
Porygon: Scaling Blockchain via 3D Parallelism
Wuhui Chen

Sun Yat-sen University
chenwuh@mail.sysu.edu.cn

Ding Xia
Sun Yat-sen University

xiad23@mail2.sysu.edu.cn

Zhongteng Cai
The Ohio State University

cai.1125@osu.edu

Hong-Ning Dai
Hong Kong Baptist University

henrydai@hkbu.edu.hk

Jianting Zhang
Purdue University

zhan4674@purdue.edu

Zicong Hong
The Hong Kong Polytechnic University

zicong.hong@connect.polyu.hk

Junyuan Liang
Sun Yat-sen University

liangjy53@mail2.sysu.edu.cn

Zibin Zheng
Sun Yat-sen University

zhzibin@mail.sysu.edu.cn

Abstract—Recently, stateless blockchains have been proposed
to alleviate the storage overhead for nodes. A stateless blockchain
achieves storage-consensus parallelism, where storage workloads
are offloaded from on-chain consensus, enabling more resource-
constraint nodes to participate in the consensus. However, existing
stateless blockchains still suffer from limited throughput.

In this paper, we present Porygon, a novel stateless blockchain
with three-dimensional (3D) parallelism. First, Porygon sepa-
rates the storage and consensus of transactions as the stateless
blockchain, achieving the storage-consensus parallelism. This
first-dimensional parallelism divides the processing of transac-
tions into several stages and scales the network by supporting
more nodes in the system. Based on such a design, we then
propose a pipeline mechanism to achieve second-dimensional
inter-block parallelism, where relevant stages of processing trans-
actions are pipelined efficiently, thereby reducing transaction
latency. Finally, Porygon presents a sharding mechanism to
achieve third-dimensional inner-block parallelism. By shard-
ing the executions of transactions of a block and adopting a
lightweight cross-shard coordination mechanism, Porygon can
effectively execute both intra-shard and cross-shard transactions,
consequently achieving outstanding transaction throughput. We
evaluate the performance of Porygon by extensive experiments on
an implemented prototype and large-scale simulations. Compared
with existing blockchains, Porygon boosts throughput by up to
20×, reduces network usage by more than 50%, and simulta-
neously requires only 5MB of storage consumption per node.

I. INTRODUCTION

Blockchain, as a disruptive technology enabling the es-
tablishment of distributed, transparent, and secure ledgers,
has witnessed progressive adoption across diverse sectors
including trading systems [1], supply chains [2], healthcare [3],
and business databases [4], [5], [6], along with its original
application in cryptocurrencies [7]. Unfortunately, participants
in traditional blockchain networks confront challenges posed
by the escalated data volume. To participate in the consensus
of a blockchain, a node must spend a long time synchronizing
the complete blockchain state, associated with a large storage
requirement. For instance, the data volume of account-based
Ethereum had reached the terabyte scale [8]. This impedes the
engagement of ordinary individuals using mobile devices with
constrained storage and network resources in a blockchain
system, limiting network scale and compromising the decen-
tralization of the system.

Ordering Execution Ordering Execution Ordering Execution

Storage 
nodes

Committee1

Commit Commit 

Committee2 Committee3

Stateless
nodes

storage-consensus 
parallelism

State2 State3State1

Commit

State4 

(a) 1D parallelism: Each committee processes transactions round by
round in a sequential manner.

inner-block 

parallelism

...      ...

Execute TXs in Shard1

Ordering Execution

Ordering Execution

Ordering Execution

Execution

Ordering

Commit 

inter-block 

parallelism

Storage 
nodes

Execution
nodes

storage-consensus 

parallelism

Ordering
nodes

Execute TXs in ShardN

Execute TXs in Shard2

Execute TXs in Shard3

Commit Commit 

State1 State2 State3 State4 State5 State6 State7

(b) 3D parallelism (Porygon): Diverse committees concurrently pro-
cess transactions through inter-block and inner-block parallelisms.
Fig. 1: Blockchain architectures: (a) and (b) depict the trans-
action processing workflows of stateless blockchain by 1D
parallelism and 3D parallelisms, respectively.

In this context, stateless blockchain has been proposed to
create a new transaction-committing protocol to alleviate the
storage burden on nodes [9], [10], [11], [12], [8], [13]. This
stateless mechanism can be conceptualized as establishing
parallelism between on-chain stateless nodes and off-chain
storage nodes. Storage nodes are responsible for storing states
and providing data available for downloading when required,
while stateless nodes run a consensus protocol for ordering and
executing transactions with the relevant states derived from
storage nodes. By parallelizing storage and consensus tasks,
stateless blockchains reduce the storage overhead for resource-
constraint stateless nodes and thus enable more participants
in the network. Figure 1(a) provides a simplified depiction
of this one-dimensional (1D) parallelized stateless blockchain.
For illustration, here we simplify the procedure of committing
transactions as the Ordering stage and Execution stage, while
the complete procedure always involves more stages that will
be detailed in § II-A.

Although allowing more resource-constraint nodes to en-



gage in the system, current stateless blockchains still cannot
be applied to a realistic scenario with thousands of real-time
requests due to their limited performance. For instance, the
state-of-the-art stateless blockchains [8], [11] can only process
around 1,000 Transactions Per Second (TPS) while a common
payment scenario, e.g., Visa, requires reaching 20,000 TPS.
We observe that such poor performance arises from their
two inherent factors: sequential transaction processing and
underutilized computational resources (see § II-A for more
details). Briefly speaking, since storage and consensus of
transactions are separated and completed by different kinds of
nodes, the existing stateless blockchains only allow a small
group of stateless nodes to serially process transactions to
ensure strong consistency among all nodes.

In this paper, we revisit and redesign the stateless blockchain
to enhance its parallelism in processing transactions, thereby
achieving an incredible improvement in performance while
keeping its capability of supporting large-scale nodes. Specif-
ically, we propose a new stateless blockchain system in the
permissionless setting, called Porygon. As shown in Fig-
ure 1(b), Porygon introduces a three-dimensional (3D) par-
allelism based on the one-dimensional parallelism built by
the original stateless blockchain. (1) Porygon builds on the
stateless blockchain’s 1D parallelism [11], [8] by separating
data storage from consensus, enhancing network scalability
by allowing more nodes to participate. (2) It introduces a
new pipeline mechanism for the second dimension, namely
inter-block parallelism, to construct Ordering and Execution
Committees for processing transactions in parallel stages,
thus improving throughput and reducing latency. (3) Lastly,
Porygon implements sharding for the third dimension, namely
inner-block parallelism, to divide transactions into sets for
concurrent execution by Execution Sub-Committees, thereby
optimizing computational efficiency.

However, it is non-trivial to implement such a three-
dimensional parallelism due to the following three challenges.

Challenge 1: Ordering Committee Bottleneck. Due to
the multi-dimensional parallelism, multiple Execution Sub-
Committees may concurrently execute transactions in each
round. As a result, the Ordering Committee needs to package
a larger number of transactions and broadcast the complete
block within the committee. The Ordering Committee’s band-
width can become a bottleneck. To tackle this challenge,
we propose a novel solution to decouple broadcasting from
ordering to better utilize bandwidth resources (§ IV-B). To
achieve this, we decouple transaction blocks from proposal
blocks. Proposal blocks only record the list of transaction
blocks and hence are small in size. Then, we assign the task
of broadcasting transaction blocks to storage nodes, while
stateless nodes only need to broadcast smaller proposal blocks.

Challenge 2: Vulnerability to Unavailable Transactions.
The pipelining mechanism within the stateless system poses
challenges related to data availability and task allocation.
Stateless nodes are vulnerable to unavailable transactions
fabricated by malicious storage nodes, meaning that they can
only download indices of transactions but cannot download

transaction contents. However, requiring all committees to
download complete transactions before execution to avoid
such attacks will incur redundant overheads. To address this
challenge, we propose a solution to introduce a separate
Witness Phase to the pipeline, by assigning this phase to
Execution Committees to ensure data availability (§ IV-C).
This design eliminates the need for the Ordering Committee
to download complete transactions.

Challenge 3: Sharding Coordination Complexity. Im-
plementing the sharding mechanism within the stateless
blockchain poses the challenge of cross-shard coordination.
Particularly, the concurrent execution of transactions across
different shards has to preserve the atomicity of cross-shard
transactions and the consistency of blockchain states. To
tackle this challenge, we propose the solution to designate
the Ordering Committee as a coordinator to distribute trans-
actions to different Execution Sub-Committees and aggregate
execution results to update the global state. Moreover, Porygon
proposes a lightweight mechanism for executing cross-shard
transactions (§ IV-D). This mechanism effectively alleviates
the transaction execution workload distributed across multiple
shards while simultaneously ensuring the atomicity of cross-
shard transactions.

