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Abstract

Time series anomaly detection has garnered significant research
attention due to growing demands for temporal data monitoring
across diverse domains. Despite the rapid advent of unsupervised
anomaly detection models, existing approaches face two critical
challenges in understanding the mechanisms of reconstruction-
based models when handling diverse temporal dependencies: (1)
the insufficient exploration of complex inter-timestamp relation-
ships encompassing both short-term and long-term dependencies,
and (2) the lack of integrated frameworks for jointly learning short-
term patterns and long-term temporal characteristics. To address
these challenges, we propose the novel Multi-Scale Hypergraph
Transformer (MSHTrans), which leverages the capacity of hyper-
graphs for modeling multi-order temporal dependencies. Partic-
ularly, our method employs multi-scale downsampling to derive
complementary fine-grained and coarse-grained representations,
integrated with trainable hypergraph neural networks that can
adaptively learn inter-timestamp relationships. The framework
further integrates time series decomposition to systematically ex-
tract periodic and trend components from multi-granular features,
thereby enhancing long-term dependency modeling. Through syn-
ergistic integration of learned short-term patterns and long-term
temporal structures, the model achieves comprehensive time series
reconstruction for effective anomaly detection. Extensive experi-
ments demonstrate that MSHTrans outperforms state-of-the-art
competitors with an average performance improvement of 8.21%
(without point adjustment) and 3.52% (with point adjustment).

CCS Concepts

+ Computing methodologies — Anomaly detection; « Mathe-
matics of computing — Hypergraphs; Time series analysis.
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1 Introduction

Time series anomaly detection serves as a fundamental task across
various real-world domains, particularly in industrial monitor-
ing systems, healthcare diagnostics, and financial risk manage-
ment [4, 6, 19]. With the exponential growth of temporal data, mod-
ern time series exhibit three inherent characteristics: massive scale,
heterogeneous sources, and multimodal patterns, which collectively
pose challenges to time series anomaly detection. To address the
complexity of large-scale time series data, existing methods pre-
dominantly employ unsupervised learning approaches that extract
latent patterns from sequential data, enabling efficient anomaly
detection [2, 39]. Existing time series anomaly detection models
can be roughly divided into two categories: prediction-based meth-
ods and reconstruction-based methods. Although prediction-based
approaches utilize historical observations to generate future esti-
mations, with anomalies detected through quantitative analysis of
prediction errors, they exhibit limited adaptability to rapid tempo-
ral pattern changes [36, 41]. Reconstruction-based approaches have
received increasing attention due to their strengths in detecting
anomalies by comparing series reconstructed from learned latent
representations with original inputs.

Both prediction-based and reconstruction-based approaches re-
quire effective modeling of long-term and short-term temporal de-
pendencies under the non-independence assumption of timestamps.
Given the implicit nature of temporal correlations, recent studies
have adopted Graph Neural Networks (GNNs) [16, 17, 32] to con-
struct similarity-based relationships between timestamps. While
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graph-based approaches have demonstrated effectiveness in fore-
casting tasks, their application to reconstruction-based anomaly de-
tection remains under-explored. Despite some recent studies consid-
ering feature-oriented or time-oriented graphs for reconstruction-
based models [14, 40], these models generally construct fixed graphs
based on pair-wise or group-wise similarities, thereby hindering
GNN-based models from dynamically learning adjacency relation-
ships in a data-driven manner during the training process. More-
over, due to the highly complex temporal relationships in time
series data, a simple adjacency relationship is insufficient to com-
prehensively describe the compound long-term and short-term
correlations between timestamps. In light of this issue, this pa-
per proposes using trainable hypergraphs to model the intrinsic
temporal relationships. Hypergraphs enable high-order interaction
modeling through flexible degree-free hyperedges that connect mul-
tiple timestamps simultaneously, surpassing the representational
constraints of ordinary graphs. Further, in practical time series ap-
plications, sensor measurements at each timestamp often manifest a
complex interaction between short-term fluctuations and long-term
trends. This multi-scale temporal dependency presents a fundamen-
tal limitation for conventional fixed graph-based approaches, as
their inherent constraints in topological rigidity prevent effective
modeling of temporal patterns across different granularities. There-
fore, how to construct trainable long-term and short-term timestamp
correlations with hypergraphs becomes a critical challenge.

In time series data reconstruction, short-term relationships help
the model propagate local key features from nearby timestamps,
while long-term relationships provide support for sequence recon-
struction from a global perspective. Theoretically, coarse-grained
long-term information can assist the model in learning the over-
all periodicity and trend characteristics of the time series, which
also mitigates the impact of local time series noises or fluctuations.
Apart from the global information brought by long-distance associ-
ations in hypergraphs, decomposing time series can also introduce
seasonal and trend signals for global coarse-grained model recon-
struction. Seasonality and trends can reveal the periodic patterns
of time series at a certain scale. The proposed model is architected
with a dual-phase reconstruction mechanism: (1) Coarse-grained
reconstruction leveraging hypergraph-derived long-term temporal
dependencies as well as the inherent seasonality and trends of the
series; (2) Fine-grained reconstruction through hypergraph-derived
short-term temporal dependencies, enabling localized refinement
through residual pattern analysis. To this end, how to effectively
integrate and synergistically utilize both short-term temporal vari-
ations and long-term temporal dynamics for multi-scale time series
reconstruction, and how such hierarchical reconstruction mechanisms
can intrinsically improve anomaly detection performance, are also
challenges that this paper seeks to tackle.

Solutions: To address the aforementioned challenges, we pro-
pose a novel multivariate time series anomaly detection model
dubbed Multi-Scale Hypergraph Transformer (MSHTrans), which
can effectively reconstruct time series from hypergraph-oriented
correlations and periodical signals. MSHTrans reorganizes the in-
put window as multi-scale inputs through downsampling, thereby
simultaneously exploring coarse-grained and fine-grained times-
tamp correlations via multi-channel encoders. The proposed model

275

Zhaoliang Chen et al.

