
PrettySmart: Detecting Permission Re-delegation Vulnerability
for Token Behaviors in Smart Contracts

Zhijie Zhong
Sun Yat-sen University

Zhuhai, China
zhongzhj3@mail2.sysu.edu.cn

Zibin Zheng∗

Sun Yat-sen University
Zhuhai, China

zhzibin@mail.sysu.edu.cn

Hong-Ning Dai
Hong Kong Baptist University

Hong Kong, China
hndai@ieee.org

Qing Xue
Sun Yat-sen University
Guangzhou, China

xueq25@mail2.sysu.edu.cn

Junjia Chen
Sun Yat-sen University
Guangzhou, China

chenjj275@mail2.sysu.edu.cn

Yuhong Nan
Sun Yat-sen University

Zhuhai, China
nanyh@mail.sysu.edu.cn

ABSTRACT

As an essential component in Ethereum and other blockchains,

token assets have been interacted with by diverse smart contracts.

Effective permission policies of smart contracts must prevent to-

ken assets from being manipulated by unauthorized adversaries.

Recent efforts have studied the accessibility of privileged functions

or state variables to unauthorized users. However, little attention is

paid to how publicly accessible functions of smart contracts can be

manipulated by adversaries to steal users’ digital assets. This attack

is mainly caused by the permission re-delegation (PRD) vulnera-

bility. In this work, we propose PrettySmart, a bytecode-level

Permission re-delegation vulnerability detector for Smart contracts.

Our study begins with an empirical study on 0.43 million open-

source smart contracts, revealing that five types of widely-used

permission constraints dominate 98% of the studied contracts. Ac-

cordingly, we propose a mechanism to infer these permission con-

straints, as well as an algorithm to identify constraints that can be

bypassed by unauthorized adversaries. Based on the identification

of permission constraints, we propose to detect whether adversaries

could manipulate the privileged token management functionali-

ties of smart contracts. The experimental results on real-world

datasets demonstrate the effectiveness of the proposed PrettyS-

mart, which achieves the highest precision score and detects 118

new PRD vulnerabilities.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Smart Contract, Permission Control, Vulnerability Detection

∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639140

ACM Reference Format:

Zhijie Zhong, Zibin Zheng, Hong-NingDai, QingXue, Junjia Chen, and Yuhong

Nan. 2024. PrettySmart: Detecting Permission Re-delegation Vulnerability

for Token Behaviors in Smart Contracts. In 2024 IEEE/ACM 46th International

Conference on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Por-

tugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.

3639140

1 INTRODUCTION

The concept of cryptocurrencies has been prevailing with the devel-

opment of blockchain technology. Since only a few cryptocurrencies

are natively supported by blockchains (e.g., Bitcoin and Ethereum),

a variety of tokens have been developed on top of smart contracts

to meet the need for customized asset management. Tokens have

cultivated an enormous ecosystem on Ethereum and many other

similar blockchains. In February 2023, the circulating market capi-

talization of the top-10 tokens accounted for more than 230 billion

USD across the blockchains [6]. Correspondingly, numerous smart

contracts have been developed for managing users’ token assets,

such as decentralized finance (DeFi), games, digital wallets, cross-

chain exchanges, etc. Since these smart contracts have been granted

access to users’ digital assets, their permissions should be properly

assigned to prevent malicious attackers from manipulating their

privileged fund-transferring functionalities.

Therefore, ensuring the appropriate permission management of

these smart contracts is crucial. Many recent research endeavors

have been made to detect permission vulnerabilities for smart con-

tracts. Although previous studies [17, 19, 31, 36] consider whether

the functions or state variables in smart contracts are accessible

to attackers, few of them consider how accessible functions can be

manipulated by the attackers for malicious use. The latter question

plays an important role in the permission management of smart

contracts and may consequently incur a severe financial loss if it

is not properly addressed. For example, it was reported in October

2022 [4] that a cross-chain decentralized exchange, named Tran-

sitSwap, was hacked for an estimated 21 million USD. Considering

this real-world contract as shown in Figure 1, the attacker launched

the attack by calling a publicly accessible function in the Tran-

sitSwap smart contract with malicious parameters. After several

internal contract calls in the decentralized application (DApp), the

polluted parameters were propagated to the token transfer function

transferFrom. As a result, the attacker was able to steal digital assets

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639140&domain=pdf&date_stamp=2024-04-12


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhijie Zhong, Zibin Zheng, Hong-Ning Dai, Qing Xue, Junjia Chen, and Yuhong Nan

TransitSwap

Permission man-
agement contract

Router
contracts1. call function with

malicious call data 2. internal call with
polluted parameters

3. Manipulate sensitive function call:
transferFrom(victim, attacker, amt)

Attacker

Victim’s token asset

Polluted parametersP
a

Figure 1: The 2022 TransitSwap hack

from arbitrary users who had previously approved smart contracts

to manage their tokens. The detailed analysis will be given in § 3.

The above problem is caused by the permission re-delegation

(PRD) vulnerability of smart contracts. The PRD vulnerability oc-

curs when an unauthorized attacker exploits an execution path to

manipulate the sensitive parameters of token transfer functions or

state variables in a smart contract with approved privileges. As dis-

closed by multiple reports [2–4], adversaries attempted to exploit

the PRD vulnerabilities of smart contracts to steal user’s token as-

sets. These contracts have involved over 200,000 transactions1 and

caused millions of financial losses for a large number of users [2–4].

More importantly, our detection results reveal that 302 real-world

smart contracts contain the PRD vulnerability (in § 5.2).

However, detecting the PRD vulnerability from token behaviors

is non-trivial due to the following facts: 1) Smart contracts gener-

ally adopt various permission constraints to place restrictions on the

caller’s address or attributes. The developers’ implementations of

these permission constraints are highly diverse due to diverse busi-

ness logic. 2) Permission constraints can be bypassed by an unautho-

rized adversary to access privileged resources. The bypass activity

can be achieved by either manipulating the state variables used for

the permission check or making a cross-address call from a per-

missioned smart contract. Underestimating or overestimating these

permission constraints may result in high false positives. For exam-

ple, a number of existing tools [7, 16, 29, 36] are reported to have

high false positives due to unsatisfactory support of permission

constraints [7, 39]. While techniques such as symbolic execution

and constraint solving can be used for finding a path bypassing the

permission constraints, existing methods [18, 29, 31] suffer from the

path-explosion problem or require efficiency-improving strategies

for effective vulnerability detection [7, 41]. Alternatively, dynamic

methods, such as fuzzing tools, can achieve satisfactory scalability,

but their effectiveness is limited by the test oracle generation for

detecting high-level permission bugs [28].

In this work, we propose a bytecode-level Permission re-delegation

vulnerability detector for Smart contracts (PrettySmart). PrettyS-

mart performs a customized taint analysis to exploit whether the po-

tentially polluted data from an unauthorized user can be propagated

to token transfer functions via key parameters, or be propagated to

privileged state variables. Our analyzer implements the following

mechanisms to detect such vulnerabilities effectively. First, we in-

vestigate how smart contracts enforce permission control policies

by conducting an empirical study on 0.43 million open-source smart

contracts collected from Etherscan [6] till 23/04/2023. It is found

that five types of widely-used permission constraints dominate 98%

1https://etherscan.io/address/0xbaDc0dEfAfCF6d4239BDF0b66da4D7Bd36fCF05A,
https://etherscan.io/address/0xc8d7899f22bc4995c8176e3f2a5ba3f5e87d95e5,
https://etherscan.io/address/0x8dFEB86C7C962577deD19AB2050AC78654feA9F7

of the studied contracts. Based on this observation, We propose to

infer these permission constraints by exploiting the correspond-

ing bytecode instruction sequences and data-flow facts. Moreover,

we propose an algorithm to identify permission constraints that

an unauthorized adversary can bypass. Inferring permission con-

straints, PrettySmart avoids overestimating permissioned execu-

tion paths that are infeasible in an attacking scenario. Recognizing

bypassed permission constraints, PrettySmart avoids underestimat-

ing vulnerable paths. As a result, PrettySmart effectively detects

PRD vulnerabilities. We evaluated our approach on two real-world

datasets, including smart contracts collected from reported vulner-

abilities and SmartBugs-wild public dataset [14]. Results show that

PrettySmart outperforms state-of-the-art approaches by reporting

more vulnerabilities while achieving a higher precision.

In summary, this paper makes the following contributions:

• We conduct a large-scale empirical study to understand how

smart contracts enforce permission policies.