In summary, this paper makes the following contributions:
• The novel architecture of 3D parallelism. We introduce

Porygon, a novel stateless blockchain system that achieves
a large network scale, low latency, and high transaction
throughput by parallelizing the system from three distinct
dimensions.

• Transaction Processing Pipeline. We design a fine-grained
transaction-processing pipeline to achieve inter-block paral-
lelism. The process of committing transactions is decoupled
into sequential phases and then constitutes a pipeline to
ensure performance as well as security.

• Sharded Transaction Execution. We distribute transactions
to different shards for execution to achieve inner-block
parallelism. We design a lightweight cross-shard coordi-
nation mechanism to ensure the atomicity of cross-shard
transactions while preserving outstanding performance.

• Experiment Evaluation. We conduct extensive experiments
to evaluate Porygon by both experiments on the imple-
mented prototype and large-scale simulations (§ VI). Ex-
perimental results show that we can achieve a throughput
of 21,090 transactions per second, which is nearly 20×
of state-of-the-art stateless blockchain [11] while reducing
network usage by more than 50% and requiring 5MB of
storage consumption per node.

II. BACKGROUND AND RELATED WORK

A. Background

The stateless blockchain concept aims to reduce storage
burdens on full nodes by offloading state storage to off-chain
storage nodes, enabling on-chain stateless nodes to process
transactions without holding states [11], [8], [13]. This setup
achieves 1D parallelism by allowing storage and stateless
nodes to work in together.



Using Blockene as an example [11], illustrated in Fig-
ure 1(a), the workflow in a stateless blockchain involves con-
sensus rounds for transaction commitment. Initially, a subset of
stateless nodes is chosen each round for transaction processing
to minimize communication overhead. These nodes, forming
a committee, then download transactions from storage nodes
and share download proofs to ensure data availability. Then, a
block of verified transactions is proposed, and the committee
conducts consensus to order and execute these transactions.
Execution involves state and proof downloads from storage
nodes for global state updates. Once a consensus on updates
is reached, the block is certified and added to the blockchain.

Throughout the procedure of processing transactions, we
observe two characteristics that constrain the performance of
the existing stateless blockchain system.

Characteristic 1: Sequential Transaction Processing.
The selected on-chain stateless nodes need to engage in all
stages of processing transactions in a serialized way. Given
limited bandwidth and computation resources, these stateless
nodes will spend a longer time downloading, ordering, and
executing transactions, thereby leading to a longer latency
for transactions. Meanwhile, lightweight devices are prone
to losing connectivity with the network and the prolonged
transaction processing increases the likelihood of nodes getting
disconnected from the network. This effect negatively impacts
the overall system performance. This observation motivates us
to establish parallelism in the stages of transaction processing.

Characteristic 2: Underutilized Computational Re-
sources. Existing stateless blockchains assign only one com-
mittee to process transactions per consensus round. Although
this design can easily ensure the consistency of the ledger, it
also puts the vast majority of computation capacity untapped,
thereby bringing limited improvement of transaction through-
put even with a large number of nodes in the blockchain sys-
tem. For instance, Blockene [11] selects about 2,000 stateless
nodes as committee members to process transactions despite
millions of available nodes. This observation motivates us to
achieve further parallelism in executing transactions.

B. Related Work

Motivated by the above observations, this work targets
designing a highly parallelized blockchain that can not only
support large-scale nodes to participate in the system but
also achieve high performance. Next, we will introduce some
promising parallelized schemes for blockchains as well as their
shortcomings compared with our solution.

Stateless blockchain system. Stateless blockchains aim to
enable nodes to execute transactions without storing cumber-
some states. Blockene [11] employs Citizens (smartphones
with limited resources) and Politicians (servers) in its archi-
tecture. Single-committee-based citizens agree on blocks and
update states, while Politicians only store states. Saguaro [13]
designs a mobile consensus protocol to facilitate the partici-
pation of mobile devices. SlimChain [8] develops a stateless
blockchain with smart contract support. It employs off-chain
Trusted Execution Environments (TEEs) for executing smart

contracts, but this approach may be exposed to a vulnerable
trusted code base (TCB) susceptible to attacks [14], [15], [16].
However, as we discussed before, these works cannot scale
performance, making it impractical to be applied to a realistic
scenario with thousands of requests per second.

Decoupling blockchain functions. Function decoupling
enhances blockchain concurrency and performance, as seen
in systems like Hyperledger, BIDL, DispersedLedger, and
NeuChain [17], [18], [19], [20]. BFT protocols, including Bull-
shark and DAG-Rider, realize this by separating transaction
and proposal blocks [21], [22]. ResilientDB and RCC focus on
consensus parallelization [23], [24], while Proof-of-Execution
prioritizes pre-consensus transaction execution [25]. SChain
introduces concurrent execution within and across blocks [26],
and SEFrame, along with earlier SGX-based efforts, supports
concurrent smart contract execution but lacks permissionless
environment support [27], [28]. DispersedLedger separates
consensus into two phases but faces security challenges in task
allocation [19]. Our Porygon innovates with a Witness Phase
for enhanced data availability and secured task allocation.

Blockchain sharding system. Sharding enhances
blockchain performance by spreading workloads across
multiple shards, reducing node overheads [14], [29], [30],
[31], [32], [33], [34]. Cross-shard transactions ensure
atomicity through various mechanisms: Elastico [35] uses
a final committee for global results, OmniLedger [36]
involves the client in shard coordination, RapidChain [37]
simplifies verification by allowing direct user-committee
communications while Byshard [38] applies database
techniques to Byzantine environments. Unlike these
blockchain-sharing systems, which burden all nodes
with equivalent storage demands, Porygon implements a
lightweight mechanism, facilitating sharding for stateless
nodes, thus accommodating those with limited resources.

III. SYSTEM AND ADVERSARY MODEL

A. System Model

Porygon is composed of storage nodes and stateless nodes,
all of which have unique identities. Stateless nodes are pe-
riodically and randomly selected from the network to com-
pose committees. We utilize an account-based model for the
blockchain state, which facilitates basic transaction function-
alities, such as transfers. Accounts are divided into different
shards based on the last N digits of their IDs. Stateless nodes
are categorized into two types of committees: the unique
Ordering Committee and the multiple Execution Committees.
The Ordering Committee groups transactions originating from
distinct subsets of accounts. Execution Committees are subdi-
vided into distinct shards, forming Execution Sub-Committees
dedicated to the execution of transactions. During transaction
execution, each execution node accesses state data from stor-
age nodes. If a transaction only has to access states belonging
to the same shard, it is regarded as an intra-shard transaction;
it is regarded as a cross-shard transaction otherwise.



…

Transaction Processing Pipeline (§ IV-C)

Storage-Consensus Separation (§ IV-B)

Sharded Transaction Execution (§ IV-D)

. . . . . .

Execution 
Committee

Ordering 
Committee

Storage Node

Adversary

Stateless Node

Execution 
Subcommittee

Ordering

Executon

. . .

. . .

. . .

. . .

. . .

Fig. 2: Overview of 3D parallelism in Porygon.
B. Adversary Model and Trust Assumption

We consider honest nodes that always follow the system
protocol, while malicious nodes can deviate from the protocol
in arbitrary ways. First, malicious storage nodes can discard
messages, which need to be routed between stateless nodes or
decline to broadcast locally received transactions to other stor-
age nodes. Second, malicious stateless nodes can equivocate
during the consensus. However, similar to previous stateless
blockchains [11], [8], malicious nodes cannot forge identities
or digital signatures. We assume that the adversary can control
α = 1/4 of stateless nodes and β = 1/2 of storage nodes. The
security analysis under this assumption will be present in § V.

IV. PORYGON DESIGN

A. System Overview

Our Porygon achieves 3D parallelism through the following
methods: storage-consensus separation, transaction process-
ing pipeline, and sharded transaction execution, as shown in
Figure 2. Firstly, it separates storage from consensus for paral-
lel processing by utilizing i) stateless nodes for ordering and
execution, and ii) storage nodes for data-keeping. Secondly,
Porygon introduces a pipeline for parallel transaction execu-
tion, incorporating a Witness Phase for ensuring data availabil-
ity. Lastly, it employs sharding in execution committees for
parallel processing, with an Ordering Committee coordinating
cross-shard transactions via a multi-phase commit protocol.
Further details will be elaborated in subsequent sections.

B. Storage-Consensus Separation

We introduce the storage-consensus separation architecture
in our design and elaborate on the key technical details that
support further parallelism.