Hypergraph Propagation
+ Seasonality + Trend

S oae
L2770\ I
AMARAX
\

Failed

Long-term
reconstruction

dependency 7

Anomalous \
Time Series
Short-term
dependency
Hypergraph Propagation
+ Seasonality + Trend
Long-term /:,‘I, A \\ I
dependency -~ R
AW \
\\\ \ Successful
reconstruction
Normal
Time Series
Short*term
dependency

—— Original time series Reconstruction Real anomalies
Figure 1: Reconstruction of time series with long-term and

short-term dependencies for the proposed MSHTrans.

can jointly learn both short-term and long-term correlations be-
tween timestamps by trainable hypergraphs and time series de-
composition analysis. Figure 1 illustrates the mechanism of the
reconstruction-based MSHTrans model for anomaly detection. As
shown in the figure, MSHTrans is able to conduct series reconstruc-
tion with trainable hypergraph propagation, seasonality learning,
and trend learning. Generally, a failed sequence reconstruction (the
1st row in Figure 1) only indicates potential anomalies, whereas a
successful sequence reconstruction (the 2nd row in Figure 1) sug-
gests that the current temporal variables can be well restored by
learning correlations between timestamps and other global implicit
information. When the time series exhibit normal temporal pat-
terns, the model first utilizes the long-term dependencies learned
through hypergraph representations, combined with seasonality
and trend components, to perform coarse-grained reconstruction.
Subsequently, the hypergraph-encoded short-term dependencies
are systematically integrated to achieve fine-grained reconstruc-
tion refinement. When an anomaly happens in the time series, the
anomalous data will be propagated to the target timestamp through
the learned short-term relationships of hypergraphs, disrupting the
intermediate feature representation. This mechanism leads to the
failure of fine-grained sequence reconstruction because the model
can only conduct coarse-grained reconstruction with long-term de-
pendencies, global seasonality, and trend components. We further
elaborate on this mechanism with experiments in Section 5.4.2. In
summary, the main contributions of this paper include:

e To capture the relationships between different timestamps
within the window, we propose a trainable hypergraph learn-
ing schema, which adaptively explores long-term and short-
term dependencies among time series to reconstruct the
variables.

e To extract the seasonal and trend information embedded
within the latent features, we construct a time series decom-
position module and a feature fusion module, which aim
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to capture and integrate the periodic information and the
variable trends from the latent features.

e To leverage both short-term and long-term signals, we pro-
pose a transformer-based framework for time series anomaly
detection, which comprises multiple hypergraph learning
networks, time series decomposition modules, and signal
fusion processes. The framework aims to uncover the hid-
den correlations and intrinsic periodicity among timestamps,
thereby facilitating efficient reconstruction.

e We demonstrate the superiority of MSHTrans over state-of-
the-art methods through comprehensive experiments. We
also explore how the proposed hypergraph-based model
detects anomalies through series reconstruction.

2 Related Work

2.1 Time Series Anomaly Detection

2.1.1  Prediction-based Models. The core concept behind prediction-
based anomaly detection models is to build a predictive model to
estimate the future values of time series data and then evaluate the
deviations between predicted values and the actual observations. A
large number of predictive techniques have been utilized for this
purpose, such as Convolutional Neural Networks (CNN) [24, 33], Re-
current Neural Networks (RNN) [9, 26] and transformers [8, 30]. For
instance, LSTM networks [15, 23] have been employed to predict
the future values of time series data, with the prediction loss used
as the anomaly score. CNN was combined with a spectral residual
model to detect visual anomalies [24]. However, prediction-based
models generally struggle with rapidly and continuously changing
time series, thereby limiting their ability to forecast short-term
series and overcome local noises.

2.1.2  Reconstruction-based Models. Reconstruction-based models
aim to learn the underlying features of time series to reconstruct
the input time series, and then evaluate the reconstruction qual-
ity. Most reconstruction-based models have similar structures to
autoencoders [1, 3, 11, 18] or transformers [4, 20, 27, 37]. As a
typical example, the Deep Autoencoding Gaussian Mixture Model
(DAGMM) [43] predicted the probability of series samples through
the Gaussian mixture prior to the latent space. TranAD [29] incor-
porated adversarial training with transformers to conduct 2-phase
time series reconstruction. Belonging to reconstruction-based mod-
els, the proposed MSHTrans recovers time series with trainable
hypergraph relationships and series analysis.

2.2 Hypergraph Neural Networks

Graph neural network (GNN) can model the relationships between
different objects and has shown encouraging performance in vari-
ous tasks [10, 34, 42]. Recent research efforts have been made to the
investigation of time series anomaly detection with GNNs. As a suc-
cessful attempt of GNN-based methods, MTAD-GAT [40] utilized
Graph Attention Network (GAT) to construct both feature-level and
time-level relationships, which considered both prediction-based
losses and reconstruction-based losses to estimate anomalies. Due
to its ability to model complex node relationships, Hypergraph
Neural Network (HGNN) [12, 13] has become a research hotspot in
recent years. Although some recent studies have adopted HGNNs
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to node-level, graph-level, or link-level anomaly detection [21, 22],
the application of HGNNSs in time-series anomaly detection is still
under-explored. Two recent frameworks [25, 35] also attempted
to utilize multi-scale hypergraphs in time series prediction tasks
by building group-wise correlations between timestamps. How-
ever, the mechanism of hypergraph learning under the reconstruction
model in time series anomaly detection tasks has not yet been fully
explored. These HGNN models also lack effective supervision of
hyperedge learning or seldom consider global characteristics like
seasonality and trend signals. Therefore, this paper proposes a novel
framework to jointly investigate supervised hypergraph construc-
tion methodologies while systematically integrating the resultant
dependency relationships with global temporal characteristics.

