
Proactive Look-Ahead Control of Transaction Flows
for High-Throughput Payment Channel Network

Wuhui Chen
Sun Yat-sen University
Guangzhou, China

chenwuh@mail.sysu.edu.cn

Xiaoyu Qiu
Sun Yat-sen University
Guangzhou, China

qiuxy23@mail2.sysu.edu.cn

Zicong Hong
The Hong Kong Polytechnic

University
Hong Kong, China

zicong.hong@connect.polyu.hk

Zibin Zheng
Sun Yat-sen University
Guangzhou, China

zhzibin@mail.sysu.edu.cn

Hong-Ning Dai∗
Hong Kong Baptist University

Hong Kong, China
hndai@ieee.org

Jianting Zhang
Purdue university

West Lafayette, USA
zhan4674@purdue.edu

ABSTRACT
Blockchain technology has gained popularity owing to the
success of cryptocurrencies such as Bitcoin and Ethereum.
Nonetheless, the scalability challenge largely limits its ap-
plications in many real-world scenarios. Off-chain payment
channel networks (PCNs) have recently emerged as a promis-
ing solution by conducting payments through off-chain chan-
nels. However, the throughput of current PCNs does not
yet meet the growing demands of large-scale systems be-
cause: 1) most PCN systems only focus on maximizing the
instantaneous throughput while failing to consider network
dynamics in a long-term perspective; 2) transactions are re-
actively routed in PCNs, in which intermediate nodes only
passively forward every incoming transaction. These limi-
tations of existing PCNs inevitably lead to channel imbal-
ance and the failure of routing subsequent transactions. To
address these challenges, we propose a novel proactive look-
ahead algorithm (PLAC) that controls transaction flows from
a long-term perspective and proactively prevents channel
imbalance. In particular, we first conduct a measurement
study on two real-world PCNs to explore their characteris-
tics in terms of transaction distribution and topology. On
that basis, we propose PLAC based on deep reinforcement
learning (DRL), which directly learns the system dynamics

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563491

from historical interactions of PCNs and aims at maximiz-
ing the long-term throughput. Furthermore, we develop a
novel graph convolutional network-based model for PLAC,
which extracts the inter-dependency between PCN nodes to
consequently boost the performance. Extensive evaluations
on real-world datasets show that PLAC improves state-of-
the-art PCN routing schemes w.r.t the long-term throughput
from 6.6% to 34.9%.

CCS CONCEPTS
• Computer systems organization→ Dependable and
fault-tolerant systems and networks; • Networks →
Network economics.

KEYWORDS
Deep reinforcement learning, graph neural network, blockchain,
payment channel network, transaction flow scheduling

ACM Reference Format:
Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning
Dai, and Jianting Zhang. 2022. Proactive Look-Ahead Control of
Transaction Flows for High-Throughput Payment Channel Net-
work. In Symposium on Cloud Computing (SoCC ’22), November
7–11, 2022, San Francisco, CA, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3542929.3563491

1 INTRODUCTION
As the underlying technology, blockchain has spawned a
series of promising applications such as decentralized cryp-
tocurrencies like Bitcoin [14]. Due to its transparent, tam-
perproof, and publicly verifiable nature, blockchain enables
decentralized cryptocurrencies with no trusted third party. In
recent years, we have witnessed the prosperity of thousands
of cryptocurrencies, where the total market capitalization of
active cryptocurrencies has surpassed $800 billion [35]. This
prosperity also pushes the network throughput of blockchain

429

https://doi.org/10.1145/3542929.3563491
https://doi.org/10.1145/3542929.3563491
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3542929.3563491&domain=pdf&date_stamp=2022-11-07

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

to reach its limit. Bitcoin can only support at most seven
transactions per second (tps) [30], while the leading cen-
tralized payment solution, like Visa has peaked at 47,000 tps
during 2013 holidays [32]. The low throughput of blockchain
is mainly caused by huge resource consumption made by
protocols for global consensus and consistency [13, 16].

To address the scalability issue of blockchain, a promising
proposal called the payment channel network (PCN) resolves
the dilemma by conducting transactions in an off-chain man-
ner. The typical PCNs include the Lightning network for
Bitcoin [1], the Raiden network for Ethereum [2], and the
Ripple network [3]. The main idea of PCNs is to establish
channels that allow participants to make multiple payments
without committing all transactions to the blockchain. To
establish a channel between two users, they must escrow
certain funds (i.e., currency tokens, such as the Satoshi in the
Lightning network) as initial balances for exchange. To fulfill
the payment demands, the sender initiates one or more off-
chain transactions and sends them to the receiver through
paths consisting of payment channels. The amount of avail-
able tokens escrowed in the payment channel is called the
channel balance. Only a channel with sufficient balances
can successfully forward transactions [37]. Therefore, the
key problem for PCNs is how to schedule transactions for
successful delivery, i.e., achieving a high throughput.

Challenges. However, conventional routing/scheduling
protocols used in data communication networks (DCNs) can-
not be directly used for PCNs. This is because the unique
properties of PCNs make them intrinsically different from
conventional DCNs. On the one hand, the main concern in
DCNs is to find the shortest path to send data packets [19]
while the main goal of PCNs is to find the path with sufficient
balances [29]. On the other hand, the channel bandwidth of
conventional DCNs is immediately released after usage while
the channel balances of PCNs are dynamically distributed
and are not automatically replenished after usage [28].
In recent years, there have been some proposals on opti-

mizing the transaction throughput of PCNs. Most of these
solutions mainly schedule transactions based on end-to-end
routing algorithms, such as Flash [32], SpeedyMurmurs [25],
and Spider [28]. Despite these advances, the present PCN
solutions have remained unsatisfactory due to one-shot opti-
mization. Specifically, they focus on maximizing the instan-
taneous throughput without considering the consumptive
nature of transactions has a long-term effect on the channel
balances, which potentially accelerates the channel imbal-
ance or even depletion.

Motivation and Contributions. Therefore, it is neces-
sary to design a transaction scheduling algorithm that op-
timizes long-term throughput. Long-term throughput is de-
fined as the overall amount of successful transactions within
a given long time. We used this metric instead of traditional

metrics (e.g., instantaneous throughput) because PCN trans-
action forwarding is a consuming behavior and has long-
term effects on channel balances. To this end, we propose a
novel deep reinforcement learning (DRL)-based algorithm
that achieves Proactive Look-Ahead Control (PLAC) of trans-
action flows. The basic idea of our PLAC routing strategy is
to employ DRL to learn the dynamic distribution of channel
balances from historical experiences and then to schedule
transactions with an accurate anticipation of future pay-
ment demands. In particular, PLAC is deployed at nodes
that frequently forward transactions while other common
nodes do not bear any additional computational overheads.
Nonetheless, the implementation of PLAC in PCNs faces the
following challenges. 1) Scheduling transactions in PCNs
generally involves the decision-making among thousands
of nodes, thereby raising a scaling challenge compared with
standard DRL tasks in other small-scale networks. 2) The be-
haviors of PCN nodes may affect each other, resulting in an
inter-dependency between PCN nodes. Naively applying off-
the-shelf DRL algorithms may not capture the sophisticated
relationship between PCN nodes, consequently resulting in
the risk of information loss.

To tackle these challenges, we first conduct ameasurement
study on two real-world PCNs to analyze the topology and
transaction characteristics of PCNs. The measurement re-
sults reveal that the transaction amount distribution is highly
concentrated and the degree distribution of PCNs shows sim-
ilar characteristics to scale-free networks. Based on these two
insights, we design PLAC, whose most important novelty is
the integration of Graph Convolutional Network (GCN) with
DRL. Specifically, PLAC is tailored for PCN scheduling and
extends off-the-shelf DRL algorithms from two directions: 1)
To cast off the scalability limit, our neural network design
reuses a small set of common operations to extract features
of PCNs. Thus, the neural network can be implemented as a
reusable small neural network to operate at a relatively low
dimension. 2) We employ GCN to extract valuable features
with respect to the inter-dependency between PCN nodes,
thereby contributing to efficient learning.
Table 1 shows the comparison between our proposed

PLAC and four baselines. In contrast to existing PCN routing
schemes, our PLAC fully considers the long-term throughput,
scalability, and node dependency in a proactive manner. We
conduct extensive experiments on two real-world PCNs: Rip-
ple and Lightning. Being endowed with proactive look-ahead
control capability, our PLAC outperforms state-of-the-art
PCN routing algorithms by 6.6%–34.9% as shown in Table 1.
Furthermore, the novel GCN-based network in our PLAC en-
hances the scalability of standard DRL approaches and thus
provides effective methods to capture the inter-dependency
among PCN nodes. As a result, the final throughput is in-
creased by about 31% compared with standard DRL.

430

PLAC: Proactive Look-Ahead Transaction Flows Control for Payment Channel Network SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Table 1: Comparison of PLAC with four baselines.

Routing Algorithm Normalized Long-term Throughput Long-term Proactive Scalability Node DependencyRipple Lightning
Flash [32] 23.7% 41% ✘ ✘ ! ✘

Waterfilling [28] 11% 21.8% ✘ ✘ ! ✘

Shortest Path First 5.1% 12.3% ✘ ✘ ! ✘

Standard DRL 14.4% 14.8% ! ! ✘ ✘

Our PLAC 45.9% 47.6% ! ! ! !

We summarize the main contributions as follows:

(1) We conduct a measurement study on the traces of two
real-world PCNs and provide insights, which guide the
adoption of DRL to PLAC (in Section 3).

(2) We propose PLAC that proactively schedules the trans-
action flows from a long-term perspective and learns
high-throughput policies without prior knowledge of
the system model (in Section 4 and Section 5).

(3) We integrate GCN with DRL, which casts off the scal-
ability limit and provides the efficient learning ability
by extracting the inter-dependency among PCN nodes
(in Section 5).

(4) We conduct extensive experiments on two real-world
PCNs to evaluate the performance of PLAC, where
PLAC improves the long-term throughput by 6.6%–
34.9% comparedwith the state-of-the-art routing schemes
and the standard DRL approach (in Section 6).