• We propose PrettySmart2, a novel bytecode-level analyzer

to detect PRD vulnerabilities. We design a set of novel mech-

anisms to improve the effectiveness of PrettySmart.

• We apply PrettySmart to real-world smart contracts col-

lected from reported vulnerabilities and SmartBugs-wild

benchmark. Experimental results demonstrate the effective-

ness of PrettySmart in detecting PRD vulnerabilities, as well

as permission constraint inference and bypass analysis.

2 BACKGROUND

This section reviews smart contracts, the Ethereum Request for

Comments (ERC) token standard, and the PRD vulnerability.

Smart Contract and ERC Tokens. Smart contracts are pro-

grams running on virtual machines supported by blockchains, such

as Ethereum Virtual Machine (EVM) for the Ethereum blockchain.

With the help of smart contracts, developers can deploy diverse

applications with complex business logic on top of the blockchain.

Tokens are one of the most influential applications implemented

by smart contracts. To regulate the interaction of tokens and rel-

evant applications, a set of token standards have been proposed.

As one of the most popular token standards on Ethereum, ERC-20

defines the interaction model of tokens by providing six standard

interfaces [5]. Among these interfaces, three of them are designed

for token transfer functionalities as shown in Figure 2. Basically,

A user can transfer his/her tokens by calling the transfer func-

tion. When users join a DApp and allow the application to manage

their assets, they should first call the approve(address _spender,

uint256 _value) function of the corresponding token contract. The

function specifies that the _spender address is allowed by the user

to spend the _value amount of their tokens. Accordingly, an ap-

proved address can spend the tokens on behalf of the user by calling

the transferFrom function. It is worth noting that a considerable

number of users would like to approve an infinite amount of tokens

to their trusted smart contracts (called infinite approval). By infinite

approval, they avoid the trouble of approving each time before use

and thereby can save considerable GAS fees. However, the infinite

approval undermines the safety of users’ token assets. Once the

2available at https://github.com/Z-Zhijie/PrettySmart



PrettySmart: Detecting Permission Re-delegation Vulnerability for Token Behaviors in Smart Contracts ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 function transfer(address _to , uint256 _value)

2 function transferFrom(address _from , address _to , uint256

_value)

3 function approve(address _spender , uint256 _value)

Figure 2: The ERC-20 standard interfaces for token transfers

approved smart contract gets exploited by attackers, all the tokens

belonging to the user can be stolen by the attackers.

Permission Re-delegation Vulnerability. The PRD vulnera-

bility has been previously studied in the context of Android apps [17].

We redefine the PRD vulnerability in smart contracts as follows.

Definition 1. PRD occurs when a smart contract with permis-

sions performs a privileged task for the contract without permissions.

With the prevalence of smart contracts and tokens, PRD also oc-

curs in the context of token management. Consider that an attacker

cannot spend users’ tokens by directly calling the transferFrom(

_from=user, _to=attacker, _value=amount) function when no ap-

provals were made to the address, where the three arguments in-

dicate the token sender, the token receiver, and the send amount.

A DApp is allowed to spend the users’ tokens if she has approved

the address of the DApp. However, the PRD attack can happen

if the attacker exploits an execution path to manipulate the key

arguments of the transferFrom function called by the privileged

DApp. Specifically, if the first argument (_from) and the second

argument (_to) of the function call are assigned to the victim’s ad-

dress and the address controlled by the attacker, then the DApp can

be manipulated to transfer the victim’s token assets to the attacker.

3 MOTIVATION

This section introduces a real-world attack and summarizes the

limitations of prior studies to motivate our work.

Motivating Example. In October 2022, a real-world DApp

named TransitSwapwas hacked for 21 million USD [4]. TransitSwap

has been used for cross-chain token exchanges.When users swap to-

kens in the DApp, they need to first approve the DApp’s Permission

Contract to spend their tokens. After the hacker noticed that there

were insufficient validations for the parameters used in their token

transfer function transferFrom(), he eventually found a path to

manipulate these parameters. Figure 3 shows the core data propaga-

tion path of the attack. When a user swaps tokens in the DApp, the

Proxy Contract with the corresponding CallData needs to be called.

The Proxy Contract then calls the claimtokens() function of the

Router Contract with CallData. The claimtokens() function adopts

a permission constraint (msg.sender == proxy?) to check whether

the contract caller is the Proxy Contract, and next passes the pa-

rameters to the callbytes() function of the Permission Contract.

In the Permission Contract, a similar permission constraint is also

applied to check the caller’s address. If the permission constraint is

passed, the contract further calls the corresponding transferFrom()

function with the parameters received from the Router Contract.

As a result, the attacker may manipulate the parameters of the high-

privileged transferFrom() function by deliberately generating the

initial CallData when entering the Proxy Contract.

Malicious CallData

Proxy Contract Permission Contract

cl
ai
mt
ok
en
s(
)

R R P

Router Contract

ca
ll
by
te
s(
)

P High Privilege Node
R Revert Node

Functions
Data propagationPermission Constraint

passed passed
msg.sender == proxy? msg.sender == router?

En
tra

nc
e 

Fu
nc

tio
n

Smart contract

Figure 3: The core execution path of the TransitSwap attack

We have two observations from the above example: 1) The at-

tack can only succeed in a cross-contract call sequence. Although

callbytes() is a public function, it only accepts calls from the

Router Contract by checking the permission constraint. Effective

detection of this vulnerability requires precise recognition of feasi-

ble call chains for an unauthorized attacker. Unfortunately, these

permission constraints cannot be easily inferred since all of the

involved smart contracts are typically not open-sourced. 2) All of

the functions and state variables on the vulnerable path are also ac-

cessible in a benign method invocation. Since the execution path of a

malicious attack is the same as that in a benign execution, this vul-

nerability cannot be detected by simply checking the accessibility

of specific functions or state variables.

Limitations of Prior Research. The PRD vulnerabilities cannot

be easily detected by off-the-shelf approaches due to the following

intrinsic limitations: (1) Intra-contract analysis. Existing studies

including Securify [36], AChecker [19], and SPCon [28] gener-

ally detect permission bugs by intra-contract analysis instead of

cross-contract analysis. For example, despite the effectiveness in

finding permission bugs by recognizing the inconsistency between

extracted permission strategies and testing results, SPCon [28] can

only be applied to individual contract addresses since its permis-

sion strategies are extracted from limited historical transactions of

those contracts. (2) Flawed detection patterns. The other stud-

ies [19, 28, 29, 31, 36] mainly focus on the accessibility of functions

and state variables. Generally, they detect permission bugs by rec-

ognizing the abnormal accesses of functions or state variables while

neglecting benign-yet-risky method invocations. Hence, these ap-

proaches do not raise alarms due to the second observation.

Although PRD attacks are becoming critical threats to users’

token assets, an effective detection method for detecting this type

of vulnerability is still largely missing in the literature.

4 METHODOLOGY

To overcome the limitations of existing methods, we propose Pret-

tySmart, a bytecode-level cross-contract analyzer for detecting PRD

vulnerabilities of smart contracts. Figure 4 depicts the framework

of PrettySmart. Overall, PrettySmart takes smart contract byte-

code as input and outputs the vulnerable functions. The detection

consists of four stages: 1 Decompilation, 2 Permission constraint

Inference, 3 Cross-Contract Inter-procedural Control flow Graph

(XCFG) Construction and 4 Customized Taint Analysis. Specifi-

cally, PrettySmart starts with the decompilation of smart-contract

bytecode into three-address Intermediate Representation (IR) code.

We then propose an algorithm to infer permission constraints (PCs)



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhijie Zhong, Zibin Zheng, Hong-Ning Dai, Qing Xue, Junjia Chen, and Yuhong Nan

based on a large-scale empirical study. Next, we construct the cross-

contract control-flow graph based on the decompiled results. There-

after, we conduct a two-step taint analysis to 1) recognize which

PCs can be bypassed and which can then be used for identifying

feasible and infeasible entry points in an attacking scenario; and 2)

find whether there is a vulnerable path in smart contracts. The taint

analysis is customized with awareness of the PCs implemented

by the contract. The detailed implementation of PrettySmart is

elaborated as follows.

4.1 Stage 1: Decompilation

Recent studies on EVM decompilers and static analysis have con-

tributed to the decompilation of smart contract bytecode [1, 9, 20,

21, 26]. In this work, we leverage Gigahorse [20, 21, 26] to decom-

pile the bytecode into three-address IR code. Compared with other

decompilers, Gigahorse is reported to have higher performance in

terms of resolving operands, recognizing the entry point of private

functions, and inferring the function boundaries.

