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Abstract—Graph auto-encoder is considered a framework for unsupervised learning on graph-structured data by representing graphs in
a low dimensional space. It has been proved very powerful for graph analytics. In the real world, complex relationships in various entities
can be represented by heterogeneous graphs that contain more abundant semantic information than homogeneous graphs. In general,
graph auto-encoders based on homogeneous graphs are not applicable to heterogeneous graphs. In addition, little work has been done
to evaluate the effect of different semantics on node embedding in heterogeneous graphs for unsupervised graph representation learning.
In this work, we propose a novel Heterogeneous Graph Attention Auto-Encoders (HGATE) for unsupervised representation learning on
heterogeneous graph-structured data. Based on the consideration of semantic information, our architecture of HGATE reconstructs not
only the edges of the heterogeneous graph but also node attributes, through stacked encoder/decoder layers. Hierarchical attention is
used to learn the relevance between a node and its meta-path based neighbors, and the relevance among different meta-paths. HGATE

is applicable to transductive learning as well as inductive learning. Node classification and link prediction experiments on real-world
heterogeneous graph datasets demonstrate the effectiveness of HGATE for both transductive and inductive tasks.

Index Terms—Graph embedding representation, heterogeneous graphs, hierarchical attention, transductive learning, inductive learning

1 INTRODUCTION

HERE are many graph structures in the real world, such
Tas social networks, telecommunication networks, cita-
tion networks, and biological networks. Graph representa-
tion learning is one of the most widely-used graph analysis
methods. It has been widely applied in various tasks, such
as node classification [1], node clustering [2], link prediction
[3],[4], community detection [5], entity alignment [6],graph
classication [7] and recommendation system [8].

o Wei Wang, Xiaoyang Suo, and Xiangyu Wei are with the Beijing Key Lab-
oratory of Security and Privacy in Intelligent Transportation, Beijing [iao-
tong University, Beijing 100044, China.

E-mail: {wangweil, 17120481, 16120338 }@bjtu.edu.cn.

e Bin Wang is with the Zhejiang Key Laboratory of Multi-dimensional Per-
ception Technology, Application and Cybersecurity, Hangzhou 310053,
China. E-mail: bin_wang@zju.edu.cn.

e Hao Wang is with the Research Center for Optical Fiber Sensing, Zhejiang
Laboratory, 310000 Hangzhou, China, and also with the School of Cyber Engi-
neering, Xidian University, Xi’an 710000, China. E-mail: hawa@ntnu.no.

e Hong-Ning Dai is with the Department of Computing and Decision Scien-
ces, Lingnan University, Hong Kong, China. E-mail: hndai@ieee.org.

o Xiangliang Zhang is with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA.
E-mail: xzhang33@nd.edu.

Manuscript received 12 Oct. 2020; revised 22 Sept. 2021; accepted 12 Dec. 2021.
Date of publication 28 Dec. 2021; date of current version 7 Mar. 2023.

The work was supported in part by the National Key R&D Program of China
under Grant 2020YFB2103802, in part by the National Natural Science Foun-
dation of China under Grant U21A20463, in part by the Fundamental Research
Funds for the Central Universities under Grant KKJB320001536, and in part
by Macao Science and Technology Development Fund under Macao Funding
Scheme for Key R & D Projects under Grant 0025/2019/AKP, and in part by
Research Initiation Project of Zhejiang Lab under Grant 113012-P12013.
(Corresponding authors: Xiangyu Wei and Bin Wang.)

Recommended for acceptance by P. Tsaparas.

Digital Object Identifier no. 10.1109/TKDE.2021.3138788

Some powerful graph representation learning meth-
ods, such as Graph Convolution Networks [9] and Graph
Attention Networks [10], are supervised methods that
depend on data label information.

In real-world applications, however, it is not easy to
appropriately and precisely label a large number of nodes
and obtain a high-quality labeled data set. On the one hand,
the type of label is difficult to determine. On the other hand,
the labeling process costs a lot of manpower and material
resources. As a robust unsupervised graph representation
learning method, graph auto-encoders [11] avoid the prob-
lem of node labeling and thus has been a widely studied
topic. Some graph auto-encoders only use graph structure
information for node embedding [12], while others use both
graph structure information and node attributes that are
applicable to attributed networks [13], [14], [15], [16]. Graph
attention auto-encoders [17] employ attention mechanisms
to aggregate neighbor nodes’ features to get node represen-
tation that assigns large weights to more important nodes,
so0 as to improve the learning performance.

Most existing graph auto-encoders are based on homoge-
neous graphs, which are not applicable to heterogeneous graphs
that contain rich semantic information. Heterogeneous
graphs contains different types of nodes and edges. Homoge-
neous graphs which consist of only one type of nodes and
edges can be described by first order, second order [18],[19]
or community structures[20], but the structure in heteroge-
neous graphs is usually semantic dependent, such as meta-
path structure, meta-graph structure[21], implying that the
local structure of one node in heterogeneous graphs can be
very different described when considering different types of
relations, we thus need different methods to preserve the
complex structures; Different types of nodes or edges have
different meaning, and the importance of different edges or
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nodes is different. Therefore, it is necessary to learn the
importance of these kinds of relationships between users.
And different types of nodes and edges have different attrib-
utes, which are usually located in different feature spaces,
and thus when designing heterogeneous graph embedding
methods, especially heterogeneous graph neural networks,
we need to overcome the heterogeneity of attributes to fuse
information [22].

Heterogeneous graphs represent the complex graph
structure of multi-type objects and links in the real world,
and thus contain comprehensive information and rich
semantics among the objects. Heterogeneous graphs have
been widely studied in graph analysis and data mining tasks.

A meta-path is a composite relation path between two
objects, which is usually used to represent the multi-types of
a semantic relation [23]. For example, in citation networks,
two authors’ relationships can be represented by a meta-
path Author-Paper-Conference-Paper-Author which implies
that the two authors published the paper in the same confer-
ence and a meta-path Author-Paper-Author which describes
co-author relationship. The different meta-paths can have
different semantics. We can use a meta-path to describe a
composite relation or the high-order similarity of two nodes.

It is a big challenge to embed the heterogeneous graph by
considering the comprehensive and different heterogeneous
graph information, including node attributes, graph struc-
ture and semantic information.

Liu et al. [24] used graph structure features to embed the
heterogeneous graph for semantic proximity search. Chang
et al. [25] and Peng et al. [26] used both network structure fea-
tures and node attributes for heterogeneous graph embed-
ding. Wang et al. [27] used attention mechanisms to assign
different importance to different types of nodes in a neighbor-
hood. However, this work ignored the importance of different
meta-paths. Wang et al. [28] employed hierarchical attention
mechanisms to learn not only the relevance between a node
and its meta-path based neighbors, but also the relevance
among different meta-paths. However, all the above methods
are supervised learning methods. They are not applicable to
unsupervised heterogeneous graph embedding in scenarios
where labelling information is unavailable.