3 Preliminary

The multivariate time-series data is defined by X € RT*D where
T is the length of the time series and D is the number of variables.
In order to capture the trend of time series from historical data,
we can generate contextual window W) e RSXD gt the t-th time
point with W) = [X(=5+D, ... .X()] for t > S, where S is the
predefined maximum window size. The proposed model aims to re-
construct input window W, based on which generates the anomaly
scores S. The anomaly detection indicator Y = {My, -, Y7} is
computed with the anomaly scores and threshold, where Y; € {0, 1}
and Y; = 1 indicates the anomalous timestamp.

4 The Proposed Model
4.1 Overview

The proposed model is illustrated in Figure 2. As a multi-scale
model based on an encoder-decoder architecture, MSHTrans adopts
multi-scale encoders, which are responsible for encoding the input
data with trainable hypergraphs. The learnable seasonal features
and trend information at different scales are aggregated eventu-
ally. Moreover, MSHTrans leverages the decoder to reconstruct the
original time series based on the hypergraph relationships and un-
derlying features learned by encoders. Finally, the model calculates
anomaly scores for each time point based on the reconstruction
quality of the decoder, thereby predicting anomalous timestamps.
We next elaborate on the detailed design of the proposed MSHTrans
framework as follows.

4.2 Multi-Scale Window Generator

To capture latent features of L different granularities, a multi-scale

window generator is proposed to construct window W(z) € RNsXD

(simplified as W y)) at scale s. With WES?V = Wizx;lf() le) = W, the
generator is defined as

W = ConviD (w‘(f’jvl) 10(s-1), 7<) , (1)

Ws(i?lp le _ DownSample (W?irf};;e |K ) , (2)

W) = (WS W) ®

where [-,-] is the concatenation operation, Conv1D(-) is the 1-
D convolution operator parameterized by trainable ©(;_;) and
K is the kernel size. DownSample(-) indicates the downsampling
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Figure 2: The framework of the proposed MSHTrans.

operation that directly selects the sequence data from scale s — 1
at intervals of K. Thus, we have N; = LN;(’ 1]. Specifically, the
maximum size Ny = S, i.e., the window size. Egs. (1), (2) and (3)
indicate that window at the higher scale level is calculated from a
lower scale level. The point-wise relationships at scale s correspond
to the group-wise relationships at scale s—1 when s > 1. When s = 0,
the point-wise relationships indicate the fine-grained connections
between each timestamp. Therefore, the proposed MSHTrans can
explore fine-grained time relations with low-scale windows and
coarse-grained time relations with high-scale windows.

4.3 Hypergraph Transformer

To capture the complicated short-term and long-term relations be-
tween different timestamps, we build a hypergraph transformer
for a hypergraph G(5) = {V(5),E(s)} at scale s. Herein, V() =
{01,- -+ ,un,} is the node set, which corresponds to different times-
tamps within the window at scale s, 8(3) ={e, -, eMs} indicates
the hyperedge set containing rich connections among nodes. The
topology of the hypergraph at scale s is denoted by an incidence
matrix H;) € RNs*Ms which is defined by

[Hs)lnm = {

At different timestamps, we hypothesize that the correspond-
ing windows share similar long-term and short-term dependencies
across temporal nodes. Consequently, we construct a window-level
hypergraph within the same scale, thereby enabling the hyper-
graph to learn generalized temporal dependencies that maintain
invariance across varying temporal windows.

1
0

if v, € em,
4

if o, & en,.

4.3.1 Trainable Hypergraphs. To get a learnable hypergraph de-
scribing intra-scale relationships with trainable incidence matrix,
we compute the similarity-based Hy) at scale s by

H(s) = o(ReLU(FE (FF2)T)),

(s) ®)
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RMs%d are trainable node and

where FI(“’)‘]le € RNsxd gnd Fed)ge
hyperedge embeddings, respectively. Herein, o(-) is the activa-
tion function, ReLU(:) is the rectified linear unit to keep the non-
negativity and sparsity of embeddings.

At each epoch, the hypergraph incidence matrix is updated with
an updating rate 7. Namely, Hs) = (1-7)H(5) + TI:I(S), where I:I(S)
is the hypergraph incidence matrix at the last epoch. Specifically,
the initial incidence matrix at scale s is generated by

1 if Ng —
[H(s)lnm {

0 otherw1se

where k is the predefined hyperparameter to determine each hy-
peredge’s initial connected nodes. Eq. (6) indicates that the initial
hypergraph tends to construct adjacency relationships over short-
term timestamps; this design agrees with the intuition of time series
reconstruction. Namely, the value at the current timestamp is highly
correlated with recent data. Moreover, the proposed model updates
the incidence matrix during training to discover either unknown
long-term or other short-term dependencies.

With a sparse H(y), we further select the top-k significant con-
nections in Hy) to limit the maximum number of connected nodes
and reduce computation cost, i.e.,

_ 1 if [H(s)]nm € TOpK([H(S)]n),
[H(s)]nm = .
0 if [Hs)]nm € TopK([H5)]n),
where TopK(-) is the top-k selection operator.