4.2 Stage 2: Permission-Constraint Inference

PCs have been widely adopted in smart contracts to control the

accessibility of the corresponding functions. It is non-trivial to

infer these PCs because permission control is highly customized

concerning the diverse business logic of smart contracts. The de-

velopers’ diverse implementations of PCs may result in various

bytecode operations of smart contracts after compilation. To tackle

this challenge, we performed an empirical study to investigate how

developers enforce these PCs and exploit how these PCs work in

the form of EVM operations.

The scope of this study covers all open-source smart contracts on

Ethereum till 23/04/2023. We collected nearly 0.78 million contracts

with source codes via Etherscan [6]. After deduplication, there

are 0.43 million distinct smart-contract source codes. We analyzed

the enforcement of permission control policies w.r.t. the require

statements and the keyword msg.sender. The keyword choice is

motivated by two observations: 1) The require statement in Solidity

is used for checking conditions and throwing an exception if the

check fails. Hence, it becomes a natural choice for implementing

permission checks for smart contracts. For example, a popular im-

plementation of permission check is “require(msg.sender==owner)”

[8], where the msg.sender is the contract caller and the owner is

the owner address. The caller can pass the permission check only

if he/she is the owner of the smart contract. 2) The object of per-

mission control is the contract caller, which is represented by the

msg.sender variable in Solidity. Therefore, we filtered out require

statements that are irrelevant to the contract caller (i.e., require

statements that do not contain the keyword msg.sender). Detailed

analytical results will be reported in § 5. As a result, we analyzed the

functionality of 284,787 permission control statements. We found

that most of the permission control policies implemented for smart

contracts can be divided into the following two categories.

• Address restriction requires the caller’s address to be a specific

address or belong to a specific group. Similar to permissions in

Linux systems, this type of permission policy can be divided into

User (U)-oriented and Group (G)-oriented, where each type has

two implementations according to our study (i.e., two U-oriented

implementations and two G-oriented implementations).

• Data-driven restriction does not restrict the contract caller’s ad-

dress. Instead, it checks whether an attribute of the caller meets

a specific condition, e.g., checking whether the balance of the

caller is larger than a specific value.

In the following, we describe these five types of implementations

and the corresponding EVM operation sequences.

I. The compare2Owner Constraint. The upper part of Fig-

ure 5 shows a code snippet of the compare2Owner Constraint.

The require statement in line 2 checks if the caller address (i.e.,

msg.sender) is the same as a predefined address in a state vari-

able (in line 1). Developers can check the constraint by adding the

require statement to the target function. The lower part of Figure 5

demonstrates the corresponding operation sequence. When the

permission constraint is activated, EVM first loads the owner state

variable and the caller address by using the SLOAD and CALLER oper-

ations. The two variables will be then compared by EQ operation.

Depending on the comparison result, the JUMPI operation continues

the execution or jumps to a path that ends with a REVERT operation.

II. The queryOwner Constraint. This type of permission con-

straint is usually used in the implementation of a Non-Fungible

Token (NFT) smart contract. Each NFT is uniquely identified with

a specific identifier (such as a unique token ID) and each NFT is

associated with an owner address. As illustrated in Figure 6, the

code in line 1 uses a mapping variable nftOwner to record the owner

of each NFT id. The code in line 2 checks if the contract caller is

the owner of the NFT with ID _nftId. It first queries the owner of

the _nftId from the mapping variable nftOwner, then compares it

with the caller’s address msg.sender. The check result is used in a

require statement. Therefore, if the check fails, i.e., the contract

caller is not the owner of the corresponding NFT, the transaction

will be reverted. The lower part of Figure 6 depicts the EVM oper-

ation sequence of this permission constraint. EVM performs the

permission check by first accessing the value in the mapping vari-

able with respect to the key _nftId. It then checks if the owner

is the same as the contract callers. In the low-level execution of

EVM, the storage location of a value in the mapping is calculated

by the hash operation SHA3 with two inputs: the corresponding key

and the storage location of the mapping variable itself. In this case,

the operation takes the nftId and the location of the mapping vari-

able nftOwner as input and outputs their hash value. The value of

nftOwner[_nftId] is loaded by the SLOAD operation from the storage.

An EQ operation is then used to check if it is equal to the caller’s

address CALLER. Depending on the result, the JUMPI operation will

jump to a REVERT operation or continue the following execution.

III. The groupBased Constraint. Another widely-used strat-

egy is the “allowList” constraint, which gives permission to a group

of accounts, where the privileged accounts can be flexibly added,

deleted, or modified. As shown in Figure 7, the smart contract

maintains an allow list for the users by keeping a mapping vari-

able in line 1. The mapping variable associates the address of an

account to a boolean value indicating its permission. If the corre-

sponding value is True, then the account can pass the permission

check in line 2. Similar to the queryOwner constraint, EVM first

accesses the value of the mapping variable with key msg.sender

and then checks whether the boolean value is True. The lower part



PrettySmart: Detecting Permission Re-delegation Vulnerability for Token Behaviors in Smart Contracts ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 4: Framework of PrettySmart

1 address private owner;

2 require(msg.sender == owner);

…EQ
offset SLOAD

CALLER

JUMPI

REVERT
True

Falseowner

msg.sender

Figure 5: Code snippet and corresponding operation se-

quences of the compare2Owner constraint.

1 mapping (uint256 => address) private nftOwner;

2 require(nftOwner[_nftId] == msg.sender);

Figure 6: Code snippet and corresponding operation se-

quences of the queryOwner constraint.

1 mapping(address => bool) private allowlist;

2 require(allowlist[msg.sender ]);

Figure 7: Code snippet and corresponding operation se-

quences of the groupBased constraint.

of Figure 7 illustrates the detailed operation sequence. Specifically,

EVM first calculates the storage location of the boolean variable

allowlist[msg.sender] by a SHA3 operation. The parameters of this

operation are the caller’s address (obtained by the CALLER operation)

and the location of the mapping variable. The output is the hash

value of them. The value of allowlist[msg.sender] is then loaded

by the SLOAD operation and passed to the ISZERO check. Depending

on the check result, the execution will be reverted or continued.

IV. The roleBased Constraint. To support a fine-grained per-

mission control strategy for groups, OpenZepplin provides the

Role-based Access Control Library. As shown in Figure 8, this strat-

egy allows the developer to define a group of roles for using the

smart contract (line 5). Each group is maintained by a struct vari-

able RoleData (line 1). The mapping variable members in the struct

1 struct RoleData {

2 mapping(address => bool) members;

3 bytes32 adminRole;

4 }

5 mapping(bytes32 => RoleData) private _roles;

6 require(_roles[role]. members[msg.sender ]);

Figure 8: Code snippet and corresponding operation se-

quences of the roleBased constraint.

records the account addresses for this role in an allow list man-

ner (line 2). The permission check can be activated by using the

require statement defined in line 6. It checks whether the contract

caller is in the role group. Specifically, when the require state-

ment is executed, EVM will first access the corresponding RoleData

struct variable (i.e., _roles[role]). If the mapping variable in the

struct indicates that the contract caller is in the role group (i.e.,

_roles[role].members[msg.sender] is True), the permission check

is then passed. The lower part of Figure 8 depicts the operation

sequence of this permission constraint. Specifically, EVM will first

find the location of the struct variable (i.e., RoleData) by calculating

the hash of the mapping key (i.e., role) and the storage location of

the mapping variable _roles. Then, an ADD operation is performed

to find the location of the mapping variable members in RoleData, as

the elements of structs are stored one after one in EVM storage. To

get the location of members[msg.sender], the storage location of the

mapping members together with the caller’s address will be passed

to a SHA3 operation. Then, a SLOAD will be used to get the value of

members[msg.sender]. Lastly, EVM will decide to revert or continue

the execution depending on the value of members[msg.sender].

V. The dataDriven Constraint. This type of permission con-

straint does not require the contract caller to be a specific user or

be in a specific group of users. Instead, it checks if an attribute (i.e.,

user’s balance) of the caller meets the requirement. In such cases, a

mapping data structure is a natural choice for storing the attributes

of users since it directly connects the key (user address) and the

value (attributes). For example, line 1 of Figure 9 defines a map-

ping variable balances to store the balance of user accounts. The

permission constraint in line 2 checks if the balance of the caller

balance[msg.sender] is no less than a constant value _value. The

low-level operation sequence is shown in the lower part of Figure 9.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhijie Zhong, Zibin Zheng, Hong-Ning Dai, Qing Xue, Junjia Chen, and Yuhong Nan

1 mapping(address => uint256) balance;

2 require(_value <= balance[msg.sender ]);

Figure 9: Code snippet and corresponding operation se-

quences of the dataDriven constraint.

