
Effectively Generating Vulnerable Transaction Sequences in
Smart Contracts with Reinforcement Learning-guided Fuzzing

Jianzhong Su
Sun Yat-sen University & Ant Group

sujzh3@mail2.sysu.edu.cn

Hong-Ning Dai
Hong Kong Baptist University

hndai@ieee.org

Lingjun Zhao
Sun Yat-sen University

zhaolj23@mail.sysu.edu.cn

Zibin Zheng∗
Sun Yat-sen University

zhzibin@mail.sysu.edu.cn

Xiapu Luo
The Hong Kong Polytechnic

University
csxluo@comp.polyu.edu.hk

ABSTRACT

As computer programs run on top of blockchain, smart contracts
have proliferated amyriad of decentralized applications while bring-
ing security vulnerabilities, which may cause huge financial losses.
Thus, it is crucial and urgent to detect the vulnerabilities of smart
contracts. However, existing fuzzers for smart contracts are still
inefficient to detect sophisticated vulnerabilities that require spe-
cific vulnerable transaction sequences to trigger. To address this
challenge, we propose a novel vulnerability-guided fuzzer based
on reinforcement learning, namely RLF, for generating vulnerable
transaction sequences to detect such sophisticated vulnerabilities
in smart contracts. In particular, we firstly model the process of
fuzzing smart contracts as a Markov decision process to construct
our reinforcement learning framework. We then creatively design
an appropriate reward with consideration of both vulnerability
and code coverage so that it can effectively guide our fuzzer to
generate specific transaction sequences to reveal vulnerabilities,
especially for the vulnerabilities related to multiple functions. We
conduct extensive experiments to evaluate RLF’s performance. The
experimental results demonstrate that our RLF outperforms state-
of-the-art vulnerability-detection tools (e.g., detecting 8%-69% more
vulnerabilities within 30 minutes).

CCS CONCEPTS

• Software and its engineering → Software testing and debug-
ging.

KEYWORDS

Fuzzing, Smart contract, Reinforcement learning

ACM Reference Format:

Jianzhong Su, Hong-Ning Dai, Lingjun Zhao, Zibin Zheng, and Xiapu Luo.
2022. Effectively Generating Vulnerable Transaction Sequences in Smart

∗The corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3560429

Contracts with Reinforcement Learning-guided Fuzzing. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE’22) October
10-14, 2022, Ann Arbor, MI, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3551349.3560429

1 INTRODUCTION

Blockchain technologies have attracted extensive attention from
both industry and academia. As Turing-complete programs run on
blockchains, smart contracts can achieve autonomous and trusted
execution of user-defined business logic in the decentralized com-
puting environment. Many popular applications have been imple-
mented in smart contracts and running on Ethereum, the biggest
blockchain platform that supports smart contracts, such as non-
fungible tokens (NFT) [3], Decentralized finance (DeFi) [33], etc.

However, the proliferation of smart contracts has also exposed a
myriad of security issues, especially the vulnerabilities [38]. The
vulnerabilities may result in huge financial losses since most appli-
cations of smart contracts are involved digital assets. Therefore, it
is crucial to reveal vulnerabilities for ensuring the security of smart
contracts. Despite the advent of recent vulnerability-detection tools
in smart contracts [16, 29], they become less effective for identify-
ing complicated vulnerabilities with the increased complexity of
smart contracts. One of the fundamental reasons lies in the stateful
nature of smart contracts in contrast to traditional computer pro-
grams. In particular, the execution of smart contracts is involved
with transaction sequences as input while maintaining persistent
states. Thus, it may require specific transaction sequences to trig-
ger non-trivial vulnerabilities [31] (a more concrete example to
be given in § 3). Moreover, given the fact that there are count-
less possible transaction sequences for a smart contract, it becomes
even more challenging to identify critical sequences (i.e., vulnerable
transaction sequences) to trigger vulnerabilities.