2 BACKGROUND AND RELATEDWORK
2.1 Preliminaries on PCNs
As a building block of PCNs, a payment channel is essen-
tially maintained by a pair of blockchain users (aka nodes).
To create a channel, two users first deposit some tokens as
balances. This action is then committed to the blockchain
as a transaction. As illustrated in Figure 1, Alice and Bob
deposit 2 tokens and 4 tokens to the channel, respectively.
The amount of available tokens in the payment channel is
called the channel balance. Once the channel is established,
Alice and Bob can settle the intermediate transactions via the
channel without committing them to the blockchain. Only
transactions that involve opening/closing channels are sub-
mitted to the blockchain. In addition, to support payments
between users that are not directly connected, a PCN that
is composed of multiple payment channels routes transac-
tions in a multi-hop manner. PCN uses a Hashed Timelock
Contract (HTLC) to guarantee that no user can spend the
tokens until the receiver acknowledges the reception. Be-
cause settling transactions in the PCN only needs to reach
consensus among users in the sending path rather than all
users, PCNs thereby provide a promising alternative solution

onchain

offchain

Alice Bob
Tx1

Tx2

..
.

intermediate
transactions

Figure 1: A toy example of PCN. Alice and Bob can set-
tle multiple transactions without committing to the
blockchain.

to scale blockchains. Accordingly, the key problem to PCNs
is how to schedule transactions to achieve high throughput.

2.2 Existing PCN Routing Schemes
At a glance, PCN routing seems to be a maximum flow prob-
lem [6, 9, 12], which aims to find the widest path between
two nodes. However, there are some practical constraints
that complicate the problems. For example, in the current
Bitcoin Lightning network, routing nodes decide the shortest
path to send transactions according to a locally-maintained
topology view of the network [1]. Due to the computational
complexity and maintenance overhead, this approach has
poor scalability. Recent proposals, such as Silentwhispers
[17] and Flare [20], lower the computation complexity by
using a landmark-based routing method, where nodes with
high connectivity are selected as landmarks and are respon-
sible for forwarding transactions. Another proposal is the
embedding-based routing [24, 25], which assigns the coordi-
nates to nodes and forwards transactions according to the
coordinates that have been recorded in nodes. The above
routing algorithms are based on either the topological struc-
tures of PCNs or the network addresses of neighboring nodes
to forward transactions while failing to consider the condi-
tion that there should be sufficient balances on the forward-
ing channels to support the transactions.

To find channels with sufficient balances, Wang et al. pro-
posed Flash [32], which uses a modified max-flow algorithm

431

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

: Payment channel : PCN User

A

B

C

D

E

F

: Token

(a) The initial state of PCN.

A

B

C

D

E

F

(𝒕𝟐)
A→C→

D→F

2 tokens

(𝒕𝟏)
B→C→

D→F

1 token

(b) One-shot optimization.

A

B

C

D

E

F

(𝒕𝟐)
A→C→

D→F

2 tokens

(𝒕𝟏)
B→C→

E→F

1 token

(c) Long-term optimization.

Figure 2: Comparison of scheduling transactions with one-shot optimization and long-term optimization.

to iteratively search for available channels in PCNs. In prac-
tice, this iterative process is time-consuming because it in-
evitably brings communication delays. Sivaraman et al. de-
signed Spider [28], which uses a set of edge-disjoint paths as
candidate paths and a congestion control-basedmethod to ad-
just transaction rates. Zhang et al. proposed RobustPay+ [37],
which uses a set of node-disjoint paths as candidate paths
and sends transactions according to their available balances.
By considering the available balances of the channels, Flash,
Spider, and RobustPay+ [37] achieve a significant improve-
ment over previous approaches. Despite these advances, the
present PCN solutions have remained unsatisfactory due to
one-shot optimization, i.e., fulfilling the current demands as
many as possible. This short-sighted consideration neverthe-
less potentially accelerates the channel imbalance or even
depletion because the consumptive nature of transactions
has a long-term effect on the channel balances.

Take Figure 2 as an example. Figure 2(a) depicts the initial
state of a PCN, where user 𝐵 wants to transfer 1 token to user
𝐹 at time 𝑡1 while user 𝐴 wants to transfer 2 tokens to user
𝐹 at a later time 𝑡2, where 𝑡2 > 𝑡1. For one-shot optimization,

user 𝐵 prefers choosing path 𝐵
❶−→ 𝐶

❷−→ 𝐷
❸−→ 𝐹 at time 𝑡1

since the channels along this path has more tokens. However,
this short-sighted strategy leads to the failure of subsequent
transactions. As shown in Figure 2(b), at time 𝑡2, neither
channel 𝐶 → 𝐷 nor channel 𝐶 → 𝐸 has sufficient tokens
to forward the pending transaction (from user 𝐴) at node 𝐶 .
Consequently, the pending transaction fails (i.e., ❹) and rolls
back (i.e., ❺). By contrast, Figure 2(c) shows a better routing
strategy of transactions from a long-term perspective, where
PCN users schedule transactions with anticipation of future
payment demands. In particular, user 𝐵 sends transactions

through path 𝐵
❶−→ 𝐶

❷−→ 𝐸
❸−→ 𝐹 while node 𝐴 sends trans-

actions through path 𝐴
❹−→ 𝐶

❺−→ 𝐷
❻−→ 𝐹 . Benefit from this

optimized design from the long-term perspective, PCN can
achieve a higher long-term throughput than the one-shot
optimization strategies (our experiments in Section 6 will
verify this), where the long-term throughput is defined as

the overall amount of successful payment demands within a
given time in a long run.

3 MEASUREMENTS ON REAL-WORLD
PCNS: A FEASIBILITY STUDY

As a first step, we conduct an empirical study to investigate
the characteristics of PCNs. Our study is conducted on two
representative real-world PCNs: Ripple [3] and Lightning [1].

3.1 Analysis of Transactions Distribution
We first analyze the distribution of PCN transactions. For
the Ripple network, we downloaded the dataset with over
2.6 million transactions from [25], which contains transac-
tions from January 2013 to August 2016. For the Lightning
network, the intermediate transactions conducted on the
Lightning network are not publicly available. To address
this issue, we adopt a similar approach to [32]. In partic-
ular, we extract all the on-chain Bitcoin transactions [23]
from October 2018 to December 2020 to construct the trans-
action dataset for the Lightning network. This is because
more on-chain transactions will be conducted in an off-chain
manner for high throughput and low cost [32]. In addition,
we exclude two kinds of transactions: 1) transactions with-
out a sender or receiver; 2) transactions whose senders and
receivers are the same nodes.

Figure 3 shows the cumulative distribution function (CDF)
of transaction amounts. The transaction unit of Ripple is con-
verted into USD based on the currency exchange on Novem-
ber 7, 2016. We observe that most of the transaction amounts
are concentrated on a small range of values. Regarding the
Ripple network, although the transaction amounts are dis-
tributed from 1 × 10−11 USD to 1 × 1019 USD, nearly 80%
of the values are mainly concentrated on a range between
1.5 × 10−1 USD and 8 × 102 USD. Similarly, with respect to
Bitcoin, the transaction amounts range from 1 × 102 Satoshi
to 4 × 1012 Satoshi, while 80% of the values are distributed
from 2 × 106 Satoshi to 4 × 109 Satoshi1. The highly concen-
trated distribution of transaction amounts offers us salient

1Satoshi is the smallest unit of the bitcoin currency.

432

PLAC: Proactive Look-Ahead Transaction Flows Control for Payment Channel Network SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

10−6 10−1 104 109

USD

0.00

0.25

0.50

0.75

1.00

C
D
F

(a) Ripple

101 104 107 1010

Satoshi

0.00

0.25

0.50

0.75

1.00

C
D
F

(b) Bitcoin

Figure 3: Transaction amount distribution of Ripple
and Bitcoin transactions.

implications on designing our DRL for PCNs. In principle,
DRL is built on calculating the expected utility of the current
system state. Meanwhile, the action to be taken depends on
the utilities of all possible next states, which are weighted
by the respective probabilities. In PCNs, the generation of
new transactions is typically a stochastic process. In this
case, depending on the generated transactions, there exist a
series of possible next states. Since most of the transaction
amounts are concentrated within a small range, the expected
utility is essentially traceable in DRL.

3.2 Analysis of Network Topology
Next, we analyze the topology characteristics. Considering
that the network topology is in continuous evolution, we
conduct measurements on a recent data set. We capture the
topology snapshots of Ripple and Lightning on July 30, 2021.
Figure 4 shows the node degree vs. the probability density (in
log-log plot). The degree of a node is defined as the number of
edges (i.e., channels) associated with this node. We observe
that the degree distributions are highly skewed for both
networks. The majority of nodes have low degrees while
only a limited fraction of them have high degrees. When
the degree increases, the corresponding probability density
decreases exponentially; this phenomenon is similar to the
scale-free networks [5]. In a scale-free network, a newly
added network node can freely choose neighbors to establish
edges, and prefers nodes with high degrees. In PCNs, we
have comparable situations. Because routing transactions via
intermediate nodes needs to pay a fee, nodes tend to establish
channels to well-connected nodes with high degrees, thereby
they can make transactions with smaller fees. In addition, the
scale-free characteristic makes PCN more robust to network
failures. In fact, many recent studies have demonstrated the
scale-free nature of most PCNs [22, 23, 27].
To evaluate the similarity between a PCN and an actual

scale-free network, we study the degree distribution follow-
ing the steps in [5]. By definition, a network is called a scale-
free network if the degrees of its nodes follow or at least

100 101 102 103

Degree

10−5

10−4

10−3

10−2

10−1

100

Pr
ob

ab
ili

ty
 D

en
si

ty Ripple Dist.
Fitted Dist.

(a) Ripple

100 101 102 103

Degree

10−6

10−4

10−2

100

Pr
ob

ab
ili

ty
 D

en
si

ty Lightning Dist.
Fitted Dist.

