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Abstract

Despite federated learning (FL)’s potential in collaborative
learning, its performance has deteriorated due to the data
heterogeneity of distributed users. Recently, clustered fed-
erated learning (CFL) has emerged to address this chal-
lenge by partitioning users into clusters according to their
similarity. However, CFL faces difficulties in training when
users are unwilling to share their cluster identities due to pri-
vacy concerns. To address these issues, we present an in-
novative Efficient and Robust Secure Aggregation scheme
for CFL, dubbed EBS-CFL. The proposed EBS-CFL sup-
ports effectively training CFL while maintaining users’ clus-
ter identity confidentially. Moreover, it detects potential poi-
sonous attacks without compromising individual client gradi-
ents by discarding negatively correlated gradients and aggre-
gating positively correlated ones using a weighted approach.
The server also authenticates correct gradient encoding by
clients. EBS-CFL has high efficiency with client-side over-
head O(ml +m?) for communication and O (m?1) for com-
putation, where m is the number of cluster identities, and [
is the gradient size. When m = 1, EBS-CFL’s computational
efficiency of client is at least O(log n) times better than com-
parison schemes, where n is the number of clients. In addi-
tion, we validate the scheme through extensive experiments.
Finally, we theoretically prove the scheme’s security.

Code — https://github.com/Lee- VA/EBS-CFL

Introduction

Federated learning (FL) (McMahan et al. 2016), as a dis-
tributed machine learning paradigm, decentralizes model
training across multiple local devices, thereby preserving
data privacy. However, traditional FL. methods operate un-
der the assumption of independently and identically dis-
tributed (i.i.d.) data, which limits their effectiveness in real-
world scenarios with non-i.i.d. data. To address this chal-
lenge, Clustered Federated Learning (CFL) (Sattler, Miiller,
and Samek 2021) has been proposed. CFL enhances model
performance on heterogeneous datasets by grouping partic-
ipants into clusters based on data similarity, effectively ex-
tending FLs applicability to non-i.i.d. scenarios.
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Most CFL methods, such as recent researches (Ghosh
etal. 2022; Zhang et al. 2023a; Vahidian et al. 2023), mainly
focus on improving accuracy or performance efficiency. For
example, Iterative Federated Clustering Algorithm (IFCA)
(Ghosh et al. 2022) is the first to provide convergence guar-
antees, which demonstrates its effectiveness in non-convex
problems of neural networks. Despite numerous studies on
CFLs, they still face challenges incurred by Byzantine at-
tacks and privacy leakage. Particularly, they do not consider
protecting against clients’ cluster identities, which could po-
tentially leak clients’” important privacy.

As highlighted in DLG (Zhu, Liu, and Han 2019), the vul-
nerability of FL is exposed when gradient inference attacks
target unencrypted gradients. Though Differential Privacy
(DP) methods provide some protection, their noise can hin-
der model convergence. The integration of DP with secure
aggregation in researches (Chen et al. 2022; Chen, Ozgur,
and Kairouz 2022) lessens DP’s security requirements and
tackles differential attacks, but efficiency is still problematic.
Secure aggregation methods (Bonawitz et al. 2016; Choi
et al. 2020; Kadhe et al. 2020; Jahani-Nezhad et al. 2023)
can protect plaintext gradients, yet they fall short in deal-
ing with Byzantine attacks. Robust algorithms, as achieved
in PEFL (Liu et al. 2021), rely on interaction between the
server and the cloud platform, but this approach assumes no
collusion between the two, which is a relatively weak secu-
rity assumption. Lastly, SAFELearning (Zhang et al. 2023b)
operates under the assumption of a single cloud server and
supports only the FedAvg algorithm, overlooking compati-
bility with other federated learning algorithms. The current
research primarily faces two core challenges:

Lack of a scheme to protect clients’ cluster identities.
Existing solutions require the acquisition of clients’ cluster
identities for training. However, there is no privacy preserva-
tion scheme for cluster identities. In this way, attackers may
use the clients’ cluster identities as additional information to
launch inference attacks.