1) Stateless Architecture: In Porygon, storage and state-
less nodes fulfill distinct functions. Storage nodes hold the
entire blockchain state and facilitate communications among
stateless nodes, which manage to compact proposal blocks
and necessary public keys for consensus participation. After
processing, stateless nodes remove transactions to conserve
space. Each stateless node establishes connections with a
randomly selected subset of storage nodes. These connections

Fig. 3: Block structures in Porygon, including proposal block
and transaction block.
enable stateless nodes to send proposal blocks, voting informa-
tion, and other critical messages, which are then broadcasted
among storage nodes for comprehensive network dissemi-
nation. Additionally, stateless nodes can request blockchain
information or access messages from other stateless nodes
through these connections, facilitating both data retrieval and
message routing within the system.

To address the potential threat posed by malicious storage
nodes, our protocol mandates stateless nodes to connect to
multiple storage nodes. This redundancy ensures that the
presence of at least one honest storage node is sufficient for
the accurate transmission of messages [11]. This resilience is
further confirmed by the analysis presented in § V (Lemma 1).

Committees are periodically selected from stateless nodes
to process transactions [39]. Each message generated within a
committee can be verified by both storage nodes and stateless
nodes even if the lifecycle of this committee has ended.
The uniqueness of the identification of each node can be
enabled by trusted hardware (e.g., leveraging TrustZone in
smartphones [40], [41], [11]).

2) Block Structure: To reduce transaction broadcast load,
we introduce proposal blocks and transaction blocks for func-
tional decoupling, as shown in Figure 3. Storage nodes create
transaction blocks from users’ submissions and broadcast them
to stateless nodes. These blocks contain transaction indices
and accessed states, which are pre-recorded using software
tools for concurrency [42], [26]. Proposal blocks, formed by
the Ordering Committee, chain these transaction blocks via
backward hash links, by including committee membership
information, transaction block lists, and the state tree root.
Ordering nodes store only the proposal block to minimize
storage needs, thereby simplifying consensus broadcasting and
easing the Ordering Committee’s load.

3) Committee Formation: Porygon periodically selects a
set of stateless nodes from a stateless-node pool through
Verifiable Random Function (VRF) [43] to form committees
and process transactions. Specifically, each stateless node
generates a random number locally once a round (i.e., each
time the newest proposal block is generated) through VRF.
The inputs of VRF include the hash value of the latest proposal
block and the public key of the stateless node. In this way, it
is nearly infeasible for adversaries to generate a biased VRF
value in advance [39].

Stateless nodes are selected for the Ordering Committee
based on their VRF-generated numbers. Particularly, those
generating the smallest numbers form the committee, while the



rest are allocated to Execution Committees. The allocation to
2N Execution Committees is determined by the last N digits
of their VRF values. Our system employs two thresholds:
the execution committee threshold and the ordering committee
threshold, which are documented in the latest proposal block.
Each stateless node itself assesses its VRF result against these
thresholds to ascertain its committee membership.

When forming the Ordering Committee, nodes submit their
candidate proposal blocks to storage nodes, which then relay
these blocks to all Ordering Committee members. This process
ensures that each node is aware of others’ proposals. The
candidate proposal block that carries the lowest VRF value
is deemed to be the valid proposal for that round, with its
proposer acting as the round’s leader. The Ordering Committee
then collaborates to reach a consensus on this leader-proposed
block, ensuring that all members agree on the block with the
lowest VRF value as the basis for the next consensus round.

C. Transaction Processing Pipeline

We next describe how transactions are processed by differ-
ent committees in parallel, including one Ordering Committee
and multiple Execution Committees. First, we describe the
successive phases of processing the same batch of transactions
by only one committee (see § IV-C1). Then, we describe
how to parallelize these phases by pipelining across different
committees (§ IV-C2).

1) Decoupled Phases: Transaction blocks packaged by
storage nodes are witnessed, ordered, executed, and finally
committed by the committee. Details of these successive
phases are as follows.

(a) Witness Phase. The Witness Phase starts each time a
new proposal block is generated and aims to ensure that trans-
action blocks required by committee members are available.
Otherwise, the system will produce empty blocks if committee
members cannot download transaction blocks generated by
potentially malicious storage nodes for execution. To pre-
serve data availability, committee members have to download
transactions before ordering them. Specifically, committee
members require transaction blocks from storage nodes. If a
committee member can successfully download all transactions
in a transaction block, it generates a witness proof on this
transaction block, i.e., a signature on the transaction block
header, and uploads the proof to storage nodes. Besides this,
it has to extract the states involved in each transaction and
store them within the transaction block for concurrency control
in § IV-D. A transaction block is eligible for the following
Ordering Phase only when it has received witness proofs
from more than Tw committee members, where Tw is set to
be larger than the upper bound of the number of committee
members that are deviated from the protocol (e.g., more than
1/2 of the committee members return the same result). Storage
nodes gather witness proofs from multiple committee members
to prove that its transaction blocks have been witnessed by
enough committee members. Moreover, honest storage nodes
broadcast their transaction blocks and corresponding witness
proofs. Therefore, different committee members can download

the same transaction block from different honest storage nodes
and check whether it has received enough witness proofs.

(b) Ordering Phase. From storage nodes, committee mem-
bers first download both the headers and witness proofs of
all transaction blocks that have passed the Witness Phase
and verify their witness proofs. The leader of the committee
produces a proposal block containing a list of valid transaction
blocks, broadcasts the list to all committee members, and runs
the consensus algorithm to reach an agreement via storage
nodes. All committee members can verify the eligibility of
the ordered transaction blocks. In our implementation, the
committee runs the BA⋆ consensus protocol [39], [11]. The
committee finally agrees on a unique proposal block, which
gives the order of transactions.

(c) Execution Phase. After reaching an agreement on a
proposal block, the committee then executes transactions
and updates states according to the consensus result. The
committee requires related states (i.e., key-value pairs) and
corresponding integrity proofs (e.g., Merkle Tree paths) from
storage nodes. Transactions are sequentially executed, and all
failed transactions (e.g., duplicate transactions and double-
spending transactions) are abandoned. Failed transactions are
still recorded in the transaction block to preserve integrity.
After updating all states, each committee member also calcu-
lates the latest Merkle tree root and sends the signed root to
all committee members. If more than Te committee members
give the same execution result, then such a result is considered
valid and will be recorded on-chain through the Commit Phase,
where Te is chosen to be larger than the number of malicious
committee members (e.g., more than 1/3 of the committee
members sign the same result).

(d) Commit Phase. In this phase, the updated Merkle Tree
root is recorded on-chain through a new round of consensus
protocol. Each committee member verifies the signed Merkle
Tree roots it has received. If a member receives at least Te

consistent roots signed by the current committee members, it
then agrees on the root. If no root receives enough votes, the
output of the consensus algorithm will be the state tree root
recorded in the last proposal block, indicating that the state tree
remains unmodified. After a new proposal block is generated
through the consensus algorithm and uploaded to storage
nodes, storage nodes will update local states accordingly.

2) Pipeline Design: We parallelize the sequential processes
mentioned in § IV-C1 through pipelining by one Ordering
Committee (OC) and multiple Execution Committees (ECs),
which are responsible for different phases to achieve inter-
block parallelism. In particular, one OC is responsible for
the Ordering Phase and the Commit Phase while ECs are
responsible for the Witness Phase and the Execution Phase,
alleviating the burden on the Ordering Committee.

We take Figure 4 as an example to elaborate on the
transaction processing pipeline. The horizontal axis represents
the sequence of rounds, and the vertical axis indicates diverse
committees: one OC and multiple ECs, each of which is
denoted by ECi (i = 1, 2, · · · ). When a new proposal block is
generated by OC, a new round begins. It is depicted in Figure 4



W: Witness  O: Ordering     
E: Execution    M: Commit

OC:  Ordering Committee                     
EC: Execution Committee

Round

Fig. 4: Transaction processing pipeline.
that each EC lasts for three rounds. There are at most three
ECs existing in the same round. We assume that the OC can
have a relatively longer life cycle than ECs though the OC can
be selected according to a round-robin scheme [14] without
affecting the basic design of our pipeline. Each colored square
describes the workload of each committee during the specific
round. The letter in the square shows the corresponding phase
and the following number i indicates that the committee is
processing the i-th batch of transactions. We also use diverse
colors to differentiate workloads related to different batches
of transactions.