In recent years, pioneer researchers have developed several
vulnerability-detection tools to reveal vulnerabilities in smart con-
tracts [16, 29]. Among these approaches, fuzzing has commonly
been used to generate transactions as input to test smart contracts
for vulnerability detection owing to its efficiency and conceptual
simplicity. Although a number of fuzzing tools (a.k.a. fuzzers) for
smart contracts have been developed, most of them cannot generate
proper transaction sequences for triggering sophisticated vulner-
abilities. Specifically, most fuzzers for smart contracts focus on
improving the code coverage during the testing stage because of

https://doi.org/10.1145/3551349.3560429
https://doi.org/10.1145/3551349.3560429
https://doi.org/10.1145/3551349.3560429
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3560429&domain=pdf&date_stamp=2023-01-05

ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA Su et al.

the assumption that a higher code coverage means more vulnerabil-
ities to be found. We call them as coverage-guided fuzzers. However,
simply increasing code coverage does not necessarily increase the
number of vulnerabilities being found [7]. Particularly, coverage-
guided fuzzers may waste a lot of time generating non-vulnerable
transaction sequences for achieving higher code coverage.

To address the aforementioned challenges, we present a novel
vulnerability-guided fuzzer, namely the reinforcement learning
fuzzer (RLF) for generating critical transaction sequences to de-
tect vulnerabilities in smart contracts. Firstly, we model the process
of fuzzing smart contracts as a Markov decision process (MDP) to
construct our reinforcement learning framework since MDP can
well handle the dynamic states of smart contracts during the fuzzing
phase. Then, in order to guide our fuzzer to effectively generate
vulnerable transaction sequences, we design an appropriate reward
in RLF with consideration of both vulnerability and code cover-
age. Specifically, the reward of vulnerability is the key to guiding
the fuzzer to generate vulnerable transaction sequences. However,
purely using the reward of vulnerability may lead fuzzers to fall into
local optimum and generate the transaction sequences that only
contain the single vulnerable function. In this situation, the fuzzer
would fail to reveal the vulnerabilities that need to call multiple
functions to trigger. To this end, we integrate code coverage into the
reward of vulnerability to steer our fuzzer to explore the vulnerable
transaction sequences that involve multiple functions. In addition,
we construct state space and action space, both of which are simple
yet efficient for our RLF. Finally, the proposed RLF can effectively
generate vulnerable transaction sequences for unseen contracts
through learning from previous test (transaction) sequences.

We conduct extensive experiments to evaluate RLF. Compar-
ing RLF with four advanced tools, Mythril [25], Smartian [11],
SmarTest [31] and ILF [15], we find that our RLF outperforms
existing tools in terms of the number of detected vulnerabilities
within a limited time.

To summarize, our main contributions are as follows:

• We propose a new deep reinforcement learning framework
for fuzzing smart contracts. It can handle the transformed
states of runtime contracts and effectively generate vulnera-
ble transaction sequences.
• We design a new reward with consideration of both vulnera-
bility and code coverage to enhance vulnerability detection,
especially for the complicated vulnerabilities related to mul-
tiple functions.
• We implement RLF and conduct extensive experiments on
real-world smart contracts to evaluate its performance. The
experiment results validate the effectiveness of our designed
reward and other mechanisms. Moreover, the results also
demonstrate that the proposed RLF can detect more vulner-
abilities than other existing tools within a limited time.

The remainder of this paper is organized as follows. § 2 gives
the background related to our approach. § 3 presents challenges
of generating vulnerable transaction sequences, which motivate
our study. § 4 elaborates on the detailed design of RLF. § 5 presents
an extensive experimental evaluation of RLF. § 6 discusses the
limitations of our RLF and outlines potential future improvement.
§ 7 surveys the related work. § 8 finally concludes this work.

2 BACKGROUND

In this section, we briefly review smart contract, fuzzing, and deep
reinforcement learning.

