi-step Dynamical Operations Generation develops a
plan with step-by-step operations to handle the request and dynami-
cally updates these operations. The final stage, Responses Generation,
summarizes the results from executing the operations and generates
a textual response in markdown format for the user. This section
introduces the technical details of the Request Re-writer and Multi-step
Dynamical Operations Generation processes.

3.1. Request re-writer for preprocess

When users interact with the CWM, they may input non-
standardized or ambiguous information, which can introduce signifi-
cant information bias in subsequent database operations. For example,
both ‘‘PolyU’’ and ‘‘Hong Kong Polytechnic University’’ refer to the
same entity associated with a record in the customer table. If the real
name stored in the database is ‘‘PolyU’’, once the user inputs ‘‘Hong
Kong Polytechnic University’’ as the customer information, a generated
SQL command may carry a wrong retrieve condition. Therefore, the
first technical module of CWM is developed to standardize the query
for Entity disambiguation.

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Fig. 3. Workflow of request re-writer.
The workflow of request re-writer is shown in Fig. 3. The Entity
Retriever is the core of the re-writer which dynamically maintains
the embedding of registered entities from the production database
in a vector DB. Each entity is stored as a chunk comprising a key
and the document. The document consists of the entity’s name ap-
pended to the database schema and column name. The key represents
the text embedding of the document generated by the OpenAI’s text-
embedding-3-large model. A synchronizer is introduced to monitor
database updates, triggering to insertion, updates, or deletions of the
chunks in the vector DB. For instance, if a customer modifies their
name, it triggers a real-time update of the chunk associated with the
customer’s name.

Listing 1: Prompt for rewriting request
role:

You are a professional question optimization
model. You can replace entity names in
questions with standard entity names.

Standard Entity Names:
The correspondence between entity names and

possible standard entity names is as follows:
{standard_entity_mapping}

Output Requirements:
1. Convert entity names to the most probable

standard entity names.
2. Replace the original entity names with

" < entity_type = standard_entity_name >"

Output Examples:
1. Original Question:
Orders of PolyU
Rewritten Question:
<customers.customer_name = ’PolyU’> orders
2. Original Question:
What are the sewing tasks that use silk
Rewritten Question:
What are the sewing tasks that use

<products.product_name = ’Silk’>
3. Original Question:
What does the main warehouse have
Rewritten Question:
What does <warehouse.warehouse_name = ’Main

Warehouse ’> have
4. Original Question:
What tasks does the Advanced Sewers group have
Rewritten Question:
What tasks does <working_group.name = ’Advanced

Sewers’> have

{question}

Rewritten Question:
After the user inputs the request 𝑥, The text-embedding-3-large

model in the Entity Retriever is utilized to convert textual query into
query vector 𝑞(𝑥). Subsequently, we identify the chunks with keys
most similar to the query embedding 𝑞(𝑥) by employing the Top-K
Maximum Inner Product Search. Finally, we employ the LLM’s zero-
shot Named Entity Recognition capability to identify entities from
5
the user’s request [30] and use the retrieved chunks to rewrite the
entity information with standardized format, schema-field = ‘‘infor-
mation’’ where the schema name, the field denotes the field name,
and the ‘‘information’’ is the matched entity. For example, the ‘‘Hong
Kong Polytechnic University’’ will be transformed to {customer.name
= ‘‘PolyU’’}. The prompt for re-writing is shown in Listing 1. If the
information provided by the user does not match any registered entity,
it indicates that the user’s query is not recognized, and the CWM will
return to generate a question to the user for confirmation.

3.2. Multi-step dynamical operations planning and execution

In an MES, a request, such as assigning a task to a worker or
placing an order for a customer, typically involves a series of complex
operations. To increase the controllability and reliability of CWM in
handling complicated requests, this paper introduces Multi-step Dy-
namical Operations Generation to transform the natural language
input from users to a series of executable basic operations in MES.
Fig. 4 illustrates the procedure for generating and executing multi-step
dynamical operations. This section begins with defining operations,
followed by outlining pre-planning and execution processes. Subse-
quently, it delves into few-shot learning for integrating prior production
guidelines, concluding with the final response generation.

3.2.1. Definition of operations
A basic operation is either a request for invoking a tool, or executing

a SQL command for operating the database, or a thought step. As the
most fundamental type of operation, ‘SQL’ represents accessing the
MES database by generating an SQL command tailored to the specific
purpose of the step. The SQL commands are generated by the LLM,
which is associated with Text2SQL, a significant and emerging research
area in the application of LLMs.

As the second type of operation, the tools are associated with avail-
able API services provided by the MES and identified by the LLM agent
according to four labels, tool name, tool description, parameters,
and parameter description. We use LLM to autonomously decide
which tool to invoke and determine the appropriate parameters based
on the user’s query or the retrieved results from the database. In a MES,
most tools comprise a series of data editing operations. Theoretically,
if the Text2SQL module is intelligent enough, all requests excluding
those that require external communication can be resolved by directly
manipulating the databases. However, an MES system always applies
a set of production-related constraints on data editing. For example,
assigning a production task to a worker is always associated with
inserting a material allocation record in another table. As an illegal
behavior, freely generating SQLs and arbitrarily changing the records in
the databases are prohibited for MES. Thus, it is essential to implement
the tool operation as a means of encapsulating SQLs, ensuring that
CWM actions adhere strictly to production protocols and policies.

The ‘Thought’ operation, the third category, complements the pre-
vious two by facilitating complex logic inference and mathematical

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Fig. 4. Multi-step dynamical operations generation and execution.
calculations. When the user’s request involves summarization or sta-
tistical analysis, both ‘Tool’ and ‘SQL’ are only capable of retrieving
relevant data. Based on this, the ‘Thought’ step will generate a local
CoT and infer the final result. An example will be shown in Section 4.2.

Listing 2: Prompt for generating the planned multi-step Operations
You are Chat With MES, a powerful AI assistant , a

variant of ChatGPT that can
1) decide to invoke some provided tools to solve

the query.
2) utilize the database of the Manufacturing

Execution System as external symbolic memory.
For any user query, you should always prioritize

using the given tools to complete it.
The following are the tools you can use, including

their names, descriptions , and input args.
" " "
tool_allocate_task_order: Allocate the cutting

task and sewing tasks for all products
belonging to the order, and return

the allocated tasks and corresponding working
groups.