Lack of a comprehensive secure aggregation solution.
Despite the advent of secure aggregation, the comprehen-
sive solution of ensuring both efficiency and Byzantine-
robustness in a single cloud server setting with compatibility
of diverse FL schemes is still largely elusive.

To address these challenges, we propose a novel Efficient
and Byzantine-robust Secure Clustered Federated Learning



A h Malicious Defend Against Single-S Compatible

pproac Adversary Byzantine Attacks INGIE-SEIVEr  Framework
CCESA (Choi et al. 2020) X X v FedAvg
FastSecAgg (Kadhe et al. 2020) X X v FedAvg
SwiftAgg+ (Jahani-Nezhad et al. 2023) X X v FedAvg
PEFL (Liu et al. 2021) v v X FedAvg
SAFELearning (Zhang et al. 2023b) v v v FedAvg

EBS-CFL v v v FedAvg, IFCA

Table 1: Comparing related secure federated learning schemes.

Communication Computation
Approach Server Per-client Server Per-client
SecAgg O(nl + sn?) O(l + sn) O(n?l) O(nl + sn?)
CCESA O(nl + sny/nlogn) O(l + sy/nlogn) O(nllogn) O(lv/nlogn + snlogn)
FastSecAgg O(nl 4 n?) Ol +n) O(llogn) O(llogn)
EBS-CFL (m=1) O(nl) o) O(n* + nllogn) o)
EBS-CFL O(nml + n) O(ml +m?) O(m?(nml +nm? +n? 4+ nllogn)) O(m?1)

Table 2: Communication and computation overhead. For better clarity, we have included the case with the number of clusters
m = 1 in the table, comparing it with other schemes that do not incorporate the concept of multiple clusters.

(EBS-CFL) scheme. In particular, we devise a Robust Fed-
erated Clustering Algorithm (RFCA) with the integration
of a Byzantine robust algorithm based on cosine similar-
ity (Cao et al. 2021) into the aggregation process of IFCA
(Ghosh et al. 2022). Additionally, we protect clients’ gradi-
ents and cluster identities by developing a secure aggrega-
tion scheme. This scheme allows the server to perform clus-
tered aggregation without accessing the clients’ gradients or
clusters’ identities while filtering out malicious gradients.
We also introduce compression scheme to guarantee the
scalability of communication and computation costs. Partic-
ularly in terms of communication overhead, our scheme is
more advantageous compared to other schemes. When the
number of clusters is 1, the server’s overhead is linearly re-
lated to the number of clients, while the overhead for an in-
dividual client is independent of the total number. Our main
contributions are summarized as follows.

e Our scheme can protect the privacy of client gradients
and cluster identities when training models. Specifically,
we designed the Verifiable Orthogonal Matrix Confusion
for Aggregation (VOMCA), which enables clients to en-
code both their cluster identities and gradient information
simultaneously. This innovative design allows for the ag-
gregation of gradients according to set cluster identities,
without exposing clients’ identities.

We designed a secure aggregation scheme to achieve
high efficiency, Byzantine-robustness, a single cloud
server assumption, and compatibility with CFL schemes.
We use the assumption of a single secure cloud server,
which is more secure than those based on multiple cloud
servers. Specifically, we designed RFCA, which realizes
Byzantine-robust CFL. Meanwhile, we designed the Se-
cure ReLLU Function Computation Mechanism (SRFC)
to filter out malicious gradients in secure aggregation.
Lastly, we designed a compression scheme to signifi-
cantly enhance the overall efficiency of the system.
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* We conduct theoretical analysis and extensive experi-
ments to evaluate our proposed EBS-CFL. Through theo-
retical analysis, we explain the communication and com-
putational complexity of our scheme. Moreover, we con-
ducted experiments involving multiple variables related
to communication and computation overhead, conduct-
ing detailed data analysis of the entire process of aggre-
gation stage. And we incorporate experiments involving
typical Byzantine attacks in FL to validate the robustness
of our proposed EBS-CFL. Finally, we demonstrate the
security of the EBS-CFL through security analysis.