Similar to the group-based permission constraint, EVM first queries

the mapping value balance[msg.sender]with a SHA3 operation. The

mapping value is then passed to a compare operation such as LT

(Less Than) or GT (Greater Than) to check if the mapping value is

less or greater than a constant value _value. Similarly, EVM will

revert or continue the execution according to the comparison.

Recognizing the corresponding operation sequences in the three-

address code, PrettySmart is able to infer PCs adopted by smart con-

tracts, thereby benefiting the following two analyses: (1) Locating

the permission-dependent variables. PrettySmart can locate

the storage location of the state variable used for the permission

constraint, which can be used as the identity of the state variable.

For simplicity, we call these permission-dependent variables PDVs.

(2) Recognizing the PCs that can be bypassed. PrettySmart

can identify which of these permission-dependent variables can

be changed by an unauthorized attacker and thus recognize which

of the PCs can be bypassed. In this way, PrettySmart can avoid

making false positives by filtering out infeasible entry points.

4.3 Stage 3: XCFG Construction

In this stage, we build the XCFG from the decompiled three-address

code. We adopt the XCFG building algorithm used in SmartDag-

ger [27] and Clairvoyance [39]. The key idea is to connect the CFGs

of each individual contract function by adding function call edges.

Safe Safe

P0

Taint PDV1
High

privilege Safe

P2P1

High
privilege

adversary

If PDV1 is tainted, then P1 could be bypassed

Detecting bypass permissions

Permissionless entry
point
Call chains

P Permissioned Entry
point w.r.t. PDV P Bypassed Permissioned 

Entry point
Call path Attack path

Safe Safe

P0

Taint PDV1 High
privilege Safe

P2P1

High
privilege

adversaryDetecting PRD Vulnerabilities

(a)

(b)

Figure 10: Taint analysis with awareness of the permission

constraint: (a) detecting bypassed permission constraints,

and (b) detecting PRD vulnerabilities based on the permis-

sionless or permissioned-but-bypassed entry points.

Specifically, our XCFG analysis is mainly composed of two oper-

ations: 1) Adding control flow edges between intra-contract func-

tions (inter-procedural analysis). The destination of intra-contract

function calls can be determined by the JUMP destination of the

bytecode. Therefore, the callee function can be directly found by

the JUMP operands and the decompilation results of Gigahorse [20];

2) Adding control flow edges between smart contract functions in

different addresses (cross-contract analysis). The destination of cross-

contract function calls in EVM is determined by the callee’s address

and the function signature hash (i.e., the first 4 bytes of the hash of

the function signature). For the off-chain developing and testing

process, the callee’s address can be manually given. For on-chain

smart contracts, the callee’s address is either stored in an on-chain

state variable slot or given as a parameter. The former case can be

referred to by querying the state variable in the corresponding slot

through on-chain storage query services such as ethereum.storage.

Similar to prior research such as Sailfish [7], Smartdagger [27], and

Pluto [30], PrettySmart cannot recover those contract addresses

given at runtime. Recovering such addresses is non-trivial as it

requires runtime simulation or in-depth analysis over the potential

call addresses. Admittedly, in this case, Prettysmart may miss some

of the PRD. We leave this as part of the future work. Given the

callee’s address, the destination node of the cross-contract call can

be found by comparing the callee’s public function signature hash

and the signature hash given in the function call. We note that EVM

bytecode does not contain explicit function call information. An

external function call is executed by a CALL operation with seven

stack inputs. The function signature hash and corresponding pa-

rameters are stored in the memory address indicated by the 4th

input argsOffset and the 5th input argsSize. Therefore, we can

identify the function signature hash by tracking the values stored

in the corresponding address argsOffset. In this way, we combine

individual CFGs to get a cross-contract inter-procedural CFG.

4.4 Stage 4: Customized Taint Analysis

In this stage, we perform a customized taint analysis with awareness

of the PCs adopted by the entry function. As shown in Figure 10,

the detection process contains two rounds of taint analysis: R1)

identifying PCs that can be bypassed, and R2) detecting vulnera-

bility based on the permissionless or permissioned-but-bypassed

entry points. The first round is generic for all smart contracts and

the second round is PRD-specific.

R1) Bypassed Permission Detection. We first locate PDV for

each PC. We then exploit taint analysis to recognize which PDV

could be modified by adversaries. According to the patterns de-

scribed in § 4.2, each of the PCs depends on one or several state

variables (i.e., PDVs). These PDVs can be uniquely identified by

the storage locations of the corresponding state variables. We iden-

tify the storage location of the PDV as follows: 1) For the com-

pare2Owner constraints, the PDVs are of the address type (e.g.,

address owner in Figure 5). It can be directly read from a constant

storage location. The storage location of the corresponding PDV

can be identified by recognizing the operand used for the SLOAD

operation. 2) For the other constraints, the PDVs are stored in map-

ping data structures. Generally, for a mapping variable map<key,

value>, EVM reads the storage location of a mapping value through



PrettySmart: Detecting Permission Re-delegation Vulnerability for Token Behaviors in Smart Contracts ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Key components of the first round taint analysis

(1) msg.sender and tx.origin operations;

Sources (2) input of the entry point function;

(3) return data of external calls with undetermined address.

Propagation rules

(1) data assignment and algorithmic operation;

(2) SSTORE/MSTORE tainted variables to storage or memory location;

(3) SLOAD/MLOAD tainted storage or memory locations to variables;

(4) external function calls with tainted parameters.

Sinks (1) SSTORE to locations of PDVs.

a SHA3 operation with two parameters: the map<key and the identity

of the mapping variable itself. Therefore, we can mark the location

of the corresponding PDV as SHA3(key,map_id).

Given the storage locations of PDVs, we leverage taint analy-

sis to detect whether untrusted inputs can be assigned to these

PDVs. As shown in Table 1, the taint sources are chosen as input

values determined by untrusted users such as the contract caller’s

address msg.sender. The taint propagation rules are data flow rules

as used in Clairvoyance [39] and Smartdagger [27]. Taint sinks

are chosen as SSTORE operation to the storage locations of PDVs

since SSTORE is the only way to modify state variables in EVM [37].

If the taint sources are propagated to taint sinks, unauthorized

users can set the PDV as malicious value, e.g., setting the address

owner variable in Figure 5 as an adversary-controlled address or in-

creasing their account balances. Hence, they can satisfy the permis-

sion constraint “require(msg.sender==owner)” or “require(_value

<= balances[msg.sender])”. In other words, an adversary can by-

pass those PCs dependent on these PDVs.

We propose Algorithm 1 for permission bypass recognition. The

algorithm takes four inputs: 1) the set of PCs P = {𝑃𝑐 (𝑝)}, where
𝑃𝑐 (𝑝) is a permission constraint dependent on PDV 𝑝; 2) the set
of permission-free entry points Efree, i.e., publicly available entry

points without PCs; 3) the set of permissioned entry points Ep, i.e.,

entry points with at least one PCs, where each permissioned entry

point 𝑒 ∈ Ep is labeled with a Permission Constraint 𝑃𝑐 (𝑝), indicat-
ing the implemented permission constraint and its corresponding

PDV; and 4) XCFG. The output of Algorithm 1 is the set of all the

PCs 𝑃bypassed, which can be bypassed.

Algorithm 1 first records those entry points with no PCs as “to be

visited” (line 1). The bypassed permission constraint set 𝑃bypassed is
initialized as an empty set (line 2). Then, Algorithm 1 traverses all

the entry points in the ToVisit set T (line 3-4). We traverse XCFG

to get the inter- and intra-contract paths starting from each entry

point and perform taint propagation analysis (line 5-8). As dis-

cussed, if the taint source is propagated to PDV 𝑝 , an adversary

can modify the PDV as a malicious value to bypass the permission

constraint. In this case, Algorithm 1 appends these bypassed PCs

to 𝑃bypassed (line 9-11). Additionally, an adversary can further ex-

ploit these permissioned-but-bypassed entry points to taint other

PDVs, thereby bypassing other PCs. Therefore, Algorithm 1 also

appends these entry points “to be visited” (line 12). In this manner,

Algorithm 1 can further exploit all the PCs that can be bypassed

and collect them into 𝑃bypassed (line 17).
R2) PRD Detection. Given the bypassed permission constraint

set, we can identify feasible entry points for an unauthorized at-

tacker. Specifically, we exploit whether the key parameters of sen-

sitive function calls or privileged state variables can be tainted.