(b) Lightning

Figure 4: Degree distribution of Ripple and Lightning
Networks.

approximate to the power-law distribution. In this regard, a
negative linear trend is expected in the log-log plot of node
degree vs. the probability density, where the slope represents
the power-law exponent. We use the maximum likelihood
estimation to carry out a power-law fit as in [8]. The results
in Figure 4 show that the scaling exponents of the power-law
distribution are 1.67 and 1.78 for Ripple and Lightning net-
works, respectively, suggesting that PCNs are approximated
by scale-free networks [27]. In line with [27], we use this
insight to divide PCN nodes into router nodes and client nodes
according to their degrees. In particular, router nodes have
high degrees and are connected to a large number of client
nodes that have low degrees. In general, most transactions
in the PCN are forwarded through router nodes, which serve
as bridges to link client nodes. To make a payment, a client
node first sends the transaction to its connected router node,
which then forwards the transaction to the receiver in the
next hop. The router nodes undertake the main responsibil-
ity of forwarding transactions in the PCN. Therefore, the key
to the transaction scheduling problem lies in the active con-
trol of router nodes. Compared with directly controlling the
whole PCN, the overhead of this method is greatly reduced.

To conclude, we have the following insights:
Insight 1. The distribution of transaction amounts is

highly concentrated and most values are distributed within
a small range. This leads to a more traceable long-term
throughput.

Insight 2. The degree distribution of PCN reveals similar
characteristics to scale-free networks, suggesting that the
key to scheduling transactions is the active control of nodes
with high degrees.

4 MODEL DESIGN
An off-chain PCN can be modeled as a graph𝐺 (V,E), where
V denotes the set of vertices (i.e., PCN nodes) and E denotes
the set of edges (i.e., payment channels). Based on the find-
ings in Section 3, we divide the node set V into router nodes
M and client nodes C according to their degrees. We take

433

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

the top-𝐾 nodes with the largest degrees as router nodes and
the rest as client nodes. We consider bidirectional channels,
where 𝑒 = (𝑢, 𝑣) denotes a channel connecting node 𝑢 with
node 𝑣 (𝑒 ∈ E, 𝑢, 𝑣 ∈ V). Each channel 𝑒 consists of two
attributes. The first attribute is the IDs of nodes constituting
the channel. The second one is the instantaneous channel
balance, which denotes the remaining tokens that can be
paid. For a bidirectional channel 𝑒 = (𝑢, 𝑣), we denote the
channel balances in both directions as 𝑏 (𝑢,𝑣) and 𝑏 (𝑣,𝑢) .
To characterize the system dynamics, we consider a dis-

crete time-varying model, where routing decisions are con-
ducted in epochs. At the beginning of epoch 𝑡 , each node
estimates its payment demands to other nodes. We use a
two-dimensional matrix 𝐷𝑡 with size |V| × |V| to denote the
demands, where |V| is the total number of nodes in the PCN.
For each pair of nodes (𝑢, 𝑣), the amount of payments from
𝑢 to 𝑣 at epoch 𝑡 is denoted by 𝑑 (𝑢,𝑣)𝑡 . Similarly, we use a two-
dimensional matrix 𝐵𝑡 to denote the balance distribution of
the PCN while 𝑏 (𝑢,𝑣)𝑡 represents the balance of the channel
from node 𝑢 to node 𝑣 . If there is no channel between nodes
𝑢 and 𝑣 , we have 𝑏 (𝑢,𝑣)𝑡 = 𝑏 (𝑣,𝑢)𝑡 = 0. Particularly, we only con-
sider transactions that need to be forwarded through router
nodes M. This is because direct transmission requires no
intermediate node. For example, the optimal routing solu-
tion is to send transactions along the channel with sufficient
balances connecting two nodes directly. In addition, each
transaction is associated with a timeout value. If a trans-
action does not reach the receiver before the timeout, the
transaction fails and the frozen money will be released.
To complete each payment demand, the sender initiates

one or more PCN transactions and is responsible for deter-
mining: 1) the paths to send transactions; 2) the amount of
transactions sent along each path. We assume that every
node maintains a local view of the graph consisting of router
nodes. This is feasible in practice since the number of router
nodes is typically far smaller than the total number of PCN
nodes. Based on this sub-graph, each sender can calculate
the paths from the source to the destination. We denote the
set of candidate paths from nodes 𝑢 to 𝑣 by P (𝑢,𝑣) . With re-
spect to demand 𝑑 (𝑢,𝑣)𝑡 , 𝜆𝑝𝑡 is the transaction amount sending
along path 𝑝 at epoch 𝑡 , where 𝑝 ∈ P (𝑢,𝑣) should be positive
and not greater than the payment demand. Particularly, we
have

∑
𝑝∈P (𝑢,𝑣) 𝜆

𝑝

𝑡 = 𝑑
(𝑢,𝑣)
𝑡 . Note that forwarding transaction

in PCN is not an instant process. We assume that the time
taken for a transaction to be forwarded to the next hop is Δ,
which includes the communication delay, the time for reach-
ing a consensus, etc. If a transaction cannot be forwarded due
to insufficient balances, it must queue up at the intermediate
node, where the queue length of node 𝑢 at epoch 𝑡 by 𝑞𝑢𝑡 .

In this model, we study how to fulfill the payment demand
with high throughput. In particular, we focus on long-term

throughput maximization. Denoting a series of epochs by
T = {1, ..., 𝑡, ...,𝑇 }, the long-term throughput can be mea-
sured by the overall amount of successful payment demands
in period T . Solving the problem of maximizing long-term
throughput directly requires the algorithm to be aware of
the overall payment demands in the period T . However, the
future payment demands are typically not explicitly given be-
forehand, thereby making it impractical to be directly solved
by traditional methods such as mathematical programming.

5 ALGORITHM DESIGN
In this section, we present how PLAC works. We first depict
how PLAC formulates the problem of maximizing long-term
throughput as an Markov Decision Process (MDP). Next, we
refine theMDP by encoding PCN states and control actions in
a customized manner. Furthermore, we present the detailed
design of PLAC and how it is trained.

5.1 MDP-based Agent-Environment
Interaction

Before diving into the algorithm design, we first present
how PLAC works. DRL algorithms consider a general set-
ting where an agent serves as a decision-maker and explores
solutions in an interactive environment [7]. At each decision-
making epoch, the environment sends its state to the agent.
In response, the agent makes an action according to its pol-
icy, which will be carried out in the environment. Then, the
environment returns a reward (i.e., a numerical value) as
the estimation of action performance. In addition, the en-
vironment transits to a new state according to the action
taken. This process can be modeled as an MDP, which is
a sequential decision-making process and widely used in
DRL [21].
Specifically, the PCN is treated as the environment in

PLAC, which implements an agent as a mapping from envi-
ronment states to actions to be taken. The mapping is con-
ducted in the form of DNN, which is thereby also referred to
as the actor (or policy) network. It is straightforward to view
the PCN as a discrete time-varying model, where the agent
interacts with the environment when new payment demands
are generated. At each epoch 𝑡 , the agent builds a state 𝑠𝑡 that
characterizes the current condition of the PCN, with which
the agent makes an action 𝑎𝑡 that determines how the sender
sends transactions to fulfill the payment demands. Since the
design of the states and actions is critical to the performance
of the DRL, we present a detailed analysis in Section 5.2. In
our PLAC, the length of an epoch is Δ, i.e., the time taken for
a transaction to be forwarded to the next hop. At the end of
epoch 𝑡 , the packaged transactions are transferred to the next
hops and the agent receives a numerical reward 𝑟𝑡 that mea-
sures the performance of 𝑎𝑡 . Based on the system model in

434

PLAC: Proactive Look-Ahead Transaction Flows Control for Payment Channel Network SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Section 4, we let the reward 𝑟𝑡 be the number of transactions
that successfully reach the receivers at epoch 𝑡 . The PCN
subsequently reveals a new state 𝑠𝑡+1. After that, the DRL
agent constructs an experience tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), which is
stored at the experience buffer B to be used for updating the
agent. The objective of maximizing long-term throughput
can be converted to maximizing the discounted cumulative
rewards. To be consistent with existing DRL literature, the
objective function is formulated as:

argmax
𝜋

E𝑟𝑡∼𝜋
[∑𝑇

𝑡=1
𝛾𝑡−1𝑟𝑡

]
, (1)

where 𝜋 is the actor (or policy) network for decision mak-
ing and 𝛾 ∈ (0, 1] is the discounted factor, which measures
the importance of future states. The main obstacle in solv-
ing equation (1) is how the environment transits to a new
state 𝑠𝑡+1 from the current state 𝑠𝑡 while the state transi-
tion probability is typically unknown. This is because future
payment demands are not explicitly given beforehand. This
motivates us to develop PLAC that leverages DRL to learn
the system dynamics of PCNs and schedule transactions with
look-ahead prediction.
In addition, similar to [15, 36], we adopt a distributed

deployment methodology combining DRL with blockchain
consensus to safely deploy PLAC. Each qualified node has the
possibility to be elected as a leader by a leadership rotation
strategy for decision-making. Since we focus on long-term
throughput maximization in this work, we make no further
elaboration on the leadership rotation strategy.

5.2 Encoding PCN States and Control
Actions

A scalable and effective representation of states and actions
is critical to the performance of DRL. We then elaborate on
how PLAC encodes the PCN states as the agent input and
the control actions as the agent output.