Table 1 compares EBS-CFL with other state-of-the-art
works in terms of key characteristics. Table 2 compares
EBS-CFL with other state-of-the-art works in terms of com-
munication and computational complexity. Note that for
detailed illustration of theoretical analysis of complexity,
please refer to the appendix.
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Figure 1: Overview of RFCA.



Related Work

We provide an overview of relevant research from two per-
spectives: efficient secure aggregation and defense against
Byzantine attacks.

In the realm of efficient secure aggregation, PSA
(Bonawitz et al. 2016) introduced a lightweight protocol that
allows the server to aggregate model updates from multiple
clients without accessing individual updates. CCESA (Choi
et al. 2020) presented a low-complexity scheme using sparse
random graphs to ensure data privacy through a secret-
sharing node topology. FastSecAgg (Kadhe et al. 2020) de-
veloped a protocol, which leverages the Fast Fourier Trans-
form (FFT) to create FastShare, a novel multi-secret sharing
scheme that enables more efficient computation and commu-
nication. SwiftAgg+ (Jahani-Nezhad et al. 2023) proposed a
secure aggregation protocol that significantly reduces com-
munication overhead while preserving privacy, achieving
optimal communication loads and security guarantees. How-
ever, these schemes do not address Byzantine attacks.

In the realm of defense against Byzantine attacks,
PEFL (Liu et al. 2021) proposed a framework that uses
homomorphic encryption and penalizes poisoning behav-
ior by extracting gradient data with logarithmic functions,
addressing the problems of both privacy leakage and poi-
sonous attack. SAFELearning (Zhang et al. 2023b) intro-
duced technique that supports secure aggregation through
Unintentional Random Grouping (ORG) and Partial Param-
eter Disclosure (PPD), effectively preventing malicious at-
tacks. ShieldingFL. (Wan et al. 2022) proposed an adaptive
client selection strategy to combat Byzantine attacks by fil-
tering out honest clients, but it does not encrypt or obfuscate
gradients.

All existing solutions build upon the traditional FL frame-
work, which struggles with handling non-i.i.d. data. As the
demand for handling non-i.i.d. data grows, the recently pro-
posed CFL has provided a solution. Therefore, there is an
urgent need for a secure aggregation framework that can be
compatible with CFL.

System Model

Our system involves three entities: the Clients, the Server,
and the Key Distribution Center (KDC). The functions of
each entity are as follows.

e Clients: Clients encode gradients obtained from local
training using encoding keys and upload the encoded gra-
dients to the server. Malicious clients may attempt to by-
pass the robustness algorithm by altering encoded gra-
dients or generating them incorrectly, thereby impacting
the global model.

Server: The server broadcasts the model, collects client-
uploaded gradients for validation, and performs weighted
clustering aggregation using our proposed EBS-CFL.
Malicious servers may improperly execute the robustness
algorithm to obtain target gradients.

Key Distribution Center (KDC): The KDC generates
and distributes keys.
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Algorithm 1: ClusteredModelUpdate({¢; },, D, b, n, T)

Input: initialization {0;}"" ,; training datasets D; batch

size b; learning rate 77; number of iterations 7.
{09}, (037,
Loss(D; 0) <= min({ Loss(Dy; 67 }7*,))
fort=1t0T do

Randomly sample a batch Dy, from D.

0% < 0'~" —nVLoss(Dy; 0% ")
end for
return j, 07 — 69

A A T ey

Proposed Scheme

This section introduces our proposed EBS-CFL. First, we
present a Byzantine-robust clustered federated learning al-
gorithm, RFCA. Based on this, we designed a secure ag-
gregation scheme for privacy preservation. Finally, we im-
proved the overall efficiency of the system through an effi-
cient compression scheme.