Most previous related work focused on generating node
representation of a single fixed graph. However, some real-
world applications require to quickly generate the represen-
tation of nodes that have not appeared before. Compared to
transductive learning, inductive learning is particularly dif-
ficult to conduct because the training models should be suit-
able for unseen nodes. There are some graph embedding
methods involved in inductive learning based on homoge-
neous graphs [29], [30]. However, they are not suitable for
heterogeneous graphs.

In this work, we propose a novel heterogeneous graph
attention auto-encoders (HGATE) to learn node representa-
tion for heterogeneous graphs in an unsupervised manner.
HGATE adopts hierarchical attention mechanism, including
node-level attention and semantic-level attention. The node-
level attention considers node attributes and graph structure
information. The semantic-level attention fully learns seman-
tic information represented by Meta-path in heterogeneous
graph. HGATE reconstructs not only the edges of the hetero-
geneous graph but also node attributes, through stacked
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encoder/decoder layers. We include both node-level
encoders and a semantic-level encoder. In the node-level
encoder, the node-level attention mechanism is used to learn
the attention values between the nodes and their meta-based
neighbors. In the semantic-level encoder, semantic-level
attention mechanism is used to learn the attention values
among different meta-paths in heterogeneous graph. And so
does the decoder. In the node-level encoder, node attributes
are fed into stacked layers to generate meta-path based node
representations. In the semantic-level encoder, the model gen-
erates new meta-path based node representations by utilizing
semantic-level attention. We use the sum of all the meta-path
node representations as the final node representation. In the
node-level decoder, we reverse the node-level encoder to
reconstruct meta-path node attributes. Each node-level
decoder layer reverses the process of its corresponding node-
level encoder layer. In the semantic-level decoder, we reverse
the semantic-level encoder to reconstruct final node attributes.
HGATE reconstructs both node attributes and the edges of the
heterogeneous graph. It can efficiently generate node embed-
ding for previously unseen data, and thus can be applied to
inductive learning.

In summary, our contributions are highlighted as follows:

e We propose a novel heterogeneous graph auto-
encoders (HGATE) for unsupervised representation
learning on heterogeneous graph-structured data by
reconstructing both node attributes and the edges of
the heterogeneous graph. To the best of our knowl-
edge, this is the first time that Heterogeneous Graph
Attention Auto-Encoders is proposed.

e Weuse hierarchical attention for unsupervised attrib-
uted graph representation learning, in which node-
level attention learns the relevance between a node
and its meta-based neighbors, and semantic-level
attention learns the relevance among meta-paths.
Therefore, HGATE can capture semantic information
in heterogeneous graphs.

e Our proposed HGATE can efficiently generate
node embedding for previously unseen data. It
can thus be applied to both transductive and induc-
tive learning.

e We conduct extensive experiments on real-world
heterogeneous graph data sets and the results dem-
onstrate that our algorithms outperform the state-of-
the-art methods for node classification.

The rest of the paper is organized as follows. In Section 2,
we review the related works, including graph auto-encoder
and heterogeneous graph neural network. In Section 3, we
briefly introduce the notations used in this paper. Then we
present the architecture of Heterogeneous graph attention
auto-encoders (HGATE) in Section 4. In Section 5, we quan-
titatively and qualitatively evaluate HGATE, and present
datasets, baseline methods, experiments and results. Sec-
tion 6 concludes this paper.

2 RELATED WORK

Our study is closely related to graph auto-encoder and het-
erogeneous graph neural networks. In this section, we
briefly review the state-of-the-art literature.
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2.1 Graph Auto-Encoder

As unsupervised learning frameworks, graph auto-encoders
convert graph structural data into vectors in a low dimen-
sional space, and then learn the low dimensional node vec-
tors through stacked encoder/decoder layers. Based on the
information used in graph embedding, graph auto-encoders
are typically divided into two categories: topological auto-
encoders and content enhanced auto-encoders. Topographic
graph auto-encoder only uses topological structure informa-
tion for graph embedding. Baldi [11] presented a general
mathematical framework for the study of both linear and
non-linear autoencoders. Kipf et al. [12] proposed the Varia-
tional Graph Auto-Encoders (VGAE) that used latent varia-
bles and were capable of learning interpretable latent
representations for undirected graphs.

Content enhanced auto-encoder uses both topological
structure features and node attributes for attributed graph
representation. Compared with Topographic graph auto-
encoder, Content enhanced auto-encoder can use more infor-
mation to learn more comprehensive graph embedding
representation. Variation autoencoder (VAE) [31] is a deep
network representation model that seamlessly integrates the
text information and structure of a network. Pan et al. [14]
proposed two variants of adversarial graph embedding
approach, adversarially regularized graph autoencoder
(ARGA) and adversarially regularized variational graph
autoencoder (ARVGA). MGAE [13] corrupts network node
content, allowing node content to interact with network fea-
tures, and marginalizes the corrupted features in a graph
autoencoder context to learn graph representations. GraphS-
AGE [29] leverages node feature information to generate
node embeddings, which was applicable to inductive learn-
ing. Gao et al. [15] captured the high nonlinearity and pre-
served various proximities in both topological structure and
node attributes. Zhang et al. [16] proposed ANRL, a neighbor
enhancement autoencoder, to model the node attribute infor-
mation. It seamlessly integrated network structural proxim-
ity and node attribute affinity into low-dimensional
representation spaces. GATE [17] stacks encoder/decoder
layers and employs self-attention to reconstruct both node
attributes and the graph structure. Most existing graph
encoders are based on homogeneous graphs and are thus not
applicable to heterogeneous graphs. In this work, we pro-
pose a novel heterogeneous graph attention auto-encoders
(HGATE) for unsupervised representation learning on het-
erogeneous graph-structured data.

2.2 Heterogeneous Graph Neural Network
Heterogeneous graph neural network is a supervised graph
embedding learning method for the heterogeneous graph.
Compared to homogeneous graph embedding, heteroge-
neous graph embedding is much more challenging, as it
needs to consider the heterogeneity and rich semantic infor-
mation contained in various types of nodes and edges in the
graphs. Heterogeneous graph embedding project graph data
into a low dimensional space while preserving the heteroge-
neous network structure and node attributes so that the
learned embedding can be applied to the downstream net-
work tasks.

Some heterogeneous graph neural networks only used
heterogeneous structural features [32], [33]. Jacob et al. [32]
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learned mapping heterogeneous graphs nodes representa-
tions onto a common latent space, which exploits the depen-
dencies on the node classes, and relationships between
nodes.HEER [33] embeds heterogeneous graph via edge rep-
resentations to discover emerging relations from news.Prox-
Embed [24] adopts Long short-term memory (LSTM) to
embed the network structure between two possibly distant
nodes in the heterogeneous graph to achieve semantic prox-
imity search. Some heterogeneous graph neural networks
use both heterogeneous structural features and node attrib-
utes.Zhang et al. [34] aggregated different types of neighbors’
content features and topological features through using
attention to learn the different importance between the node
and its different types of neighbor groups. Zhang et al. [35]
proposed a heterogeneous graph attention networks to
model different types of entities. However, they did not con-
sider the different weights of different entities. HANE [27]
leverages heterogeneity and node attributes to generate
high-quality embedding through attention mechanism.
HNE [25] explores global consistency between different het-
erogeneous objects to learn unified feature representations
guided by network structures.