The red arrow in Figure 4 shows how the first batch of
transactions is processed. The first EC (i.e., EC1) downloads
transaction blocks and signs witness proofs (i.e., W1). The OC
downloads from storage nodes the list of all transaction blocks
that have received enough witness proofs without downloading
complete transactions. Members of the OC then verify witness
proofs and reach an agreement on the order of these transaction
blocks. During the next round (i.e., round i + 2), the OC
sends the agreed list to EC1 for execution. Members of EC1

download the latest states and execute transactions. They do
not have to download transactions that they have witnessed
during the Witness Phase, thereby saving network usage. EC1

then returns the execution results to the OC. The lifecycle of
EC1 then expires. Members of EC1 will join the next round
of the committee formation process. During round (i+3), the
OC agrees on the updated roots (i.e., M1) and the latest list of
transaction blocks (i.e., O3) simultaneously. After the newest
proposal block is agreed upon by the OC, storage nodes update
local states according to the committed root and corresponding
state tree. The first batch of transactions is finally committed
to the blockchain ledger.

Cross-Batch Witness. In each round, the bandwidth of
nodes in the EC may become a bottleneck, as they are
responsible for witnessing all transactions within a block.
To reduce the network usage of the Execution Committee
in a consensus round, we design the Cross-Batch Witness
mechanism. For example, during round (i + 1) in Figure 4,
when the OC is reaching agreement on the order of transaction
blocks in the first batch of transactions, EC1 can continue to
sign witness proofs for other transaction blocks (e.g., W2).
These witnessed transactions, along with the ones witnessed by
EC2, are considered as the second batch of transactions. Cross-

Single-Shard Execution Multi-Shard Update

OC

Shard 1

Shard 2

Shard 3

CTx

Download 

States

Storage Nodes Update States

Aggregate

State Trees

Update 

State Trees

Execute CTx

Fig. 5: Cross-shard Coordination.
Batch Witness does not deviate from the goal of the Witness
Phase, which is to guarantee that valid transaction blocks can
be downloaded by honest stateless nodes. Moreover, OC can
verify whether a transaction block has received enough witness
proofs in either EC1 or EC2. Generally, transaction blocks
witnessed by the i-th EC can be ordered along with the (i+1)-
th batch of transactions by the OC and can be executed by the
(i + 1)-th EC. Such a design also fills the gap between the
Witness Phase and the Execution Phase, hence avoiding the
waste of the computation capacity of ECs.

D. Sharded Transaction Execution

To achieve inner-block parallelism, we detail the process
through which transactions are executed by Execution Sub-
Committees (ESCs) within different shards. Moreover, we
describe how stateless shards process cross-shard transactions
with low overheads.

1) Parallelized Execution Sub-Committees: In § IV-C2,
the system has one OC and three ECs in each round to
support pipelining. Nodes in each Execution Committee (EC)
are split into Execution Sub-Committees (ESCs) based on
the last N digits of VRF numbers, forming shards. User
accounts are divided into subsets by their last N digits,
with each subset’s transactions assigned to one shard for
execution. Therefore, each transaction is only sent to one
shard. Transactions, including both intra-shard transactions
and cross-shard transactions, are ordered by the OC in each
round. The OC also acts as the trusted coordinator between
different shards to handle cross-shard transactions and perform
concurrency control (e.g., impose locks on states that will be
accessed by transactions and release locks after execution).
After executing transactions, each shard (i.e. ESC) returns the
execution results to the OC to update the state tree.

2) Cross-shard Coordination: For cross-shard transactions
(CTx), shards coordinate to update states, preserving atomic-
ity and avoiding conflicts, with the OC as the coordinator.
Figure 5 shows this coordination process. It involves two
phases: Single-Shard Execution, where the CTx is executed
by one shard only, its result sent to the OC; and Multi-
Shard Update, where CTx outcomes are distributed from the
OC to all involved shards for state updates. Finally, the OC



aggregates and commits the updated state trees. We further
elaborate on them as follows.

After the Ordering Phase, the OC sends the cross-shard
transactions (CTx) to specific shards (e.g., sending CTx to
Shard 2 in Figure 5) for pre-execution based on where the
initiating accounts reside. This approach ensures that the
execution result does not modify the state tree until the
Multi-Shard Update phase. Before sending CTx, the OC will
download states that CTx will access in each shard, which are
recorded by analysis tools in advance and stored in witnessed
transaction blocks. It checks for potential conflicts between
cross-shard transactions across different shards, discarding
conflicting transactions to avoid issues while including them in
the block for integrity, and notes their indexes. The OC also
abandons all transactions submitted in the following rounds
having conflicts with previous transactions that have not been
committed. Conflicts within the same shard and in the same
round do not have to be detected by the OC, since they can
be handled by each ESC independently.

Each shard downloads states that are accessed by its trans-
actions and executes these transactions through read-write
operations. Some downloaded states may belong to accounts
maintained by other shards (e.g., Shard 2 downloads states
belonging to all three shards). The OC has avoided conflicts
when assigning transactions to different shards. Thus, modify-
ing states that are previously maintained by other shards causes
no errors. Moreover, downloading all corresponding states will
not lead to redundant overheads since nodes in each shard are
stateless. ESCs in all shards finally return the execution results
(i.e., the updated key-value pairs) to OC.

(b) Multi-Shard Update. During the second phase, the OC
verifies whether ESC in each shard returns enough consistent
execution results (e.g., more than 1/2 of the ESC members
have returned the same result), similar to the workloads
mentioned in § IV-C1. If the condition is satisfied, the OC will
agree on a list of updated states that need to be updated by
each shard. Those states will be recorded in the latest proposal
block. The OC then sends it to all shards. Each shard receives
the latest proposal block and directly updates states and Merkle
Tree paths according to the given proposal block. If all related
shards successfully update states and return enough consistent
state tree roots, the OC can aggregate these states, calculate the
latest state tree root, and finally record it on-chain. Cross-shard
transactions are now considered as committed. If some ESCs
fail to return enough consistent state tree roots in this round,
i.e., some shards fail to commit cross-shard transactions, the
OC will continually require the following ESCs of the same
shard to update these states until success. The OC will also
keep avoiding conflicts between the following transactions and
uncommitted transactions. If these transactions still fail to be
committed in a specific number of rounds (e.g., two rounds),
The OC requires all related shards to roll back by triggering a
cross-shard transaction, which updates all related states to its
older version.

We now describe the complete process of committing trans-
actions with pipelining and sharding. Both cross-shard transac-

tions and intra-shard transactions require multiple phases to be
committed although cross-shard transactions have a relatively
longer latency than intra-shard ones. Specifically, intra-shard
transactions can be committed within four rounds, from the
Witness Phase to the final Commit Phase, since they do
not require cross-shard coordination. Differently, cross-shard
transactions need to be first executed by a single shard and
then updated by multiple shards, hence requiring six rounds to
be committed. One future work is to deterministically assign
priorities to transactions to commit cross-shard transactions
before intra-shard transactions.

Take Figure 6 as an example, which depicts the complete
process of committing transactions within two shards (i.e.,
shards A and B). Each ESC is denoted by ESCS

i , where i
denotes the number of the round and S denotes the shard.
In round i, the OC outputs a proposal block Bi. We ignore
the cross-batch witness and only describe the workloads of
ESCs that are initiated from round 1 to round 3 to simplify
this description. The arrowed lines between ESCs and the OC
describe the complete process of handling the same batch of
transactions, from being witnessed to being finally committed.
This pipelining process is elaborated as follows.
1 In round 1, ESCA

1 and ESCB
1 are initialized. They read the

latest transaction blocks from storage nodes and sign witness
proofs on them. Witnessed transactions are divided into intra-
shard transactions and cross-shard transactions denoted by ITx
and CTx, respectively. For example, we denote all transaction
blocks that are witnessed by ESCA

1 and contain only intra-
shard transactions by ITxA1 . Similarly, those containing cross-
shard transactions are denoted by CTxA1 . Each ESC sends
witness proofs to the OC.
2 In round 2, OC verifies witness proofs and generates a

list of ordered transaction blocks denoted by L2. L2 contains
sub-lists specifically for each shard (e.g., L2[A] for shard A),
which will only be sent to Shard A to save network usage. List
L2 and the latest state tree (T2) are recorded in proposal block
B2 and are agreed through running the consensus protocol.
3 In round 3, ESCs execute transactions according to the

proposal block B2, which contains the list L2 and the state tree
T2 as the block contents. Both the list and the state tree are
not completely sent to each shard, e.g., shard A only receives
sub-list L2[A] and downloads subtree T A

2 . T A
2 contains states

required by transactions and their Merkle paths. Since shard A
may be designated to execute some cross-shard transactions,
T A
2 may include some states previously maintained by other

shards. For intra-shard transactions in ITx, each ESC updates
the subtree and output T A

3 . For cross-shard transactions in
CTx, each ESC merely returns a set of updated states SA

3 .
T A
3 and SA

3 are returned to OC, and so does the remaining
shards. ESCs initialized at round 1 then expire.
4 In round 4, OC verifies whether enough consistent results
T d
3 and Sd

3 are received from each shard d (d ∈ {A,B}).
Valid Sd

3 is handled by the concurrency control function and
transferred to the list U4, indicating which states need to be
updated by each shard. The state tree is updated to T4 ac-
cording to the received subtrees. The Single-Shard Execution



Fig. 6: The overview of integrating sharding into pipeline mechanism.
phase is accomplished.
5 In round 5, ESCd

3 belonging to shard d (d ∈ {A,B})
is in the Execution Phase. It downloads B4, and updates
the state subtree according to both L4 and U4. Each ESC
downloads states in U4, which are maintained by itself and
directly updates these key-value pairs and the state subtree.
Similar to step 3 , ESCd

3 outputs T d
5 and Sd

5 .
6 In round 6, the newest state tree root is calculated accord-

ing to subtree roots T A
5 and T B

5 . Since the state updated by
cross-shard transactions has now been committed to the state
tree recorded in B6, the Multi-Shard Update phase is finalized.