Robust Federated Clustering Algorithm (RFCA)

We first design Algorithm 1 to train clustered gradient, and
then design Robust Federated Clustering Learning Algo-
rithm (RFCA). The overview of the RFCA scheme is illus-
trated Figure 1.

The specific steps of RFECA are as follows.

» The server sets m clusters and initializes m models. Then

the server collects a small and clean public dataset and
trains m models to obtain m server updates. Finally, m

server updates are obtained, represented as { go}m

The clients run Algorithm 1 to train local model.

The server calculates cosine similarities between server
updates and clients’ gradients, and removes poisonous
gradients. Then, for 1 < 4,7 < nand1 < k& < m,
the server calculates

||go||
gl

gk

B Z ReLU(c

where ¢ = si,k%, k represents the cluster iden-
tity, {s;r}}", represents a one-hot encoding vector
(si,x = 1, when k£ matches the target identity), and g;
represents the gradient submitted by the i-th client.

(D

(2

1 ReLU(c

Note that for detailed illustration of the pseudo code of
RFCA, please refer to the appendix.

Verifiable Orthogonal Matrix Confusion for
Aggregation (VOMCA)

VOMCA is a privacy-preserving aggregation technology.
Similar to secret sharing, individual data is only decryptable
after aggregation. It also ensures that clients cannot bypass
robustness checks and submit malicious gradients.

Definition 1. Given a set of matrices {M;}._,, they are
called mutually orthogonal matrices (Zheng et al. 2022) if



they satisfy the following condition:

I, i=j
MIM; =4 ’
S {O, i J,

where I and O respectively represent an identity matrix and
a zero matrix, for 1 < 1i,5 <.

@

For 1 < i < n, the ¢-th client can encode the secret x; as
follows.

Xi = le + Ry M'Hrna (3)

where Y | R; O and {M;}?", are Mutually

Orthogonal Matrices. Construct verification key vk as

{357 ViMin, {Vi - R}, }. The verification function is

as follows.
1, vk-xF=V;-RT
Z_, k — ) 1 2 7 7
V(x, vk) {o, vk-xT £V;-RT,

where V; is a random matrix that has the same shape with

R;. And construct decode key dk as Zf" M;, which satisfies
the following relations,

Xl'dkT:mi—i—Ri, forl <i<mn,

sz ~dkT = le

Theorem 1. Forany 1 < i < n, a; € {xi, X}, where
X represents a ciphertext tampered by an adversary. The V

satisfies
k k
Pr[z a;dkT # le AV € [n],V(xi,vk) = 1] <,
i=1 i=1
)

where € = % A\ represents the probability of correctly
predicting pseudo-random numbers without additional in-
formation, and | represents the size of x;.

“

Proof. For detailed illustration of the proof process, please
refer to the appendix.

Secure ReLU Function Computation Mechanism
(SRFC)

We designed SRFC to exclude gradients with negative co-
sine similarity, while ensuring security.

We define the function F to square each element in the
matrix, preserving their original signs. Meanwhile, we de-
fine F~! to calculate the square root of each element’s ab-
solute value, also preserving their original signs. The defini-
tions of F and F~! are as follows.

= A gy = (WAl

where A € R**Y For1 < i < n, input x; € R, define the
encode of x; as
E(x;) = o M; + Q My, + R;.

Construct {o; }

*_, as follows.
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where VM € {M;}#7,, M € RI™x2imn and {M;}2", are
Mutually Orthogonal Matrices. And construct /3, 7y, T2, and
T3 as follows.