—k+m<n<Ng—Mg+m,

(6)

™

4.3.2  Intra-scale Hypergraph Attention. First, we denote the resam-
pled variables of the n-th node of training window by [W )]n.
To realize the intra-scale hypergraph transformer module, we first
adopt the graph attention mechanism [25, 31] to aggregate the
embeddings at each node with hypergraph at scale s, defined as

. exp(o([[W ). [E(s) Im]O10))
I Sk envn) e[ IW i ln [E(sﬂk]@g‘;{))’( |
8
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Algorithm 1: Intra-scale Hypergraph Attention Module
IntraHAtt (W (5), Gs))

Algorithm 2: Multi-head Hypergraph Convolution Module
MHConv (I:I(s), Wis) )

Input :Resampled window data W (5) and trainable
hypergraph Gs).
1 Initialize the similarity-based hypergraph incidence matrix
H(s) with Eq. (5);
2 Generate sparse hypergraph incidence matrix Hy,) via top-k
selection with Eq. (7);
3 Get ﬁ(s) with hypergraph attention defined by Eq. (8);

4 Return Hypergraph incidence matrix I:I(S).

where ®AS” is the trainable weight, and N (’V('; )) indicates the
neighborhood hyperedges connecting node n according to hyper-
graph G s). [E(s)]m is the edge features computed by the aggrega-

tion of connected node variables obtained by Eq. (3), i.e.,

2

VE eN(E

[Ws)lk )

(s))

[Es)lm = Agg

where (V(ks )
nected by edge m. We denote the intra-scale hypergraph attention
module by I:I(s) = IntraHAtt (W(s), g(s)). Algorithm 1 depicts its

construction process.

eN (8";)) represents the variables of timestamps con-

4.3.3  Multi-Head Hypergraph Convolutions. With I:I(s), we can
conduct the multi-head hypergraph convolution [12] with

— 1 H
Z(s) = [Z(s)a T ’Z(s)]’ (10)
where H is the number of heads and the h-th head’s output is
h _
Z(s) =
h gh 1 T -3
o ((Df,)) HiE o (DF, )7 )T 7)) E Wiyl ).

(11)

where CD? )= diag(gb{l, e ,(ﬁ]}{[s) is the trainable weight for hyper-

is the trainable weight to capture underlying fea-
c RMS XM

edges, and ®( )

tures. D? . € RNs*Ns ang D‘("S)

(s)
and hyperedge degree matrices, where [Dz(’s)],m = an/lil [H(s)lnm
and [D¢ lmm = X%,
volution module is denoted by Z = MHConv (I:I(s), W(S)). Algo-

rithm 2 depicts its construction process.

are diagonal node degree

[H(s)]nm- The multi-head hypergraph con-

4.3.4 Hypergraph Learning Constraints. Next, we elaborate on the
hypergraph losses applied in MSHTrans, as described in Figure 2.
Inter-scale Hypergraph Consistency Constraint. First, the re-
lationships among timestamps, i.e., the adjacency matrix A, €
RNsXNs of timestamps at different scales can be obtained by Ay =
o) 1
should follow Laplacian constraints, ensuring cross-scale feature
consistency among timestamp nodes connected through hyper-
edges. To learn such consistency, we adopt the Laplacian constraint

. Herein, we hypothesize that the learned hypergraphs

278

Input :Window data Wy, sparse hypergraph incidence
matrix ﬁ( s) and head number H.
1 forh=1— Hdo
L Conduct hypergraph convolution with Eq. (11);
3 Conduct multi-head hypergraph convolution fusion with Eq.
(10) to get Z(s);
4 Return Multi-head hypergraph convolution result Z ).

on all adjacency matrices to minimize the similarities between
connected nodes. Namely, we have

(Wsample

Laplacian
£ (s)

min (s)

)
A(g),“',A(L,]) (S)
(12)

_ Z Tr ((Wsample)TL(s)wiir)nple) ,

where L) is the Laplacian matrix computed by L(s) = D) —A(s)

and D(,) = Diag(Ay)) is the diagonal matrix. Since {Wsamp le}

are downsampled from the same window W, the mlmmlzatlon
problem in Eq. (12) attempts to learn the consistency of multi-scale
hypergraphs within the window.

Similarity-based Hypergraph Constraints: We hope that con-
nected nodes of the learned hyperedge are as similar as possible.
Hence, we calculate the similarity-based weights at each scale, i.e.,

&) [E‘EEB]T

OI'l

" sl

where [E‘Z”)] indicates original features of the i-th hyperedge,

which is computed from the connected nodes. Namely,

2

Vi GN(SM)

ori

[wsample] | (14)

[Em)] = Agg )

Since we hope to minimize the deviations between learned edge
embeddings and original edge features, we define the hyperedge
constraint as:

. hyperedge (redge rori
Lo (Fi°et)
(s)
M, M, (15)
(s) (s)
(Ms)z IZ; jZ: ( Dij+(1- a;; )max(y — DU,O))
where y is the hyperparameter and the distance between learned hy-
peredge embeddings are calculated as D;; = || [F‘Zj;ge],- - [F‘Zg)ge]j 2.

(s)

Because a higher ;;
peredges, this objective will minimize the embedding distance D;;

(s)

indicates a stronger correlation between hy-

between the learned hyperedges. Conversely, a lower a;; suggests
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Algorithm 3: Time Series Decomposition Module
TSDecom (Z)
Input :Input series Z.
1 Conduct DFT operation for Z with Eq. (17);
2 Obtain seasonality embeddings Z°%¢* with Eq. (18);
3 Obtain trend embeddings Z"" with Eq. (19);
4 Return Seasonality embeddings Z°* and trend

embeddings ZtrendA

that the model should learn hyperedge embeddings that have re-
mote distance. In a word, the minimization problem defined in
Eq. (15) promotes the consistency between the learned hyperedge
embeddings and the original hyperedge features, thereby improving
edge
()~

Meanwhile, we also hope that the learned node embeddings
Fr(ls)de are consistent with the original hyperedge features. In detail,
we define the node constraint as

(P, ey

the quality of the hypergraph learned from F

min Lnode
Fnode (S)
(s)

LYy

* il Vi EN(S{S))

. (16)
Abs (Proj ([Fr(ls)de]i) B [E(()?)L) |

where Proj(-) is the projection function to maintain the consis-
tency of the dimensions of learned node embeddings and original
hyperedge features.