2.1 Smart Contract

In this paper, we mainly focus on smart contracts in Ethereum. A
smart contract is a Turing-complete program running on top of
blockchain, which is the storage of smart contracts. Most Ethereum
smart contracts are written by Solidity [5], which is a programming
language specifically designed for smart contracts. The entire life
cycle of a smart contract is described as follows. Before being de-
ployed to Ethereum, source smart contracts written in Solidity are
firstly compiled into bytecode, which has a one-to-one mapping to
its opcode1. Once deployed, the bytecode is stored on blockchain
and cannot be modified anymore. The smart contract can be in-
voked by sending a transaction. In particular, senders can specify
which function to call and what parameters to input. Once receiving
the transaction, the smart contract will execute the corresponding
bytecode. After the transaction execution, the execution results are
recorded on blockchain; otherwise, the execution results would be
reverted. Although smart contracts cannot be modified once de-
ployed, users can call the self-destroy function (e.g., selfdestruct())
to destroy the smart contract.

2.2 Fuzzing

Among a myriad of off-the-shelf software-testing tools, fuzzing
is one of the most popular techniques because of its extensive
empirical evidence in discovering real-world software vulnerabil-
ities [21]. The main idea of fuzzing is to generate various inputs
to run a computer program repeatedly and catch the information
during the execution to analyze its vulnerabilities. In the emerging
field of smart contracts, fuzzing has also received extensive atten-
tion [15, 17, 26]. Similar to computer programs, fuzzers generate
transactions (i.e., inputs) to execute smart contracts and capture
the execution logs, including the executed opcodes, the execution
results, and other execution information during the testing phase.
Based on the execution logs, in-depth analysis, such as detecting
vulnerabilities [32] and evaluating performance [10], could be per-
formed on smart contracts.

2.3 Deep Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm to
empower agents to learn from the environment and take actions
accordingly so as to achieve the maximized cumulative reward. As a
foundation of RL, MDP is crucial to model the dynamics of the envi-
ronment. In particular, MDP is essentially a discrete-time stochastic
control process. At each time step, regarding the environment in
any state denoted by s , the agent can choose any available action a.
At the next time step, the environment moves into a new state s ′
and gives a corresponding reward r to the agent. To maximize the
cumulative reward of the agent, instead of training on labeled data,
RL learns from the previous experience obtained by some exploring
strategies, such as the ϵ-greedy method. In practice, it is difficult for
traditional RL methods to handle the explosive state space of smart

1An opcode contains some machine instructions to specify operations.

Effectively Generating Vulnerable Transaction Sequences in Smart Contracts with Reinforcement Learning-guided Fuzzing ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA

1 contract Crowdsale {

2 uint256 raised , closeTime , goal , status;

3 address owner;

4 mapping(address => uint256) deposits;

5

6 constructor(uint256 goalFund) public {

7 closeTime = now + 30 days;
8 owner = msg.sender;
9 goal = goalFund;

10 status = 0;

11 raised = 0;

12 }

13

14 function setStatus(uint256 newStatus) public {

15 require ((newStatus == 1 && raised >= goal) ||

16 (newStatus == 2 && raised < goal

17 && now >= closeTime));

18 status = newStatus;

19 }

20

21 function setOwner(address newOwner) public {

22 // Debug: require(msg.sender == owner);

23 owner = newOwner;

24 }

25

26 function invest () public payable {

27 require(status == 0 && raised < goal);

28 deposits[msg.sender] += msg.value;
29 raised += msg.value;
30 }

31

32 function withdraw () public {

33 require(status == 1);

34 owner.transfer(raised);
35 }

36

37 function refund () public {

38 require(status == 2);

39 // bug(); some operations with bug

40 msg.sender.transfer(deposits[msg.sender]);
41 deposits[msg.sender] = 0;

42 }

43 }

Figure 1: A Crowdsale contract (simplified version) contain-

ing vulnerability that allows attacker to steal funds.

contracts. To address this challenge, we employ deep reinforcement
learning (DRL), i.e., the integration of deep neural network (DNNs)
with traditional RL. DRL is quite promising to address the explosive
state space of fuzzing in smart contracts.

3 MOTIVATION

We first use a motivating example to illustrate why generating a
proper transaction sequence is important for uncovering sophisti-
cated vulnerabilities, and then discuss the challenges in the genera-
tion of such transaction sequences.