2n
ﬁ = Z Mia
=1

n
=Y MIR'M;+ MR

i=1

(R(O) + Cl H—n)
=> " MR (M; 0 My)
=1

+ ML, RTA(RY o RY + R,

T2

s =% MR F(2-M;oR")~ M}, R F(R?),

i=1

(0)
where o denotes hadamard product, ¢; € RImxim,
i, 6 = 0, R € Rimxim R is an invertible ma-

wix, R, R, RV, R®) e Rim=<2mn R, = R 1 RV,

> i1 Ri = 0.
Forl <j <lIm,1 <k <2lmn, rj(.i) and rj(.i) are random
numbers, the Rgl) and R(Q) satisfy that if (M), < 0,
Prl(R ) = ) A (R = 01 =1, (@)

where 0 < rj, < max({|z;|}7—); if (M;);x > 0,

Prl(R{ ) = O A (R ) = 737) =
where 0 < 7"( )< 2. max({|z;|}7 ).

The prmc1p]e of SRFC is as follows. Firstly, by squar-
ing the matrix elements and then taking the square root, we
can obtain the absolute value of the corresponding elements.
Then, by adding this absolute value to the original element,
we can obtain the output of the ReLU function.

The « is the encoding of x, and when it performs matrix
multiplication operation with itself, the decoding can yield
22. The function of S is to perform decoding, while 71, 7o,
and 73 help to compute the square of the target element and
then compute the square root. Since the entire computation
process requires privacy preservation, a random number fac-
tor is introduced and incorporated into all parameters.

The " , E(ReLU(x)) and )., ReLU(x;) can be
calculated as theorem 2.

Theorem 2. The Y . | E (ReLU(x)) can be calculated as

L (®)

n

> E(ReLU(x;)) = Zaz
i=1 (9)
+ Z]: (B-ai -+ F H(B-af ),
and the Zi:l ReLU (x;) can be calculated as
> ReLU(x;) = %tr(z E(ReLU (z;)-A7).  (10)

i=1 i=1
Proof. For detailed illustration of the proof process, please

refer to the appendix. O



Secure Aggregation Scheme

Based on RFCA, we design our secure aggregation scheme.
In each round of training, the number of participating clients
is denoted by n, the number of cluster identities is denoted
by m, and the dimension of the gradients is denoted by [.

Initialization: KDC pre-generates multiple sets of Mutu-
ally Orthogonal Matrices {A;|A; € R>Imym . LN\ M; €
Rimx2imn2n, “and {M]|M] € RIm>3imny3n, The server
sends the update gradient {g;}"72; to KDC. Then KDC gen-
erates (3, Ty, o, and 73 as Eq.(6). And KDC generates the
encode keys {ek; }7_;, {] }2””” vk, and dk as follows.

The (M); represents the i-th row of matrix M, for 1 <
i<nand1l < j <m,

o = e o) = (0 3 AN M)

(11
where Y1 R, = 0, [[Ri]| = 1, 327 s = 0, and
[lpwil] = 1. And for 1 <4 < 2lmn

ZM’TZA T)(MT R, M;);
j=1 =1 (12)
_%A47+2n 71( ]+n}%/ J+sz
vk {Zv ZA M, Vi ZR”T
n (13)
dk :ZMZ-TMZ-’ + ML (M), + M ,),

i=1
where {V;}_, are random matrices generated by KDC.
Broadcast Phase: In the first round, the KDC sends ek;
and {A4;}, to the i-th client. For subsequent rounds, the
KDC updates ek by updating R}; and sends the updated

ek} to the i-th client. The server first classifies the current
models using the public dataset, then sends the global model
to the selected clients.

Training Phase: The training phase follows the same
procedure as RFCA. The cluster corresponding to the i-
th client is denoted as j, the gradient is encoded as §; =
oA M + Sy RGAGM L + M, The encoded
gradient J; is then uploaded

Aggregation Phase: The KDC sends {a;}i™, 3, 7,
T2, dk, and vk to the server. The server then verifies each
client as described in Eq.(4), and checks if ||5;||* = 3 for
1 <7 < n. If the verification in Eq.(4) passes, it can be con-
clusively demonstrated that the client is unable to manipu-
late the ciphertext. If ||6;]|> = 3, it can be inferred that the
client has performed a normalization operation Hg—in. If the
verification fails, the server will request the failed clients to
resend their encoded gradients, or the server will restart the
process. For 1 < i < n, the server calculates «; as follows,

Jj=1

(Oél')j = 51 . Oé;v.