{
’order_id ’: {’title’: ’Order Id’,

’description ’: ’The order ID, an
integer.’, ’type’: ’integer ’},

’order_name ’: {’title’: ’Order Name’,
’description ’: ’The order name, a
string.’, ’type’: ’string ’}

}

% Description of other Tools.
" " "
Only if you cannot handle the command/query with

any given tools, You are authorized to
directly access the database.

In this case, you are an expert in databases ,
proficient in SQL statements and can use the
database to help users. The details of tables
in the database are delimited by triple quotes.

" " "

-- Customer Table
CREATE TABLE ‘customers ‘ (

‘id‘ VARCHAR(36) PRIMARY KEY COMMENT ’Customer
ID’,

‘customer_name ‘ VARCHAR(255) NOT NULL COMMENT
’Customer Name’

);

% Other table creation scripts.
6
Please tell me what basic operations , including
sql, tool,and thought, should I use in order
to respond to the " USER INPUT ". If it needs
multiple operations , please list them step by
step concisely , and indicate whether the
operation involves calling a tool or
accessing a database via SQL. If there is no
need to use any operations , reply to the " USER
INPUT " directly.

At all times, you should prioritize using the
provided tool. If the tool does not meet the
requirements , only then may you resort to
using SQL.

The output should be a markdown code snippet
formatted in the following schema, including
the leading and trailing "\ ‘\ ‘\ ‘" and "\ ‘\ ‘\ ‘":

‘‘‘
Step1: <Description of first step>
SQL ‘SQL command for step1‘

Step2: <Description of first step>
SQL ‘SQL command for step2‘

Step3: <Description of second step>
Tool ‘Tool name, arguments for tool, purpose of

using this tool‘

Step4: <Description of fourth step>
Thought ‘Purpose of this intermediate reasoning

step, what intermediate results are expected.
and how to get them based on the results from
the previous steps.‘

‘‘‘

Backticks are important and must be added at the
beginning and end of the command for every
step!

Here are some examples:
USER INPUT: Retrieve all orders and item details

for the Customer PolyU
ANSWER:
‘‘‘
Step1: Retrieve the customer ID for the customer

with the name " PolyU "

Execute:
SQL ‘SELECT id FROM customers WHERE customer_name

= ’PolyU’;‘

Step2: Retrieve the details of products for each
order, including product attributes and type
description

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Tool ‘tool_find_order_details , {’order_id ’:
<order_id >}, Find the product details of an
order‘

‘‘‘
% Omitted other few-shot examples.

USER INPUT: Find the latest order from
<customers.customer_name = ’PolyU’> that
requires a <products.attributes = ’Blue, XL
size’> <products_types.description =
’Sweater’>, increase the quantity of the
<products.attributes = ’Blue, XL size’>
<products_types.description = ’Sweater’> by
10 units, and then automatically allocate the
production tasks for this order.

ANSWER:

3.2.2. Pre-planning operations
In Multi-step Dynamical Operations Planning and Execution, the

CWM will pre-plan the operations prior to execution, Based on the
prompt template from ChatDB [23], we design the prompt for gen-
erating multi-step operations. As shown in the prompt Listing 2, it
establishes the context and objectives for the LLM, including the in-
structions to the LLM, the details on the database schema and available
tools, the output formats. Certain redundant details are excluded, high-
lighted in red font. The content following USER INPUT represents the
output from the query re-writer module.

In addition to the data schema and the description of available tools,
CWM needs to understand the production guidelines, such as the order
of accessing databases, the format of the data inserted into the table and
some definitions and abbreviations in the garment industry. Because
each garment factory has customized guidelines and the knowledge
base needs to be maintained dynamically, this study employs the
training-free few-shot learning [23] to inject the specific knowledge in
the model. It aids the CWM in understanding the MES’s operational
guidelines and the relationships among schema. A deep understanding
of the database structure is crucial for CWM to generalize effectively in
handling arbitrary user inquiries. Few-shot learning is accomplished by
presenting some representative examples as system prompts. Each ex-
ample includes the chain of operations, the correct tools to invoke, and
the SQL commands required to resolve the request. We introduce three
few-short learning examples in total for covering the primary difficult
and representative cases of the garment MES, (1) placing orders, (2)
analyzing task completion progress, and (3) retrieving product details
of an order.

Listing 3: Parameters Identification prompt
You are now the following python function:
" Find useful information in the results of the

previous operating statement , and replace <>
with the corresponding information. "

" If the operation type is ’Tool’ and the tool must
be invoked multiple times with varying
parameters , "

" please output a list of tool operations with
distinct parameters ."

def populate_operation_statement(operation_str:
str, previous_operation_results:
list[list[dict]]) -> list[str]:

Only respond with your ‘return‘ value. Do not
include any other explanatory text in your
response." ,

Operation
INSERT INTO order_product (order_id , product_id ,

number) VALUES (’<order_id >’,
’<red_tshirt_product_id >’, 50)

Historical Context
7
3.2.3. Operation execution and dynamical parameters retrieval
After the initial chain of operations are generated, the CWM em-

ploys regex matching to extract the operations command and their
types and execute each operation one by one. Apart from the first op-
eration, subsequent operation commands might contain placeholders,
such as ‘‘<customer_id_step1>’’, that must be determined based on the
context. Before executing each command, CWM identifies these place-
holders and uses LLM with prompt 3 to retrieve the specific parameters
from the conversion context to update the operation command. Finally,
the operations with parameters are executed by accessing the database
and the services of MES. As shown in Fig. 4, the results from executing
each operation are appended in a conversation context.

3.3. Response generation

After executing all operations, the context which consists of all
intermediate results produced from each operation, will be fed to the
Responses Generator. According to the original request from the user,
the LLM-based generator will produce the final textual responses. The
structured records will be automatically organized as tables with the
markdown format to give a good reading experience.

4. Experiment

Different types of users have diverse business requirements when
utilizing MES, such as creating or querying orders, managing produc-
tion tasks and material allocation, or handling inventory management.
In the experimental section of this paper, we employ the garment man-
ufacturing as the case scenario. Based on an existing, well-established
garment MES platform, we simulate the operational processes of a
clothing factory and generate simulated raw manufacturing system
data. Building upon this experimental platform and dataset, we sim-
ulate common requests when users utilize an MES and investigate
whether CWM can effectively comprehend and process various typical
business requests described in natural language in the absence of a
graphical user interface (GUI). With restricted external service access
and database permissions, we examine CWM’s behavior and accuracy
in operating within the MES system and database to fulfill user requests.

The experiment results demonstrate that CWM performs a high
execution accuracy, 80%, significantly outperforming Text2SQL base-
line models. Multi-step operations planning and execution significantly
contributes to a high execution success rate.