Algorithm 1: Bypassed Permission Detection

Input: P = {𝑃𝑐 (𝑝 ) }: PC Set P containing constraint 𝑃𝑐 (𝑝 ) ;
Efree: Permission-free Entry Points set;
Ep: Permissioned Entry Points set;
XCFG: The cross-contract inter-procedural CFG

Output: 𝑃bypassed: bypassed Permission Constraints

1 T← Efree //T is a set of point to be visited

2 𝑃bypassed ← ∅ //Initialize 𝑃bypassed to be empty

3 while T is not empty do
4 𝑒 ← T.pop() //get a entry point 𝑒
5 Π ← xCFG.getPathsFrom(e)
6 for each path 𝜋 ∈ Π do
7 𝑠 ← 𝜋.getTaintSource()
8 𝜋.taintPropagtion(s)
9 for each 𝑃𝑐 (𝑝 ) ∈ P do
10 if 𝑝 is tainted then
11 𝑃bypassed.add(𝑃𝑐 (𝑝 ))
12 T.add{𝑒 | (𝑒, 𝑃𝑐 (𝑝 ) ) ∈ E𝑝 }

13 end

14 end

15 end

16 end

17 return 𝑃bypassed

For a sensitive function call, its taint sink is the key parameter of

the function. We identify the function call information by tracking

the 4th stack input (i.e., argsOffset) of the EVM CALL operation (as

discussed in § 4.3). To recognize sensitive function calls, we track

the values stored in the corresponding memory address argsOffset

and check 1) whether the function signature matches the target

functions (i.e., the signatures of transferFrom, transfer, approve);

and 2) whether the parameters of the corresponding functions can

be tainted from the taint source (the untrusted input). For example,

if the parameters _from and _to in the transferFrom function are

tainted, the adversary can call transferFrom with parameters de-

termined by attacker-controlled input. Therefore, the attacker can

transfer the users’ token assets to an attacker-controlled address.

For privileged state variables, we assume that the state variables

used for the dataDriven PCs are privileged for token behaviors.

Because most of these variables are used for storing the user’s

token balance or approved token amount. If these variables are

tainted from untrusted input, adversaries can simply modify these

variables to change the balance of the users. There are situations

where users deposit money into the contract to change their balance.

Therefore we omit the state variables sinks in widely-used deposit

functions such as fallback function. In this way, the taint analysis

result in the bypass recognition can be reused in detecting the

manipulation of privileged state variables.

To this end, we can recognize whether an unauthorized attacker

can manipulate the parameters of token transfer functions or privi-

leged state variables. Thus, the PRD vulnerability can be detected.

5 EVALUATION

In this section, we evaluate PrettySmart to answer the following

three research questions (RQs):

(RQ1): How do smart contracts enforce permission control policies

and how representative are the five types of permission

constraints introduced by PrettySmart?

(RQ2): How PrettySmart performs in detecting the Permission

Re-delegation vulnerability?



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhijie Zhong, Zibin Zheng, Hong-Ning Dai, Qing Xue, Junjia Chen, and Yuhong Nan

Table 2: Distribution of permission constraints in all require

statements that occur more than 200 (or 100) times

Type # >200 # >100
% Per. No. % Per. No.

compare2Owner 61.78% 175,941 60.87% 186,831
dataDriven 29.44% 83,841 29.08% 89,245
groupBased 4.40% 12,531 5.31% 16,314
roleBased 1.87% 5,326 1.92% 5,897

queryOwner 1.55% 4,414 1.58% 4,852
others 0.97% 2,762 1.24% 3,804

# total - 284,787 - 306,943

(RQ3): How effective is the proposed Permission Constraint Infer-

ence (PCI) method and the bypass-recognition method?

5.1 Experiment Setup

The benchmark used in our study contains three datasets: 1) Open-

source smart contracts. We collected the verified source code of all

open-source smart contracts from Etherscan (One of the most popu-

lar Ethereum blockchain explorer platforms) [6] till 23/04/2023. This

results in 0.78 million open-source smart contracts on Ethereum.

We conducted an empirical study on this dataset to answer RQ1. 2)

Reported Vulnerabilities (RV). We collected a set of smart contracts

from reported hacks and Common Vulnerabilities and Exposures

(CVEs) and manually inspected whether they contained PRD vul-

nerabilities. For hack reports, we went through the hacks reported

since 01/01/2020, and collected three reported hacks with six smart

contracts. These hacks involved over 200 million USD (i.e., Tran-

sitSwap [4], MEVBot [3], and Bancor [2]). We collected vulnerable

smart contracts with CVEs based on the benchmark given by SP-

Con [28], which checked 531 CVEs and selected 17 smart contracts

with permission bugs as the rest of them are mainly integer under-

flow or overflow vulnerabilities. AChecker [19] further confirmed

that two of them are not exploitable, resulting in 15 smart contracts.

Additionally, since the main contract does not inherit the vulnera-

bility in CVE-2020-17753 in a subcontract, the vulnerable function

is not compiled into the contract’s runtime bytecode. Therefore, we

omit this case since bytecode-based detectors cannot work on it.

As a result, we collected 20 smart contracts and conducted experi-

ments on this dataset to answer RQ2 and RQ3. 3) Smartbugs-wild

dataset [14], which contains 47,518 smart contracts from Ethereum.

Among them, 3,801 smart contracts were marked to have access

control bugs by several analysis tools. However, these labels are not

ground truth. This dataset was also used to evaluate the effective-

ness of PrettySmart in detecting permission bugs (i.e., RQ2). All

experiments were conducted on a Ubuntu 20.04.1 LTS workstation

equipped with an Intel i9-10980XE CPU and 256GB RAM.

5.2 Representativeness of introduced
permission constraints

We first investigate how smart contracts enforce permission con-

trol policies through an empirical study. Moreover, we show the

representativeness of the permission constraints introduced in § 4.2.

This study was conducted on an open-source smart contracts

dataset, in which we collected 0.78 million smart contract source

codes and deduplicated them to obtain 0.43 million unique smart

Table 3: Top 5 most used permission constraints.

Code No. Type

msg.sender == owner 58,320 compare2Owner
_value ≤ balances[msg.sender] 16,004 dataDriven
_value ≤ allowed[_from][msg.sender]) 13,003 dataDriven
_value ≤ allowance[_from][msg.sender]) 12,220 dataDriven
msg.sender == governance 11,316 compare2Owner

contract source codes. Our analysis focused on all the require state-

ments with the keyword msg.sender (§ 4.2 gives the rational of

this keyword choice). In this way, 512,689 require statements are

extracted from the 0.43 million unique smart contracts. We counted

the occurrences of each require statement and manually analyzed

statements occurring ≥ 200 times. As a result, we analyzed the func-

tionality of 284,787 require statements. We found that most of the

permission control policies used for smart contracts can be divided

into two categories: address restriction and data-driven restriction.

Depending on the implementations, these two categories can be

further divided into five specific types as introduced in § 4.2.

The first two columns of Table 2 report the distribution of these

PCs. The compare2Owner type accounts for the majority, i.e., 61.78%

of the analyzed permission control policies adopting this type. The

second widely-used permission constraint is the dataDriven con-

straint, accounting for 29.44% of the analyzed permission control

policies. The queryOwner, groupBased, and roleBased PCs account

for 4.40%, 1.87%, and 1.55% of the analyzed results, respectively.

Moreover, 0.97% of the PCs belong to neither of the above types.

Table 3 lists the top 5 most used PCs. All the five PCs are of the

compare2Owner type or dataDriven type and all of them occurred

more than 10,000 times in smart contracts. Moreover, the 2nd, 3rd,

and 4th PCs listed in Table 3 have strong correlation with specific

token implementations. For example, the allowance or allowed vari-

able is a typical variable used in ERC token contracts to record the

amount of allowed tokens to be spent from one user to another

after calling the approve() function introduced in § 2. Moreover,

we noticed in our dataset that the top 10 popular implementations

of the dataDriven type are all related to token implementations.

In most cases, they check if the balances or the allowance of a

user is enough in token transfer functions. Thus, these data-driven

token-specific constraints can be covered by the proposed pattern.

There might be threats due to misunderstanding of PCs. To pro-

vide a more stable result, we introduced a validation process in our

categorization following the design of [10]. This process consists of

two iterations: 1) We randomly chose 20% of the statement groups.

We employ two developers with more than two years of smart

contract development experience to determine the categorization.

They first read the code to understand in what cases the require

statement succeeds. Then they discuss the permission policy imple-

mented by the statement. In case of an unclear permission policy, it

is treated as an undetermined type (i.e., others). After this iteration,

we obtained the above five categories. 2) The same developers inde-

pendently categorized the remaining 80% of the statement groups.