4.4 Time Series Decomposition Module

The time series decomposition module aims to factorize the input
window to get the seasonality and trend. First, we adopt discern
Fourier Transform operator DFT(-) [5] to transform the input series
Z from the temporal domain into the frequency domain. Namely,

{fi.- . fi. AT = TopK(DFT(Z)), a7

where {fi,- -, fi} are the top-k significant frequencies, A is the
amplitude, and T is the phase.

With these top-k frequencies, the periodic signals Z*¢* can be
calculated by the inverse DFT operator IDFT(-), i.e.,

Z%® =IDFT ({1, - » fi L, AT). (18)

As for the trend of the window, we utilize K kernels of average
pooling for moving averages to capture trend patterns. Namely,

K
Ztrend — Z O{iAVgPOOIi(Z)’ (19)

i=1
where «; is the weight for the i-th kernel and @ = [a1,- -, ak]
is normalized by the Softmax function. In summary, the whole
time series decomposition module is denoted by Z5¢, Ztrend =
TSDecom (), as elaborated in Algorithm 3.
With the seasonality and trend series, we can obtain an evolu-
tionary time-series by

Z®° = FeedForward([W, Z°¢*0°"°, Ztrend] ), (20)
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Algorithm 4: Seasonality and Trend Fusion Module
STFusion (Z, zsea Ztrend)
Input :Complete window embeddings Z, seasonality

embeddings Z%° and trend embeddings Ztrend
1 Initialize trainable weights ©¢"°;

2 Compute evolutionary embeddings with Eq. (20);
3 Return Evolutionary series features Z°V°.

where ©V° is the trainable weight and FeedForward(-) is the feed-
forward layer. We denote Z¢V° = STFusion (W zZsea, Ztre“d) by

the seasonality and trend fusion module, described in Algorithm 4.

4.5 Multi-scale Hypergraph Fusion Process

To integrate the learned multi-scale window features from multi-
channel encoders, we first upsample the learned ZC;’)" at the s scale
for s > 0, so that outputs from all scales share the same dimension.
Thus, we can directly add these upsampled outputs to get a fused
representation. In detail, this process can be formulated as

zZiy -2ty ). e
for 1 < s < L — 1, where L is the number of scales and the 1-D
transpose convolution layer is denoted by ConvTransposelD(-).
Eventually, we adopt a feedforward layer to the learned features at
the initial scale, i.e., qus"’“ = FeedForward(Z¢'°).

(0)
We also need to integrate the learned multi-scale hypergraphs

+ Padding (Coanranspose 1D(Z (e;’fl )

{H( $) }1“:_01, which will be utilized in the message passing of the de-
coder. Because the hyperedge connections at a higher scale indicate
the group-wise connections at the low scale, we can upsample the
hyperedge connections at the high scale via

[H(s)ln = [Hsen)l |njx ) (22)

where X is the stride for the data sampling and ﬁ(o) =H(g). Even-
tually, the multi-scale hyperedge fusion is conducted by

gfusion _ [ﬁ(0)§ﬁ(1);"' QI:I(L—l)] e RNX (T M) (23)

Thus, HUSo0 includes both point-wise and group-wise interaction
information within the window.

4.6 Model Training

In summary, MSHTrans is a multi-channel encoder-decoder struc-
ture to reconstruct window data from multi-scale inputs, as shown
in Figure 2. In MSHTrans, the short-term dependencies are discov-
ered by the trainable hypergraphs, and the long-term dependencies
are captured by both hyperedge connections and time series de-
composition analysis. With the aforementioned modules, Appen-
dix A.1 depicts the detailed training algorithm of MSHTrans. The
training loss consists of Laplacian loss, hyperedge loss, node loss,
and reconstruction loss, i.e.,

L-1
Ll = N (ot ppyperedecy paode) 4 prec (24)
s=0

where L€ is the reconstruction loss computed from the deviations
between the reconstructed window Zg;’o in the decoder and the
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Table 1: Experimental results (F1 scores) of compared models, where the best performance is highlighted in orange and the

second-best performance is highlighted in blue.

Datasets ‘ SWaT ‘ WADI ‘

MSL

‘ SMAP ‘ SMD ‘ Average

Evaluation strategy | w/o PA  with PA | w/oPA withPA | w/oPA withPA | w/oPA withPA | w/oPA withPA | w/oPA with PA

DAGMM [43] 0.750 0.853 0.121 0.209 0.199 0.701 0.233 0.712 0.238 0.723 0.308 0.640
LSTM-VAE [23] 0.705 0.805 0.227 0.380 0.212 0.854 0.235 0.756 0.375 0.808 0.351 0.721
MSCRED [38] 0.757 0.807 0.146 0.374 0.204 0.782 0.211 0.772 0.382 0.841 0.340 0.715
OmniAnomaly [28] | 0.762 0.856 0.223 0.417 0.227 0.871 0.228 0.841 0.384 0.842 0.365 0.769
MTAD-GAT [40] 0.743 0.848 0.332 0.552 0.235 0.878 0.276 0.854 0.366 0.848 0.390 0.796
THOC [26] 0.612 0.851 0.199 0.506 0.241 0.886 0.244 0.845 0.168 0.843 0.293 0.786
TranAD [29] 0.669 0.815 0.311 0.495 0.251 0.901 0.247 0.841 0.310 0.889 0.358 0.788
IMDiffusion [7] 0.721 0.862 0.249 0.523 0.269 0.881 0.299 0.852 0.388 0.862 0.385 0.796
TimesNet [33] 0.687 0.912 0.119 0.504 0.183 0.862 0.198 0.734 0.245 0.843 0.286 0.771
MSHTrans ‘ 0.776 0.936 0.272 0.568 0.364 0.904 ‘ 0.305 0.861 ‘ 0.395 0.851 0.422 0.824
original window W, i.e., 5.2 Compared Models
prec (W Zevo) 1 | |W Zevonz 25) We conduct comprehensive experiments with multiple baselines,
"<~de ) T Sp de IlF- including DAGMM [43], LSTM-VAE [23], MSCRED ([38], Omni-

As for the anomaly detection tasks, the anomaly score at the ¢-th
timestamp is computed by

8= W zge 1) (26)

where MSE(-, -) is the mean squared error function. The anomaly
label is given by Y; = 1(S; > £), where & is the threshold.