4.1. Experimental setup

4.1.1. Simulated MES
To accommodate the utilization scenarios of CWM and facilitate

quantitative comparisons with benchmarks, we developed a simulated
garment MES by drawing upon a comparable product available in
Huawei Cloud.2 The constructed MES system incorporates the fun-
damental management components typical of garment manufacturing
facilities, encompassing orders, customers, workers, materials, cutting
operations, and sewing operations. The database in this simulated MES
is a relational database involving 16 tables. Their relations and foreign
keys are shown in the ER diagram 5. We use the GPT-4 to generate the
simulated data in the database, resulting in a total of 312 records.

Table 2 enumerates the tools accessible to the LLM Agent. Given
that the MES serves as a simulated platform for demonstration pur-
poses, only four fundamental tools are presented to maintain simplicity.

4.1.2. Requests dataset
Based on the database schema of the MES and the rows inside, we

designed a requests dataset including 55 requests covering common

2 YiZhi MES garment intelligent production management platform in HUA
WEI CLOUD.

https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0
https://marketplace.huaweicloud.com/contents/da115457-cf31-47e1-bcff-965e5469d360#productid=00301-608119-0--0

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Fig. 5. ER diagram.
Table 2
Available tools in the simulated garment MES.
 Tool Description Parameters

 find_order_details Find the product details of an order by the
order ID.

order_id: ID of order

 allocate_task Automatically allocate product order tasks to
workers

order_id: ID of order
order_name: name of order

 store_materials Automatically store materials in a free
inventory.

material_id: ID of material
number: number of stored materials

 complete_task Workers reporting the completion of specific
production tasks, it automatically adjusts the
quantities of finished products in the
warehouse.

task_id: ID of task
task_type: sewing or cutting
quantity: number of completed products or
work-in-progress

 get_busy_workers Find all working groups and their task counts. None
operations in a garment factory: placing orders, checking inventory,
work assignment, materials allocation, and so on. We use the term
‘request’ instead of ‘question’ because it involves many commands
rather than simply posing a question. In actual production settings,
requests may be initiated by two categories of users, workers and
managers. Fig. 6(a) illustrates the distribution of the identities among
8
55 requests. As the production manager is responsible for coordinating
production tasks, workers, and resources, he is the primary user of
CWM. Workers use this system to confirm allocated tasks and report
their working progress.

Theoretically, all requests can be addressed using basic database
operations–Inserting (I), Updating (U), and Querying (Q) and their

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Fig. 6. The distribution of request from the perspective of the operation types, identity, and complexity. The complexity is represented by the number of tables that need to be
accessed to handle this question.
combination to adjust the records in the database. Fig. 6(b) presents
the distribution of the required command types involved in all requests.
Most requests are data retrieval tasks which are slightly easier than the
tasks requiring Inserting and Updating operations. Fig. 6(c) evaluates
the complexity distribution of requests as determined by the number
of database tables involved in each request. The most complex request
requires the CWM to access five tables to complete it. Approximately
ten requests can be easily resolved by accessing only one table.

4.1.3. Evaluation
We use the execution accuracy across all requests as the primary

evaluation metric. The response given by CWM for a request is regarded
as correct when it meets two conditions: (1) The CWM must adhere to
the business logic of the MES and query or update the records in specific
tables using either tools or pure SQL commands. (2) It must consolidate
the intermediate results from these operations and deliver a coherent
response to the user’s request.

The ground truth for requests is developed through semi-
automatically process. Initially, we use the CWM to produce both
results and intermediate operation steps. These outputs are then manu-
ally examined for potential inaccuracies. In instances where errors are
identified, additional prompts are consistently provided to the CWM to
ensure that it yields the correct responses.

During the evaluation of the CWM and other baselines, we introduce
an auxiliary GPT-4o as an adjudicator, determining whether the gener-
ated chain of operations, operations commands, and responses closely
approximate the ground truth. For incorrect answers, the judge model
is responsible for identifying the category and cause of the error. By
analyzing the response processes of large models, we identified four
types of errors:

• Information Deviation: The LLM fails to identify the correct
entity information from the user’s input. For instance, while
the user’s request includes the customer name ‘PolyU’, the offi-
cially registered name in the database is ’Hong Kong Polytechnic
University’.

• Wrong CoT: The LLM either fails to comprehend the user’s in-
tention or constructs an incorrect logical chain to address the
problem.

• Wrong Syntax: There are syntax errors in the generated SQL
commands and tool invocation statements.

• Else: Other errors that do not fit into the specified categories, such
as errors in Mathematical Calculation.

The four types of errors have a ‘‘short-circuit’’ relationship. If the
model makes the ‘‘Information Deviation’’ error, any occurrences of
‘‘Wrong Syntax’’ and ‘‘Wrong CoT’’ in its response will not be counted.
Beyond evaluating Execution Accuracy and identifying individual er-
rors within each category, we also measure token usage for responding
to all requests, as this metric is relevant to cost and significant in
practical applications.
9
4.1.4. Details of implementing CWM
All the LLMs used in CWM, including the query rewriting module,

multi-step operations planner, and response generator, are based on
GPT-4o by default, with their temperatures set to 0 to reduce the
stochasticity during generation. In Section 4.4, ablation studies were
conducted to evaluate the selection of the foundational LLM. The agent
responsible for the coordination of the provided tools is implemented
utilizing the LangChain framework. We use Dify3 to construct the
graphical chatting window. The source code of CWM, along with the
simulated MES and benchmark requests, is publicly accessible.4 A test
website is provided for convenient access and experience.5

4.2. Two cases presenting how CWM handles user’s requests

Before presenting the quantitative evaluation results, this section
provides two examples to demonstrate how CWM handles a user’s
request. Tables 3 and 4 compare CWM to the baseline GPT-4 using
a sample request, by analyzing a sample request to query the raw
materials consumed for orders in June 2024. Given that the total
material usage is calculated by aggregating the individual usage of
each product within each order, a mathematical calculation is necessary
to analyze the data retrieved from the previous steps. Compared to
the previous example, the planned chain of operations includes two
‘Thought’ steps. During Step 5, the CWM utilizes the chain of thought
(CoT) methodology to deconstruct this ‘Thought’ task further. This
procedure is executed by GPT-4o without any prompts from the CWM.
Step 6 effectively distills and arranges the retrieved results into the
specified format. Table 4 represents the results executed by the GPT-
4o based Text2SQL model. The model generates a long SQL command
containing three obvious errors marked with purple. The errors result
in no results being retrieved from the database. The comparison clearly
indicates decomposing complex tasks into sub-tasks can effectively re-
duce complexity, decrease the probability of model errors, and facilitate
the incorporation of prior production guidelines into the LLM.