We use Cohen’s Kappa index [13] to measure the agreement be-

tween the classification results. The overall Kappa value is 0.99,

indicating a strong agreement.



PrettySmart: Detecting Permission Re-delegation Vulnerability for Token Behaviors in Smart Contracts ICSE ’24, April 14–20, 2024, Lisbon, Portugal

We performed the other two studies to analyze the potential

bias brought by the threshold of occurrence and keyword choices.

1) Threshold of occurrence. We analyzed require statements

occurring ≥ 100 times to see if the conclusion still holds under a dif-

ferent occurrence threshold. As shown in the 3rd and 4th columns

of Table 2, there are 306,943 corresponding statements and the or-

der of the permission control policies stays unchanged. Moreover,

the proportion of each policy does not change much (<%1) when

the threshold changes to 100. 2) Keyword choice. It is possible

for other statements to be used for permission control. We treated

if-then conditions as a typical alternative and analyzed their oc-

currence. Similarly, we counted the occurrence of these conditions

with msg.sender that occurs ≥ 100 times. As a result, there are only

18,110 corresponding statements, which accounts for less than 6%

of the occurrence of require statements. Moreover, we found that

over 70% of the if-then conditions can fit into the compare2Owner

and Datadriven patterns. Considering the bytecode forms, the only

difference between if-then and require implementations is that

the conditional jump operation in § 4.2 may not lead to a REVERT

operation. Therefore, PrettySmart can fit the majority of these

permission implementations with minor changes.

Answer to RQ1: The five introduced permission constraints
have dominated 98% of the permission constraint implementa-
tions in the scope of our analysis.

5.3 Effectiveness of PrettySmart

We evaluate the effectiveness of PrettySmart on the RV and Smartbugs-

wild datasets [14]. We evaluate its performance with comparison

of six state-of-the-art permission bug detectors: AChecker [19], SP-

Con [28], Mythril [31], Securify [36], Maian [33], and Slither [16].

Since most of the prior studies for permission bug detection focus

on intra-contract analysis and cannot be directly applied to DApp

hacks, which contain multiple smart contracts, we apply these tools

to the core vulnerable contracts inside DApps and report whether

they find permission bugs. We evaluated the precision score of Pret-

tySmart on the Smartbugs-wild dataset by checking the number of

True-Positives (TPs) of the detected results. It is difficult to evaluate

the recall on this dataset because there are no ground-truth labels

as discussed before. Due to the limitation of time and human re-

sources, we evaluate the recall score on the RV dataset by checking

how many vulnerable contracts are detected out of all the reported

contracts.

Table 4 reports the results on the RV dataset. The results show

that PrettySmart outperforms other existing tools in detecting PRD

vulnerabilities in real-world attacks. As evidence, only PrettySmart

identifies TransitSwap and Bancor vulnerabilities. The vulnera-

bilities in their code are exploited by manipulation of sensitive

parameters of privileged functions and PrettySmart is the first

tool for detecting such vulnerabilities. Similar to other detectors,

PrettySmart failed to detect MEVBot. The main reason is that one

of the contracts in MEVBot cannot be successfully decompiled by

the decompiler for preprocessing. Meanwhile, we note in Table 4

that the above 3 reported vulnerabilities can only be triggered in

the cross-contract. Thus, the detection of these vulnerabilities relies

Table 4: Results of detecting permission re-delegation bugs

Contracts Sli
the

r
Ma

ian
Sec

uri
fy

My
thr

il

SP
Co

n
AC

he
cke

r

Ou
rs

TransitSwap† � � � � � � �
MEVBot† � � � � � � �
Bancor† � � � � � � �
CVE-2018-10666 � � � � � � �
CVE-2018-10705 � � � � � � �
CVE-2018-11329 � � � � � � �
CVE-2018-19830 � � � � � � �
CVE-2018-19831 � � � � � � �
CVE-2018-19832 � � � � � � �
CVE-2018-19833 � � � � � � �
CVE-2018-19834 � � � � � � �
CVE-2019-15078 � � � � � � �
CVE-2019-15079 � � � � � � �
CVE-2019-15080 � � � � � � �
CVE-2020-35962 � � � � � � �
CVE-2021-34272 � � � � � � �
CVE-2021-34273 � � � � � � �

recall (%) 0 18 0 0 53 71 88
† Vulnerabilities in these contracts can only be triggered in the cross-contract context.

on effective cross-contract analysis. Although PRD-related cross-

contracts do not occupy a large portion, such an analysis enables

PrettySmart to conduct sound detection for PRD vulnerabilities.

Some of the existing methods (e.g., Slither, Mythril, Securify,

and Maian) have relatively weak performance in detecting PRD

vulnerabilities. They adopted permission bug detection into their

frameworks and proposed corresponding rules. Although most of

these rules are straightforward, such as finding whether a state vari-

able can be freely written, it is hard to apply them in amore complex

scenario. Moreover, only SPCon and AChecker achieve a close per-

formance to PrettySmart though they failed in TransitSwap and

Bancor. According to the evaluation results, PrettySmart shows

the best performance in detecting 15 of the 17 vulnerabilities and

achieving the highest recall rate of 88%.

We also evaluated PrettySmart in detecting generic permission

bugs on the SmartBugs-wild dataset. Table 5 shows the evaluation

results. The first column reports the number of identified vulnera-

bilities by each tool. For Slither, Maian, Securify, and Mythril, their

reported vulnerabilities can be found in the SmartBugs dataset. The

reported vulnerabilities of SPCon and AChecker can be found in

its github repository. As discussed in § 5.1, this dataset contains no

ground truth labels and it is too expensive to manually go through

all the results reported by the compared tools. For contracts re-

ported by our analyzer, we went through all 673 reports to calculate

the precise number of TPs and precision of PrettySmart. Similar to

previous studies [19, 28], we leveraged statistical methods for calcu-

lating the precision of compared tools except for SPCon and Maian

(since they report 44 and 45 positives). Specifically, we sampled a

subset from the reported vulnerabilities with a 95% confidence level

and a confidence interval of 5% for each tool. We then manually

confirmed the precision of the sampled subset. In total, we checked

331, 237, 284, and 254 smart contracts for Slither, Securify, Mythril,

and AChecker. We observe that PrettySmart achieves the highest

precision (90%). 611 out of the 673 detection results are TPs, where

302 of them are also PRD vulnerabilities. Further, only SPCon and

AChecker achieve close precision to ours (80% and 81%).



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhijie Zhong, Zibin Zheng, Hong-Ning Dai, Qing Xue, Junjia Chen, and Yuhong Nan

Table 5: Permission bug detection results on SmartBugs-wild

Tool # Reported # Sampled Precision # Overlap

Slither 2,361 331 21% 79
Maian 44 44 64% 21

Securify 614 237 22% 9
Mythril 1076 284 39% 305
SPCon 45 45 80% 21

AChecker 624 254 81% 228
PrettySmart 673 673 90% -

Among the 673 smart contracts, 163 of them are uniquely de-

tected by our PrettySmart. We further inspected these newly de-

tected smart contracts and confirmed that 118 of them are TPs.

The distribution is as follows: 1) In 109 contracts, adversaries can

manipulate the parameters of privileged functions and increase

their token balances in the end. These vulnerabilities are newly

detected because PrettySmart is the first to consider how accessible

functions can be manipulated for malicious use. 2) In 30 contracts,

adversaries have abnormal accessibility to state variables but other

tools encountered timeout or other errors. These contracts may

contain more than 1 thousand lines of code, resulting in timeout

for tools with complex computational overhead such as symbolic

execution. 3) In 15 contracts, there is at least one cross-contract call

with a determined address. In these cases, the vulnerability in one

of the smart contracts is triggered in another smart contract. Mean-

while, we evaluated the overlaps of the detection results between

our method and the compared tools. The number of overlaps is

shown in the last column of Table 4. As an illustration, fewer than

50% of our detected results can be covered by another individual

tool.

1 address winner;

2 uint256 timeLock;

3 function () payable external {

4 require(msg.value >= 0.1 ether);

5 timeLock = now + 6 hours;

6 winner = msg.sender;

7 }

8 function claim() public {

9 require(msg.sender == winner);

10 require(now >= timeLock);

11 msg.sender.transfer(address(this).balance);

12 }

Figure 11: A false positive caused by underestimation of per-

mission constraint for sensitive function.