5.2.1 Encoding PCN states. At the beginning of each epoch,
PLAC converts the required information for decision-making
(e.g., network topology, payment demands, and balance dis-
tribution) into features, which are then passed to the actor
network for decision-making. For a well-performed agent,
states need to reflect the most valuable information of the
environment. A simple approach is to generate a flat feature
vector that contains all the observed information. However,
the applicability of this approach has a hard limit on the num-
ber of PCN nodes since it results in high-dimensional inputs.
Further, only a few values of the flat vector are meaningful.
For instance, the balance distribution matrix 𝐵𝑡 contains a
great number of zero elements since most nodes have only a
few neighbors. To address this issue, PLAC is implemented
with an effective representation for PCN states. Specifically,

PLAC leverages the scale-free nature of PCNs, i.e., router
nodes that constitute the core part of PCNs are responsible
for the main network overhead. Based on this implication,
we develop a structured representation for PCN states from
the view of router nodes. For each router node 𝑚 ∈ M at
epoch 𝑡 , we have the following considerations:
• 𝑥𝑚𝑡 includes attributes corresponding to the node it-
self (e.g., node ID, the number of the connected client
nodes, the number of the connected router nodes);
• 𝑤𝑚

𝑡 combines information about the node’s active neigh-
bors (e.g., node ID, current channel balances, queue
lengths, and the amount of payment demands);
• 𝑢𝑚𝑡 concludes the historical information of channel
balances across a period of time. This time series data
is beneficial to make temporal predictions.

5.2.2 Encoding Control Actions. Another key component
of the actor network is the action representation, which
encodes the high-level control decisions as action vectors. In
essence, the task of scheduling transactions is to determine
the transaction amounts along all paths of all senders. As
a naive approach, the actor network can directly output a
vector containing the sending amounts along all paths and
all senders. However, this approach needs to select actions
from an exponentially large space due to the large scale of
PCNs. For DRL, a high-dimensional action space is usually
accompanied by a high sample complexity and low training
speed. Considering that current PCNs typically contain tens
of thousands of nodes, it is not reasonable to directly adopt
DRL to schedule transactions for all senders.
To address the challenge, we consider this problem from

the perspective of router nodes. According to the insights
in Section 3 and the system model in Section 4, PCNs share
similar characteristics to scale-free networks. Thus, the key
to transaction scheduling lies in the control of PCN nodes
with a high degree. Motivated by these observations, we
design PLAC with an actor network that directly outputs the
maximum amount of transactions allowed to be sent through
the channels between router nodes. This customized routing
action of PLAC acts like congestion control signals to adjust
the behaviors of senders. Because PLAC focuses on maxi-
mizing the long-term throughput, it is proactive in nature. In
other words, instead of passively forwarding every incom-
ing transaction, the router nodes in our model use PLAC to
predict future payment demands and throttle the sending
rates before channel imbalance, thus achieving proactive
look-ahead control of transaction flows.

Specifically, for each bidirectional channel linking to router
nodes, a two-dimensional action vector is required. In this
regard, the dimension of action space is 2 × |E′ |, where
E′ = {(𝑢, 𝑣) |∀𝑢, 𝑣 ∈ M,∀(𝑢, 𝑣) ∈ E} is the set of chan-
nels linking to router nodes. Due to the scale-free nature

435

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

…

Environment (PCN)

states

𝑠𝑡
1 𝑓(⋅) 𝜇𝑡

1

𝑠𝑡
2 𝜇𝑡

2

𝑠𝑡
3 𝜇𝑡

3

…

𝑠𝑡
4 𝜇𝑡

4

𝑠𝑡
5 𝜇𝑡

5

𝑠𝑡
6 𝜇𝑡

6

𝜇𝑡
3

𝜇𝑡
2

𝜇𝑡
5

𝜇𝑡
1

𝜇𝑡
4

𝜇𝑡
6

…
𝜇𝑡
𝑚

𝑔𝑡
𝑚

+ global
control

action

Inter-dependency Encoder:

construct a local neighborhood-

based graph with 𝜇𝑡
𝑚 𝑚 ∈ 𝕄 .

Per-node Encoder:

𝑓 ⋅ is a shared module.

Global Encoder:

combine 𝜇𝑡
𝑚 with 𝑔𝑡

𝑚 and

output final action

: Payment Channel

: PCN user

1 2 3

4

𝑓(⋅)

𝑓(⋅)

𝑓(⋅)

𝑓(⋅)

𝑓(⋅)

Figure 5: Overall network structure of PLAC.

of PCNs, the action dimensions can be greatly reduced. For a
demand 𝑑 (𝑢,𝑣)𝑡 , the sender determines the maximum transac-
tion amount allowed through each candidate path 𝑝 ∈ P (𝑢,𝑣)
based on the action output of the actor network. For instance,
supposing that a node intends to forward transactions via
router nodes {𝑢, 𝑣,𝑤}, then the sending limit of this path
can be represented by min

(
𝐴
(𝑢,𝑣)
𝑡 , 𝐴

(𝑣,𝑤)
𝑡

)
, where 𝐴 (𝑢,𝑣)𝑡 and

𝐴
(𝑣,𝑤)
𝑡 are derived from the action outputs of the actor net-

work. In addition, the amount of transactions sent out should
not exceed the amount of payment demands.

5.3 Actor Network Design
The actor network tries to learn a mapping from each 𝑠𝑡 to its
optimal action that maximizes the long-term reward in the
equation (1). Even with the above effective representations
of states and actions, there are still dozens of route nodes
in PCNs. Traditional DRL network design suffers from poor
performance because it requires a large-scale actor network
that is nevertheless challenging to train. Even worse, the
input state is graph-structured and there may be payment
channels connecting two router nodes. In this respect, there
is a significant inter-dependency between router nodes while
it is not considered in traditional DRL algorithms.

To address this issue, PLAC achieves both scalability and
effectiveness by introducing GCN, which has gained popular-
ity in many node-level, edge-level, and graph-level tasks [34].
We design the actor network based on a GCN model in [10]
and customize it for PCN routing. Intuitively, the control
of a router node depends on its own state and the states
of surrounding nodes. Therefore, we design three different
encoders (to be described as follows) to extract different state
information. Figure 5 depicts the overall network structure,
which takes the state 𝑠𝑡 = {𝑥𝑚𝑡 ,𝑤𝑚

𝑡 , 𝑢
𝑚
𝑡 |𝑚 ∈ M} from router

nodes and generates the action 𝑎𝑡 through the following
encoders:

• Per-node encoder captures valuable features indepen-
dently from the respective state information of each
router node;
• Inter-dependency encoder captures features regarding
the inter-dependency between surrounding router nodes
with the output of the per-node encoder;
• Global encoder combines the outputs of previous en-
coders and then transforms them into the final action.

These three encoders extract the features of raw state infor-
mation from three different levels. The per-node encoder is
used to extract features from the router nodes’ own states.
The inter-dependency encoder is used to extract features
from the state of surrounding nodes. The global encoder is
used to aggregate previous extracted features and transform
them into the final action. In addition, PLAC achieves scal-
ability by implementing reusable network components in
both per-node encoder and inter-dependency encoder. These
encoders store features learned from the end-to-end learning
process of DRL (rather than hand-coded).

5.3.1 Per-node Encoder. This initial process is straightfor-
ward. All router nodes share a common encoder 𝑓 (·). Each
router node 𝑚 ∈ M uses 𝑓 (·) to extract features from its
own state (❶) as shown in Figure 5. We feed the state 𝑠𝑚𝑡 =

{𝑥𝑚𝑡 ,𝑤𝑚
𝑡 , 𝑢

𝑚
𝑡 } to this common encoder to build graph-independent

features, which can be expressed as:

𝜇𝑚𝑡 = 𝑓 (𝑥𝑚𝑡 ,𝑤𝑚
𝑡 , 𝑢

𝑚
𝑡),∀𝑚 ∈ M, (2)

where 𝑓 (·) is typically a non-linear transformation and can
be implemented with a small neural network. This is because
it operates on the state of a single node, rather than the state
of the entire PCN, thereby typically having a low dimension.

5.3.2 Inter-dependency Encoder. PLAC next uses the out-
puts of previous encoders to extract the inter-dependency
between router nodes. The inter-dependency between router
nodes is highly related to their topology. Motivated by this
implication, PLAC handles the feature outputs {𝜇𝑚𝑡 |𝑚 ∈ M}

436

PLAC: Proactive Look-Ahead Transaction Flows Control for Payment Channel Network SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

from all router nodes with a graphical model. As shown in the
second step (❷) in Figure 5, PLAC builds a directed weighted
graph from {𝜇𝑚𝑡 |𝑚 ∈ M} and uses a local neighborhood-
based convolution process to enrich the inter-dependency
features.
Specifically, the directed weighted relational graph con-

structed by the inter-dependency encoder is denoted by a
tuple G = (V, E,W), in which vertices V , edges E and
edge weightsW are described as follows:
• VerticesV: The feature vector 𝜇𝑚𝑡 of each router node
𝑚 ∈ M acts as a vertex 𝑣𝑚𝑡 ∈ V in G, which also
represents the vertex feature.
• Edges E: An edge represents the relationship between
two vertices. PLAC uses a local neighborhood-based
approach to construct edges. Let N𝑚 denote router
node𝑚’s neighboring nodes (represented by their in-
dices). Then, for each router node 𝑚 ∈ M, its cor-
responding vertex 𝑣𝑚𝑡 has bi-directional edges with
vertices {𝑣𝑛𝑡 |𝑛 ∈ N𝑚}.
• Edge weightsW: Each edge in E is associated with
an edge weight that measures the impact of one node
to another node; this configuration is similar to the
attention mechanism [31]. Let𝑊𝑒 denote the neural
network parameters of this module. For each vertex
𝑣𝑚𝑡 , its edge weights can be calculated as:

𝛼𝑚𝑡 = softmax
(
(𝜇𝑚𝑡)𝑇𝑊𝑒 [𝜇𝑛1

𝑡 , 𝜇
𝑛2
𝑡 , . . .]

)
, (3)

where 𝛼𝑚𝑡 = [𝛼𝑚𝑛1
𝑡 , 𝛼

𝑚𝑛2
𝑡 , . . .] and the superscript 𝑇

represents the transposition and N𝑚 = {𝑛1, 𝑛2, . . . }.
The softmax operation ensures that the sum of weights
of all incoming edges associated to node 𝑚 is 1. In
particular, as G is a directed weighted graph, two con-
nected nodes can have different relations in two oppo-
site directions.