We specifically designed a highly challenging example to demon-
strate CWM’s capability in solving complex problem. As shown in
Table 5, the case involves rearranging the production plan because the
expected delivery time of an order has been advanced. The request
involves third typical challenges. First, the description of the order
‘‘dress order of Emily’’ is non-standardized reference, filled with am-
biguity and vagueness. In our simulated MES, the standardized order
name is ‘‘Emily_Dress’’. CWM is required to identify the standardized
entity names and formulate the appropriate retrieval SQL utilizing
‘‘Emily_Dress’’. The second issue is the CWM must interpret the am-
biguous reference, ‘‘the group with the minimum number of tasks’’. The

3 dify.ai.
4 https://github.com/yuanzhaolin/CWM.
5 https://udify.app/chatbot/lczRJJdgZX8s7z1l.

https://github.com/langgenius/dify
https://github.com/y18810919727/CWM
https://udify.app/chatbot/lczRJJdgZX8s7z1l

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Table 3
Example of querying the material usage.
 Question:
 List the raw materials and quantities used for orders in June 2024? And organize it into the form of raw materials: used quantity.
 Query Rewriting: List the raw materials and quantities used for orders in June 2024? And organize it into the form of {raw materials: used quantity}.
 Chain of Operations:

Step 1: Retrieve the order IDs for orders created in June 2024
SQL ‘SELECT id FROM orders WHERE created_at BETWEEN ’2024-06-01’ AND ’2024-06-30’;‘

Step 2: Retrieve the product IDs and quantities for each order from June 2024
SQL ‘SELECT order_id, product_id , number FROM order_product WHERE order_id IN (<order_ids >);‘

Step 3: Retrieve the work-in-progress (WIP) material IDs and quantities required for each product
Tool ‘tool_get_wip_materials , {’product_id ’: <product_id >}, Get the required work-in-progress materials for a product‘

Step 4: Retrieve the original material IDs and quantities required for each WIP material
Tool ‘tool_get_original_materials , {’wip_id ’: <wip_id >}, Get the original materials for a work-in-progress material ‘

Step 5: Calculate the total quantity of each raw material used by multiplying the product quantity , WIP material
quantity, and original material quantity

Thought ‘For each product, multiply the number of products by the quantity of each WIP material required , and then
multiply by the quantity of each original material required for the WIP material. Sum these values for each raw
material to get the total used quantity.‘

Step 6: Organize the results into the form of {raw materials: used quantity}
Thought ‘Compile the calculated quantities from Step 5 into a dictionary format where keys are raw material names and

values are the total used quantities.‘

 Execution:
 Step 1: SQL, Retrieve the order IDs for orders created in June 2024.
 Execute:
 SELECT id FROM orders WHERE created_at BETWEEN ’2024-06-01’ AND ’2024-06-30’;

Database response:
+----+
| id |
+----+
| 10 |
| 11 |
| 12 |
+----+

 Step 2: SQL, Retrieve the product IDs and product numbers for the orders found in Step 1.
 Execute:
 SELECT product_id, number FROM order_product WHERE order_id IN (10, 11, 12);

Database response:
+----------+------------+--------+
| order_id | product_id | number |
+----------+------------+--------+
10	30	150
11	20	120
12	7	330
+----------+------------+--------+

 Step 3: Tool, Retrieve the work-in-progress (WIP) material IDs and quantities for the products found in Step 2
 Execute:
 ’tool_get_wip_materials, {’product_id’: 30}’
 ’tool_get_wip_materials, {’product_id’: 20}’
 ’tool_get_wip_materials, {’product_id’: 7}’

Results from invoking the tools:
Here are the work-in-progress (WIP) material IDs and quantities required for each product:
Product ID 30: {’Material ID’: 2, ’Quantity ’: 5}, {’Material ID’: 10, ’Quantity ’: 1}
Product ID 20: {’Material ID’: 2, ’Quantity ’: 3}, {’Material ID’: 6, ’Quantity ’: 4}
Product ID 7: {’Material ID’: 12,’Quantity ’: 5}, {’Material ID’: 6, ’Quantity ’: 2}

(continued on next page)
10

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Table 3 (continued).
Step 4: Tool, Retrieve the original material IDs and quantities required for each WIP material.
Execute:
tool_get_original_materials, {’wip_id’: 2}
tool_get_original_materials, {’wip_id’: 10}
tool_get_original_materials, {’wip_id’: 6}
tool_get_original_materials, {’wip_id’: 12}

Results from invoking the tools:
WIP Material ID 2: {’Original Material ID’: 1, ’Quantity ’: 0.4}, {’Original Material ID’: 11, ’Quantity ’: 0.65}, {’

Original Material ID’: 3, ’Quantity ’: 0.2}
WIP Material ID 10: {’Original Material ID’: 9, ’Quantity ’: 0.6}, {’Original Material ID’: 1, ’Quantity ’: 0.35}, {’

Original Material ID’: 13, ’Quantity ’: 0.8}
WIP Material ID 6: {’Original Material ID’: 5, ’Quantity ’: 0.75}, {’Original Material ID’: 1, ’Quantity ’: 0.4}
WIP Material ID 12: {’Original Material ID’: 11, ’Quantity ’: 0.7}, {’Original Material ID’: 1, ’Quantity ’: 0.5}

Step 5: Thought, Calculate the total quantity of each raw material used by multiplying the product quantity, WIP material quantity, and original material quantity.
Output:

To achieve the objective , we need to calculate the total quantity of each original material used based on the orders,
products, WIP materials , and original materials. Here’s a step-by-step breakdown:

1. **Retrieve Order Details:**
- Orders in June 2024: IDs 10, 11, 12.
- Order 10: Product ID 30, Quantity 150.
...

2. **WIP Materials Required for Each Product:**
- Product ID 30:

- WIP Material ID 2, Quantity 5.
- WIP Material ID 10, Quantity 1.

- Product ID 20:
...

3. **Original Materials Required for Each WIP Material:**
- WIP Material ID 2:

- Original Material ID 1, Quantity 0.4.
...

4. **Calculate Total Original Materials Used:**
- **Product ID 30 (150 units):**

- WIP Material ID 2: 150 * 5 = 750 units
- Original Material ID 1: 750 * 0.4 = 300

...