In the heterogeneous graph, some methods use the meta-
path to represent the multi-type semantic relations between
entities [36], [37], [38], [39].PP-GCN [26] builds an event-
based heterogeneous information network (HIN) and
designs an event meta-schema to characterize the semantic
relatedness of social events. HERec [40] uses a random walk
strategy guided by meta-paths to generate meaningful node
sequences for network embedding based on recommenda-
tion.MEIRec [41] leverages meta-paths to guide the selection
of different-step neighbors and designed a heterogeneous
GNN to obtain the rich embeddings of users and queries in
intention recommendation.HAN [28] generates node embed-
ding by aggregating features from meta-path based neigh-
bors in a hierarchical manner, which fully considered the
importance of node and meta-path. In summary, there is no
unsupervised learning heterogeneous neural network model
to distinguish the importance of meta-paths.

3 PRELIMINARY

In this section, we present the notations used in this paper.
They are summarized in Table 1.

Heterogeneous Graph [37]. A heterogeneous graph is repre-
sented as G = {V, E'} consisting of an object set V" and a link
set E. A heterogeneous graph is also associated with a node
type mapping function ¢ : V' — A and a link type mapping
function ¢ : £ — R, where A and R denote the sets of pre-
defined objects and link types. The number of object types
|A| > 1 or the number of link type |R| > 1.

Meta-Path [23]. A meta-path is represented as m, defined
on the graph of network schema T = (4, R) of the form
Ay LN A 2, As--- AL fu, Ar+1 which describes a compos-
ite relation R = R; - Ry --- R;, between objects A;, Ay, Az - --
Ar1, where - denotes the relation composition operator, and
L + 1is thelength of m.

Meta-Path Based Neighbors [28]. In a heterogeneous graph,
the meta-path-based neighbors N/" of node i are defined by
the set of nodes which connect with node ¢ via meta-path m.
Note that the node’s neighbors include itself.
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TABLE 1

The Main Notations Used in the Paper
Notations Definitions
N The number of node in the graph
E The number of edges in the graph
M The number of meta-path in the graph
F The number of node attribute features
k The number of node-level neural networks layer
m The Meta-path
A€ RV The adjacency matrix
X € RPN The node feature matrix
z € RF The features of node i
X € REXN The reconstructed node feature matrix
Z; € R The reconstructed features of node i
H*Y € RN The node representation matrix generated by the 4"
R node-level encoder layer
H* € RN The node representation matrix generated by the &'

node-level decoder layer
ozi-‘:j The attention coefficient in the k™ node-level
encoder layer
The attention coefficient in the k™ node-level
decoder layer

"\1»
l/

6" The attention coefficient in the semantic-level
encoder layer

g The attention coefficient in the semantic-level
decoder layer

N[ The meta-path based neighborhood of node i,
including itself

4 HGATE

In this section, we describe our novel graph attention
auto-encoders (HGATE) for heterogeneous graphs. The
architecture of HGATE reconstructs not only the edges
of the heterogeneous graph but also node attributes,
through stacked encoder/decoder layers based on hierar-
chical attention, including node-level and semantic-level
attentions.

Fig. 1 illustrates the workflow of HGATE that follows a
hierarchical attention structure: node-level attention encoder,
semantic-level attention encoder, node-level attention
decoder and semantic-level attention decoder. First, we pres-
ent the encoder and decoder to show how our auto-encoder
reconstructs node features using the heterogeneous graph
structure and semantic information. We then describe the pro-
posed loss function that learns node representations by mini-
mizing the reconstruction loss of the node features and the
edges of the heterogeneous graph.

X
5

mi
\':1 2 s
m Q5

g Y13, 0‘13 -

0‘11@A Nél

Meta-path: m;

Meta-path: m

g

Input + .

Meta-path: mg

Meta-path: mgy

A ' 4.1 Node-level Encoder !

Fig. 1. The architecture of HGATE.

4 2 Semantic-level Encoder
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4.1 Node-Level Encoder
The node-level attention encoder can generate new meta-
path based representations of nodes by learning the rele-
vance between the node and its meta-path based neighbors
in the heterogeneous graph. We use a transformation matrix
W to transform the input features and then project them
into the next neural network layer feature space. Each
encoder layer aggregates node attributes and structure
information from a node’s first-order neighbors by using
self-attention to learn the relevance between nodes and their
meta-path based neighbors. Under the same meta-path, the
self-attention is shared among nodes.

Single encoder layer can aggregate node attributes and
structure information from a node’s first-order neighbors.
We use multiple encoder layers to fully learn the node
representation. Through the stack encoder layer, informa-
tion can propagate through network structure. Multiple
encoder layers can aggregate node attributes and structure
information from node’s multi-order neighbors. In the &'
node-level encoder layer, the relevance of meta-path based
node pairs (i, j) can be formulated as follows:
er‘n:k _ o’(‘/;m"kTWm"kh;n’kil

L)

+ V,'lln,kTw’rn.khrjrw,,kfl)’ (1)
where Wk ¢ RIxd" ! vk e R® and vk e R® are the
trainable parameters of the k" node-level encoder layer,
and o denotes the activation function. The term e;" i repre-
sents the relevance of node j to node i, which is different
from the relevance of node i to node j. Node-level attention
preserves the asymmetry of heterogeneous graphs.

To make the coefficients comparable among the neighbors

of nodes, we use the softmax function to normalize em k.

k
m,k exp( i )

(%) m, @)
D D eXP( o)

where N!" denotes the neighborhood of node i based on
meta-path, including node i itself.

We use the node feature as the initial node representa-
tion, i.e., h/"" = ;. For meta-path m, the k™ encoder layer
generates the representation of node ¢ in layer k as follows,

hmk _ 2 : m, k Wm khmk 1) (3)
}EN’”
: X
2 5 H
~m
m ap, m H
[ 15 ;
31301 T
ol G
Qg 4 H
Meta-path: m; :
Multi-layer)
Meta-path: mg
Meta-path: ms
i 4.3 Node-level Decoder ! | 4.4 Semantic-level Decoder ; Hioge
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The node-level encoder is based on meta-path, which can
capture the corresponding single semantic information.

4.2 Semantic-Level Encoder
In the heterogeneous graph, different meta-paths represent
different semantic information. The semantic-level encoder
can aggregate different semantic information to generate a
more comprehensive node embedding through using seman-
tic-level attention to automatically learn the relevance among
different meta-paths. We use a single layer semantic-level
encoder to capture the semantic information in this work.

For node 4, the relevance between meta-path m, and m,
based node embedding can be formulated as follows:

;”anmy — U(‘/th;nI'k + ‘/;Th;”ysk)’ (4)
where V, € R? and V; € R are the trainable parameters of
the semantic-level encoder layer, and o denotes the activa-
tion function.