False Positives (FPs) are mainly caused by two reasons: 1) Under-

estimation of the PCs. PrettySmart proposes PCI to detect sensitive

operations that lack proper permission protection although there

are situations that the PCI method cannot cover. In § 5.2, we have

discussed the impact of keyword and threshold selection. We take

if-then conditions as a case study to show our ability to extend to

PCs based on a conditional jump with msg.sender. However, Pret-

tySmart cannot cover PCs that do not restrict the address of the

contract caller. For example, Figure 11 shows a game contract exam-

ple of an underestimation scenario of PCI, in which winner address

of the game contract has the privilege to take all the balances (line

11) after a certain timeLock (line 10). In this case, the sensitive opera-

tion transfer is guarded by two protections: a permission check for

the caller’s address and a permission check for time. PrettySmart

successfully extracted the address restriction check but failed to

extract the time check. This constitutes a threat to validation since

PrettySmart aims to infer the address-based PCs; 2) Imprecision of

the decompilation result. PrettySmart is built upon the decompila-

tion result of Gigahorse [20]. There are occasions that the storage

slot for SSTORE operation is imprecisely inferred, thereby causing

imprecise recognition of taint sink in § 4.2.

Answer to RQ2: PrettySmart finds more vulnerabilities while
achieving better precision (90%) than state-of-the-art methods.

5.4 Effectiveness of the Permission Constraint
Inference and bypass recognition

A main concern of PrettySmart’s effectiveness lies in whether the

identified PCs in § 4.2 can cover most of the real-world cases. We

evaluate the effectiveness of PCI by manually checking its success

rate on the RV dataset. Table 6 reports the results. Specifically, we

manually look up the public functions of each smart contract and

check the number of PCs adopted by these functions. Further, we

apply PCI to these smart contracts and record the results. As shown

in Table 6, PrettySmart successfully inferred the PCs adopted by

smart contracts in most cases, where the results marked with ‘-’

represent no source codes available. Our analyzer precisely inferred

all the PCs used in 12 out of the 15 smart contracts and missed only

6 of the 75 PCs overall. For those contracts with only bytecode

available, it is hard to obtain the ground-truth (GT) number of PCs.

Moreover, the inferred result also shows the distinction between

business and personal contracts. For example, business contracts,

such as TransitSwap and token contracts in CVEs, usually provide

users with various interfaces. Thus, they tend to put fewer PCs

on many public functions. On the other hand, most of the public

functions of personal contracts (e.g., MEVBot) are restricted since

they are developed for individual use.

We also evaluate bypass recognition by manually comparing the

inferred result with contract source codes. The results are shown

in the last two columns of Table 6, where “Inferred” denotes # of

inferred PCs and the bypassed PCs. As shown in Table 6, PrettyS-

mart achieves high accuracy in recognizing bypassed PCs. Only one

bypassed constraint in CVE-2018-19831 is missed. We also observe

that the DApps in reported hacks barely involve bypassed PCs.

This is because these DApp vulnerabilities are not triggered by ab-

normal function accesses but by malicious exploitation of publicly

accessible functions. The observation also confirms our motiva-

tion for detecting publicly-accessible functions to be exploited and

manipulated to compromise the security of smart contracts.

Answer to RQ3: The proposed PCI methods can effectively
detect the PCs and bypassed PCs.

6 RELATEDWORK

Smart contract analysis has received increasing attention re-

cently. Many static analysis methods [7, 11, 23, 29, 36] and dynamic

methods [12, 22, 32, 35] have been proposed to perform security



PrettySmart: Detecting Permission Re-delegation Vulnerability for Token Behaviors in Smart Contracts ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 6: Success rate of PC inference and bypass analysis

Contracts
P.C. Inference Bypass Detection

GT Inferred (Acc.) GT Inferred (Acc.)

TransitS.1 - 7 - 0

TransitS.2 - 8 - 0

TransitS.3 - 7 - 0

MEVBot1 - 14 - 0

MEVBot2 - - - -

Bancor 0 0 (100%) 0 0 (100%)

CVE-2018-10666 7 7 (100%) 5 5 (100%)

CVE-2018-10705 6 6 (100%) 5 5 (100%)

CVE-2018-11329 2 2 (100%) 0 0 (100%)

CVE-2018-19830 6 3 (50%) 3 3 (100%)

CVE-2018-19831 12 12 (100%) 12 11 (92%)

CVE-2018-19832 7 5 (71%) 5 5 (100%)

CVE-2018-19833 4 4 (100%) 3 3 (100%)

CVE-2018-19834 5 5 (100%) 3 3 (100%)

CVE-2019-15078 9 9 (100%) 5 5 (100%)

CVE-2019-15079 0 0 (100%) 0 0 (100%)

CVE-2019-15080 4 4 (100%) 4 4 (100%)

CVE-2020-35962 5 5 (100%) 0 0 (100%)

CVE-2021-34272 5 5 (100%) 5 5 (100%)

CVE-2021-34273 3 2 (66%) 1 1 (100%)

Total 75 69 (92%) 51 50 (98%)

analysis for smart contracts. Among these existing methods, taint

analysis has been widely used to detect various vulnerabilities such

as reentrancy. Sereum [34] and Slither [16] were the early tools

that applied taint tracking to analyze the data dependency of smart

contract executions. Although most of these tools focus on intra-

contract analysis, a set of analyzers have recently been proposed

for cross-contract analysis, including Clairvoyance [39], SmartDag-

ger [27], and SAILFISH [7]. Clairvoyance empirically studied typical

FPs of prior methods and leveraged inter-procedural taint analysis

to reduce FPs. SmartDagger worked on bytecode and proposed

variable semantic recovery to improve the effectiveness of cross-

contract vulnerability detection. Symbolic execution methods, such

as Oyente [29], Mythril [31], and ETHBMC [18] have been pro-

posed to explore the execution paths based on constraint solving.

To improve the scalability of symbolic execution, Park [41] has

been proposed as a parallel symbolic execution framework with

better efficiency and coverage. Dynamic methods [12, 22, 32, 35]

have also been proposed for vulnerability detection with an aim at

generating good test cases and synthesizing effective test oracles.

Permission bug detection has been studied for many years.

Most of these studies focus on the security of permission systems

for Android and Linux systems. Felt et. al. [17] first investigated the

permission re-delegation problem for the Android system. Several

following studies further investigated this problem for Android

applications [15, 24, 40] and frameworks [25, 38]. Under the con-

text of smart contracts, most of the prior studies [16, 29, 31, 36]

include permission bugs in their frameworks and find whether a

state variable can be modified by any user or whether there is an

unrestricted DELEGATECALL. SPCon [28] further detects the flaws of

high-level permission policy by recovering permission policy from

transaction records and finding abnormal accessibility from con-

formance testing. AChecker [19] leverages taint analysis to detect

vulnerabilities for access control policies of the address restriction

type. However, existing tools mainly focus on detecting abnormal

accessibility of functions and state variables. None of them detect

whether an accessible function can be manipulated by adversaries.

7 CONCLUSION

This paper proposes PrettySmart, a bytecode-level static analyzer

for detecting PRD vulnerabilities for token behaviors in smart con-

tracts. Specifically, we first conduct an empirical study based on

0.43 million open-source smart contracts and find five types of

widely-used permission constraints, which dominate 98% of stud-

ied contracts. These permission constraints are further divided

into bypassed and not-bypassed ones through taint analyzing for

their dependent state variables. As a result, PrettySmart detects

the PRD vulnerability by taint analysis of the parameters of sen-

sitive functions or privileged state variables in smart contracts.

PrettySmart is evaluated on real-world smart contracts collected

from reported vulnerabilities and a large-scale dataset of real-world

smart contracts. The experimental results show that PrettySmart

outperforms existing methods by achieving the highest precision

and finding 118 new vulnerabilities.

ACKNOWLEDGMENTS

The work described in this paper is partially supported by the

Technology Program of Guangzhou, China (No. 202103050004), the

National Natural Science Foundation of China (62032025), and the

COMPDepartment Start-up Fund of Hong Kong Baptist University.