The server calculates > E(ReLU(w;))
i ReLU (w;) as Eq.(9) and Eq.(10).

(14)

and
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Finally, the server calculates the aggregated gradient g as
follows,

S0y B(ReLU(w) - dk

dk” = S ReLU(w;) ' (15)
=6 dk'". (16)
=1

Update Phase: For 1 < j < m, the server updates as

follows. ] .
- llgoll - 94; -

Secure Key Transformation Mechanism (SKT)

For1 < i < n,1 < j < m, and converse function C :
i — 7, construct Transformation key tk; as M7 M, ciy T
M (Mg gy + R; ' - RY) for the key transformation of
X:»> and the Transformation function is as follows.

T (xithi) = xi - thi = x; + R},

where c represents a constant, {M;}7; and {M}}7", are
Mutually Orthogonal Matrlces Xi = xiM; + R; MHm and
X; =xM} ., + R;M It satisfies

C(4)
= ic’xia
=1

e(t) 9 (t=1) _

; (17

(18)

C(H—n)

(>ox- @k)”

where dk’ =S, M.
i=1 7

19)

Compression Scheme

We design gradient segmentation to reduce gradient dimen-
sionality for individual aggregations and layered aggrega-
tion to minimize the number of clients involved in each ag-
gregation.

Gradient Segmentation: The i-th client flattens the local
gradients into a vector by rows, and concatenates them layer
by layer to form a vector g;. Let the vector g; be divided into
s segments, denoted as {g;; }%_;, each segment has a length
of ¢, which satisfies that s-t > [.For1 <i < n,1 <j <m,
and 1 < k < s, the R” and p satisfy

S
D RGP = 10 pignl? = —

k=1

For 1 < i < n, A(i) represents the i-th client, the corre-
sponding inner products are calculated as follows.

Z gzng(Z) .

For1l <i<3mnt,1 <j<mn,and1 < k < s, following
the gradient segmentation, Eq.(12) should be reformulated
as follows.

AT

9i90 (20)

n

o
O‘ik-_E

j*l

M AT (g6 (MT M),
k=1

ML, R.M

+- M+2n :u]k ( Jj+nYj ]+n)z-



Finally, aggregate the corresponding segments and concate-
nate the segments back to the original gradients.

Layered Aggregation: The total number of clients is de-
noted as n, and the clients are divided into £ groups, each of
which is with a maximum size of [ #].

KDC generates ek, vk, ag, and transformation keys for
each group. Then, KDC generates 3, 7y, 72, and 73. In Ad-
dition, ¢, p, R”, and {A;}™, are shared across all clients.
The specific steps for aggregation are as follows.

e First, the steps before aggregation for each group
are the same as the secure aggregation scheme.
In the aggregation phase, the server will calculate
Yo E(ReLU(w;)) as Eq.(9). However, since each
group cannot eliminate the random matrices and lacks
a corresponding dk prior to key transformation, the de-
coding is not performed.

* Second, the server performs keys transformation in each
group.

* Finally, the server decodes the encoded gradients and
subsequently updates the global model.

Each transformation can be regarded as the aggregation of
each group. The number of transformation rounds can be
denoted as x. The total size S(n, {&;}7_;) of transformation
keys can be expressed as follows.

x—1 T
S(na {gl}le) = 2lm£z + Z 4l2m2€i€i+1 H §j7

i=1 G=it1
where the {¢;}7_, satisfies that [[_, & > n.For1 <i <,
1 < 5 <z, the key transformation is as follow.

. . £j+y .
S =TE > th), 1)
k=1+v

where v = i — (i mod &), and 62 = §;. The ; has the
same transformation process as Eq.(21).