3.1 Motivating Example

We consider a Crowdsale contract as our motivating example. It was
used to gather funds with a goal to collect a certain amount of ethers
(i.e., Ethereum tokens) within a period (e.g., 30 days). The crowdsale
is successful if this goal is reached within the given period. Conse-
quently, the crowdsale owner can withdraw the funds. Otherwise,

the crowdsale fails and investors can refund the ethers. Fig. 1 depicts
a simplified version of the Solidity code of the Crowdsale contract.
Firstly, the owner deploys the contract while initializing goal (at
line 9). Then, users call invest() to send ethers to this contract.
Once the crowdsale succeeds, the owner of the contract can call
setStatus() to change status = 1 (at line 18) and get the funds
from the contract by calling withdraw().

This contract contains an Ether-Leaking vulnerability, which
allows an attacker to steal the funds from the Crowdsale contract.
In particular, when the following vulnerable transaction sequence
is conducted, this vulnerability will be triggered.

(1) Users call invest() and send enough ethers to make the
raised fund ≥ goal (at line 29);

(2) The attacker calls setOwner() to set owner to the attacker’s
address (at line 23);

(3) The attacker calls setStatus() to set status to 1 (at line 18);
(4) The attacker calls withdraw() to steal the funds from the

contract (at line 34).

As a result, the attacker becomes the owner of the contract
and takes away the funds. Since a specific transaction sequence
is necessary to trigger this vulnerability, most existing smart con-
tract fuzzers may fail to generate the corresponding transaction
sequences to reveal this sophisticated vulnerability. In addition, if
there exists bug() in refund() (line 39), the investors cannot retrieve
their funds when the crowdsale fails. This potential vulnerability
also needs specific vulnerable transaction sequences to trigger.

3.2 Challenges to Generate Vulnerable

Transaction Sequences

Intrinsic Features of Smart Contracts.More precisely, the most
important feature of smart contracts is statefulness [11, 15]. In par-
ticular, a smart contract saves its state in blockchain. A transac-
tion sequence may frequently change the contract’s state, e.g., the
variable raised is frequently changed by function invest() in the
previous mentioned Crowdsale contract. Thus, smart contracts are
sensitive to the state alterations caused by transactions. As a re-
sult, different transaction sequences will cause diverse states in
smart contracts and multiple triggering conditions. For example,
the owner cannot withdraw the funds from the contract unless the
variable status is set to 1. In this situation, a specific transaction
sequence is necessary to set status to 1. Therefore, to trigger the
Ether-Leaking vulnerability in the Crowdsale contract, a specific
vulnerable transaction sequence is needed. However, among the
countless possible transaction sequences in smart contracts, it is
difficult to find out the vulnerable transaction sequences.

Unfortunately, it is challenging for existing fuzzers to tackle this
challenge because of their limitations. For example, some fuzzers,
such as ContractFuzzer [17] and sFuzz [26], mainly focus on generat-
ing specific inputs to satisfy complex conditions (e.g., the statement
require). However, these fuzzers ignore the order of transaction
sequences, which is the key to revealing the complicated vulner-
abilities as shown in the Crowdsale contract. It is hard for these
fuzzers to generate vulnerable transaction sequences.
Limitation of Coverage-guided Approaches. Some fuzzers sup-
port handling the transaction sequences for more effective testing.

ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA Su et al.