In order to make the coefficients among meta-paths com-

a1y |

parable, we use the softmax function to normalize 6,

l Zﬂil easp(a);'lz.mz)

Then, the meta-path based embedding of node i can be
aggregated by other meta-path based embedding with the
corresponding coefficients as follows:

M
e =g, (©)
y=1

After applying the semantic-level encoder, we consider
the sum of all meta-path based node embeddings of the
semantic-level encoder layer as the final node representa-
tion. The final node representation is as follows:

M

hi=Y . (M)

r=1

4.3 Node-Level Decoder

The node-level decoder layer reconstructs the attributes of
the node based on meta-path by utilizing the representa-
tions of their neighbors according to their attention values.
We use a decoder with the same number of layers as the
encoder. Each decoder layer reverses the process of its cor-
responding encoder layer following the work of [17]. The
reciprocal k" node-level decoder layer corresponds to the
k' node-level encoder layer encoder. We use k' to represent
the reciprocal k™' node-level decoder layer. Similar to the
encoding layer, the attention value of a meta-path based
neighboring node j to node i in the reciprocal & decoder
layer is computed as follows:

/é:tL]k/ _ O—(‘//Zn‘k/TWm’kjil\?hk/JFl + Qm’k/TWm’k,}?;Yl7k/+l)a (8)

Sl K gk =1 50 1/ 14 Sm K
where W+ € R & ymk ¢ R and V" € R are the

trainable parameters of the reciprocal k"' node-level decoder
layer.
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J
Similarly, we use softmax function to normalize ’é:"/k to

make the coefficients comparable among the neighbors of
nodes.

exp(e")
n,k'y

ZZENZ.’” €Xp (@,z )

~m. K _

9)

Using the output of the semantic-level encoder as the
input of the node-level decoder, the reciprocal k' node-
level decoder layer reconstructs the representation of node 4
in the previous layer as follows:

}’l\;mk’ _ Z &Z?k’(erz,k’Eyl,k’+l). (10)
jENT
In the node-level decoder, we are motivated to reverse
the node-level encoder to reconstruct meta-path based node
attributes. Each node-level decoder layer reverses the pro-
cess of its corresponding node-level encoder layer.

4.4 Semantic-Level Decoder

The semantic-level decoder layer reverses the semantic-
level encoder to aggregate the different meta-path informa-
tion to reconstruct node attributes. The normalized rele-
vance between meta-paths of node ¢ in the semantic-level
decoder is computed as follows:

Mg, m,
w,

= o (VR + VIR™), an

Mg, My

an, my exp (CUZ )
L S en@™)

The meta-path based embedding of node i can be aggre-
gated by other meta-path based embedding with the corre-
sponding coefficients as follows:

(12)

M
Rt =GR (13)
y=1

After applying the semantic-level decoder, we consider
the sum of all meta-path based node embedding of seman-
tic-level decoder as the reconstructed node attributes.

The final reconstructed node attributes as follows:

(14)

4.5 Loss Function
Our model reconstructs both node attributes and the edges
of the heterogeneous graph. Therefore, the loss function
consists of two components: attribute loss and edge of het-
erogeneous graphs loss.

We minimize the reconstruction loss of node attribute
feature as follows:

]\T
i=1

In general, connected nodes in the graph are more likely
to be similar to each other. We minimize the reconstruction
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loss of the edges of the heterogeneous graph by making
the representations of meta-path based neighboring nodes
similarly:

M N 1
Lor == Z Z Z log (1 + exp(—h;”Th;-”')).

m=1 i=1 jeNy.’”

(16)

M is the type of meta-path, N is the number of nodes
under a certain meta-path, and N/" is the set of neighbor
nodes of node i under meta-path m.

By merging feature loss and heterogeneous graph local
structure loss, we minimize the reconstruction loss of node
features and the edges of the heterogeneous graph as follows:

L= Lpq+ Ayr an
where A controls the contribution of the edges of heteroge-

neous graph reconstruction loss. The overall process of
HGATE is described in Algorithm 1.

Algorithm 1. The Overall Process of HGATE

Input: The node feature matrix X and The adjacency matrix set
A based on meta-path.
Output: The node representation matrix A and the
reconstructed node feature matrix.
1: Initialize node-level encoder/decoder parameters: wmk,
Wk, ymk ymk ymk ymk semantic-level
encoder/decoder parameters: V, Vq, Vi, V.

2: form=1,2,...,M do

3: fork=1,2...,Kdo

4: Calculate o; j according to (2)
5. Calculate h"* according to (3)
6: end for

7:  Calculate 6" according to (5)
8:

Calculate h]" according to (6)

9: end for
10: Calculate h; according to (7)
11: form =1,2,...,M do
12: fork=1,2,...,K do
13: Calculate @; ; according to (9)
14:  Calculate 2" according to (10)
15:  end for
16:  Calculate 6™ according to (12)
17:  Calculate h™ according to (13)
18: end for
19: Calculate h; according to (14)

4.6 Analysis of HGATE

Compared with existing methods, the proposed HGATE
model has advantages such as unsupervised graph repre-
sentation learning, suitability for heterogeneous graphs,
applicability to transductive and inductive learning and
high efficiency. We next present the analysis of the HGATE
model in detail as follows.

HGATE is an unsupervised graph representation learn-
ing method that avoids the limitations of supervised learn-
ing methods, such as extensive efforts in constructing the
labelled dataset. Compared with the supervised learning
method, HGATE does not need to use node labels, which
saves manpower and material resources to label data and
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avoids the impact of data label quality on the performance
of the model.

HGATE is suitable for heterogeneous graphs, which
reconstructs both node attributes and edges of the heteroge-
neous graph to generate node representations. HGATE uses
the hierarchical attention mechanism to capture semantic
information.

HGATE can be applied to both transductive and induc-
tive learning. The sharing of attention parameters among
nodes in HGATE can effectively generate nodes embedded
in previously undiscovered data. HGATE can be applied to
some real-world scenarios that need to generate the embed-
ded representation of new nodes.

HGATE is efficient and can be parallelized. Because the
computation of attention can be carried out individually
across all nodes and meta-paths. The computational com-
plexity of our architecture for one iteration is O M x (N X
Fx D+ Ex D)+ Mx N x D), where N is the number of
nodes, E is the max number of edges based on meta-path,
M is the number of meta-paths, and D is the maximum d*
in all layers.

5 [EVALUATION

In this section, we evaluate HGATE via conducting exten-
sive experiments on three datasets. In Section 5.1, we first
introduce three heterogeneous graphs datasets. We describe
the baseline approaches in Section 5.2. In Sections 5.3 and
5.4, we present the node classification and link prediction
results. In Section 5.5, we introduce three kinds of variation
experiments. We also present parameters sensitivity experi-
ments in Section 5.6. We visualize the node embedding
results in Section 5.7.