Note that G = (V, E,W) is used in the GCN model of
inter-dependency encoder and is distinct to the PCN model
𝐺 (V,E) in Section 4.

With the above definitions, we now describe how PLAC
uses GCN to capture the inter-dependency between router
nodes. This encoding process can be considered as a special
case of the basic differentiable message passing algorithm
in [11]. Specifically, PLAC performs two steps of information
propagation in the above relational graph G. In the first step,
PLAC aggregates the messages from neighboring nodes with
a relation-specific transformation similar to [26], i.e.,

ℎ𝑚𝑡 = ReLU

(∑
𝑛∈N𝑚

𝛼𝑚𝑛
𝑡

|N𝑚 |𝑊𝑟 𝜇
𝑛
𝑡 + 𝛼𝑚𝑚𝑊𝑜𝜇

𝑚
𝑡

)
,∀𝑚 ∈ M, (4)

where ReLU(·) is the rectified linear activation function
(ReLU), |N𝑚 | is the number of neighboring nodes of node𝑚,
𝛼𝑚𝑛
𝑡 and 𝛼𝑚𝑚

𝑡 are edge weights calculated by equation (3).

PLAC also constructs an edge that points to the node itself
to capture self-dependency. The neural network parameters
𝑊𝑟 and𝑊𝑜 can be learned by gradient-based optimization.
In the second step, the new feature vector ℎ𝑚𝑡 is further fed
into a local neighborhood-based convolution module, i.e.,

𝑔𝑚𝑡 = ReLU

(∑
𝑛∈N𝑚

𝑊 ′𝑟 ℎ
𝑛
𝑡 +𝑊 ′𝑜ℎ𝑚𝑡

)
,∀𝑚 ∈ M, (5)

where𝑊 ′𝑟 and𝑊 ′𝑜 are the learnable parameters of the neural
networks in the second step of Figure 5. The local neighborhood-
based transformations in equations (4) and (5) can effec-
tively aggregate the information from neighboring nodes
and model the inter-dependency between multiple partici-
pants.

5.3.3 Global Encoder. Given the outputs of previous en-
coders, the global encoder computes a summary of the em-
bedding feature vectors and transforms them to the final
action, as shown in the third step (❸) in Figure 5. To achieve
this goal, PLAC first concatenates the per-node encoding
features 𝜇𝑚𝑡 and the inter-dependency encoding features 𝑔𝑚𝑡 ,
denoted by 𝑘𝑚𝑡 = [𝜇𝑚𝑡 , 𝑔𝑚𝑡]. Then, PLAC applies a similarity-
based attention mechanism to obtain the final feature vector:

𝑓𝑚𝑡 = 𝛽𝑚𝑡

[
𝑘1𝑡 , 𝑘

2
𝑡 , . . . , 𝑘

|M |
𝑡

]𝑇
,∀𝑚 ∈ M, (6)

where 𝛽𝑚𝑡 is the attention weight, which can be obtained by
the following equation,

𝛽𝑚𝑡 = softmax
(
(𝑘𝑚𝑡)𝑇𝑊𝛽

[
𝑘1𝑡 , 𝑘

2
𝑡 , . . . , 𝑘

|M |
𝑡

])
. (7)

where𝑊𝛽 is the learnable parameters of the attention net-
work.

Finally, PLAC outputs the final actions with two fully
connected layers, which complete the actor network, i.e.,

𝑙𝑚𝑡 = ReLU
(
𝑊𝑙 𝑓

𝑚
𝑡 + 𝑏𝑙

)
, (8)

𝑎𝑚𝑡 = tanh
(
𝑊𝑡𝑙

𝑚
𝑡 + 𝑏𝑡

)
, (9)

where𝑊𝑙 ,𝑊𝑡 denote the weight matrices and 𝑏𝑙 , 𝑏𝑡 denote
the bias vectors of two fully connected layers. Remarkably,
the scalable design of the actor network decomposes the
encoding tasks for the entire PCN states into sub-problems
to be solved by each router node, as shown in the fourth step
(❹) in Figure 5. PLAC reuses the same operations to calculate
the above embeddings for each node, which can be imple-
mented as a reusable small neural network and operated
on a relatively low dimension, consequently contributing to
efficient learning, fast training, and high scalability.

5.4 Policy Gradient for Agent Training
With the above network design, the primary problem be-
comes the problem of updating the network toward maxi-
mizing the long-term throughput. Let 𝜋𝜽 denote the actor

437

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

Actor Network

𝝅𝜽

Critic Network

𝑸𝜼

soft update𝑄𝜂′(𝑠𝑡+1, at+1)soft update

gradient 𝛻𝑎𝑡𝑄𝜂(𝑠𝑡, 𝑎𝑡)

Experience

buffer 𝔹
Experience

tuples

mini-batch sampling

Target Actor Network

𝝅𝜽′

Target Critic Network

𝑸𝜼′

Figure 6: The training model of the PLAC.

network parameterized by 𝜽 , which contains all the parame-
ters in the per-node encoder, inter-dependency encoder, and
global encoder. In PLAC, 𝜋𝜽 updates its parameters based
on the feedback reward 𝑟𝑡 from PCN. PLAC uses the policy
gradient for agent training. The main idea of this approach
is to conduct gradient descent on the network parameters
by using the expected discounted cumulative rewards, i.e.,
E𝑟𝑡∼𝜋𝜽

[∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡
]
. However, since the payment demands

of PCN arrive in a continuous and stochastic manner, it pre-
vents us from calculating the exact value of the long-term
reward. In addition, the initial policy of PLAC is poor since
the network parameters are typically randomly initialized.
During early training, a large queue of transactions builds
up at router nodes, consequently leading to inefficient inter-
actions and huge overhead.

As a countermeasure, PLAC uses an approximation of the
long-term reward and initializes training with PCN payment
traces. PLAC first uses DNNs to implement a critic network
(also known as Q-network, where “Q” means “quality”) as
in the ACTOR-CRITIC algorithms [4]. The critic network
works as an approximator that maps each state-action pair
(say (𝑠𝑡 , 𝑎𝑡)) to the corresponding Q-value, i.e., the expected
discounted cumulative reward. In practice, the critic network
is implemented with a similar network model to the actor
network with the exception that it takes a state-action pair
as input and outputs its expected long-term rewards. Let 𝑄𝜼

denote the critic network parameterized by 𝜼. The update
of the critic network is straightforward. Particularly, we use
the Mean-Squared Error (MSE) to minimize the difference
between predicted values and target values. As mentioned
above, the exact values of the long-term reward, i.e., the
target values, are intractable. Therefore, PLAC applies the
Bellman operator to approximate the target values. The loss
of the critic network is defined as the difference between two
sides of the Bellman equation, which is expressed as follows:

𝐿(𝜼) = E
[(
𝑄𝜼 (𝑠𝑡 , 𝑎𝑡) − T𝑄𝜼 (𝑠𝑡 , 𝑎𝑡)

)2]
, (10)

where T𝑄𝜼 (𝑠𝑡 , 𝑎𝑡) is expressed as follows,

T𝑄𝜼 (𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾 · E[𝑄𝜼 (𝑠𝑡+1, 𝜋𝜽 (𝑠𝑡+1))], (11)

Algorithm 1 Training methodology of PLAC
Input: Experience buffer B; Parameters of the actor networks

𝜽 , 𝜽 ′ and parameters of critic networks 𝜼 and 𝜼′; Soft-update
constant 𝜏 ; Future reward discounted factor 𝛾 ; Maximum epoch
𝑇 ; Training interval 𝑇train.

Output: Parameters of the actor networks and critic networks, 𝜽 ,
𝜽 ′, 𝜼 and 𝜼′.

1: Initialize the actor network and critic network with random
network parameters: 𝜽 , 𝜽 ′, 𝜼 and 𝜼′;

2: for 𝑡 = 1, 2, . . . ,𝑇 do
3: The environment sends its state 𝑠𝑡 to the agent;
4: The agent transforms the state input 𝑠𝑡 to the final action 𝑎𝑡

with per-node encoder, inter-dependency encoder and global
encoder;

5: The environment executes the action 𝑎𝑡 , calculates the re-
ward 𝑟𝑡 and transmits to a new state 𝑠𝑡+1.

6: Store (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) into the experience buffer B;
7: if 𝑡 mod 𝑇train = 0 then
8: Sample a mini-batch of experience from B;
9: Compute the target Q-values of selected samples using

equation (13);
10: Update the critic network parameters 𝜼 by minimizing

MSE of 𝐿(𝜼) with the target Q-values and equation (10);
11: Update the actor network parameters 𝜽 with the sam-

pled policy gradient ∇𝜽 𝐽 (𝜽) in equation (12);
12: Soft update the target networks’ parameters with equa-

tion (14);
13: end if
14: end for
15: return 𝜽 , 𝜽 ′, 𝜼 and 𝜼′.

where 𝑠𝑡+1 denotes the state after 𝑠𝑡 and 𝜋𝜽 (𝑠𝑡+1) denotes the
output of the actor network given input 𝑠𝑡+1. Equation (11)
is the target Q-values approximated by the Bellman operator.
PLAC updates the parameters of the critic network by using
the gradient-based method to minimize the loss value in
equation (10). According to the Fixed Point Theorem [4],
𝑄𝜼 (𝑠𝑡 , 𝑎𝑡) will eventually converge to the true long-term
reward.
For the actor network, PLAC updates the parameters ac-

cording to the back-propagation of the critic network. The
actor network aims at maximizing the predicted long-term
rewards of the critic network. By applying the chain rule
of derivatives, the approximated policy gradient can be ex-
pressed as:

∇𝜽 𝐽 (𝜽) ∝ E
[
∇𝜽𝑄𝜼 (𝑠, 𝑎) |𝑠=𝑠𝑡 ,𝑎=𝜋𝜽 (𝑠𝑡)

]
= E

[
∇𝑎𝑄𝜼 (𝑠, 𝑎) |𝑠=𝑠𝑡 ,𝑎=𝜋𝜽 (𝑠𝑡) · ∇𝜽𝜋𝜽 (𝑠𝑡) |𝑠 = 𝑠𝑡

]
,

(12)

where ∇𝜽 and ∇𝑎 denote the gradient vectors with respect to
the actor network’s parameters 𝜽 and action 𝑎, respectively.