We now conclude that intra-shard transactions witnessed in
round i are finally committed in round (i + 3), and cross-
shard transactions witnessed in round i are finally committed
in round (i+ 5).

Workloads of different committees. The workloads of a
specific ESCd

i in shard d are as follows:
• In round i, ESCd

i is in the Witness Phase. It downloads
transaction blocks and returns witness proofs W d

i .
• In round (i + 2), ESCd

i is in the Execution Phase. It
updates the state subtree T d

i+1 according to the list of
intra-shard transactions Li+1[d].ITx and the execution
results of cross-shard transactions Ui+1[d], both of which
are included in Bi+1. It returns updated subtree T d

i+2.
It executes cross-shard transactions according to the list
Li+1[d].CTx recorded in Bi+1. It returns the set of
updated key-value pairs Sd

i+2.
The workloads of the OC in any specific round i are

described as follows:
• Receiving witness proofs Wd

i−1 from all shards (where
d ∈ Z) and ordering transactions into the list Li, which
distributes transactions to each shard for execution.

• Receiving sets Sd
i−1 composed of states updated with

cross-shard transactions from all shards and generates a
new set Ui to distribute the workloads of update states to
each shard.

• Receiving subtree T d
i−1 from all shards and calculating

the new state tree Ti.

• Running the consensus algorithm to commit a new block
Bi, which contains Li, Ui and Ti.

E. Performance Analysis

Complexity of Consensus. Without loss of generality,
we calculate the complexity of committing a block in our
proposed system. We denote the committee size, the total
number of nodes in the network, and the block size by
m, n, and b, respectively. Initially, a round of consensus
is required to agree on the proposal block, contributing to
a complexity of O(m2). Subsequently, due to cross-shard
transactions, the execution nodes in each shard must forward
relevant cross-shard transaction information, including witness
and proposal blocks, which is assumed to be of size w. Given
that the number of shards is approximately equal to n/m,
the communication between different shards contributes to
the complexity of O(wn/m). Therefore, the overall com-
plexity is O(m2 + wn/m). In comparison, other sharding
blockchains like RapidChain [37] exhibit a complexity of
O(m2 + bm log n · n/m) = O(m2 + bn log n), while Elas-
tico [35] and OmniLedger [36] show O(m2 + bn), where
O(m2) is for shard consensus and the rest for cross-shard
transaction communication.

Our Porygon has lower complexity due to the efficient
routing of transactions by each shard. In RapidChain, all
committee members need to forward transactions to other
shards. Elastico uses a final committee to aggregate trans-
actions and then send them to all nodes, and OmniLedger
requires node-client interaction within all shards. In contrast,
Porygon simplifies this process by requiring each shard to
forward transactions only once at a time.

Complexity of Storage. We denote the total size of
blockchain information as |B|. In RapidChain and Om-
niLedger, each shard shares this information, resulting in
a complexity of O(m · |B|/n). In contrast, in our system,
stateless nodes only store messages necessary for verification,
leading to a storage complexity of O(1).



V. SECURITY ANALYSIS

This section analyzes the security and liveness of our
system. We present several lemmas to prove the correctness
of separated phases in the pipeline. We first distinguish be-
tween benign committee members and corrupted committee
members. Benign committee members are honest committee
members who connect to at least one honest storage node.
Corrupted committee members include (1) malicious commit-
tee members and (2) honest committee members, who never-
theless connect to malicious storage nodes only. We assume
that the corrupted nodes are uniformly distributed across all
the committees [8], [11]. Honest storage nodes will gossip
all valid messages they have received to the whole network.
Consequently, if a message is uploaded by a benign committee
member to all connected storage nodes, all benign storage
nodes can finally download the same message. However,
honest-yet-corrupted nodes are separated from honest storage
nodes. Malicious storage nodes can drop messages sent from
honest storage nodes or other honest stateless nodes.

We first prove Lemma 1 that all committees, including
the OC and ECs in each shard, have enough benign nodes
to conduct the Ordering Phase and the Execution Phase. To
prove Lemma 1, we use the Kullback-Leibler divergence [44]
to measure the distance between different distributions by
DKL(p||q), i.e., DKL(p||q) = p ln(p/q)+(1−p) ln((1−p)/(1−
q)). The total number of stateless nodes is M . The probability
of each stateless node being selected as a member of a specific
committee is p. The fraction of honest stateless nodes is α,
and the fraction of malicious storage nodes is β. Each stateless
node randomly connects to m storage nodes. Particularly, we
set the average committee size Mc = 3, 500, α = 0.75,
β = 0.5, and m = 20. Note that the committee size can
be decreased to less than 100 in practice while still assuring
security, utilizing the idea of safety-liveness dichotomy [29].
We say that a probability is negligible when the probability is
less than 2−κ, with κ = 30.

Lemma 1. Every committee has at least 2/3 benign nodes,
except those with negligible probability.

Proof. We denote the probability that a stateless node is a
benign node by pg . We have pg = (1 − βm)αp. According
to the Chernoff bound [44], the number of benign stateless
nodes in each committee ng ≥ (pg − ϵg)M , except those
with probability p1 = exp{−DKL(pg − ϵg||pg)M}, with
ϵg ∈ [0, pg]. In particular, we choose ϵg to ensure that each
committee has at least ňg = 2, 225 benign nodes, except
those with negligible probability. Similarly, we denote the
probability that a stateless node is a corrupted node by pc.
We have pc = βmαp + (1 − α)p. The number of corrupted
stateless nodes in each committee nc ≤ (pc + ϵc)M , except
those with probability p2 = exp{−DKL(pc + ϵc||pc)M}, with
ϵc ∈ [0, 1− pc]. We choose ϵc to ensure that each committee
has at most n̂c = 1, 075 nodes, except those with negligible
probability. Since ňg > 2n̂c, we conclude that each committee
has at least a 2/3 fraction of benign members, except those

with negligible probability.

Lemma 2. (Ordering Phase): If a transaction block proposed
by the leader of the OC receives at least Tw witness proofs,
then the transaction block can be included in the output of the
consensus algorithm, except those with negligible probability.

Proof. The threshold Tw can be larger than the upper bound
of the corrupted nodes, e.g., Tw = n̂c + 1. Therefore, the
transaction block that receives at least Tw witness proofs must
be downloaded by at least one benign node of EC. Benign
nodes can upload transaction blocks they have downloaded
to connected storage nodes in case these transaction blocks
are generated by malicious storage nodes and have not been
broadcast to honest storage nodes. As a result, all honest
storage nodes can receive the transaction block, ensuring
that benign nodes in the OC can receive and verify the
witness proofs of the transaction block proposed by the leader.
Moreover, Lemma 1 proves that there are at least 2/3 benign
members in the OC. Hence, such transaction block can be
included in the output of the consensus algorithm as long as
the chosen consensus algorithm assures security.

Lemma 3. (Execution Phase): If OC agrees on a proposal
block, then EC outputs at least ňg identical roots consistent
with the consensus result, except those with negligible proba-
bility.

Proof. The OC agrees on the proposal block and uploads its
commit message to connected storage nodes. Consequently,
all benign nodes in the EC can verify the consensus results
and download the same proposal block and transaction blocks
from honest storage nodes. According to Lemma 1, at least ňg

benign nodes in the EC can download the complete contents of
transaction blocks referred by the proposal block and produce
identical updated Merkle Tree roots through the deterministic
execution process. Note that EC has a higher fault tolerance
of 1/2 after decoupling the Execution Phase from the Ordering
Phase [45]. Hence, ňg benign nodes are enough to assure the
security of the Execution Phase.