Imitation Learning-based Fuzzer (ILF) [15] utilizes imitation learn-
ing to learn from symbolic execution for exploring deep execution
paths. Smartian [11] employs both static and dynamic analyses,
and mutates the input based on data-flow coverage. Both these two
fuzzers are coverage-guided fuzzers with the goal of maximizing the
code coverage of smart contracts during fuzzing. Nonetheless, in the
case of vulnerability detection, higher code coverage does not nec-
essarily lead to finding more vulnerabilities [7]. As indicated in [12],
only a few functions in smart contracts contain vulnerabilities while
most of them contain no vulnerability. When there are multiple
execution paths in a smart contract, different transaction sequences
may explore different execution paths but only a few sequences
can trigger vulnerabilities. In other words, coverage-guided fuzzers
may not be efficient in generating transaction sequences to trigger
vulnerabilities since they only pursue higher code coverage and
waste too much time exploring the sequences without triggering
vulnerabilities. For example, if a contract is composed of functions
fun_A (vulnerable, containing 10 lines) and fun_B (not vulnerable,
containing 90 lines), coverage-guided fuzzers may consume lots
of time on fun_B for higher code coverage but fail to trigger the
vulnerability in fun_A.
Limitation of Vulnerability-guided Approaches. To increase
the efficiency of vulnerability detection, vulnerability-guided ap-
proaches are proposed. SmarTest [31] utilizes language models
to guide symbolic executor to generate vulnerable transaction se-
quences. Although SmarTest attempts to reveal as many vulnerabil-
ities as possible, it may be stuck in the local optimum and only hunt
the vulnerable transaction sequences related to a single function
(i.e., the vulnerability can be triggered by only testing one func-
tion). For example, we conduct a set of experiments on SmarTest
and find that it fails to reveal the aforementioned Ether-Leaking
vulnerability within 30 minutes. The failure lies in the vulnerable
transaction sequences related to four functions but SmarTest can-
not explore the vulnerable transaction sequences with too many
functions. Thus, only considering vulnerability information (by
pure vulnerability-guided approaches like SmarTest) is not benefi-
cial to generating the vulnerable transaction sequences related to
invocation across multiple functions.

Both the intrinsic features of smart contracts and the limitations
of existing vulnerability-detection tools motivate us to design an ad-
vanced tool to generate vulnerable transaction sequences to address
the above challenges.

4 THE RLF SYSTEM

In order to address the above-mentioned challenges, we propose
an advanced vulnerability-guided fuzzer to generate vulnerable
transaction sequences based on reinforcement learning. We first
model the process of fuzzing smart contracts as an MDP so that we
can construct a reinforcement learning framework for generating
transaction sequences. Then, we give an overview of our approach,
namely RLF, and describe the detailed design of each of its core
components.

4.1 Modeling Fuzzing as MDP

MDP canmodel a sequence of decisions (reactions) done by an agent
to an environment. It consists of an agent who makes a decision to

Agent
Vulnerability

Report

Data Set

Backend

State

Reward

Action
(function)

RLF

Log

DNN

Policy

EVM

Tested Contract

Blockchain

Test Oracles

BD

Detector

4.3()

4.4()

Figure 2: Overview of RLF. At each step, Agent selects an ac-

tion to Backend, Backend returns the state and reward to

Agent.

the environment and correspondingly earns a reward. Accordingly,
we model the process of fuzzing smart contracts as an MDP.

In the process of fuzzing smart contracts, we generate transaction
sequences for fuzzing the tested contract. A transaction consists
of the function to be invoked, the parameters of the function, and
other elements. As shown in the example in § 3.1, the function-call
sequence within the transaction sequence plays a decisive role in
the effect of detecting vulnerabilities. Consequently, we convert
the generation of transaction sequences to that of function-call
sequences; during this process, other elements of the transaction
are filled randomly from our seed pools.

We define s(SC, f̄) as the state of Agent, where s contains the
features of the tested contract SC and previous function-call se-
quence f̄ = { f1, f2, ..., fn }, which contains each function executed
by the tested contract. At each step, Agent selects f by its policy π
as the new action a, which is expressed as follows,

a ← π
(
s(SC, f̄)

)
, a ∈ A, s ∈ S,

where A and S denote the action space and the state space, respec-
tively. After that, the function f is packaged as a transaction and the
tested contract executes the transaction in the backend to change
the state. Thus, the old state s is updated to the new state s ′ while
Agent receives reward r . This process is depicted as follows:

(s ′, r) ← P
(
s(SC, f̄),a

)
, a ∈ A, s, s ′ ∈ S,

where P
(
s,a

)
is the transition function based on the tested contract

and EVM. Our goal is to construct a policy π∗ so as to obtain as
much cumulative reward as possible withinM steps:

π∗ ← arg max
π

M∑
t=0

rπt+1.

Therefore, to generate vulnerable function-call sequences based
on the above MDP, we need to design the following items.