4.7 Computational Complexity of MSHTrans

In this subsection, we analyze the computational complexity of the
primary modules in MSHTrans. The intra-scale hypergraph atten-
tion module has a complexity of O(Nkdindoyr + Mkdin), where
M is the number of hyperedges, k is the average number of nodes
connected per hyperedge, and djn, doyr denote the input/output fea-
ture dimensions. The multi-head hypergraph convolution module
requires O (H(Mk? + Ndindout)), where H denotes the number of
attention heads. In the time series decomposition module, the DFT
and IDFT operations each require O (N log N). The average pooling
operation for trend extraction has the complexity of O(KNd;y,),
where K is the pooling stride length. Thus, the overall complexity
of the time series decomposition module is O(N log N + KNd;y).
Both the seasonality-trend fusion module and multi-scale fusion
process have the complexity of O (Ndindouz)-

5 Experimental Analyses
5.1 Datasets

In our experiments, several benchmark time series datasets are
adopted to verify the effectiveness of the proposed model, includ-
ing SWaT, WADI, MSL, SMAP and SMD. These datasets encompass
monitoring data from various domains, including water utility data,
server information, and machine sensor data. Furthermore, to bet-
ter visualize the detection outcomes of the proposed model for
various types of anomalies, we generate a synthetic dataset with pe-
riodic patterns and introduce different types of noises as anomalous
timestamps to be detected. Detailed introduction to these datasets
is given in Appendix A.2.
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Anomaly [28], MTAD-GAT [40], THOC [26], TranAD [29], IMD-
iffusion [7] and TimesNet [33]. These compared models include
CNN-based, transformer-based, and graph-based models.

5.3 Experimental Settings

In our experiments, we compare the proposed model and other
baselines with F1 scores. Meanwhile, we also provide the evaluation
results with and without Point Adjustment (PA) [28], which refines
the identification of anomalies to improve the accuracy of detection
results. All experiments are run 5 times and we record the average
F1 scores. Detailed model settings can be found in Appendix A.3.

5.4 Experimental Results

5.4.1  Performance on Benchmark Datasets. First, we evaluate the
proposed MSHTrans model on several benchmark datasets. Table 1
summarizes the comparative performance between MSHTrans and
state-of-the-art methods, with the final column indicating the aver-
age F1 scores across all evaluated datasets. The experimental results
demonstrate that our framework outperforms baseline methods in
most scenarios, achieving average performance improvements of
8.21% (without PA) and 3.52% (with PA) over the second-best model.
Notably, MSHTrans exhibits significant advantages compared to
the graph-based MTAD-GAT model. Furthermore, it also maintains
superiority over both transformer-based and CNN-based competi-
tors. These observations validate the effectiveness and superiority
of the proposed MSHTrans.

5.4.2  Visualization of Anomaly Scores and Series Reconstruction.
In Figure 3, we visualize the predicted results of MSHTrans on the
multivariate synthetic data that include both point and sequence
anomalies. First, MSHTrans can accurately detect distinct types of
anomalies. When an anomaly occurs in a certain sensor, the model
fails to reconstruct features similar to the original series based on
the learned hypergraph relationships and other global signals. This
is because the model can only perform coarse-grained sequence
reconstruction based on long-term dependencies in hypergraphs,
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Figure 3: Visualization of outcomes (anomaly scores and reconstructed time series) of MSHTrans.

as well as global signals such as seasonality and trends. Short-term
dependencies fail to work due to the occurrence of anomalies, lead-
ing to ineffective neighborhood feature propagation. When the
time series experiences prolonged anomalies (e.g., the end of the
second dimension in Figure 3), the long-term dependencies also
fail, resulting in a further increase in reconstruction errors and
anomaly scores. Second, when all dependencies approach failure,
the model can only perform simple data reconstruction based on
the time series analysis conducted by the time series decomposition
modules, causing the anomaly scores to stabilize at a relatively
high value, thereby prompting the model to detect long-term anom-
alies. Additionally, experimental results demonstrate that the model
can also effectively detect subtle anomalies in other related dimen-
sions caused by the anomaly of a certain sensor. Lastly, the overall
anomaly score can jointly consider all variables, thereby providing
comprehensive anomaly detection results.

5.4.3  Visualization of Learned Hypergraphs. Figure 4 visualizes the
learned fused hypergraph incidence matrix and its corresponding
adjacency matrix in MSHTrans. We have the following observations
from Figure 4. First, as the visualized hypergraph indicates, some
of the learned hyperedges tend to connect adjacent time nodes (i.e.,
short-term dependencies), while other hyperedges connect more
distant timestamps, thereby constructing long-term dependencies.
We observe from the learned adjacency matrix that the feature
propagation between timestamps is highly dependent on the cur-
rent timestamp itself, resulting in a significantly diagonal nature of
the adjacency matrix. Additionally, a large number of short-term
dependencies form the block structure along the diagonal of the
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Figure 4: Visualization of learned hypergraph (left) and the
corresponding adjacency matrix (right) on SWaT dataset.

adjacency matrix. These structural properties quantitatively vali-
date the ability of the proposed hypergraph learning mechanism to
jointly model multi-scale temporal dependencies.