438

PLAC: Proactive Look-Ahead Transaction Flows Control for Payment Channel Network SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

To maximize the Q-value, the actor network updates its pa-
rameters towards the policy gradient ∇𝜽 𝐽 (𝜽) as suggested
by the critic network.

In addition, because DNN is a non-linear function approxi-
mator, the approximation in (11) is unstable, thereby leading
to oscillation and the weak convergence [18, 33]. To provide
a stable approximation of target Q-values, PLAC implements
additional DNNs for both actor and critic networks, both of
which have the same structure as the original networks. We
denote the parameters of additional networks (also known
as target networks) by 𝜽 ′ and 𝜼′, respectively. In this way,
the target Q-value for (𝑠𝑡 , 𝑎𝑡) in (11) can be rewritten as:

T𝑄𝜼 (𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾 · E[𝑄𝜼′ (𝑠𝑡+1, 𝜋𝜽 ′ (𝑠𝑡+1))] . (13)

To constrain fluctuations, 𝜽 ′ and 𝜼′ are updated in a slower
pace using soft updates, i.e.,

𝜽 ′← 𝜏𝜽 + (1 − 𝜏)𝜽 ′,
𝜼′← 𝜏𝜼 + (1 − 𝜏)𝜼′, (14)

where 𝜏 ≪ 1. Intuitively, because 𝜏 is a small constant, the
values of 𝑄𝜼′ (𝑠𝑡+1, 𝜋𝜽 ′ (𝑠𝑡+1)) in equation (13) is much more
stable than 𝑄𝜼 (𝑠𝑡+1, 𝜋𝜽 (𝑠𝑡+1)). During the training process,
PLAC constantly improves the Q-value estimations of the
critic network by minimizing equation (10), and improves
the actor network based on the approximated gradient with
equations (12) and (13). The above training process is shown
in Figure 6, where an experience buffer B is used to store
the collected experience. Through periodic updating, the
actor network of PLAC eventually converges. Algorithm 1
concludes the training methodology.

5.5 Algorithm Overhead
We next discuss the overhead of PLAC, which includes the
training overhead and runtime overhead. For the training
overhead, PLAC can be trained offline using historical trans-
action data. In addition, PLAC improves learning efficiency
by combining GCN and DRL, resulting in an acceptable con-
vergence rate (see Section 6.2.1 for experiment results). On
the other hand, the runtime overhead consists of: 1) Leader-
ship election overhead: Leadership election requires all qual-
ified nodes to exchange information through the network.
However, such election needs to be conducted only on an in-
terval basis and thus do not affect the transaction throughput.
2) Encoding overhead: As presented above, PLAC focuses on
the scheduling of the router nodes of PCN, which only in-
volves dozens of nodes. Benefiting from this, the scheduling
task can be accomplished with small-scale networks and the
encoding overhead is acceptable compared to the latency in
sending transactions (e.g., encryption and decryption, chan-
nel balance probing). 3) Overhead to calculate candidate
paths: PLAC uses edge-disjoint paths as candidate paths,

Table 2: The hidden size of PLAC’s network.
Parameters 𝑊𝑒 𝑊𝑟 ,𝑊𝑜 𝑊 ′𝑟 ,𝑊

′
𝑜 𝑊𝛽 𝑊𝑙 , 𝑏𝑙 ,𝑊𝑡 , 𝑏𝑡

Actor 40 100 100 200 100
Critic 40 50 50 150 100

which are completely topology-based and can be calculated
prior to transaction scheduling.

6 EVALUATION
6.1 Experiment Settings
We conduct extensive experiments based on two real-world
PCNs, i.e., Ripple and Lightning. We crawl the topology of
Ripple on July 4, 2021 and the topology of Lightning on
December 30, 2020. According to Section 3, we deploy the
PLAC agent on the top 40 nodes with the largest degrees (as
router nodes). For payment demands, we use two separate
exponential distributions to generate sender-receiver pairs to
simulate the uneven task distribution as in [28]. In addition,
we refer the distribution in Figure 3(a) to as Ripple Payment
Amount Distribution (RPAD) and Figure 3(b) to as Lightning
Payment Amount Distribution (LPAD), respectively. The
amount of payments is randomly sampled from RPAD and
LPAD for two topologies. For channel funds, we sample the
historical data and assign the total funds in both directions
evenly. This is because the fund distribution in PCNs is highly
skewed [32]. All PCN channels are assumed to be perfectly
balanced at the beginning of the evaluation. Each transaction
sender uses edge-disjoint paths as candidate paths [28]. We
choose the transaction RTTs between two hops as the epoch
lengths of the DRL model.
For PLAC implementation, the discounted factor 𝛾 is 0.9

and the training interval 𝑇train is 10. The per-node encoder
is implemented based on RNN-Cells with an output size of
100. Both the actor network and critic network share simi-
lar structures, whose hyper-parameters are listed in Table 2.
The network parameters are updated with the Adam opti-
mizer, where the learning rates for the actor network and
the critic network are 0.0001 and 0.001, respectively. And the
soft update weight 𝜏 is 0.005. For benchmarks, we use four
representative off-chain routing schemes:
(1) Waterfilling [28] is a dynamic PCN routing scheme

that follows the “waterfilling” heuristic and sends trans-
actions through paths with the highest channel bal-
ances. The number of candidate paths is 4 as in [28].

(2) Flash [32] is a max-flow-based PCN routing algorithm,
which uses a modified Edmonds-Karp algorithm and
convex optimization to find paths with sufficient bal-
ances.We use the hyper-parameters as suggested in [32].

(3) Shortest Path First (SPF) Routing is a baseline that
sends transactions through paths with the fewest hops.

439

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

0 50 100 150 200
Training Episode

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
DRL-FC

(a) Ripple

0 50 100 150 200
Training Episode

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
DRL-FC

(b) Lightning

Figure 7: Illustration of convergence curves.

If the balance of the shortest path is insufficient, the
transactions will wait in the queue of the sender.

(4) DRL-FC is a DRL-based algorithm similar to our pro-
posed PLAC except for the graph neural network being
replaced by three Fully-Connected (FC) layers.

For the evaluation metric, we use the normalized long-term
throughput over a measure interval [28]. The normalized
long-term throughput is the percentage of successful pay-
ments over all generated payment demands within a given
time. The measurement interval is set to be 1000 epochs.

6.2 Performance Evaluation
6.2.1 Convergence Behavior. We first evaluate the effective-
ness of the scalable network design of the PLAC as previ-
ously presented in Section 5.3. Figure 7 plots the convergence
curves of PLAC and DRL-FC under the Ripple and Lightning
networks. Significantly, PLAC converges to a much higher
value than DRL-FC over both topologies. For Ripple and
Lightning, PLAC achieves the normalized throughputs of
about 45.9% and 47.6%, respectively. By contrast, DRL-FC
only achieves the normalized throughputs of about 14.4% and
14.8% on Ripple and Lightning, respectively. This is because
the fully-connected layers in DRL-FC are not designed for
graph-structured data input and thus fail to extract valuable
information from historical experience. Moreover, DRL-FC
directly operates over the states of all router nodes, thereby
requiring a large-scale neural network, which is nevertheless

0.0 0.2 0.4 0.6
Normalized Throughput

0.00

0.25

0.50

0.75

1.00

C
D

F

PLAC
Flash
DRL-FC
Waterfilling
SPF

(a) Ripple

0.1 0.2 0.3 0.4 0.5
Normalized Throughput

0.00

0.25

0.50

0.75

1.00

C
D

F

PLAC
Flash
DRL-FC
Waterfilling
SPF

(b) Lightning

Figure 8: CDF results of the normalized throughput
for PLAC and other algorithms over 100 runs.

challenging to be trained. On the other hand, PLAC decom-
poses the encoding tasks for the entire PCN states into sub-
tasks to be solved by each router node, thereby being free
from the dimensionality curse. In addition, PLAC implements
an effective network based on GCN, which breaks the scala-
bility limit and provides an efficient learning ability to extract
valuable features well representing the inter-dependency. As
a result, PLAC achieves much higher throughput.

6.2.2 Performance with Other Benchmarks. Next, to evaluate
the algorithm robustness, we compared PLAC with other
benchmarks using the above evaluation settings. Figure 8
shows CDF results of all the methods on both Lightning
and Ripple networks with 100 runs. We adopt the converged
agents of PLAC and DRL-FC in the evaluations. We have the
following observations. First, SPF suffers from poor perfor-
mance because it selects the shortest path to send transac-
tions and fails to consider available channel balances. Sec-
ond, despite the consideration of channel balances and the
attempt to optimize the long-term throughput, DRL-FC can-
not make full use of the advantages of DRL due to the poor
design of the neural network (i.e., fully-connected network),
thereby limiting its performance. The normalized throughput
of DRL-FC is lower than that of SPF in the Lightning network
even though it considers the throughput. By contrast, PLAC
outperforms other benchmarks on both networks, thereby
demonstrating its robustness and its ability to fully exploit
the benefits of DRL. The advantages are more obvious in Rip-
ple because its network topology and payment demands are

440

PLAC: Proactive Look-Ahead Transaction Flows Control for Payment Channel Network SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

2000 4000 6000 8000
Number of Transactions

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
Flash
DRL-FC
Waterfilling
SPF

(a) Ripple

2000 4000 6000 8000
Number of Transactions

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
Flash
DRL-FC
Waterfilling
SPF

(b) Lightning

Figure 9: Average normalized throughput vs. different
numbers of transactions.

more complicated than Lightning. The performance gains are
obtained because it schedules transactions and maximizes
the long-term throughput with accurate demand prediction.