(1) Suitable action a and state s for the policy (§ 4.3.1 and § 4.3.2);
(2) An appropriate reward r to effectively guide the policy to

generate vulnerable function-call sequences (§ 4.3.3).
(3) A policy to maximize the reward, which can handle the

transformed states of tested contracts during testing so as to
generate specific function-call sequences (§ 4.3.4);

Effectively Generating Vulnerable Transaction Sequences in Smart Contracts with Reinforcement Learning-guided Fuzzing ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA

Action

Group

Smart Contract
Functions
invest
setStatus
setOwner
withdraw
refund

Group Functions

DNN

Group 0
invest

Group 1
setStatus
setOwner

Group 2
withdraw
refund

Reward State

Generation

Function-call
sequence

setStatus
(function)

Figure 3: Working flow of Agent. At this step, DNN chooses

Group 1 as Action and function setStatus is selected to exe-

cute tested contracts.

4.2 Overview of RLF

To determine the above items, we firstly design action a and state s
according to the unique features of smart contracts. Secondly, we
design an appropriate reward related to both vulnerabilities and
code coverage for steering policy to generate vulnerable function-
call sequences. Thirdly, we construct a deep neural network (DNN)
as the policy to learn from the previous experience (i.e., transac-
tion sequences) and generate specific function-call sequences to
maximize the accumulated reward. Finally, we implement RLF.

Fig. 2 depicts the overview of RLF, which contains two major
components: Backend and Agent. Backend includes EVM and De-
tector. EVM is used to execute smart contracts while Detector is
used to detect vulnerabilities based on test oracles. When Backend
receives an action, the tested contract executes the corresponding
function (transaction) in EVM. The execution log is next exported
to Detector, which exploits test oracles to detect vulnerabilities.
According to the execution log and vulnerabilities being detected
by Detector, Backend provides Agent with both state and reward.
Agent utilizes the DNN to learn from previous sequences and se-
lect functions to execute tested contracts. After fuzzing, Detector
reports the vulnerabilities being found in tested contracts. § 4.3 and
§ 4.4 present the details of Agent and Detector, respectively.

4.3 Agent

We further elaborate on the design of Agent, which generates
function-call sequences for fuzzing. Fig. 3 shows the working flow
of Agent. In particular, functions in the tested contract are catego-
rized into groups (to be explained in § 4.3.1). At each step, DNN
firstly chooses the best action (group) according to the state and
then randomly selects a function from the group to execute tested
contracts.

We first illustrate how to design the action and state of Agent,
and then present the detail of the reward. Finally, we present the
architecture of DNN, which is used to learn from previous test
sequences and choose actions according to states at each step.

Table 1: Status operations in function.

Operation Description
Payable The function can receive ether from other addresses.
Call The function can transfer ether or invoke other contracts.
Store The function can change the storage.
Selfdestruct The function can destroy the contract.

4.3.1 Action. As the output of Agent, the action has the action
space, which is the feasible domain of actions. To generate function-
call sequences, we need to select a function to call at each step.
Thus, we define the action of Agent as the function selection and
then model function space as discrete action space. Because of the
variety of numerous functions in various smart contracts, we need
to build a unified cross-contracts action space for training DNN
(i.e., the action space of each contract is identical). Thus, we need to
classify the functions into several groups to simplify the function
space. Specifically, rather than directly selecting functions, Agent
selects a function group as the action and then randomly chooses a
function from the group. Next, we illustrate the details of function
classification as follows.
Function classification. Note that the function-call sequences to
trigger vulnerabilities are always related to the persistent status
of smart contracts (e.g., balance and its relevant variables). For
example, the precondition for the Ether-Leaking vulnerability in
Fig. 1 to be triggered is that both variable raised (i.e., the balance
of Crowdsale contract) and status meet certain conditions. Several
related functions need to be called for changing the status of the
Crowdsale contract to fulfill certain conditions. Accordingly, it is
important to handle the persistent status of smart contracts while
constructing the function-call sequences to trigger vulnerabilities.
We classify functions according to the types of status operations.
Table 1 summarizes the types of status operations.