5. **Sum the Quantities for Each Original Material:**

- Original Material ID 1: 300 + 52.5 + 144 + 192 + 825 + 264 = 1777.5
- Original Material ID 11: 487.5 + 234 + 1155 = 1876.5
...

These are the total quantities of each original material used based on the given orders and material requirements.

Step 6: Thought, Organize the results into the form of raw materials: used quantity.
Output:

To compile the calculated quantities from Step 5 into a dictionary format, we will use the raw material names as keys
and the total used quantities as values. Here is the dictionary:

‘‘‘python
{

" Original Material ID 1": 1777.5,
" Original Material ID 11": 1876.5,
" Original Material ID 3": 222,
" Original Material ID 9": 90,
" Original Material ID 13": 120,
" Original Material ID 5": 855

}
‘‘‘
third challenge is CWM needs to understand the business guidelines of
the factory, available tools (services), and the database schema, in order
to autonomously plan a series of interdependent operations to process
the request.

CWM decomposed this task into 20 steps, including 15 SQL op-
erations, 2 Tool operations, and 3 Thought operations. Due to the
large number of operations, the table omits specific execution logs and
results, listing only the types and descriptions of the operations used.
This example sufficiently demonstrates CWM’s capability to replace the
GUI in MES, as it can autonomously integrate external services and
11
manipulate the database through natural language input, effectively
handling complex requests in the manufacturing process.

4.3. Main results

This section illustrates the quantitative performance of the CWM
in comparison to baseline models as shown in Table 6. As two weak
baselines, the original GPT-3.5 and GPT-4.0 are utilized as text2SQL
engines to generate a single SQL command for handling the user’s
request. The execution accuracy of GPT-4o is 60%, significantly lower

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Table 4
Example of querying the material usage(without Multi-step Dynamical Operations Generation).
Question:
List the raw materials and quantities used for orders in June 2024? And organize it into the form of raw materials: used quantity.
Query Rewriting: List the raw materials and quantities used for orders in June 2024? And organize it into the form of {raw materials: used quantity}.
Execution:
SQL, To list the raw materials and quantities used for orders in June 2024, we need to find the orders created in June 2024, then join with order_product to get the products,
and finally join with product_material to get the raw materials and their quantities.
Execute:
SELECT m.name AS raw_material, SUM(pm.number * op.number)AS used_quantity FROM orders o JOIN order_product op ON o.id = op.order_id JOIN
product_material pm ON op.product_id = pm.product_id JOIN materials m ON pm.material_id = m.id WHERE o.created_at BETWEEN ’2024-06-01’ AND
’2024-06-30’ AND m.type = ’origin’ GROUP BY m.name;

Results from executing the SQL:
no results found.
Fig. 7. Frequency of each operation type invoked in each step.
than the solutions based on the CWM architecture. This indicates that
workflow engineering is essential for enabling the foundational LLM
to operate an MES effectively. Unavoidably, the use of a complex
workflow inevitably leads to increased token usage.

Considering that the CWM is analogous to the integration of a
Request re-writer and Multiple-step operations, we have undertaken an
individual assessment of each component’s contribution. The Request
re-writer can efficiently tackle the Information Deviation, contribut-
ing about 13% accuracy improvement. The query re-writer effectively
addresses Information Deviation, contributing approximately a 9% in-
crease in accuracy. The Multi-step Dynamic Operations Planning and
Execution is the most crucial component of the CWM, reducing er-
rors and providing an approximate 18.2% improvement. Handling the
request step-by-step ensures alignment with human intent and pre-
existing knowledge within a specified context, thereby leading to a
reduction in errors related to both the chain of thought (COT) and
computational processes.

Fig. 7 shows the total times for executing three different kinds of
operations at each step for 55 requests. The process is limited to a
maximum of 8 steps. Most requests, accounting for 45, can be resolved
within 4 steps. In the initial stages, SQL operations are predominant, as
the CWM necessitates data retrieval from the database prior to engaging
in subsequent data processing and tool invocation activities. The pro-
cesses involving thought typically take place in the subsequent stages
when requests require mathematical computation. The integration of
these three types of operations is nearly sufficient to address all requests
within the CWM.

4.4. Ablation study

Within the Multi-step Dynamical Operation framework, the ‘Tool’
and ‘Thought’ operations are important in augmenting the precision
of CWM’s execution. To measure the impact of each operation type,
we performed extensive ablation studies to assess CWM performance
12
when lacking one operation type. The study further examines how the
fundamental LLM in CWM affects performance.

According to Table 7, excluding ‘Thought’ or ‘Tool’ operations
significantly drops CWM execution accuracy. The presence of ‘Tool’
operations provides a marginally greater contribution compared to
‘Thought’. Without thought processes, the model struggles with rea-
soning and calculations. As most dataset requests are straightforward,
removing ‘Thought’ does not greatly impact performance.

As a greater role in the operations of CWM, the ‘Tool’ operations
are important for handling the requests that require extensive prior
knowledge of production, such as task allocation and material alloca-
tion. Without the ‘Tool’, the CWM must generate a series of complex
SQL commands to simulate the functions of the missing tools. In this
process, commands with incorrect syntax may be produced, and the
number of ’Wrong Syntax’ will increase.

Finally, we replaced the foundational LLMs in the CWM with other
advanced alternatives. The results demonstrate that the intelligence of
the foundation model significantly impacts the CWM’s performance.
The CWM based on GPT-3.5 fails to generate syntactically correct SQL.
The accuracy is even lower than that of the GPT-3.5 without the CWM
framework. This suggests that as the cognitive abilities of large models
develop and further align with human intentions, the capabilities of
CWM can advance in parallel.

5. Discussion

This study preliminarily implements a chatting interface of MES as a
demonstration. However, it is still far from being applicable in real fac-
tory settings and replacing the traditional GUI interfaces. Three critical
issues need to be discussed and addressed for future improvement.
1. Balance between Accuracy, Generality, and Token usage

Execution accuracy can be improved by designing more precise
workflows or incorporating additional few-shot examples in prompts.