Lemma 4. (Commit Phase): If the leader of the OC proposes
a state tree root signed by at least Te EC members, then such a
root will finally be committed through the consensus algorithm,
except those with negligible probability.

Proof. When threshold Te is n̂c +1, at least one benign node
has signed the state tree root. Therefore, such a root is the
correct execution result, since all benign nodes are honest and
hence always follow the system protocol. Moreover, such a
root can be successfully downloaded and agreed upon by at
least 2/3 benign members in the OC, which is similar to the
case in Lemma 2.

We then have the following theorems for the security and
liveness of the proposed Porygon.

Theorem 1 (Security). If the system maintains a consistent
state at the beginning of each round, then the blockchain state



will be updated consistently and correctly after committing the
state tree root.

Proof. A committed state tree root has to satisfy the following
requirements: all related transaction blocks are witnessed by
at least Tw EC members, confirmed by the OC during the
Ordering Phase, signed by at least Te EC members, and
finally agreed upon during the Commit Phase. According
to Lemma 1, each committee satisfies the Byzantine fault
tolerance threshold of 2/3. Therefore, the OC can output the
unique consensus result in each round. According to Lemma 3,
the choice of Te ensures that such a state tree root is the correct
execution result. Hence, there are no two valid-yet-different
roots. The committed root maps to the correct blockchain
states, which are consistent among all benign nodes.

Theorem 2 (Liveness). A transaction block generated by
honest storage nodes will finally be committed.

Proof. If a transaction block is generated by an honest storage
node, it can be downloaded by all benign nodes in ECs
and hence receives at least Tw witness proofs. If the leader
of the OC is benign, it will package the transaction block
in its proposal block. According to Lemmas 2-4, such a
proposal block can be forwarded from the Ordering Phase
to the Commit Phase. As a consequence, the system outputs
an empty block only when a corrupted node is selected as
the leader of the OC. The probability that a consensus leader
is corrupted is 0.25. Hence, the probability that empty blocks
are committed in more than 15 successive rounds is negligible.
When the system selects a benign node as the leader of the
OC, valid transaction blocks can be committed.

VI. EVALUATION

We conduct extensive experiments on an implemented
prototype of Porygon and large-scale simulations with 3D
parallelism to evaluate the effectiveness of our system in
comparison with other representative blockchain systems with
only 1D parallelism.

Implementation and Setup. We implement a prototype of
Porygon on top of six cloud servers, each of which is equipped
with Intel Cascade Lake 3.0GHz 24vCPUs and 48GB RAMs.
This prototype contains instances of two storage nodes and
up to 300 stateless nodes in Golang, with a total codebase of
approximately 8,000 lines. Each storage node is hosted on a
dedicated cloud server, and WebSocket connections facilitate
data synchronization between storage nodes. Transaction data
is stored in MySQL within each storage node. Stateless
nodes are implemented with Docker containers distributed on
four cloud servers. Each stateless node has 500M memory
and 1 MB/s bandwidth, which is compatible with resource-
limited mobile devices [11]. Stateless nodes connect with
storage nodes through HTTP links to run the BA⋆ consensus
protocol and process transactions. Each transaction is about
112 bytes in size. Each transaction block contains about 2,000
transactions and has to receive at least 10 witness signatures
to be considered valid.

To validate Porygon’s performance with a large number of
nodes, we design Python-based simulations involving up to
100,000 nodes. In the simulations, we specifically focus on the
design of 3D parallelism, omitting the intricate engineering as-
pects of distributed architecture between nodes. Based on em-
pirical observations from our prototype system, we exclude the
network restructuring component for simplicity, substituting it
by a fixed interval of 2 seconds plus random numerical values
to model the rapid committee formation process. Additionally,
we fix the latency between storage nodes and stateless nodes
at approximately 0.5 milliseconds, intended to represent the
baseline transmission time for messages.

Comparisons. We implement Blockene [11] based on our
codebase and ByShard [38] based on Tendermint [46]. Block-
ene is a representative of stateless blockchain systems with
storage-consensus parallelism that still sequentially processes
all blocks. ByShard is a representative of sharding systems,
employing a two-phase cross-shard protocol that appoints
the sender shard as the coordinator for cross-shard transac-
tions. Specifically, our implementation of ByShard leverages
a distributed version of the protocol, which exhibits superior
performance compared to linear or centralized protocols, thus
rendering it more symbolic. Byshard features inter-block par-
allelism where transactions are executed by multiple groups
in parallel but still require nodes to store the ever-growing
states. For a fair comparison, we choose the same settings for
our Porygon, Blockene, and Porygon to evaluate performance
scalability. We let the bandwidth and memory setting of nodes
in ByShard be the same as that of Porygon and Blockene,
consequently implementing a lightweight version of ByShard,
namely lightweight ByShard.

A. Scalability Performance

We evaluate the performance scalability of Porygon by
evaluating the throughput and latency of the system when
the number of nodes increases. In prototype experiments,
each shard contains 10 nodes. We then increase the number
of shards from 10 to 30. Consequently, the network scale
increases from 100 nodes to 300 nodes. Figure 7(a) shows a
linearly increased throughput, from about 7,240 Transactions
Per Second (TPS) to 21,090 TPS. This is because inner-block
parallelism can effectively distribute workloads to different
shards. Meanwhile, the latency of creating a new block only
slightly increases from 4.5 seconds to 4.7 seconds when the
network scale increases from 100 nodes to 300 nodes. The
average latency of committing transactions remains stable at
about 13 seconds. This is because the OC only consumes a
stable time interval to run the consensus algorithm to create
new blocks with our new storage-consensus parallelism design.
The user-perceived latency, defined as the duration from the
time when a user sends a message until the time when
they receive confirmation of its inclusion in the blockchain
increases from 20 seconds to 21 seconds. We also evaluate the
system performance through simulations with up to 100,000
stateless nodes. The number of shards increases from 10 shards
to 50 shards, each containing 2,000 stateless nodes. Figure 7(b)



100 150 200 250 300
Number of Nodes

0

5

10

15

20

25
K

TP
S

10

20

30

40

Se
co

nd
s

Throughput
Block Latency
User-perceived Latency

(a) Throughput and latency in
prototype experiments

20000 60000 100000
Number of Nodes

10

20

30

40

50

K
TP

S

10

20

30

40

50

60

Se
co

nd
s

Throughput
Block Latency
User-perceived Latency

(b) Throughput and latency in
simulations

Optimization Approach0

2

4

6

Th
ro

ug
hp

ut
 (K

TP
S)

1D:Baseline
2D:Baseline+Pipelining
3D:Baseline+Pipelining+2 Shards
3D:Baseline+Pipelining+5 Shards

(c) Optimization effect in proto-
type experiments

Optimization Approach0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (K

TP
S)

1D:Baseline
2D:Baseline+Pipelining
3D:Baseline+Pipelining+10 Shards
3D:Baseline+Pipelining+20 Shards

(d) Optimization effect in simu-
lations

Fig. 7: Performance of Porygon under different settings

50 100 150 200 250 300
Number of Nodes

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (K

TP
S)

Porygon
ByShard (Lightweight)
Blockene

(a) Throughput comparison in
prototype experiments

200 400 600 800 1000
Number of Nodes

0
10
20
30
40
50
60
70
80

Th
ro

ug
hp

ut
 (K

TP
S)

Porygon
ByShard (Lightweight)
Blockene

(b) Throughput comparison in
simulations

0 2 4 6 8
Throughput (KTPS)

0

3

6

9

12

15

18

La
te

nc
y 

(s
ec

)

Porygon
ByShard (Lightweight)
Blockene

(c) Throughput versus Latency
(# of nodes = 100)

5 10 15
Time (sec)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (K

TP
S)

Porygon
Blockene

(d) Throughput under varied
participating time of nodes

Fig. 8: Performance comparison between different systems
depicts the throughput and the latency of simulations. The
throughput increases from 8,310 TPS to 38,940 TPS, while
the latency slightly increases from 7.8 seconds to 8.3 seconds,
and the user-perceived latency increases from 33 seconds to 35
seconds. The results demonstrate Porygon’s high scalability.
Its throughput increases with the increased network scale (i.e.,
an increased number of nodes) even when each shard has a
large size to assure security.