In general, smart contracts have three types of statuses: bal-
ance, storage and existence. Balance means the number of ethers
owned by the smart contract. Storage means the variables stored in
blockchain, which persist across transaction sequences. Existence
means that the smart contract has not been destructed. To change
the status of a smart contract, we need to invoke the correspond-
ing status operation. For the balance operation, both Payable and
Call can change the balance of smart contracts. Payable reflects
the function that can receive the ether from other addresses. Call
indicates that the function can transfer ether to other addresses,
which is the potential basis of some vulnerabilities related to the
ether transfer, such as the Ether-Leaking vulnerability. In addition,
Call also means that the function can invoke other smart contracts,
thereby producing more complicated behaviors. For the storage
operation, Store implies that the function can operate the storage.
For the existence operation, Selfdestruct means that the function
can destroy the contract. Through this way, users can specify an
address to receive the ether when destroying the contract.

We take the functions in the Crowdsale contract as examples
to elaborate the above status operations. In particular, invest() is
the only Payable function while both withdraw() and refund() are
Call functions. Regarding storage operations, setOwner() is Store

ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA Su et al.

Table 2: State of Agent. f is the last call function in f̄ .

Features Description

SC

Action Frequency of each action.
Trace Proportion of 8 key opcodes being executed cumulatively.
Coverage Instruction and block coverage of tested contract.

F

Revert Fraction of ending with revert when executing f .
Return Fraction of ending with return when executing f .
Assert Fraction of ending with assert when executing f .
Call Frequency of f being executed in f̄ .
Coverage Instruction and block coverage of function f .
Arguments Number of arguments of f .
Opcodes Counts of 50 representative opcodes in function f .
Name Word embedding of f ′s name.

function. There are no Selfdestruct functions in the Crowdsale con-
tract. To construct the function-call sequences to trigger the Ether-
Leaking vulnerability in the Crowdsale contract, we should firstly
select the function group with Payable status operation. We then
select the function group with Store status operation to change the
storage of the contract. Finally, we select the function group with
Call status operation to withdraw the funds in the contract.

In particular, if a function does not have these four status opera-
tions, the function would be a pure/view function [5] that has no
side effects on the status of the smart contract. Since pure/view func-
tions cannot handle the status of smart contracts, it is impossible
to trigger vulnerabilities by directly calling these functions. we can
improve the efficiency of our fuzzer by dropping these pure/view
functions from our action space.

Based on these status operations, we can classify the functions
into multiple groups. Since the functions in a group have the same
type of status operations, Agent can select the function with the
specific type of status operations via the selection of the corre-
sponding function group at each step. Grouping functions by status
operations is a straightforward way to simplify the function space
and works efficiently for our RLF. At each step, Agent firstly selects
a group as the action, and then randomly chooses a function from it.
Meanwhile, we build up seed pools in a similar way to ILF [15] and
randomly generate inputs (arguments) according to Application
Binary Interface (ABI) including input structural information.

4.3.2 State. The state is the input of Agent, the state space repre-
sents all possible states of Agent. Due to the numerous states of
smart contracts, we construct a continuous state space (denoted
by a continuous vector) to comprehensively represent the state
of Agent. We extract features from the contract SC and previous
function-call sequence f̄ as the state, as given in Table 2.
Feature SC . The features extracted from SC capture the execution
history representing the dynamic status of the entire tested contract
during testing. Feature Action counts the frequency of each action
to record the action history of Agent. Feature Trace records the
proportional eight key opcodes (i.e., sha3, call, create, selfdestruct,
jump, jumpi, jumpi, sload and sstore), which are cumulatively ex-
ecuted by the tested contract. These eight opcodes are related to
logical jump, storage operation, and ether transfer. Meanwhile, fea-
ture Coverage represents the code coverage of the tested contract
during testing.

Table 3: Description of different rewards.

Reward Description
Rblock The fraction of the executed basic blocks to all basic blocks.
Rcov

1
N

∑N
i=1

(1
Mi

∑Mi
j=1 Rblock(fj)

)
Rbugs 1 if Detector identifies any vulnerabilities; otherwise 0.
Rmix αRbugs + (1 − α)Rcov.