5.4.4 Ablation Study and Impact of Window Sizes. Finally, we con-
duct an ablation study to investigate the effectiveness of different
loss functions adopted in the proposed framework with varying
window sizes, as demonstrated in Figure 5. As shown in Figure 5,
the model performance declines when a particular loss function is
removed. Among these loss functions, the hyperedge loss has the
most significant impact. Additionally, as the window size increases,
the performance of all models improves. However, the performance
of the complete MSHTrans changes minimally and tends to stabilize
when the window size exceeds 40. This observation indicates that
the model can adaptively learn effective long-term and short-term
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Figure 6: Parameter sensitivity w.r.t. k and 7 of MSHTrans.

dependencies within windows of varying sizes, thereby achieving
optimal performance for the current window and minimizing the
negative impacts of insufficient window sizes.

5.5 Parameter Sensitivities

In this subsection, we investigate the parameter sensitivities (ad-
justed F1 scores) w.r.t. k and 7, that is, the hyperparameters in top-k
selection and updating rate for hypergraph construction, as shown
in Figure 6. Firstly, we can observe that a small value of k (e.g., k = 1)
often leads to poor performance due to the insufficient number of
nodes connected by hyperedges in the hypergraph. This issue may
be alleviated with an increase in the updating rate 7, as the model
can more quickly adjust the hypergraph based on the loss functions.
Furthermore, as k increases, the performance generally improves
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Table 2: Performance (F1 scores) of MSHTrans with different
scale numbers on SWaT dataset (window size: 100).

F1 scores
# Scales # Nodes # Hyperedges Ww/oPA  with PA
1 [100] [50] 0.701 0.881
2 [100, 50] [50, 30] 0751  0.921
3 [100, 50, 25] [50,30,20] | 0.776  0.936
4 [100, 50, 25, 12]  [50,30,20,10] | 0.775  0.938

or stabilizes. However, the optimal updating rate 7 may vary across
different datasets. A higher 7 can sometimes result in performance
degradation, possibly due to the instability in the graph structure
caused by overly rapid updates to the hypergraph, which negatively
impacts performance. Therefore, a moderate k value and updating
rate 7 are conducive to achieving the optimal model performance.
Based on experimental experience, we uniformly set k = 5 and
7 = 0.3 to achieve optimal performance across most datasets.

5.6 Impact of Scale Numbers

Table 2 illustrates the impact of scale numbers of the proposed MSH-
Trans, which also shows the node numbers and hyperedge numbers
at each scale. Experimental results show that performance improves
progressively as the number of scales increases, significantly outper-
forming the single-scale baseline (i.e., modeling only fine-grained
timestamp correlations within the initial window). Generally, when
the number of scales is larger than 3, the additional performance
gains from increasing the scale number become marginal. There-
fore, this paper sets the number of scales to 3, which is sufficient to
adequately model the timestamp dependencies within the window
and achieve excellent performance.

6 Conclusion

To leverage the short-term and long-term correlations in time series
anomaly detection tasks, we propose a novel multi-scale hyper-
graph transformer model named MSHTrans that integrates adap-
tive hypergraph learning and time series decomposition analysis.
The proposed model succeeds in utilizing trainable hypergraphs to
model both short-term and long-term dependencies while capturing
global signals through time series decomposition and integration.
Comprehensive experimental results demonstrate that the proposed
MSHTrans can fully utilize fine-grained and coarse-grained rep-
resentations, achieving superior performance compared to other
state-of-the-art methods. This study primarily focuses on depen-
dencies within individual scales and consistency between scales.
As for future work, we will explore cross-scale dependencies and
non-linear relationships using graph-based approaches.
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Appendix: Supplemental Material

A.1 Algorithm Description of MSHTrans

Algorithm 5 outlines the process of the MSHTrans framework. The
detailed model structure is described as follows:

(1) Encoder: In each channel, the encoder sequentially performs
intra-scale hypergraph attention, multi-head hypergraph
convolution, time series decomposition, and fusion, with
residual connections applied. Finally, multi-scale outputs
and hypergraphs are aggregated through the fusion process
defined in Egs. (21) and (23).

Decoder: The decoder adopts a single-channel structure
that first performs time series decomposition on the origi-
nal window to obtain initial periodic and trend components.
Subsequently, the multi-head hypergraph convolution is con-
ducted with the initial seasonality, fused time series features
from encoders and the integrated hypergraph. Then another
time series decomposition module is adopted to analyze the
learned series features after the hypergraph message passing.
Residual connections are also implemented in the decoder.
Ultimately, a series fusion module is applied to generate a
unified multi-scale representation, which is used to compute
reconstruction loss and anomaly scores.

@

A.2 Dataset Descriptions

Table 3 provides the details of the datasets used in this paper. Ad-
ditionally, To better visualize the effectiveness of the MSHTrans
model in detecting different types of anomalies within a focused
time period, we generate a synthetic dataset combining trigonomet-
ric functions and Gaussian noise, containing 3 dimensions. The test
set contains both point-based and sequence-based anomalies that
are either randomly generated or derived from existing datasets
like MSL.

Table 3: Details of tested benchmark datasets in this paper.

Datasets # Dimensions Anomaly Rates Domains
SWaT 51 0.1214 Water Monitoring
WADI 123 0.0571 Water Monitoring
MSL 55 0.1048 Spacecraft Monitoring
SMAP 25 0.1283 Spacecraft Monitoring
SMD 38 0.0416 Server Monitoring

A.3 Detailed Experimental Settings
In this subsection, we provide the common settings for all models:
e Optimizer: Adam;
e Learning rate: 0.001;
e Window size S: 100;
e Stride: 1 (MSL), 10 (other datasets).
For some specific hyperparameters of the proposed MSHTrans, the
settings are listed below:
e Scale number L: 3;
o Number of top significant connections selected k: 5;
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Kernel size for convolution-based downsampling: 2
Hyperedge numbers {M; }g;ol ={50,30,20} ;
Hidden units in encoders and decoder: 64;

Dropout rate: 0.1;

Hypergraph updating rate 7: 0.3;

Number of heads: 3.