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Table 5
Example of reorganize production plan.
Question:
The dress order of Emily requires delivery by April 5, 2024. Please re-arrange the production plan and assign tasks to the task group with the fewest tasks currently. Provide a new production plan.
Query Rewriting: The <orders.order_name = ’Emily_Dress’> order requires delivery by April 5, 2024. Please re-arrange the production plan and assign tasks to the task group with the fewest tasks currently. Provide
a new production plan.
Chain of Operations:
Step 1: Retrieve the order ID for the order with the name " Emily_Dress "
SQL ‘SELECT id FROM orders WHERE order_name = ’Emily_Dress ’;‘

Step2: Retrieve the product details related to the order\n[" tool_find_order_details , {’order_id ’: 3}, Find the product
details of an order "]

Tool ‘tool_find_order_details , {’order_id ’: 3}, Find the product details of an order‘

Step3: Retrieve the current cutting task’s working group ID for the order
SQL ‘SELECT working_group_id FROM cutting_tasks WHERE order_product_id IN (SELECT id FROM order_product WHERE order_id

= 3);‘

Step4: Retrieve the current sewing task’s working group ID for the order
SQL ‘SELECT working_group_id FROM sewing_tasks WHERE order_product_id IN (SELECT id FROM order_product WHERE order_id

= 3);‘

Step5: Get the current list of all working groups and their task counts\ntool_get_busy_workers , {}, Get the current
list of all working groups and their task counts

Tool ‘tool_get_busy_workers , {}, Get the current list of all working groups and their task counts‘

Step6: Compare the task counts of all cutting groups obtained in Step5 and identify the group with the fewest tasks.
Thought ‘Compare the task counts of all cutting groups obtained in Step5 and identify the group with the fewest tasks

.‘

Step7: Compare the task counts of all sewing groups obtained in Step5 and identify the group with the fewest tasks.
Thought ‘Compare the task counts of all sewing groups obtained in Step5 and identify the group with the fewest tasks.‘

Step8: Retrieve the produced WIP ID from the cutting tasks
SQL ‘SELECT produced_wip_id FROM cutting_tasks WHERE order_product_id IN (SELECT id FROM order_product WHERE order_id

= 3);‘

Step9: Update the status of the original cutting tasks to 0 (stopped)
SQL ‘UPDATE cutting_tasks SET status = 0 WHERE order_product_id IN (SELECT id FROM order_product WHERE order_id = 3);‘

Step10: Create new cutting tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO cutting_tasks (start_time , end_time, working_group_id , order_product_id , produced_wip_id ,

planned_number , status) VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 6, 21, 8, 140, 1);‘

Step11: Create new cutting tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO cutting_tasks (start_time , end_time, working_group_id , order_product_id , produced_wip_id ,

planned_number , status) VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 6, 29, 10, 150, 1);‘

Step12: Create new cutting tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO cutting_tasks (start_time , end_time, working_group_id , order_product_id , produced_wip_id ,

planned_number , status) VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 6, 13, 12, 130, 1);‘

Step13: Create new cutting tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO cutting_tasks (start_time , end_time, working_group_id , order_product_id , produced_wip_id ,

planned_number , status) VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 6, 5, 6, 120, 1);‘

Step14: Update the status of the original sewing tasks to 0 (stopped)
SQL ‘UPDATE sewing_tasks SET status = 0 WHERE order_product_id IN (SELECT id FROM order_product WHERE order_id = 3);‘

Step15: Create new sewing tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO sewing_tasks (start_time , end_time, working_group_id , order_product_id , planned_number , status)

VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 10, 21, 140, 1);‘

Step16: Create new sewing tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO sewing_tasks (start_time , end_time, working_group_id , order_product_id , planned_number , status)

VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 10, 29, 150, 1);‘

Step17: Create new sewing tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO sewing_tasks (start_time , end_time, working_group_id , order_product_id , planned_number , status)

VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 10, 13, 130, 1);‘

Step18: Create new sewing tasks with the new working group ID and set the new deadline to April 5, 2024
SQL ‘INSERT INTO sewing_tasks (start_time , end_time, working_group_id , order_product_id , planned_number , status)

VALUES (CURRENT_TIMESTAMP , ’2024-04-05 23:59:59’, 10, 5, 120, 1);‘

Step19: Check material inventory for required materials
SQL ‘SELECT pm.material_id , pm.number, wm.left_number FROM product_material pm JOIN warehouse_material wm ON pm.

material_id = wm.material_id WHERE pm.product_id IN (SELECT product_id FROM order_product WHERE order_id = 3);‘

Step20: Compile the new cutting and sewing group information , new task schedule, material inventory status, and
expected completion date into a report.

Thought ‘Compile the new cutting and sewing group information , new task schedule, material inventory status, and
expected completion date into a report.‘
13

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
Table 6
Main results.
 Models Execution accuracy Tokens Causes of errors
 Information deviation Wrong CoT Wrong syntax Else
 GPT-3.5 25.5% 319866 3 28 9 1
 GPT-4o 60% 311176 3 14 0 5
 CWM
(w/o re-writer)

70.9% 439947 3 10 1 2

 CWM
(w/o Multiple-
Step operations)

61.8% 401771 0 18 3 0

 CWM 80% 436057 0 7 1 3
Table 7
Results in ablation study.
 Foundation
model

Thought Tool Execution
accuracy

Causes of errors

 Wrong
CoT

Wrong
syntax

Else

 GPT-4o ✓ ✓ 80% 7 1 3
 GPT-4o ✓ × 65% 15 3 1
 GPT-4o × ✓ 67% 16 0 2
 GPT-3.5 ✓ ✓ 16% 26 18 2

However, this approach is akin to patching, which requires significant
manpower and cannot be easily generalized to other MES systems.
Additionally, complex workflows or lengthy prompts lead to high LLM
token consumption. The CWM is expected to evolve into a more ex-
tensible and dynamic framework that can understand database schema
and production guidelines at a lower cost.
2. Who should be responsible for incorrect operations?

A typical MES requires a confirmation step before performing any
data adjustment operations. The operator who confirms the operation is
responsible for any unforeseen consequences that may arise. However,
the CWM is a virtual worker who autonomously handles task planning
and execution. A critical issue in this process is determining the respon-
sibility when the LLM performs unreasonable operations, even if the
user provided correct instructions. A viable solution is to incorporate
a confirmation function in the chat window, where all details of the
operations are clearly and thoroughly presented. Furthermore, it is
meaningful to introduce counterfactual inference [31] to forecast the
possible outcome under the hypothetical input requests. Upon the user’s
affirmative ‘‘YES’’ during the confirmation phase, responsibility for the
action and any outcomes is assumed by the user.
3. Speaks little but is willing to express a lot.