5.1 Datasets

We use three datasets, ACM [28], DBLP [28] and Sina Weibo
for transductive and inductive tasks. We summarize the sta-
tistics of data sets in Table 2. The ACM and DBLP datasets
are benchmark datasets. The ACM dataset contains 1) one
type of nodes, i.e., Papers and 2) two types of meta-paths
including Paper-Author-Paper and Paper-Subject-Paper. Paper
features are the elements of a bag-of-words represented of
keywords. The DBLP dataset contains 1) one type of nodes,
ie., Author and 2) three types of meta-paths including
Author-Paper-Author, Author-Paper-Conferences-Paper-Author
and Author-Paper-Term-Paper-Author. Author features are the
elements of a bag-of-words represented of keywords. The
Sina Weibo dataset is a subset extracted from Sina Weibo
dataset collected by Fudan University', which contains one
type of nodes, i.e., User and three kinds of meta-paths includ-
ing the following relationship, forwarding relationship and @
relationship. User features are the elements of a bag-of-words
represented of keywords. We manually divide users into
three classes including the Internet, Movie, and Politics.

For transductive tasks, we have the access to the whole
heterogeneous graph structure and all nodes” attributes on
all datasets during model training. For inductive tasks, we
can only access the heterogeneous graph structure and
node attributes of a subgraph on all datasets during model

1. http:/ /sma.fudan.edu.cn/datainfo/weibo.html

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 30,2024 at 03:58:45 UTC from IEEE Xplore. Restrictions apply.


http://sma.fudan.edu.cn/datainfo/weibo.html

3944
TABLE 2
The Statistics of the Benchmark Datasets
Datasets | #Node | Meta-paths | #Edges | #Features | #Classes
PAP 29,281
ACM 3,025 9,28 1,830 3
PSP 2,210,761
APA 11,113
DBLP 4,057 APCPA 5,000,495 334 4
APTPA 6,772,278
Follow 98,573
Weibo 3,135 Forward 19,695 1,303 3
@ 11,781

training. And the heterogeneous graph structure and node
attributes of other nodes outside the subgraph are unseen.
We then use the model to generalize the representation of
unseen nodes. More specifically, we randomly select 2000
nodes in the training data, and then predict the rest of the
node representation by the trained models.

5.2 Baselines

We compare our HGATE with the state-of-the-art methods,
including three supervised methods and five unsupervised
methods. Supervised methods are GCN [9], GAT [10] and
HAN [28]. Unsupervised methods are DeepWalk [42], GAE
[12], VGAE [12], ASNE [43] and GATE [17]. We next briefly
describe them as follows.

Supervised Methods

e GCN [9]: Graph Convolutional Networks is a semi-
supervised graph convolutional network designed
for homogeneous graphs.

e GAT [10]: Graph Attention Network is a semi-super-
vised neural network for homogeneous graphs. GAT
leverages masked self-attention to learning the influ-
ence of neighboring nodes.

e HAN [28]: Heterogeneous Graph Attention Network
is a semi-supervised heterogeneous graph neural
network using the hierarchical attention mechanism.

Unsupervised methods

e DeepWalk [42]: DeepWalk learns social representa-
tions of a graph’s vertices within short random
walks for homogeneous graphs.

e GAE [12]: Graph Auto-Encoder is an unsupervised
graph neural network for homogeneous graphs. GAE
uses graph convolutional networks as the encoder
and reconstructs the graph structure in the encoder.

e VGAE [12]: Variational Graph Auto-Encoder is a
variant of GAE for homogeneous graphs. VGAE
uses a graph convolutional network encoder and a
simple inner product decoder.

e ASNE [43]: ASNE is a generic Attributed Social Net-
work Embedding framework, which learns the rep-
resentations for social actors while preserving both
the structural proximity and attribute proximity.

e GATE [17]: Graph Attention Auto-Encoder is a neu-
ral network for the unsupervised representation of
homogeneous graphs. GATE reconstructs both node
attribute and graph structure by using the attention
mechanism.
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For the homogeneous graph embedding methods, we
test all the meta-paths and report the best performance in
our results.

5.3 Node Classification
In experiments, we randomly initialize parameters and use
Adam optimizer to learn model parameters. Tensorflow is
used to implement HGATE.

In the node classification task, we set the learning rate to
10~* on ACM and Sina Weibo datasets in the transductive
learning. And we set the learning rate to 5 x 1073 on DBLP
dataset. For the inductive tasks, we set the learning rate to
1072, 5x 107 and 10™* on ACM, DBLP, and Sina Weibo
datasets, respectively. For all datasets, we use two node-
layers with 512 node representation dimensions and a sin-
gle semantic layer with 512 node representing dimensions.
The model is trained for 200 epochs with the A equalt to 1.
We only use a half of the trainable parameters by setting
equal parameters for both decoder layers and encoder
layers. Both the datasets and the program codes of our
HGATE are publicly available at website®.

For baseline methods, we optimize their parameters
using the validation set. For inductive learning, we use the
same subgraph with HGATE to train the baseline models.
For supervised methods, we use 20% of model training data
as training set, 10% as verification set and 70% as test set.
Unsupervised methods do not require class labels. To
ensure the fairness of the experiments, we set the node
embedding dimension to 512 for all baseline methods.

In this subsection, we compare our HGATE with the
aforementioned state-of-the-art baselines based on transduc-
tive and inductive node classification by logistic regression.
We generate the representation of all nodes. Then we use dif-
ferent training set proportions for training, including 20% ,
50%, 80%. And we use the rest of the dataset as the test set.
We report the average classification Micro-F1 and Macro-F1
in Tables 3 and 4 on the test nodes after 10 runs of training.

Table 3 shows the transductive node classification results
for the ACM, DBLP, and Sina Weibo datasets. HGATE
achieves powerful performance across all three datasets.

From the top of Table 3, we observe that HGATE outper-
forms all supervised and unsupervised baselines on the ACM
dataset for transductive learning. It proves the effectiveness
of our method in transductive learning. The performance of
using node features for classification is better than DeepWalk,
GAE, VGAE and ASNE, implying that node attributes have a
significant impact on classification results in ACM dataset.
GATE outperforms GAE, ASNE and VGAE, which indicates
the attention mechanism can distinguish the subtle influence
of different neighbors to the node. Further, compared with
unsupervised method GATE, HGATE is improved by 1.15%
on Micro-F1 and by 1.19% on Macro-F1 for ACM dataset with
using 80% data as training set, since the semantic-level atten-
tion mechanism can capture the semantic information of het-
erogeneous graphs through learning the relevance among
different meta-paths. HGATE is competitive with the perfor-
mance of the best supervised graph embedding baseline.
HGATE outperforms GCN and GAT, since HGATE is an
unsupervised learning algorithm that uses feature loss and