We evaluate the effectiveness of the parallelization mech-
anisms (i.e., pipelining and sharding) of our Porygon with
two more dimensional parallelisms. Figure 7(c) demonstrates
the throughput of our implementation when applying different
parallelization approaches. We consider a simplified version
of Porygon as the 1D parallelism baseline without pipelining
and sharding functions. The baseline is composed of 2 storage
nodes and 10 stateless nodes. The baseline system achieves
740 TPS. We then introduce pipelining and sharding functions
to the baseline system, in which each shard contains 10
more nodes. Results show that pipelining can increase the
throughput of the baseline to 1,020 TPS. This is because
inter-block parallelism can increase the number of transac-
tions that the system can commit each time (as indicated in
§ IV-C2). Moreover, inner-block parallelism further speeds up
the process by reducing the time of executing transactions with
appropriate cross-shard coordination (as shown in § IV-D).
Figure 7(d) demonstrates the effectiveness of inter-block and
inner-block parallelism in a larger scale network by simu-
lations. Particularly, similar to prototype experiments, better
performance is achieved by applying the pipelining function

and adding more shards. In summary, both experiments and
simulations further confirm the effectiveness of our design.

B. Performance Comparison

We compare Porygon with representative blockchain sys-
tems only with 1D parallelism: ByShard [38] and Block-
ene [11]. We first conduct prototype experiments to evaluate
Porygon, ByShard, and Blockene in terms of the throughput
when the number of nodes increases from 50 nodes to 300
nodes. Each shard in both ByShard and Porygon has 10
nodes. Figure 8(a) shows that the throughput of ByShard
increases from about 2,260 TPS to 9,150 TPS. Meanwhile,
the throughput of Blockene remains at about 750 TPS, due
to the lack of further parallelism among participating nodes
of Blockene. By contrast, our Porygon achieves a throughput
of more than 21,090 TPS with 300 nodes, which is much
higher than ByShard and Blockene. Figure 8(b) also com-
pares our Porygon with ByShard and Blockene in large-scale
simulations. The number of nodes increases from 100 nodes
to 1,000 nodes. When the network scale grows, our Porygon
can achieve the fastest throughput increment, i.e., increasing
from 8,760 TPS to 57,220 TPS, further demonstrating the best
scalability of our Porygon among all the methods.

Figure 8(c) compares Porygon with ByShard and Blockene
in terms of throughput versus latency. We submit transac-
tions to the implemented prototype of Porygon, ByShard,
and Blockene with varied frequencies. We then record the
corresponding throughput and latency. All the three systems
are tested with 100 nodes. Both Porygon and ByShard are



5 10 15 20
Block Heights

5

10

15

20

25

30
St

or
ag

e 
(M

B
)

ByShard
Porygon

(a) Storage consumption of
different systems

Witness Ordering Execution Full Node0.0

0.1

0.2

0.3

0.4

0.5

N
et

w
or

k 
U

sa
ge

 (M
B

)

Download
Upload

(b) Network usage of different
phases/nodes

Fig. 9: Resource consumption of different systems (where #
of nodes = 100)
assigned with 10 shards. We observe that Porygon achieves
a higher capacity for processing transactions than ByShard
and Blockene even though Porygon has longer latency at
first, mainly caused by the communication latency between
storage nodes and stateless nodes. This can be attributed to
the 3D parallelism of our Porygon, thereby achieving high
throughput while maintaining moderate latency. Moreover,
Figure 8(d) plots the throughput of Porygon and Blockene with
the varied time of nodes staying in the network. Committee
members in Blockene have to sequentially process 50 blocks
before reconfiguration. In Porygon, committee members stay
in the network for 3 rounds. When stateless nodes only
stay in the blockchain system for a short period, Blockene
encounters a higher probability of execution failure as nodes
in Blockene have a longer transaction processing cycle. As
a result, committees have to commit empty blocks, thereby
compromising system performance. In comparison, Porygon
assigns a shorter lifecycle for participating nodes due to
our inter-block parallelism design. Hence, Porygon is quite
robust to the scenario when the network demands frequent
reconfigurations (e.g., nodes frequently joining or leaving).

Building upon insights from previous studies [47], [48],
we conducted additional simulations to assess how different
cross-shard transaction ratios affect system throughput and
latency. Table I shows that throughput decreases from 9,179
to 8,810 TPS, and latency slightly increases from 7.6 to 7.9
seconds in a 10-shard setting when the cross-shard transaction
ratio increases from 0.5 to 1.0. These findings showcase
our system’s adaptability to various datasets in cross-shard
systems.

C. Resource Consumption

We next evaluate the resource consumption of stateless
nodes. In particular, we evaluate the storage and network
consumption of stateless nodes in comparison to a full-node
scheme (i.e., ByShard). We first compare the increment of
storage consumption between ByShard and Porygon as the
block height increases, as depicted in Figure 9(a). Blocks in
both systems contain about 1,000 transactions. In ByShard,
full nodes must store complete block contents. Consequently,
the storage consumption significantly increases with constantly
increased new blocks. By comparison, stateless nodes in
Porygon only store messages necessary for verification, such

TABLE I: Performance comparison under different cross-shard
transaction ratios

Ratio 0.5 0.7 0.9 0.95 1.0

TPS 9179 9015 8911 8867 8810
Latency(s) 7.60 7.71 7.83 7.84 7.89

as the block header and the public keys of committee members,
which remain at about 5 MB.

We also measure the network usage of different phases in
Porygon in comparison to the ByShard full node. The result is
reported in Figure 9(b). Both Porygon and ByShard are tested
with 10 shards and 100 nodes. A full node in ByShard has to
spend bandwidth resources on downloading transactions and
blocks within each round, which takes about 1.7 seconds. In
comparison, Porygon can achieve lower per-node overhead by
distributing network usage among different phases and differ-
ent committees. The time interval for each phase in Porygon is
1.7 seconds on average. In the Witness Phase, stateless nodes
in the EC download transactions and upload corresponding
signatures. In the Ordering Phase, stateless nodes in the OC
replicate signatures of EC and lists of transaction blocks. In
the Execution Phase, stateless nodes in EC download the latest
block and required states, and upload updated states. Note that
transactions downloaded in the Witness Phase do not have to
be downloaded twice. The network usage for each phase drops
by 50% to 80% compared with full nodes. The result verifies
that our 3D parallelism does not impose additional overhead
on the stateless nodes.

VII. CONCLUSION

We present Porygon, a novel stateless blockchain that
enhances performance through three-dimensional parallelism.
Specifically, Porygon comprises stateless nodes and storage
nodes, responsible for transaction execution and state storage,
respectively. Secondly, we devise a fine-grained transaction-
processing pipeline to achieve inter-block parallelism. Finally,
we introduce a sharding mechanism to parallelize transaction
execution for inner-block parallelism. To prove the perfor-
mance improvement brought by our system, we conduct
extensive experiments and compare it with other related
blockchain systems focusing on scaling blockchain in both
realistic network environments and simulations. Experimental
results demonstrate that our system achieves higher throughput
i.e., 2.3× improvement of sharding systems and 20× improve-
ment of stateless systems, while also maintaining low storage
consumption and network usage.

REFERENCES

[1] P. Sangha, V. Pureswaran, , and S. Soman, “Advancing global trade
with blockchain,” IBM Research Insights, 2020. [Online]. Available:
https://www.ibm.com/downloads/cas/WVDE0MXG

[2] V. Gaur and A. Gaiha, “Building a Transparent Supply
Chain,” Harvard Business Review, May 2020. [Online]. Available:
https://hbr.org/2020/05/building-a-transparent-supply-chain

[3] J. Morey, “The Future Of Blockchain In Health-
care,” Forbes Innovation, Oct 2021. [Online]. Avail-
able: https://www.forbes.com/sites/forbestechcouncil/2021/10/25/the-
future-of-blockchain-in-healthcare/



[4] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “CAPER: A
cross-application permissioned blockchain,” Proc. VLDB Endow.,
vol. 12, no. 11, pp. 1385–1398, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1385-amiri.pdf

[5] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy,
“Blockchaindb - A shared database on blockchains,” Proc. VLDB
Endow., vol. 12, no. 11, pp. 1597–1609, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1597-el-hindi.pdf

[6] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and
P. Jayachandran, “Blockchain meets database: Design and
implementation of a blockchain relational database,” Proc. VLDB
Endow., vol. 12, no. 11, pp. 1539–1552, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1539-nathan.pdf

[7] K. Babel, P. Daian, M. Kelkar, and A. Juels, “Clockwork finance: Auto-
mated analysis of economic security in smart contracts,” in 2023 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2023, pp. 622–639. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00036

[8] C. Xu, C. Zhang, J. Xu, and J. Pei, “Slimchain: Scaling blockchain trans-
actions through off-chain storage and parallel processing,” Proceedings
of the VLDB Endowment, vol. 14, no. 11, pp. 2314–2326, 2021.

[9] B. Bunz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light
clients for cryptocurrencies,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 928–946.