In the traditional MES user interface, users must provide complete
information in the submitted form, as input fields are typically set as
mandatory by developers. In CWM, the free interaction mode can lead
users to become lax and inattentive in providing sufficient information.
The chatting agent has to keep inquiring about more information to
complete the specified request, otherwise some vital information may
be omitted during subsequent operation executions. If we strictly limit
the question options and required fields in CWM, the characteristic
of free chatting is lost, and CWM will degenerate into a typical MES
interaction model. This dilemma inspires us to consider an important
question, what is the best chatting interface for the CWM that is
universally applicable, human-centered, and suitable for manufacturing
environments? As a preliminary feasibility study, the research utilizes
Dify’s basic chatting page as the interface. However, there are many
stakeholders for the CWM, including customers, production managers
and workers. The design of human-AI interfaces must take into their
tasks, identities, and personas [14]. Designing next-generation human-
AI interfaces for critical applications like manufacturing is crucial for
the broader utilization of LLMs.
14
6. Conclusion

This study proposes an LLM agent system, named Chat with MES
(CWM), an interface for the operators in garment factories to manip-
ulate a manufacturing execution system based on natural language.
We introduce two key technical innovations: the Request Re-writer and
Multi-step Dynamic Operations Planning and Execution. To eliminate
entity ambiguity in the user’s request, which may lead to incorrect
query conditions, the Query Re-writer automatically aligns ambiguous
entities in the users’ input with the correct entities within the Man-
ufacturing Execution System (MES), such as the names of customers,
products, and materials. To handle complicated manipulation requests
on MES, the proposed Multi-step Dynamic Operations Planning and Ex-
ecution combines the Text2SQL, LLM-Agents and Chain of Thoughts to
plan a chain of basic operations and dynamically execute the operations
step-by-step. By evaluating the CWM on a simulated garment MES with
55 manually designed questions, we find that the CWM achieves a high
execution success rate of 80%, compared to GPT-4’s 60%. The query
re-writer and Multi-step Dynamic Operations Planning and Execution
techniques separately contribute improvements of approximately 10%
and 18%, respectively.

In future study, we identify key areas for improvement, such as
balancing execution accuracy and token usage, assigning responsibility
for incorrect operations, and developing an optimal chatting interface
for broad and human-centered applicability in manufacturing.

CRediT authorship contribution statement

Zhaolin Yuan: Writing – original draft, Software, Conceptualiza-
tion. Ming Li: Writing – review & editing, Project administration, Fund-
ing acquisition, Conceptualization. Chang Liu: Software. Fangyuan
Han: Software. Haolun Huang: Software. Hong-Ning Dai: Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is partly supported by the Innovation and Technology
Fund, China (No. PRP/015/24TI) and the Innovation and Technology
Commission of the HKSAR Government through the InnoHK initiative.

References

[1] Saenz de Ugarte B, Artiba A, Pellerin R. Manufacturing execution system – a liter-
ature review. Prod Plan Control 2009;20(6):525–39. http://dx.doi.org/10.1080/
09537280902938613, arXiv:https://doi.org/10.1080/09537280902938613.

http://dx.doi.org/10.1080/09537280902938613
http://dx.doi.org/10.1080/09537280902938613
http://dx.doi.org/10.1080/09537280902938613
https://doi.org/10.1080/09537280902938613

Z. Yuan et al. Journal of Manufacturing Systems xxx (xxxx) xxx
[2] Chen J, Wu H, Li Y, Wu X, Zhao Y, Shi Y, Tang S, Shi Y, Chen H. HANA-
MES: A HMI-awared manufacturing execution system. In: 2021 IEEE 23rd int
conf on high performance computing & communications. 2021, p. 1863–9.
http://dx.doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00276.

[3] Martinez WL. Graphical user interfaces. Wiley Interdiscip Rev: Comput Stat
2011;3(2):119–33.

[4] Shaheen BW, Németh I. Integration of maintenance management system
functions with industry 4.0 technologies and features—A review. Processes
2022;10(11). http://dx.doi.org/10.3390/pr10112173, URL https://www.mdpi.
com/2227-9717/10/11/2173.

[5] Li Z, Li G, Li Z. Application research of MES in intelligent manufacturing
training factory. In: International conference on adaptive and intelligent systems.
Springer; 2022, p. 118–27.

[6] Rokis K, Kirikova M. Challenges of low-code/no-code software development: A
literature review. In: International conference on business informatics research.
Springer; 2022, p. 3–17.

[7] Cabot J. Positioning of the low-code movement within the field of model-driven
engineering. In: Proceedings of the 23rd ACM/IEEE international conference on
model driven engineering languages and systems: companion proceedings. 2020,
p. 1–3.

[8] Siderska J. Robotic process automation—a driver of digital transformation? Eng
Manag Prod Serv 2020;12(2):21–31.

[9] Yao S, Chen H, Yang J, Narasimhan K. Webshop: Towards scalable real-world
web interaction with grounded language agents. Adv Neural Inf Process Syst
2022;35:20744–57.

[10] Deng X, Gu Y, Zheng B, Chen S, Stevens S, Wang B, Sun H, Su Y. Mind2web:
Towards a generalist agent for the web. Adv Neural Inf Process Syst 2024;36.

[11] Yadav A, Patel A, Shah M. A comprehensive review on resolving ambiguities in
natural language processing. AI Open 2021;2:85–92.

[12] Shojaeinasab A, Charter T, Jalayer M, Khadivi M, Ogunfowora O, Raiyani N,
Yaghoubi M, Najjaran H. Intelligent manufacturing execution systems:
A systematic review. J Manuf Syst 2022;62:503–22. http://dx.doi.org/10.
1016/j.jmsy.2022.01.004, URL https://www.sciencedirect.com/science/article/
pii/S0278612522000048.

[13] Dalibor M, Heithoff M, Michael J, Netz L, Pfeiffer J, Rumpe B, Varga S,
Wortmann A. Generating customized low-code development platforms for
digital twins. J Comput Lang 2022;70:101117. http://dx.doi.org/10.1016/
j.cola.2022.101117, URL https://www.sciencedirect.com/science/article/pii/
S2590118422000235.

[14] Holzinger A, Kargl M, Kipperer B, Regitnig P, Plass M, Müller H. Personas for ar-
tificial intelligence (AI) an open source toolbox. IEEE Access 2022;10:23732–47.
http://dx.doi.org/10.1109/ACCESS.2022.3154776.

[15] Jain A, Paliwal S, Sharma M, Vig L, Shroff G. SmartFlow: Robotic process
automation using LLMs. 2024, arXiv preprint arXiv:2405.12842.
15
[16] Sharma M, Angmo R. Web based automation testing and tools. Int J Comput Sci
Inf Technol 2014;5(1):908–12.

[17] Mantravadi S, Jansson AD, Møller C. User-friendly mes interfaces: Recommen-
dations for an ai-based chatbot assistance in industry 4.0 shop floors. In: Asian
conference on intelligent information and database systems. Springer; 2020, p.
189–201.