2. https:/ / github.com /fantasy-sxy/HGATE
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TABLE 3
Experiment Results (%) on the Transductive Node Classification Task
Datasets Training Metrics Feature | DeepWalk | GAE | VGAE | ASNE | GATE | HGATE | GCN | GAT | HAN
. Macro-F1 89.02 76.45 83.74 | 88.80 88.00 | 90.99 91.86 90.70 | 91.67 | 92.30
20% Micro-F1 89.09 76.12 83.80 | 88.80 87.89 | 90.95 91.78 90.74 | 91.65 | 92.23
. Macro-F1 89.11 77.90 84.67 | 89.42 87.81 91.92 92.90 91.82 | 92.16 | 92.87
ACM o0% Micro-F1 89.16 77.46 84.73 | 89.43 87.64 | 91.94 92.80 91.87 | 9220 | 92.80
. Macro-F1 90.38 79.78 84.92 | 90.02 89.94 | 9247 93.66 90.99 | 92.05 | 93.03
80% Micro-F1 90.25 79.01 84.96 | 90.08 89.75 | 9240 93.55 91.07 | 92.06 | 92.89
20% Macro-F1 78.04 91.89 91.34 | 91.83 90.26 | 89.02 90.95 90.25 | 91.03 | 93.54
Micro-F1 78.80 92.39 92.08 | 9242 90.82 | 89.93 91.65 91.22 | 91.90 | 94.02
DBLP 50% Macro-F1 79.99 91.66 90.90 | 90.95 9122 | 89.67 91.52 90.55 | 92.02 | 94.08
Micro-F1 80.63 92.21 9152 | 91.52 91.77 | 90.49 92.11 91.38 | 92.80 | 94.48
. Macro-F1 79.92 92.13 91.62 | 91.64 92.09 | 90.74 92.57 90.83 | 9242 | 94.67
80% Micro-F1 80.67 92.61 9224 | 92.24 92.61 91.63 93.10 91.63 | 93.06 | 95.07
. Macro-F1 90.49 96.72 97.39 | 97.08 96.83 | 95.56 98.00 96.22 | 97.38 | 97.50
20% Micro-F1 90.55 96.69 97.37 | 97.09 96.77 | 95.53 97.97 96.13 | 97.33 | 97.49
Sina Weibo 50% Macro-F1 93.31 97.41 9749 | 97.33 97.65 | 96.35 98.00 96.89 | 97.82 | 98.15
Micro-F1 93.30 97.45 9751 | 97.39 97.64 | 9643 98.02 96.88 | 97.83 | 98.21
. Macro-F1 94.68 98.44 97.73 | 97.38 97.32 | 9749 98.60 97.52 | 9843 | 99.53
80% Micro-F1 94.74 98.41 97.77 | 97.45 9729 | 9745 98.56 9745 | 98.41 | 99.52
Awailable data types are the node features matrix X, adjacency matrix A, and labels Y.
TABLE 4
Experiment Results (%) on the Inductive Node Classification Task
Datasets Training Metrics Feature | GAE | VGAE | GATE | HGATE | GCN | GAT | HAN
N Macro-F1 89.02 78.95 78.15 88.96 90.82 82.68 | 8742 | 87.17
20% Micro-F1 89.09 78.93 78.18 88.88 90.70 83.22 | 8735 | 87.07
N Macro-F1 89.11 80.69 80.41 90.96 92.54 82.66 | 8831 | 87.88
ACM 20% Micro-F1 89.16 80.70 80.37 90.95 92.47 83.34 | 8830 | 87.84
N Macro-F1 90.38 81.46 80.29 91.44 93.00 82.04 | 90.01 | 8841
80% Micro-F1 90.25 81.16 80.33 9141 92.89 82.81 | 8991 | 8826
N Macro-F1 78.04 89.58 90.02 89.14 91.26 9133 | 9157 | 93.51
20% Micro-F1 78.80 90.76 91.04 90.08 91.90 91.83 | 9240 | 94.02
N Macro-F1 79.99 90.86 90.25 90.22 92.02 91.02 | 91.74 | 93.71
PBLP 0% Micro-F1 80.63 91.57 91.03 91.13 92.56 91.52 | 9247 | 94.14
N Macro-F1 79.92 91.28 91.28 90.99 93.08 9127 | 91.03 | 94.56
80% Micro-F1 80.67 91.99 92.00 91.87 93.60 91.87 | 91.74 | 94.95
N Macro-F1 90.49 92.95 95.56 95.71 96.52 86.89 | 8649 | 93.26
20% Micro-F1 90.55 93.42 95.65 95.69 96.49 8792 | 8824 | 93.54
Sina Weibo 0% Macro-F1 93.31 94.97 96.69 96.11 97.04 9143 | 91.24 | 95.36
Micro-F1 93.30 95.28 96.81 96.17 97.07 91.84 | 92.22 | 95.60
N Macro-F1 94.68 94.68 97.19 97.13 98.44 92.70 | 93.65 | 97.08
80% Micro-F1 94.74 94.90 97.29 97.13 98.41 92.82 | 9426 | 97.13

Awailable data types are the node features matrix X, adjacency matrix A, and labels Y .

edge of the graph loss for optimization without using node
category labels. Compared with supervised method HAN,
HGATE is improved by 0.66% on Micro-F1 and 0.63% on
Macro-F1 for ACM dataset with using 80% data as the train-
ing set, which proves the effectiveness of unsupervised
methods.

From the middle of Table 3, HGATE outperforms all
supervised and unsupervised baselines except HAN on
DBLP dataset for transductive learning. DeepWalk performs

well on DBLP dataset. This is mainly because the graph struc-
ture features of DBLP has more influence on node classifica-
tion. HGATE performs not as effective as HAN. Because
HAN is a supervised learning method with the hierarchical
attention mechanism, which uses the node classification label
to learn the embedded representation of nodes. While
HGATE is an unsupervised learning method, which does not
use the node classification label. On the DBLP dataset, our
method is still better than the latest unsupervised method.
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TABLE 5
Experiment Results on the Transductive Link Prediction Task
Datasets Metrics Feature DeepWalk GAE VGAE ASNE GATE HGATE GCN GAT HAN
ACM Macro-F1 70.86 52.04 98.43 99.73 98.70 95.79 96.82 89.08 9331 97.40
Auc 79.22 56.84 99.89 99.98 99.83 98.88 98.63 96.28  96.82  99.86
DBLP Macro-F1 92.46 52.69 97.16 97.02 97.01 98.72 99.43 85.59  94.88 9243
Auc 97.31 53.37 99.12 99.12 99.53 99.88 99.98 93.31 98.05  96.09
Sina Weibo Macro-F1 66.51 57.03 88.02 85.37 90.79 79.76 85.12 70.66 8145  82.89
Auc 70.08 60.98 93.83 92.64 97.13 85.54 91.51 86.05 89.61  §9.99

Awailable data types are the node features matrix X, adjacency matrix A.

Compared with unsupervised graph embedding method
ASNE, HGATE is improved by 0.49% on Micro-F1 and by
0.48% on Macro-F1 with using 80% data as training set.

From the bottom of Table 3, HGATE outperforms all
supervised and unsupervised baselines except HAN on
Sina Weibo dataset for transductive learning. The perfor-
mance of classification using user attribute features directly
and DeepWalk is better on Sina Weibo dataset, which indi-
cates that both user attributes features and graph structure
features have great influence on node classification. HGATE
is better than the state-of-the-art unsupervised methods.
Compared with unsupervised graph embedding method
GAE, HGATE is improved by 0.87% on Macro-F1 and
0.79% on Micro-F1 with using 80% data as training set. Simi-
lar to the results on DBLP dataset, HGATE performs slightly
worse than the HAN on Sina Weibo dataset.