Algorithm 5: Training Process of MSHTrans

Input :Multivariate time-series data X € RT*P,

/* Model Initialization; */
1 Initialize all trainable weights and biases.
/* Multi-Scale Window Sampling; */

2 Generate input multi-scale window data {W( 5) }f;ol with
Egs. (1), (2) and (3);
3 while not converge do

/* Encoder; */
4 fors=0— (L-1)do
5 Conduct intra-scale hypergraph attention with
IntraHALtt (W(s), g(s));
6 Obtain Z ) with multi-head hypergraph

convolution MHConv (I:I(S), W) );

sea

(s)
embeddings ers‘ind with TSDecom (W(s) + Z(s));
s Obtain fused
€V0 = STFusion
(s)
Eq. (20);
9 Conduct multi-scale fusion with Eq. (21) and get
Zfusion FeedForward(Z(e(‘)';) ) with updated Z7 s

7 Obtain seasonality embeddings Z5¢* and trend

(Weop Zi53 2055 with

(0)°
10 Conduct multi-scale fusion with Eq. (23) to get fused
Hfusion.
/* Decoder; */

1 Conduct time series decomposition for the original

window with Z52, Z!rend = TSDecom (W);
Conduct multi-head hypergraph convolution with
Zﬁ:nv = MHConv (Hfusion, [ gzzli) qusion]);

Conduct time series decomposition with

12

13

sea ~trend _ conv |.
de2’ 'ZdeZ = TSDecom (Zde )’
14 Obtain fused embeddings with
evo _ ; sea ~trend trend | \.
Zde =0 (STFuSlon (W’ de2’ 'Zdel + ZdeZ ))’

/* Model Optimization; %/

15 Compute training loss £ with Eq. (24);
16 Update all trainable parameters with gradient descent

and back propagation;

/* Obtain anomaly scores */

17 Compute the anomaly scores S with Eq. (26);

18 Return Anomaly scores S € RT.
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Figure 7: Curves of loss functions (total loss, reconstruction loss, hyperedge loss, node loss and Laplacian loss) of MSHTrans.

Table 4: Ablation studies (adjusted F1 scores) of MSHTrans.

Methods ‘ SWaT WADI MSL SMAP
w/o domsampling 0920 0.499 0.889  0.846
w/o convlD 0.902 0.544 0.901 0.844
w/o time series decomposition | 0.888  0.519  0.892  0.857
w/o hypergraph transformer 0.704 0.396 0.718  0.688
w/o multi-scale fusion 0.897  0.550 0.902  0.855
MSHTrans 0.936 0.568 0.904 0.861

Table 5: Delay of MSHTrans and compared models.

Datasets ‘ MTAD-GAT THOC TranAD IMDiffusion TimesNet MSHTrans

SWaT 1943.0 535.0 297.1 686.3 208.2 159.1
WADI 5.43 1.52 0.43 8.45 0.42 0.53
MSL 53.9 66.3 194 35.5 24.8 14.1
SMAP 77.5 19.6 21.3 55.2 18.1 13.5

Table 6: Training time comparison (minutes) of MSHTrans
and compared methods.

Datasets SWaT WADI MSL SMAP
DAGMM 281.04 63.48 6.85 8.48
LSTM-VAE 378.10 107.18 13.18 10.80
MSCRED 2247.71  529.45 13.07 6.85
OmniAnomaly | 429.85 82.51 9.52 10.48
MTAD-GAT 41.25 3484.48 46648 321.81
THOC 21.15 52.71 2.48 2.11
TranAD 18.46 45.41 1.74 1.66
IMDiffusion 53.11 100.48 5.48 5.33
TimesNet 54.08 133.09 7.37 53.07
MSHTrans 24.37 56.52 1.15 0.34

A.4 Convergency Analysis

Figure 7 shows the curves of different losses of the proposed MSH-
Trans on SWaT dataset. From the figure, we can see that the rapid
and stable convergence of all loss functions demonstrates the excel-
lent convergence properties of the model. Throughout the training
process, the loss values consistently decreased at a steady rate, in-
dicating that the optimization algorithm effectively minimized the
optimization targets. Particularly, the reconstruction loss, which
is closely related to the computation of anomaly scores, rapidly
decreases at the early stages of training and eventually converges
to a value close to zero.

A.5 Ablation study

Ablation study is conducted to examine the significance of each com-
ponents in MSHTrans, as shown in Table 4. Experimental results
indicate that each module is helpful to MSHTrans, especially hy-
pergraph transformer with an average performance improvement
of 31.86%. This observation reveals that hypergraph transformer is
the key module in the proposed MSHTrans.

A.6 Delay of Anomaly Detection

We further look into the delay of MSHTrans (w/o point adjustment)
and compared models in time series anomaly detection tasks, as
shown in Table 5. Experimental results reveal that our method gen-
erally has a lower delay (or latency) of anomaly detection. Because
the learned hypergraph-derived relationships (especially short-term
dependencies) can promptly discover anomalous patterns, MSH-
Trans has a significant advantage of detecting anomalies timely.

A.7 Training Time Comparison

Table 6 shows the average training time (mins) required for MSH-
Trans and compared models. It can be observed that although MSH-
Trans is not always the most time-efficient algorithm, its overall
training time is comparable to other SOTA methods. This further
validates its effectiveness on real-world anomaly detection tasks.
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