6.2.3 Performance with Different Transaction Loads. Wenext
compare PLAC with other baselines over different transac-
tion loads. We vary the number of transactions from 1000
to 8000 to simulate different workloads. As shown in Fig-
ure 9, all five routing algorithms show a downward trend in
the throughput when the number of transactions increases.
The phenomenon occurs mainly because more transactions
lead to a heavier workload, which may quickly deplete the
channel balances and saturate the channels in one direction,
especially for large-size transactions. However, our PLAC
consistently achieves the highest normalized throughput
among all algorithms. This shows that even under a heavy
workload, PLAC can still achieve proactive look-ahead con-
trol of transaction flows, so as to maximize the long-term
throughput. In particular, when the number of transactions
increases from 1000 to 3000, the throughput of our PLAC
even shows a small upward trend in the Ripple network.
This reveals that by considering the long-term reward, PLAC
can schedule transactions to balance the PCN channels and
prolong the channel life. By contrast, the throughputs of
baselines significantly decline over the evaluations.

6.2.4 Performance with Different Channel Capacities. From
Figure 9, we can observe that all routing algorithms have not
yet achieved the 100% normalized throughput even when

1 2 3 4 5 6 7 8
Scale Factor

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
Flash
DRL-FC
Waterfilling
SPF

(a) Ripple

1 2 3 4 5 6 7 8
Scale Factor

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
Flash
DRL-FC
Waterfilling
SPF

(b) Lightning

Figure 10: Average normalized throughput vs. differ-
ent capacity scale factors.

the number of transactions reaches 1000. This is because
PCN is still in its infancy, the channel capacities sampled
from real-world datasets may be limited and are unable to
complete all transactions without depositing new funds [32].
In this regard, we investigate the performance of all routing
algorithms with varied channel capacities. In particular, we
vary the channel capacity by proportionally scaling up the
capacities with a ratio of 1 to 8. Figure 10 presents the results.
With the increment of channel capacities, all routing algo-
rithms on both Lightning and Ripple networks show a rising
tendency in the normalized throughput. This is because a
higher channel capacity can mitigate channel depletion ef-
fects, so as to complete more transactions. In both topologies,
PLAC achieves throughputs approximated to 100%, i.e., 91.5%
for Ripple and 98.7% for Lightning. Especially for Ripple, the
throughput of PLAC is at least twice as much as that obtained
by the best baseline, i.e., Flash. This shows that our algorithm
can better utilize the channel funds for higher throughput.

6.2.5 Performance with Different Values of 𝐾 . As stated in
Section 4, the top-𝐾 nodes with the largest degrees are se-
lected as router nodes. We then use PLAC to output the
control actions of router nodes to schedule the transaction
flows. We vary the value of 𝐾 from 5 to 40 to evaluate its
impact. For those nodes that are not selected, they randomly
output actions. Figure 11 shows that PLAC rapidly improves
the throughput and eventually exceeds all baselines although
it does not achieve high throughput at the beginning. This
is because PLAC can achieve cooperative control of router

441

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

10 20 30 40
Value of K

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
Flash
DRL-FC
Waterfilling
SPF

(a) Ripple

10 20 30 40
Value of K

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

PLAC
Flash
DRL-FC
Waterfilling
SPF

(b) Lightning

Figure 11: Average normalized throughput vs. differ-
ent values of 𝐾 .

nodes. A larger 𝐾 value allows PLAC to better control the
transaction flows, therefore reaching the network balance
and obtaining a high throughput. In particular, the scale-
free nature of PCNs allows us to obtain excellent results by
deploying PLAC to dozens of router nodes in a PCN that
typically contains thousands of nodes. For example, PLAC
outperforms other baselines when the values of 𝐾 are larger
than 25 and 15 for the Ripple and Lightning, respectively.

6.2.6 Performance with Different Types of Candidate Paths
of Senders. PLAC schedules the transaction flows from the
perspective of router nodes and determines the maximum
amount of transactions allowed to be sent through the chan-
nels between router nodes. Thereafter, the senders determine
the amount of transactions sent through each candidate path.
We then investigate different design choices of PLAC with re-
spect to different types of candidate paths. Figure 12 plots the
results, where EDJ, NDJ, EDJS represent edge-disjoint paths,
node-disjoint paths, and edge-disjoint shortest paths, respec-
tively. It can be observed that PLAC-EDJ outperforms other
approaches throughout the evaluations. This is because edge-
disjoint paths can make better use of the available channels
in PCNs and avoid choosing the same channel multiple times.
In addition, PLAC-EDJS has the worst performance among
three versions of PLAC. This is because the available channel
balance in PCNs also plays a key role in the successful set-
tlements of transactions. It is not sufficient to only consider

Ripple Lightning0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
. T

hr
ou

gh
pu

t

PLAC-EDJ
PLAC-NDJ
PLAC-EDJS
Flash
Waterfilling
SPF
DRL-FC-EDJ
DRL-FC-NDJ
DRL-FC-EDJS

Figure 12: Average normalized throughput vs. differ-
ent types of candidate paths.

the length of sending path. Nevertheless, PLAC-EDJS still
achieves a throughput comparable to Flash, thereby further
validating the effectiveness of our algorithm.

7 CONCLUSION
In this paper, we have studied the transaction scheduling
problem for achieving a high throughput of PCNs. Since
the future payment demands are typically unavailable be-
forehand, we propose PLAC, a DRL-based algorithm that
learns system dynamics of PCNs through interactions and
proactively controls the router nodes with the predictions
of future payment demands. Meanwhile, PLAC designs a
GCN-based network to effectively extract valuable features
regarding the inter-dependency between router nodes. The
GCN-based model also allows us to implement reusable net-
work components and operates inputs on a relatively low
dimension, consequently contributing to the high scalability.
A policy gradient-based training methodology is further pro-
posed to improve the performance of PLAC with real-world
PCN payment traces. Compared to state-of-the-art PCN rout-
ing algorithms, PLAC increases the long-term throughput
by 6.6% to 34.9%. PLAC also outperforms the standard DRL
algorithm by about 31%, which shows its effectiveness in
learning the dynamics of PCNs. Experimental results further
demonstrate the importance of long-term optimization and
proactive control of routing nodes in PCNs.

ACKNOWLEDGEMENT
The work described in this paper was supported by the Na-
tional Key Research andDevelopment Plan (2021YFB2700302),
the National Natural Science Foundation of China (62172453),
theNational Natural Science Foundation of Guangdong province
(2022A1515010154), 6142006200403, XM2021XT1084, the Ma-
jor Key Project of PCL (PCL2021A06), the Program for Guang-
dong Introducing Innovative and Entrepreneurial Teams
(2017ZT07X355), and the Pearl River Talent Recruitment
Program (No. 2019QN01X130).
We would like to thank our shepherd Heming Cui and

anonymous reviewers for their comments and suggestions
on improving this paper.

442

PLAC: Proactive Look-Ahead Transaction Flows Control for Payment Channel Network SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

REFERENCES
[1] 2022. Lightning Network Daemon. https://github.com/

lightningnetwork/lnd.
[2] 2022. Raiden Network. https://raiden.network/.
[3] 2022. Ripple. https://ripple.com/.
[4] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and

Anil Anthony Bharath. 2017. Deep Reinforcement Learning: A
Brief Survey. IEEE Signal Process. Mag. 34, 6 (2017), 26–38. https:
//doi.org/10.1109/MSP.2017.2743240

[5] Albertlaszlo Barabasi and Eric Bonabeau. 2003. Scale-Free Networks.
Scientific American 288, 5 (2003), 60–69.

[6] Hongliang Bi, Yanjiao Chen, and Xiaotian Zhu. 2022. A Multi-path
Routing for Payment Channel Networks for Internet-of-Things Micro-
Transactions. IEEE Internet of Things Journal (2022), 1–1. https:
//doi.org/10.1109/JIOT.2022.3167098

[7] Wuhui Chen, Xiaoyu Qiu, Ting Cai, Hong-Ning Dai, Zibin Zheng, and
Yan Zhang. 2021. Deep Reinforcement Learning for Internet of Things:
A Comprehensive Survey. IEEE Commun. Surv. Tutorials 23, 3 (2021),
1659–1692. https://doi.org/10.1109/COMST.2021.3073036

[8] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009.
Power-law distributions in empirical data. SIAM review 51, 4 (2009),
661–703.

[9] Vajiheh Farhadi, Fidan Mehmeti, Ting He, Thomas F. La Porta,
Hana Khamfroush, Shiqiang Wang, Kevin S. Chan, and Konstanti-
nos Poularakis. 2021. Service Placement and Request Scheduling for
Data-Intensive Applications in Edge Clouds. IEEE/ACM Trans. Netw.
29, 2 (2021), 779–792. https://doi.org/10.1109/TNET.2020.3048613

[10] Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati
Chhaya, and Alexander F. Gelbukh. 2019. DialogueGCN: A Graph Con-
volutional Neural Network for Emotion Recognition in Conversation.
In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent Ng, and Xiao-
jun Wan (Eds.). Association for Computational Linguistics, 154–164.
https://doi.org/10.18653/v1/D19-1015

[11] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. 2017. Neural Message Passing for Quantum Chemistry.
In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of
Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh
(Eds.). PMLR, 1263–1272. http://proceedings.mlr.press/v70/gilmer17a.
html

[12] Qianyun Gong, Chengjin Zhou, Le Qi, Jianbin Li, Jianzhong Zhang,
and Jingdong Xu. 2021. VEIN: High Scalability Routing Algorithm
for Blockchain-based Payment Channel Networks. In 20th IEEE Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications, TrustCom 2021, Shenyang, China, October 20-22, 2021.
IEEE, 43–50. https://doi.org/10.1109/TrustCom53373.2021.00024

[13] Yilin Han, Chenxing Li, Peilun Li, Ming Wu, Dong Zhou, and Fan
Long. 2020. Shrec: Bandwidth-Efficient Transaction Relay in High-
Throughput Blockchain Systems (SoCC ’20). Association for Comput-
ing Machinery, New York, NY, USA, 238–252. https://doi.org/10.1145/
3419111.3421283

[14] Huawei Huang, Wei Kong, Sicong Zhou, Zibin Zheng, and Song
Guo. 2021. A Survey of State-of-the-Art on Blockchains: Theories,
Modelings, and Tools. ACM Comput. Surv. 54, 2 (2021), 44:1–44:42.
https://doi.org/10.1145/3441692

[15] Rami Khalil and Arthur Gervais. 2017. Revive: Rebalancing Off-
Blockchain Payment Networks. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2017, Dal-
las, TX, USA, October 30 - November 03, 2017, Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 439–453.
https://doi.org/10.1145/3133956.3134033

[16] Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu. 2020.
Gosig: A Scalable andHigh-Performance Byzantine Consensus for Con-
sortium Blockchains (SoCC ’20). Association for ComputingMachinery,
New York, NY, USA, 223–237. https://doi.org/10.1145/3419111.3421272

[17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo
Maffei. 2017. SilentWhispers: Enforcing Security and Privacy in De-
centralized Credit Networks. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017. The Internet Society.