Table 4 shows the inductive node classification results for
ACM, DBLP, and Sina Weibo datasets. Accordingly, we
observe that HGATE also performs well in the inductive task,
which can effectively generate the embedded representation
of unseen nodes in model training. The performance of induc-
tive learning is generally not as good as that of transductive
learning, because inductive learning only uses part of data set
for training, and the available information is limited.

From the top of Table 4, similar to the transductive tasks,
HGATE achieves the best performance among all the super-
vised and unsupervised baseline methods on the ACM
datasets for inductive learning. For ACM dataset, HGATE
is 1.56% higher than the best unsupervised learning algo-
rithm on Macro-F1 with using 80% data as training set.
HGATE is 2.99% higher than the best supervised learning
algorithm on Macro-F1 and 2.98% higher on Micro-F1 with
using 80% data as training set. HGATE outperforms HAN
and GATE is better than GAT, showing that the unsuper-
vised learning algorithm is better than the supervised learn-
ing methods in inductive learning on ACM dataset.

From the middle of Table 4, HGATE outperforms all
supervised and unsupervised baselines except HAN on
DBLP dataset for inductive learning. For DBLP datasets,
HGATE achieves better performance than unsupervised
baseline methods. Compare unsupervised baseline methods,
HGATE achieves an improvement gain of 1.60% on Micro-F1
and 1.80% on Macro-F1 with using 80% data as the training
set. And HGATE performs better than supervised baseline
methods except HAN.

From the bottom of Table 4, HGATE performs better than
all supervised and unsupervised baselines on Sina Weibo

dataset. Compared with unsupervised baseline methods,
HGATE achieves an improvement gain of 1.25% on Macro-
F1 and 1.12% on Micro-F1 with using 80% data as training
set. Compared with supervised baseline methods, HGATE
achieves an improvement gain of 1.36% on Macro-F1 and
1.28% on Micro-F1 with using 80% data as training set. For
inductive learning, the performance of unsupervised
method is better than that of the supervised method on Sina
Weibo dataset, which proves the superiority of unsuper-
vised method for inductive learning.

Based on the above analysis, HGATE performs better
than the most stats-of-art unsupervised methods for node
classification. And HGATE outperforms or matches the
most state-of-art supervised methods in the node classifica-
tion experiment. HGATE can efficiently generate node
embedding for unseen nodes.

5.4 Link Prediction

In this subsection, we compare our HGATE with the afore-
mentioned baselines on transductive and inductive link pre-
diction by logistic regression. We compare different models
based on their ability to correctly classify each example
(node pair) into links and non-links. We create evaluation
examples from the links and an equal number of randomly
sampled pairs of unconnected nodes. We compute the fea-
ture representation for a pair of nodes, using the Hadamard
Operator[3] for all methods. The Hadamard operator com-
putes the element-wise product of two vectors and closely
mirrors inner product operation in learning node embed-
dings. We report the area under the ROC curve(AUC) and
F1 scores for each model on the test set. For the homogeneous
graph embedding methods, we test all the meta-paths and
report the best performance in our results. We randomly
select 100000 edges in each graph, and then choose 80% train-
ing-set proportions for training. Meanwhile, we use the rest
of the dataset as the validation set and the test set. We report
Macro-F1 and AUC in Tables 5 and 6 on the test nodes.

For the transductive tasks, we set the learning rate to 5 x
1072, 1073, 10~2 on ACM, DBLP and Sina Weibo datasets,
respectively. For the inductive tasks, we set the learning
rate to 10~® on ACM, DBLP, and 5 x 102 Sina Weibo data-
sets, respectively. For all datasets, we use two node-layers
with 512 node representation dimensions and a single
semantic layer with 512 node representing dimensions. The
model is trained for 200 epochs with the A equalt to 1.

For baseline methods, we optimize their parameters
using the validation set. For inductive learning, we use the
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TABLE 6
Experiment Results on the Inductive Link Prediction Task
Datasets Metrics Feature GAE VGAE GATE HGATE GCN GAT HAN
ACM Macro-F1 70.86 99.75 99.62 97.32 95.42 86.52 84.41 96.79
Auc 79.22 99.95 99.98 99.44 98.56 85.55 92.15 99.37
DBLP Macro-F1 92.46 96.87 98.01 98.15 98.75 85.59 94.16 92.39
Auc 99.23 99.12 99.78 99.71 99.70 93.38 98.49 92.89
Sina Weibo Macro-F1 66.51 78.33 78.61 80.67 84.67 68.07 81.25 82.95
Auc 70.08 88.17 87.69 87.98 91.12 81.75 89.42 88.84

Awailable data types are the node features matrix X, adjacency matrix A.

same subgraph with HGATE to train the baseline models.
To ensure the fairness of the experiments, we set the node
embedding dimension to 512 for all baseline methods.

Results for the link prediction task are summarized in
Tables 5 and 6, the observations are as follows:

1) The performance is weak for all datasets for deep-
walk, that is because deepwalk is based on random
walk without considering the feature. This demon-
strates the usefulness of attributes in predicting
missing links. Note that the method based on fea-
tures has a good performance in DBLP datasets.

The performance of our model outperforms the
GCN, GAT cross all the datasets. And all the meth-
ods based on auto-encoder outperform GCN, GAT,
HAN. GCN, GAT and HAN can fully leverage node
label and the rich information in attributes, this
maybe damage the performance of link prediction
because two nodes maybe similar but there is no
chance to have a link between them in actual scene.
In transductive link prediction, our model outper-
forms other methods in DBLP datasets. And in
inductive link prediction, our model outperforms
other methods in DBLP and Weibo datasets. Com-
pared to the GAE, VGAE and GATE, we observe
performance drop of our model and HAN. The rea-
son is GAE, VGAE, ASNE and GATE learn different
representation vectors for the same node in different
graphs in experiments. However, our model learns
the same vector for the same node in different meta-
paths. In addition, ASNE and GAE, VGAE model
integrate negative sample into the loss function, their
models can weaken the similarity of unconnected
nodes node better than other methods. The perfor-
mance of our model in DBLP dataset is better than
the results in ACM and Sina Weibo datasets. The rea-
son is ACM and Weibo datasets contain less link
information. The link sparsity problem makes our
model cannot fully learn the graph structure.

2)

3)

5.5 Ablation Experiments

We compare our architecture with its three variant based on
transductive and inductive learning. We use the node classi-
fication task as representatives. Our model HGATE contains
three important components including semantic-level atten-
tion, reconstruction of node attributes and reconstruction of
edges of the heterogeneous graph features. And we design

the variant methods of HGATE by using these three compo-
nents. We compare the influences of the three components
on both ACM and DBLP datasets in node classification
task. The three variant method including HGATE, qcait,
HGATE, and HGATE .

e HGATE/,: a variant of HGATE which uses seman-
tic-level attention and reconstruction node attributes.

e HGATE,,: a variant of HGATE which uses seman-
tic-level attention and reconstruction the edges of
the heterogeneous graph features.

e HGATE, gears: a variant of HGATE which recon-
struction node attributes and reconstruction the
edges of the heterogeneous graph features removing
the semantic-level encoder/decoder layers.