[18] Colabianchi S, Tedeschi A, Costantino F. Human-technology integration with
industrial conversational agents: A conceptual architecture and a taxonomy for
manufacturing. J Ind Inf Integr 2023;35:100510.

[19] Li H, Zhang J, Liu H, Fan J, Zhang X, Zhu J, Wei R, Pan H, Li C, Chen H. Codes:
Towards building open-source language models for text-to-sql. Proc ACM Manag
Data 2024;2(3):1–28.

[20] Xue S, Jiang C, Shi W, Cheng F, Chen K, Yang H, Zhang Z, He J, Zhang H,
Wei G, Zhao W, Zhou F, Qi D, Yi H, Liu S, Chen F. DB-GPT: Empowering
database interactions with private large language models. 2023, arXiv preprint
arXiv:2312.17449. URL https://arxiv.org/abs/2312.17449.

[21] Li J, Hui B, Qu G, Yang J, Li B, Li B, Wang B, Qin B, Geng R, Huo N, et al. Can
llm already serve as a database interface? Aa big bench for large-scale database
grounded text-to-sqls. Adv Neural Inf Process Syst 2024;36.

[22] Lian J, Liu X, Shao Y, Dong Y, Wang M, Wei Z, Wan T, Dong M, Yan H. ChatBI:
Towards natural language to complex business intelligence SQL. 2024, arXiv
preprint arXiv:2405.00527.

[23] Hu C, Fu J, Du C, Luo S, Zhao J, Zhao H. Chatdb: Augmenting llms with
databases as their symbolic memory. 2023, arXiv preprint arXiv:2306.03901.

[24] Pourreza M, Rafiei D. Din-sql: Decomposed in-context learning of text-to-sql with
self-correction. Adv Neural Inf Process Syst 2024;36.

[25] Sun Y, Zhang Q, Bao J, Lu Y, Liu S. Empowering digital twins with large language
models for global temporal feature learning. J Manuf Syst 2024;74:83–99.

[26] Xia L, Li C, Zhang C, Liu S, Zheng P. Leveraging error-assisted fine-tuning
large language models for manufacturing excellence. Robot Comput-Integr Manuf
2024;88:102728. http://dx.doi.org/10.1016/j.rcim.2024.102728, URL https://
www.sciencedirect.com/science/article/pii/S0736584524000140.

[27] Li Y, Starly B. Building a knowledge graph to enrich ChatGPT responses in
manufacturing service discovery. J Ind Inf Integr 2024;40:100612.

[28] Xu S, Wei Y, Zheng P, Zhang J, Yu C. LLM enabled generative collaborative
design in a mixed reality environment. J Manuf Syst 2024;74:703–15.

[29] Wu T, Li J, Bao J, Liu Q. ProcessCarbonAgent: A large language models-
empowered autonomous agent for decision-making in manufacturing carbon
emission management. J Manuf Syst 2024;76:429–42.

[30] Xie T, Li Q, Zhang Y, Liu Z, Wang H. Self-improving for zero-shot named entity
recognition with large language models. 2023, arXiv preprint arXiv:2311.08921.

[31] Del Ser J, Barredo-Arrieta A, Díaz-Rodríguez N, Herrera F, Saranti A,
Holzinger A. On generating trustworthy counterfactual explanations. Inform Sci
2024;655:119898.

http://dx.doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00276
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb3
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb3
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb3
http://dx.doi.org/10.3390/pr10112173
https://www.mdpi.com/2227-9717/10/11/2173
https://www.mdpi.com/2227-9717/10/11/2173
https://www.mdpi.com/2227-9717/10/11/2173
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb5
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb5
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb5
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb5
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb5
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb6
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb6
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb6
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb6
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb6
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb7
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb7
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb7
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb7
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb7
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb7
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb7
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb8
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb8
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb8
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb9
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb9
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb9
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb9
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb9
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb10
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb10
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb10
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb11
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb11
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb11
http://dx.doi.org/10.1016/j.jmsy.2022.01.004
http://dx.doi.org/10.1016/j.jmsy.2022.01.004
http://dx.doi.org/10.1016/j.jmsy.2022.01.004
https://www.sciencedirect.com/science/article/pii/S0278612522000048
https://www.sciencedirect.com/science/article/pii/S0278612522000048
https://www.sciencedirect.com/science/article/pii/S0278612522000048
http://dx.doi.org/10.1016/j.cola.2022.101117
http://dx.doi.org/10.1016/j.cola.2022.101117
http://dx.doi.org/10.1016/j.cola.2022.101117
https://www.sciencedirect.com/science/article/pii/S2590118422000235
https://www.sciencedirect.com/science/article/pii/S2590118422000235
https://www.sciencedirect.com/science/article/pii/S2590118422000235
http://dx.doi.org/10.1109/ACCESS.2022.3154776
http://arxiv.org/abs/2405.12842
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb16
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb16
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb16
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb17
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb17
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb17
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb17
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb17
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb17
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb17
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb18
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb18
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb18
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb18
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb18
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb19
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb19
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb19
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb19
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb19
http://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb21
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb21
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb21
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb21
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb21
http://arxiv.org/abs/2405.00527
http://arxiv.org/abs/2306.03901
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb24
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb24
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb24
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb25
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb25
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb25
http://dx.doi.org/10.1016/j.rcim.2024.102728
https://www.sciencedirect.com/science/article/pii/S0736584524000140
https://www.sciencedirect.com/science/article/pii/S0736584524000140
https://www.sciencedirect.com/science/article/pii/S0736584524000140
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb27
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb27
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb27
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb28
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb28
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb28
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb29
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb29
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb29
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb29
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb29
http://arxiv.org/abs/2311.08921
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb31
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb31
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb31
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb31
http://refhub.elsevier.com/S0278-6125(25)00038-X/sb31

	Chat with MES: LLM-driven user interface for manipulating garment manufacturing system through natural language
	Introduction
	Related Work
	Limitations in Human-MES interaction
	LLM-based Text2SQL
	Application of LLM in Manufacturing systems

	Chat with MES
	Request Re-writer for Preprocess
	Multi-step Dynamical Operations Planning and Execution
	Definition of Operations
	Pre-planning operations
	Operation execution and dynamical parameters retrieval

	Response Generation

	Experiment
	Experimental Setup
	Simulated MES
	Requests Dataset
	Evaluation
	Details of implementing CWM

	Two cases presenting how CWM handles user's requests
	Main results
	Ablation study

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