[18] Jiandong Mu, Mengdi Wang, Feiwen Zhu, Jun Yang, Wei Lin, and Wei
Zhang. 2021. Boosting the Convergence of Reinforcement Learning-
based Auto-pruning Using Historical Data. CoRR abs/2107.08815 (2021).
arXiv:2107.08815 https://arxiv.org/abs/2107.08815

[19] Konstantinos Poularakis, Jaime Llorca, Antonia Maria Tulino, Ian J.
Taylor, and Leandros Tassiulas. 2020. Service Placement and Request
Routing in MEC Networks With Storage, Computation, and Commu-
nication Constraints. IEEE/ACM Trans. Netw. 28, 3 (2020), 1047–1060.
https://doi.org/10.1109/TNET.2020.2980175

[20] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy,
and Olaoluwa Osuntokun. 2016. Flare: An approach to routing in
lightning network. White Paper (2016).

[21] Xiaoyu Qiu, Luobin Liu, Wuhui Chen, Zicong Hong, and Zibin Zheng.
2019. Online Deep Reinforcement Learning for Computation Offload-
ing in Blockchain-Empowered Mobile Edge Computing. IEEE Trans.
Veh. Technol. 68, 8 (2019), 8050–8062. https://doi.org/10.1109/TVT.
2019.2924015

[22] Gabriel Antonio F. Rebello, Gustavo Franco Camilo, Maria Potop-
Butucaru, Miguel Elias M. Campista, Marcelo Dias de Amorim, and
Luís Henrique M. K. Costa. 2022. PCNsim: A Flexible and Modular
Simulator for Payment Channel Networks. In IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications Workshops, INFOCOM
2022 - Workshops, New York, NY, USA, May 2-5, 2022. IEEE, 1–2. https:
//doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798003

[23] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged
Payment Channels: Quantifying the Lightning Network’s Resilience to
Topology-Based Attacks. In 2019 IEEE European Symposium on Security
and Privacy Workshops, EuroS&P Workshops 2019, Stockholm, Sweden,
June 17-19, 2019. IEEE, 347–356. https://doi.org/10.1109/EuroSPW.
2019.00045

[24] Stefanie Roos, Martin Beck, and Thorsten Strufe. 2016. Anonymous
addresses for efficient and resilient routing in F2F overlays. In 35th
Annual IEEE International Conference on Computer Communications,
INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016. IEEE, 1–9.
https://doi.org/10.1109/INFOCOM.2016.7524553

[25] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Gold-
berg. 2018. Settling Payments Fast and Private: Efficient Decen-
tralized Routing for Path-Based Transactions. In 25th Annual Net-
work and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/
2018/02/ndss2018_09-3_Roos_paper.pdf

[26] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and Max Welling. 2018. Modeling Relational
Data with Graph Convolutional Networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June
3-7, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10843),
Aldo Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal Hitzler,
Raphaël Troncy, Laura Hollink, Anna Tordai, andMehwish Alam (Eds.).

443

https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://raiden.network/
https://ripple.com/
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/JIOT.2022.3167098
https://doi.org/10.1109/JIOT.2022.3167098
https://doi.org/10.1109/COMST.2021.3073036
https://doi.org/10.1109/TNET.2020.3048613
https://doi.org/10.18653/v1/D19-1015
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1109/TrustCom53373.2021.00024
https://doi.org/10.1145/3419111.3421283
https://doi.org/10.1145/3419111.3421283
https://doi.org/10.1145/3441692
https://doi.org/10.1145/3133956.3134033
https://doi.org/10.1145/3419111.3421272
https://arxiv.org/abs/2107.08815
https://arxiv.org/abs/2107.08815
https://doi.org/10.1109/TNET.2020.2980175
https://doi.org/10.1109/TVT.2019.2924015
https://doi.org/10.1109/TVT.2019.2924015
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798003
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798003
https://doi.org/10.1109/EuroSPW.2019.00045
https://doi.org/10.1109/EuroSPW.2019.00045
https://doi.org/10.1109/INFOCOM.2016.7524553
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning Dai, and Jianting Zhang

Springer, 593–607. https://doi.org/10.1007/978-3-319-93417-4_38
[27] István András Seres, László Gulyás, Dániel A. Nagy, and Péter Burcsi.

2019. Topological Analysis of Bitcoin’s Lightning Network. In Mathe-
matical Research for Blockchain Economy, 1st International Conference,
MARBLE 2019, Santorini, Greece, May 6-9, 2019, Panos M. Pardalos,
Ilias S. Kotsireas, Yike Guo, and William J. Knottenbelt (Eds.). Springer,
1–12. https://doi.org/10.1007/978-3-030-37110-4_1

[28] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kath-
leen Ruan, Parimarjan Negi, Lei Yang, Radhika Mittal, Giulia C. Fanti,
and Mohammad Alizadeh. 2020. High Throughput Cryptocurrency
Routing in Payment Channel Networks. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), Ranjita
Bhagwan and George Porter (Eds.). 777–796.

[29] Weizhao Tang, Weina Wang, Giulia Fanti, and Sewoong Oh. 2020.
Privacy-Utility Tradeoffs in Routing Cryptocurrency over Payment
Channel Networks. Proc. ACM Meas. Anal. Comput. Syst. 4, 2 (2020),
29:1–29:39. https://doi.org/10.1145/3392147

[30] Parth Thakkar and Senthilnathan Natarajan. 2021. Scaling Blockchains
Using Pipelined Execution and Sparse Peers. In SoCC ’21: ACM Sympo-
sium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, Carlo
Curino, Georgia Koutrika, and Ravi Netravali (Eds.). ACM, 489–502.
https://doi.org/10.1145/3472883.3486975

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-
lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[32] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: efficient
dynamic routing for offchain networks. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, CoNEXT 2019, Orlando, FL, USA, December 09-12, 2019,
Aziz Mohaisen and Zhi-Li Zhang (Eds.). ACM, 370–381. https://doi.
org/10.1145/3359989.3365411

[33] Qiong Wu, Xu Chen, Zhi Zhou, Liang Chen, and Junshan Zhang.
2021. Deep Reinforcement Learning With Spatio-Temporal Traffic
Forecasting for Data-Driven Base Station Sleep Control. IEEE/ACM
Trans. Netw. 29, 2 (2021), 935–948. https://doi.org/10.1109/TNET.2021.
3053771

[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. 2021. A Comprehensive Survey on Graph
Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32, 1 (2021),
4–24. https://doi.org/10.1109/TNNLS.2020.2978386

[35] Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, Dejun Yang, and Jian
Tang. 2018. CoinExpress: A Fast Payment Routing Mechanism in
Blockchain-Based Payment Channel Networks. In 27th International
Conference on Computer Communication and Networks, ICCCN 2018,
Hangzhou, China, July 30 - August 2, 2018. IEEE, 1–9. https://doi.org/
10.1109/ICCCN.2018.8487351

[36] Jianting Zhang, Zicong Hong, Xiaoyu Qiu, Yufeng Zhan, Song Guo,
and Wuhui Chen. 2020. SkyChain: A Deep Reinforcement Learning-
Empowered Dynamic Blockchain Sharding System. In ICPP 2020: 49th
International Conference on Parallel Processing, Edmonton, AB, Canada,
August 17-20, 2020, José Nelson Amaral, Lizy Kurian John, and Xipeng
Shen (Eds.). ACM, 3:1–3:11. https://doi.org/10.1145/3404397.3404460

[37] Yuhui Zhang and Dejun Yang. 2021. RobustPay+: Robust Payment
RoutingWith Approximation Guarantee in Blockchain-Based Payment
Channel Networks. IEEE/ACM Trans. Netw. 29, 4 (2021), 1676–1686.
https://doi.org/10.1109/TNET.2021.3069725

444

https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-030-37110-4_1
https://doi.org/10.1145/3392147
https://doi.org/10.1145/3472883.3486975
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3359989.3365411
https://doi.org/10.1145/3359989.3365411
https://doi.org/10.1109/TNET.2021.3053771
https://doi.org/10.1109/TNET.2021.3053771
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/ICCCN.2018.8487351
https://doi.org/10.1109/ICCCN.2018.8487351
https://doi.org/10.1145/3404397.3404460
https://doi.org/10.1109/TNET.2021.3069725

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Preliminaries on PCNs
	2.2 Existing PCN Routing Schemes

	3 Measurements on real-world PCNs: A Feasibility Study
	3.1 Analysis of Transactions Distribution
	3.2 Analysis of Network Topology

	4 Model Design
	5 Algorithm Design
	5.1 MDP-based Agent-Environment Interaction
	5.2 Encoding PCN States and Control Actions
	5.3 Actor Network Design
	5.4 Policy Gradient for Agent Training
	5.5 Algorithm Overhead

	6 Evaluation
	6.1 Experiment Settings
	6.2 Performance Evaluation

	7 Conclusion
	References