Figs. 2 and 3 show the transductive and inductive results
of HGATE’s variants respectively. HGATE outperforms or
matches its variants in all the datasets. This approves that
each component contributes to the overall performance of
our architecture.

For the transductive learning results in Fig. 2, HGATE,,sqeqst
performs worse than or equal to other variants on ACM data-
set, which approve that semantic-level attention has a signifi-
cant effect on the node embedding results on ACM dataset.
HGATE,; performs worse than HGATE ., on ACM, which
approve that graph structure is more important than node
attributes on node classification for ACM dataset. The results
of HGATE/,, and HGATE are extraordinary close on ACM
dataset, indicating that the contribution of node attributes to
the node embeddings result is strong on ACM dataset. On the
contrary, HGATE/,, performs worse than other variants on
DBLP dataset, which approve that among the three compo-
nents, node attributes are the least important for node embed-
ding results on DBLP dataset. The results of HGATE,;, and
HGATE are extraordinary close on DBLP dataset, indicating
that the contribution of graph structure to the node embed-
dings result is strong on DBLP dataset. Similar to the results
of DBLP dataset, the performance of HGATEy, is better than
that of HGATEy,,, which indicates that graph structure is
more important than node attributes on Weibo dataset. The
performance of HGATE, st is close to that of HGATE,
which proves that three different meta-paths have similar
effects on the node embedding of Sina Weibo dataset.

For the inductive learning results in Fig. 3, HGATE, odcatt
performs worse than other variants on ACM dataset, which
approve that semantic-level attention can well learn the
importance among different meta-paths on ACM dataset.
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Fig. 2. The node classification results on transductive learning for variants of HGATE.
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Fig. 3. The node classification results on inductive learning for variants of HGATE.
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Fig. 4. Parameters sensitivity of HGATE.

HGATEy,, performs worse than HGATE, on ACM and
DBLP datasets, which approve that graph structure is more
important than node attributes on node classification for
ACM dataset and DBLP datasets. The results of HGATE,;,
and HGATE are extraordinary close on ACM dataset, indicat-
ing that the contribution of node attributes to the node embed-
dings result is weak on ACM dataset. HGATEy,, performs
worse than other variants on DBLP dataset, which approve
that among the three components, node attributes are the least
important for node embedding results on DBLP dataset. For
Sina Weibo dataset, HGATE ,, performs worse than other
variant models, which indicates that node attributes have less
effect on node embedding for inductive learning.

5.6 Parameters Sensitivity
We analyze the influence of model parameters on the exper-
imental results of node classification on ACM dataset for
transductive learning. As shown in Fig. 4, we choose the
appropriate parameters to achieve the satisfied node classi-
fication performance.

Node Embedding Dimension. With the increase of node
embedding dimension, the performance of node classification

the graph structure reconstruction loss

is improved. Higher node embedding dimension can represent
more comprehensive node attribute and structure information.
However, as the node embedding dimension increases, the
complexity of the algorithm is also increased. In order to
achieve the balance between the classification results and the

training time of the model, we set the node dimension to 512.
Node-Level Encoder/Decoder’s Layer Numbers. With the
increase the number of node-level encoder/decoder’s layer,
the performance of node classification first rises and then
falls. The suitable node-level encoder/decoder’s layer num-

bers can improve the learning ability of HGATE. However,

the layer numbers continue to increase, the effective transfer
of information in the model is hindered, which leads to poor
embedding effect. As shown in Fig. 4, in order to achieve bet-
ter performance of node classification for transductive learn-
ing, we set the layer number of the node level encoder/
decoder to 2.

Learning Rate. Similarly, the performance of node classifica-
tion first rises and then falls with the increase of learning rate.
HGATE needs an appropriate learning rate to minimize
model loss. We set the learning rate to 0.0001 to achieve better

erformance of node classification for transductive learning.
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Fig. 5. Visualization embedding on ACM data.

Epoch. With the increase of the training epoch, the perfor-
mance of node classification first increases significantly and
then changes slowly. With the increase of epoch, the model
continues to learn from the original data to obtain a better
node embedding representation. According to the elbow
method, when the training epoch is 200, HGATE achieves
better node classification performance.

Proportion Parameter of the Edges of the Heterogeneous Graph
Reconstruction Loss. With the increase of the proportion
parameter of the edges of the heterogeneous graph recon-
struction loss, the performance of node classification fluctu-
ates slightly. HGATE model loss includes node attribute
feature loss and graph structure loss. By adjusting the pro-
portion parameter of the edges of the heterogeneous graph
reconstruction loss, we can adjust the influence of graph
structure on the result of node embedding, and then affect
the result of node classification. When the proportion
parameter of the edges of the heterogeneous graph recon-
struction loss is 1, HGATE achieves better node classifica-
tion performance.

5.7 Visualization

In order to compare the node embedding results of different
models, we visualize the node embedding results on the
ACM dataset for inductive and transductive learning. In
order to realize visualization, we utilize t-SNE to project the
node embedding results into two-dimensional space. We
compare the node embedding results of HGATE with the
other five models, including HAN, GATE, GCN and GAT.
The visualization results are shown in Fig. 5, and the color
of the node represents the category label of the node.

From Fig. 5, the result of node embedding in transductive
learning of all models is better than that of inductive learn-
ing. Because transductive learning uses all data to learn the
embedded representation of nodes, which can fully learn the
relationship between nodes, while inductive learning uses
part of data for training, and the available information is lim-
ited. The node embedding of HAN is better than other mod-
els, because HAN is a supervised learning method based on
hierarchical attention mechanism, which uses the node cate-
gory label to get the node embedding representation. The
nodes embedding representation of our model (HGATE)
shows better visualization performance, on account of

HGATE is an unsug)ervised learning method without using
Authorized license

GATE Inductive

GCN Inductive GAT Inductive

node labels, which optimizes the results by minimizing the
loss of node attributes and heterogeneous graph structure.
Similarly, GATE is an unsupervised learning method, its
visualization results are similar to our model HGATE. GCN
and GAT are supervised homogeneous graph methods, and
their visualization results are similar.

6 CONCLUSION

In this work, we propose the heterogeneous graph auto-
encoders (HGATE) that is a novel unsupervised heteroge-
neous graph embedding method. HGATE uses the hierarchi-
cal attention mechanism to learn the importance of nodes and
meta-paths, which can capture complex structures and rich
semantic information on the heterogeneous graph. HGATE
not only reconstructs the edges of the heterogeneous graph
but also reconstructs the node attributes. It efficiently gener-
ates node embedding for previously unseen data, and thus
can be applied to both transductive and inductive learning.
We conduct comprehensive experiments on real-world het-
erogeneous graphs datasets to validate our models in node
classification and link prediction task.

In future work, we will consider multi-types of nodes in the
heterogeneous graph for graph embedding representation.
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