[10] T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh, and
D. Song, “ZkBridge: Trustless Cross-Chain Bridges Made Practical,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’22, 2022, p. 3003–3017.

[11] S. Satija, A. Mehra, S. Singanamalla, K. Grover, M. Sivathanu,
N. Chandran, D. Gupta, and S. Lokam, “Blockene: A high-throughput
blockchain over mobile devices,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 567–582. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/satija

[12] M. Campanelli, A. Nitulescu, C. Ràfols, A. Zacharakis, and A. Zapico,
“Linear-map vector commitments and their practical applications,” in
Advances in Cryptology–ASIACRYPT 2022: 28th International Confer-
ence on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, December 5–9, 2022, Proceedings, Part IV.
Springer, 2023, pp. 189–219.

[13] M. J. Amiri, Z. Lai, L. Patel, B. T. Loo, E. Lo, and W. Zhou, “Saguaro:
An edge computing-enabled hierarchical permissioned blockchain,” in
39th IEEE International Conference on Data Engineering, ICDE 2023,
Anaheim, CA, USA, April 3-7, 2023. IEEE, 2023, pp. 259–272.
[Online]. Available: https://doi.org/10.1109/ICDE55515.2023.00027

[14] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and
B. C. Ooi, “Towards scaling blockchain systems via sharding,” in
Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 123–140. [Online]. Available:
https://doi.org/10.1145/3299869.3319889

[15] W. Wang, S. Deng, J. Niu, M. K. Reiter, and Y. Zhang, “ENGRAFT:
Enclave-guarded Raft on Byzantine Faulty Nodes,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 2841–2855.

[16] Y. Yan, C. Wei, X. Guo, X. Lu, X. Zheng, Q. Liu, C. Zhou,
X. Song, B. Zhao, H. Zhang, and G. Jiang, “Confidentiality support
over financial grade consortium blockchain,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 2227–2240. [Online]. Available:
https://doi.org/10.1145/3318464.3386127

[17] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D.
Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Mu-
ralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference on,
2018, p. 30.

[18] J. Qi, X. Chen, Y. Jiang, J. Jiang, T. Shen, S. Zhao, S. Wang,
G. Zhang, L. Chen, M. H. Au et al., “BIDL: A high-throughput, low-
latency permissioned blockchain framework for datacenter networks,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021, pp. 18–34.

[19] L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse, “Disperse-
dLedger: High-Throughput Byzantine Consensus on Variable Bandwidth
Networks,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 493–512.

[20] Z. Peng, Y. Zhang, Q. Xu, H. Liu, Y. Gao, X. Li, and G. Yu,
“Neuchain: A fast permissioned blockchain system with deterministic
ordering,” Proc. VLDB Endow., vol. 15, no. 11, p. 2585–2598, jul
2022. [Online]. Available: https://doi.org/10.14778/3551793.3551816

[21] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag bft protocols made practical,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 2705–2718. [Online]. Available:
https://doi.org/10.1145/3548606.3559361

[22] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you need
is dag,” in Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, 2021, pp. 165–175.

[23] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “Resilientdb:
global scale resilient blockchain fabric,” Proc. VLDB Endow.,
vol. 13, no. 6, p. 868–883, feb 2020. [Online]. Available:
https://doi.org/10.14778/3380750.3380757

[24] S. Gupta, J. Hellings, and M. Sadoghi, “Rcc: Resilient
concurrent consensus for high-throughput secure transaction
processing,” in 2021 IEEE 37th International Conference on
Data Engineering (ICDE). Los Alamitos, CA, USA: IEEE
Computer Society, apr 2021, pp. 1392–1403. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICDE51399.2021.00124

[25] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, “Proof-of-
execution: Reaching consensus through fault-tolerant speculation,”
in Proceedings of the 24th International Conference on Extending
Database Technology, EDBT 2021, Nicosia, Cyprus, March 23 - 26,
2021, Y. Velegrakis, D. Zeinalipour-Yazti, P. K. Chrysanthis, and
F. Guerra, Eds. OpenProceedings.org, 2021, pp. 301–312. [Online].
Available: https://doi.org/10.5441/002/edbt.2021.27

[26] X. Qi, Z. Chen, H. Zhuo, Q. Xu, C. Zhu, Z. Zhang, C. Jin,
A. Zhou, Y. Yan, and H. Zhang, “Schain: Scalable concurrency
over flexible permissioned blockchain,” in 39th IEEE International
Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA,
April 3-7, 2023. IEEE, 2023, pp. 1901–1913. [Online]. Available:
https://doi.org/10.1109/ICDE55515.2023.00148

[27] M. Fang, X. Zhou, Z. Zhang, C. Jin, and A. Zhou, “Seframe: An
sgx-enhanced smart contract execution framework for permissioned
blockchain,” in 38th IEEE International Conference on Data
Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-
12, 2022. IEEE, 2022, pp. 3166–3169. [Online]. Available:
https://doi.org/10.1109/ICDE53745.2022.00289

[28] M. Fang, Z. Zhang, C. Jin, and A. Zhou, “High-performance smart
contracts concurrent execution for permissioned blockchain using sgx,”
in 2021 IEEE 37th International Conference on Data Engineering
(ICDE), 2021, pp. 1907–1912.

[29] B. David, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi, “Gear-
box: Optimal-size shard committees by leveraging the safety-liveness
dichotomy,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 683–696.

[30] Z. Cai, J. Liang, W. Chen, Z. Hong, H.-N. Dai, J. Zhang, and Z. Zheng,
“Benzene: Scaling blockchain with cooperation-based sharding,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 2, pp.
639–654, 2022.

[31] J. Zhang, Z. Hong, X. Qiu, Y. Zhan, S. Guo, and W. Chen, “Skychain:
A deep reinforcement learning-empowered dynamic blockchain sharding
system,” in Proceedings of the 49th International Conference on Parallel
Processing, 2020, pp. 1–11.

[32] M. J. Amiri, D. Agrawal, and A. El Abbadi, SharPer: Sharding
Permissioned Blockchains Over Network Clusters. New York, NY,
USA: Association for Computing Machinery, 2021, p. 76–88. [Online].
Available: https://doi.org/10.1145/3448016.3452807

[33] Y. Zhang, S. Pan, and J. Yu, “Txallo: Dynamic transaction
allocation in sharded blockchain systems,” in 39th IEEE International
Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA,
April 3-7, 2023. IEEE, 2023, pp. 721–733. [Online]. Available:
https://doi.org/10.1109/ICDE55515.2023.00390

[34] P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, and H. Zhang,
“Meepo: Sharded consortium blockchain,” in 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April



19-22, 2021. IEEE, 2021, pp. 1847–1852. [Online]. Available:
https://doi.org/10.1109/ICDE51399.2021.00165

[35] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 17–30.

[36] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018,
pp. 583–598.

[37] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
Blockchain via Full Sharding,” in CCS ’18 Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 931–948.

[38] J. Hellings and M. Sadoghi, “ByShard: Sharding in a Byzantine Envi-
ronment,” Proc. VLDB Endow, vol. 14, no. 11, p. 2230–2243, jul 2021.

[39] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, 2017, pp. 51–68.

[40] T. Alves, “TrustZone : Integrated Hardware and Software Security,”
White Paper, 2004.

[41] S. Pinto and N. Santos, “Demystifying ARM TrustZone: A
Comprehensive Survey,” ACM Comput. Surv., vol. 51, no. 6,
jan 2019. [Online]. Available: https://doi.org/10.1145/3291047

[42] G. Pı̂rlea, A. Kumar, and I. Sergey, “Practical smart contract sharding
with ownership and commutativity analysis,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, ser. PLDI 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1327–1341. [Online].
Available: https://doi.org/10.1145/3453483.3454112

[43] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), 1999, pp. 120–130.

[44] W. Mulzer, “Five proofs of chernoff’s bound with applications,” arXiv
preprint arXiv:1801.03365, 2018.

[45] S. Das, V. Krishnan, and L. Ren, “Efficient cross-shard transaction
execution in sharded blockchains,” arXiv preprint arXiv:2007.14521,
2020.

[46] D. Cason, E. Fynn, N. Milosevic, Z. Milosevic, E. Buchman, and
F. Pedone, “The design, architecture and performance of the tendermint
blockchain network,” in 2021 40th International Symposium on Reliable
Distributed Systems (SRDS), 2021, pp. 23–33.

[47] J. Zhang, W. Chen, S. Luo, T. Gong, Z. Hong, and A. Kate, “Front-
running attack in sharded blockchains and fair cross-shard consensus.”
NDSS, 2024.

[48] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo,
“Brokerchain: A cross-shard blockchain protocol for account/balance-
based state sharding,” in IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, 2022, pp. 1968–1977.