REFERENCES
[1] 2020. Panoramix. Retrieved January 10, 2024 from https://github.com/eveem-

org/panoramix
[2] 2022. Bancor Network Hack 2020. Retrieved January 10, 2024 from https://medium.

com/1inch-network/bancor-network-hack-2020-3c71444fd59d
[3] 2022. Hack Analysis: 0xbaDc0dE MEV Bot. Retrieved January 10, 2024 from https:

//medium.com/immunefi/0xbadc0de-mev-bot-hack-analysis-30b9031ff0ba
[4] 2022. TRANSIT SWAP - REKT. Retrieved January 10, 2024 from https://rekt.news/

transit-swap-rekt/
[5] 2023. ERC-20 TOKEN STANDARD. Retrieved January 10, 2024 from https:

//ethereum.org/en/developers/docs/standards/tokens/erc-20/
[6] 2023. Etherscan. Retrieved January 10, 2024 from https://etherscan.io/
[7] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and

Giovanni Vigna. 2022. Sailfish: Vetting smart contract state-inconsistency bugs in
seconds. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco,
CA, USA, 161–178. https://doi.org/10.1109/SP46214.2022.9833721

[8] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis
Smaragdakis. 2020. Ethainter: A Smart Contract Security Analyzer for Com-
posite Vulnerabilities. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for Computing Machinery, New York, NY, USA, 454–469.
https://doi.org/10.1145/3385412.3385990

[9] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security
Analysis Framework for Smart Contracts. arXiv:1809.03981 [cs.PL]

[10] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2022.
Defining Smart Contract Defects on Ethereum. IEEE Transactions on Software
Engineering 48, 1 (2022), 327–345. https://doi.org/10.1109/TSE.2020.2989002

[11] Ting Chen, Yufei Zhang, Zihao Li, Xiapu Luo, Ting Wang, Rong Cao, Xiuzhuo
Xiao, and Xiaosong Zhang. 2019. TokenScope: Automatically Detecting Inconsis-
tent Behaviors of Cryptocurrency Tokens in Ethereum. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (London,
United Kingdom) (CCS ’19). Association for Computing Machinery, New York,
NY, USA, 1503–1520. https://doi.org/10.1145/3319535.3345664

[12] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2022. SMARTIAN: Enhancing Smart Contract Fuzzing with Static
and Dynamic Data-Flow Analyses. In Proceedings of the 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering (Melbourne, Australia)
(ASE ’21). IEEE Press, 227–239. https://doi.org/10.1109/ASE51524.2021.9678888

[13] J. Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement 20, 1 (1960), 37.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhijie Zhong, Zibin Zheng, Hong-Ning Dai, Qing Xue, Junjia Chen, and Yuhong Nan

[14] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 530–541. https://doi.org/10.1145/3377811.3380364

[15] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo, Qingchuan
Zhao, and Zhiqiang Lin. 2020. FIRMSCOPE: Automatic Uncovering of Privilege-
Escalation Vulnerabilities in Pre-Installed Apps in Android Firmware. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
2379–2396. https://www.usenix.org/conference/usenixsecurity20/presentation/
elsabagh

[16] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.
https://doi.org/10.1109/WETSEB.2019.00008

[17] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In 20th
USENIX Security Symposium (USENIX Security 11). USENIX Association, San Fran-
cisco, CA. https://www.usenix.org/conference/usenixsecurity11/permission-re-
delegation-attacks-and-defenses

[18] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. ETHBMC: A
BoundedModel Checker for Smart Contracts. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner
(Eds.). USENIX Association, 2757–2774. https://www.usenix.org/conference/
usenixsecurity20/presentation/frank

[19] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2023. AChecker: Statically
Detecting Smart Contract Access Control Vulnerabilities. In Proceedings of the
45th International Conference on Software Engineering (Melbourne, Victoria, Aus-
tralia) (ICSE ’23). IEEE Press, 945–956. https://doi.org/10.1109/ICSE48619.2023.
00087

[20] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-
horse: Thorough, Declarative Decompilation of Smart Contracts. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada) (ICSE ’19). IEEE Press, 1176–1186. https://doi.org/10.1109/ICSE.2019.
00120

[21] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis. 2022.
Elipmoc: Advanced Decompilation of Ethereum Smart Contracts. Proc. ACM
Program. Lang. 6, OOPSLA1, Article 77 (apr 2022), 27 pages. https://doi.org/10.
1145/3527321

[22] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to Fuzz from Symbolic Execution with Application to
Smart Contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 531–548. https://doi.org/10.
1145/3319535.3363230

[23] Zheyuan He, Shuwei Song, Yang Bai, Xiapu Luo, Ting Chen, Wensheng Zhang,
Peng He, Hongwei Li, Xiaodong Lin, and Xiaosong Zhang. 2023. TokenAware:
Accurate and Efficient Bookkeeping Recognition for Token Smart Contracts.
ACM Trans. Softw. Eng. Methodol. 32, 1, Article 26 (feb 2023), 35 pages. https:
//doi.org/10.1145/3560263

[24] Grant Hernandez, Dave (Jing) Tian, Anurag Swarnim Yadav, Byron J. Williams,
and Kevin R.B. Butler. 2020. BigMAC: Fine-Grained Policy Analysis of Android
Firmware. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 271–287. https://www.usenix.org/conference/usenixsecurity20/
presentation/hernandez

[25] Sigmund Albert Gorski III, Seaver Thorn, William Enck, and Haining Chen. 2022.
FReD: Identifying File Re-Delegation in Android System Services. In 31st USENIX
Security Symposium (USENIX Security 22). USENIXAssociation, Boston,MA, 1525–
1542. https://www.usenix.org/conference/usenixsecurity22/presentation/gorski

[26] Sifis Lagouvardos, Neville Grech, Ilias Tsatiris, and Yannis Smaragdakis. 2020.
Precise Static Modeling of Ethereum “Memory”. Proc. ACM Program. Lang. 4,
OOPSLA, Article 190 (nov 2020), 26 pages. https://doi.org/10.1145/3428258

[27] Zeqin Liao, Zibin Zheng, Xiao Chen, and Yuhong Nan. 2022. SmartDagger: A
Bytecode-Based Static Analysis Approach for Detecting Cross-Contract Vul-
nerability. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for
Computing Machinery, New York, NY, USA, 752–764. https://doi.org/10.1145/
3533767.3534222

[28] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. 2022. Finding Permission Bugs
in Smart Contracts with Role Mining. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for ComputingMachinery, New York, NY, USA, 716–727.
https://doi.org/10.1145/3533767.3534372

[29] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 254–269. https:
//doi.org/10.1145/2976749.2978309

[30] Fuchen Ma, Zhenyang Xu, Meng Ren, Zijing Yin, Yuanliang Chen, Lei Qiao, Bin
Gu, Huizhong Li, Yu Jiang, and Jiaguang Sun. 2022. Pluto: Exposing Vulnerabilities
in Inter-Contract Scenarios. IEEE Transactions on Software Engineering 48, 11
(2022), 4380–4396. https://doi.org/10.1109/TSE.2021.3117966

[31] Bernhard Mueller. 2018. Smashing ethereum smart contracts for fun and real
profit. In 9th Annual HITB Security Conference (HITBSecConf), Vol. 54.

[32] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
SFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,
USA, 778–788. https://doi.org/10.1145/3377811.3380334

[33] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th Annual Computer Security Applications Conference. 653–663. https:
//doi.org/10.1145/3274694.3274743

[34] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2018.
Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks.
arXiv:1812.05934 [cs.CR]

[35] Jianzhong Su, Hong-Ning Dai, Lingjun Zhao, Zibin Zheng, and Xiapu Luo. 2023.
Effectively Generating Vulnerable Transaction Sequences in Smart Contracts with
Reinforcement Learning-Guided Fuzzing. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (Rochester, MI, USA)
(ASE ’22). Association for Computing Machinery, New York, NY, USA, Article 36,
12 pages. https://doi.org/10.1145/3551349.3560429

[36] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 67–82. https://doi.org/10.1145/3243734.3243780

[37] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[38] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The
Impact of Vendor Customizations on Android Security. In Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security (Berlin,
Germany) (CCS ’13). Association for Computing Machinery, New York, NY, USA,
623–634. https://doi.org/10.1145/2508859.2516728

[39] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng.
2021. Cross-Contract Static Analysis for Detecting Practical Reentrancy Vulner-
abilities in Smart Contracts. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (Virtual Event, Australia) (ASE
’20). Association for Computing Machinery, New York, NY, USA, 1029–1040.
https://doi.org/10.1145/3324884.3416553

[40] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang, Zhiyun Qian, Geng Hong,
Yuan Zhang, and Min Yang. 2018. Invetter: Locating Insecure Input Valida-
tions in Android Services. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (Toronto, Canada) (CCS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 1165–1178. https:
//doi.org/10.1145/3243734.3243843

[41] Peilin Zheng, Zibin Zheng, and Xiapu Luo. 2022. Park: accelerating smart contract
vulnerability detection via parallel-fork symbolic execution. In ISSTA ’22: 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Event, South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis
(Eds.). ACM, 740–751. https://doi.org/10.1145/3533767.3534395



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