Convergence Guarantees

In this section, we provide convergence guarantees for
RFCA. Our analysis builds upon the assumptions of IFCA,
with additional considerations specific to the Byzantine-
robustness algorithm.

Theorem 3. Let all assumptions hold, and the step size ~y
be chosen as v = % Suppose that at a certain iteration
of the RFCA algorithm, the parameter vector 0; satisfies:
[0; =05 < (5 — @) 2N, where 0 < o < 1. LetHj+ denote
the next iterate, m is the total number of clients, k is the
number of clusters, and w = . | w;. For any fixed j € [k
and 6 € (0,1), the following holds with probability at least
1-4,

oy — o5 < (1-E2) oy — gy + Y2t L
J 70 8L 7 S L~/pmn/
n’m nk+v/2kmv? + km
o N2 A wn' TP ST aNLAwn’

+c
(22)
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This theorem guarantees the convergence of RFCA. Note
that for details on assumptions, parameter definitions, the-
oretical derivations, and the proof, please refer to the ap-
pendix.

Performance Evaluation

In this section, we will evaluate the performance of our pro-
posed EBS-CFL, including both efficiency and Byzantine-
robustness. We carry out experiments on MNIST (Deng
2012), CIFARI10, and CIFAR100 (Krizhevsky and Hinton
2009). Note that more detailed experiments will be pre-
sented in the appendix.

Efficiency

In this section, we will evaluate the efficiency of our scheme
by contrasting it with solutions that do not incorporate pri-
vacy preservation, thereby demonstrating the optimization
we have achieved in our privacy-preserving scheme.

We evaluate the average client communication, as shown
in Figures 2 and 3. Experiments showed that the communi-
cation overhead does not increase with the number of clients,
and it has a linear relationship with the size of the data vec-
tor. Under normal values of m, the communication overhead
does not significantly increase with changes in other vari-
ables, proving the practicality of the method.

We conducted similar experiments for server-side compu-
tational overhead, with the number of cluster identities set to
2, as shown in Figure 4. We measured the efficiency by cal-
culating the consumed time. Experiments showed that the
time consumption of our scheme is almost equivalent to Fe-
dAvg, corresponding to the theoretical analysis of computa-
tional overhead.

m=1 m=2 m=4
520 4 75| = FedAvg .
= Compression
=15 5.0
8 2
1.0 25
0 50 100 0 50 100 O 50 100

clients

Figure 2: With a fixed model size of 794KB, the impact of
other factors on individual client communication overhead.

m=1 m=2 m=4

0.3 0.6
— 1.0{ —— FedAvg
g 0.2 0.4 Compression
o1 0.2 05
o /

0.0 e P Y P

0 50 100 O 50 100 O 50 100

data vector size(KB)

Figure 3: With a fixed number of clients at 20, the impact of
other factors on individual client communication overhead.

Byzantine-robustness

In this section, we evaluate the Byzantine robustness of our
scheme. To demonstrate the effectiveness of the proposed
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Sine  12.78/40.22/100.00/26.52
— LF  49.49749.4974950/6.15
Sine  47.28/47.28/100.00/8.11
A LF  48.18/49.017100.00/ 15,83
Sine  12.31/25.48/100.00/36.72
LF 62.13 /6458 /7.0071.73
EBS-CFL  Gine  60.56/61.95/9.00/3.38

65.29/66.30/0.00/0.25
65.45/66.17/31.50/0.74

65.88/65.90/0.50/2.10
66.74/67.09/37.00/1.85

Table 3: Comparing the performance of different approaches under Byzantine attacks in a non-i.i.d. setting. Each cell in the

table includes the final accuracy (FA), maximum accuracy during training (MA), Attack Success Rate (ASR =
), separated by “/”. NA represents the accuracy achieved during training without

2:NA—FA—MA

and Attack Impact Rate (AIR = SNA

successful attackers
total attackers

),

any attacks. For the sake of convenience in presentation, the percentage symbols in the table are omitted.

0.004
fffff FedAvg --+- FedAvg
0.002) —— Compression 0.003 Compression
a )
) @ 0.002
£0.001 £
0.001
0.000 0.000{ #==w-=-ed’ ¥ ¥ e
6 12
data vector size(KB) clients
(a) n=5 (b)1=10 KB

Figure 4: Study the impact of other variables on computa-
tional overhead while fixing the number of clients and model
size.

EBS-CFL, we compare it against FLTrust, a state-of-the-
art Byzantine-robustness algorithm. For attacks, we con-
sider the representative Label-Flipping (LF) Attack (Biggio,
Nelson, and Laskov 2012) and the advanced Sine Attack
(Kasyap and Tripathy 2024). Additional comparisons with
other methods, such as those in (Yin et al. 2018; Blanchard
et al. 2017; Fang et al. 2020), are detailed in the appendix.

To simulate data heterogeneity under a non-i.i.d. setting,
we use Dirichlet’s distribution (Hsu, Qi, and Brown 2019),
where « controls data dispersion (smaller o indicates higher
heterogeneity). We evaluate both attacks at a high adversar-
ial rate of 40%. The Sine Attack leverages cosine similarity
to generate gradients that align closely with the central be-
nign gradient but diverge from other client gradients. Our
scheme protects server updates, rendering the AK-BSU as-
sumption of Sine ineffective. Therefore, we conduct exper-
iments under the realistic AK assumption and PC capabil-
ity defined in Sine Attack. Results are shown in Table 3.
Greater data heterogeneity reduces training accuracy and in-
creases attack success rates. However, since heterogeneity
inherently affects training accuracy, the relative impact of at-
tackers does not rise significantly. Malicious gradients intro-
duced by attackers are classified as low-quality and assigned
minimal weight, reducing their influence. FLTrust exhibits
weakened defense under heterogeneous data. Against Sine
Attack, FLTrust can be fully compromised as data hetero-
geneity increases, making it harder to distinguish malicious
gradients from legitimate but highly divergent ones. LF At-
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tack follows a similar trend but achieves a lower success rate
than Sine Attack, despite causing a greater overall impact.
In contrast, our scheme significantly improves defense by
effectively clustering and identifying malicious gradients in
heterogeneous data. While accuracy declines when oo = 0.1,
this is primarily due to the extreme heterogeneity rather than
interference from Byzantine adversaries.

Security Analysis

In the security proof, we define the perturbation functions
¢ = x-M and ¢(x, R) = z+ R, which safeguard the privacy
of matrix and vector operations, respectively. We also de-
fine the function o(S) = > ;s M, where S C {M;}7_,
and {M;}?_, are mutually orthogonal matrices. The sum of
these orthogonal matrices does not reveal information about
individual matrices.

Using this framework, via theorems we prove that specific
encryption mechanisms, such as VOMCA and SRFC, ensure
the confidentiality and immutability of individual variables
due to the incorporation of randomness. In secure aggrega-
tion and compression schemes, multiple randomizations and
key transformations protect gradients and cluster identities
from being leaked. Additionally, the SKT mechanism guar-
antees that neither keys nor variables can be inferred dur-
ing transformations. Note that for detailed illustration of the
proof process, please refer to the appendix.

Conclusion

In this paper, we have proposed an efficient and robust
clustered federated learning secure aggregation framework,
EBS-CFL. Specifically, we construct an encoding mecha-
nism using matrix techniques, allowing the server to filter
out poisonous gradients without knowing the clients’ gradi-
ents and cluster identities. We then perform weighted aggre-
gation based on the correlation between the gradients and the
server updates. In addition, we provide detailed theoretical
proofs of the correctness and the security of the approach,
and analyze its efficiency. Finally, through extensive experi-
ments, we demonstrate the efficiency, effectiveness, and ro-
bustness of our approach.
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