Feature F . The features extracted from previous function-call se-
quences capture the semantic features of the last call function f
in f̄ . The top-three features record important information about
the success or the failure of the last call to f . For example, feature
Revert measures the fraction of ending with revert when executing
f . A large value of Revert means that many calls to f in f̄ revert.
This is because the complex precondition of f is difficult to sat-
isfy, and f requires more calls to fully test. Feature Call measures
the frequency of f being executed. Feature Coverage captures the
coverage of f .

The last three features capture the static properties of f . Feature
Arguments measures the number of arguments to be input to the
function f . Specifically, more arguments mean the more complex
function f . Feature Opcodes counts 50 representative opcodes in
function f for measuring the functionality and complexity of f .
We select these 50 opcodes with reference to [15]. In addition, fea-
ture Name encodes the function’s name to capture the semantic
meaning of functions. Specifically, we first tokenize f ’s name into
separate sub-tokens and map each sub-token into word2vec word
embedding [22], and then average the embeddings to obtain the
final embedding, a 300-dimensional vector, as feature Name. Partic-
ularly, to reduce the dimension of features, we utilize a pre-trained
network [15] to compress the above features as F .

At each step, we merge the aforementioned features (SC, F) as
the state of Agent.

4.3.3 Reward. The reward essentially determines the goal of Agent.
We design a new appropriate reward that can guide Agent to gen-
erate vulnerable function-call sequences. In order to trigger the
potential vulnerability, it is natural to design a reward that is re-
lated to the vulnerabilities. In other words, a higher cumulative
reward means more vulnerabilities are found. In this way, the goal
of Agent with the maximized cumulative reward would guide Agent
to generate vulnerable function-call sequences. We denote the re-
ward of vulnerabilities by Rbug, which is a positive value when
the test oracles identify vulnerabilities; is zero otherwise. Based on
the reward Rbug, we build up a vulnerability-guided function-call
sequences generator to reveal smart-contract vulnerabilities similar
to SmarTest [31].

However, as we discuss in § 3.2, purely using the reward of vul-
nerabilities may lead Agent to fall into local optimum and focus
on the vulnerabilities related to a single function. In this case, all
function calls in the sequence only concentrate on a single vul-
nerable function. As a result, the fuzzer is struggling to generate
vulnerable function-call related to multiple functions. To tackle
this problem, we integrate the code coverage reward into the re-
ward of vulnerabilities so that Agent has the ability to explore the
vulnerable function-call sequences containing multiple functions.
Therefore, we need a reward of code coverage for each function

Effectively Generating Vulnerable Transaction Sequences in Smart Contracts with Reinforcement Learning-guided Fuzzing ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA

group (action) to let Agent avoid only choosing the function group
that contains the vulnerable function. In particular, we use the block
coverage as the reward of code coverage denoted by Rblock, which
is the fraction of the executed basic blocks to all basic blocks2. We
firstly count the block coverage of each function group (action)
according to the classification in § 4.3.1, and then take their average
as our reward of code coverage, which is expressed as follows:

Rcov =
1
N

N∑
i=1

(1
Mi

Mi∑
j=1

Rblock(fj)
)
, (1)

where N is the number of function groups (actions) andMi is the
number of functions in the i-th function group. In this way, we
can use Rcov to represent the block coverage of contracts while
reducing the influence of the unbalanced number of functions on
different groups. Finally, we propose an appropriate reward that
effectively guides Agent to generate specific function-call sequences
for revealing the vulnerabilities related to multiple functions. The
reward is expressed as follows:

Rmix = αRbugs + (1 − α)Rcov, (2)

where α is an adjustment factor. The proposed reward considers
both the vulnerability and code coverage (given in Eq. (1)). Table 3
summarizes all the above rewards.
Effectively Generating Vulnerable Transaction Sequences in Smart Contracts with Reinforcement Learning-guided Fuzzing ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA

Algorithm 1:Workflow of Training RLF.
input : Iteration steps 𝑇 , Sample size𝑀 , Search rate 𝜖 ,

Episode 𝐸, Smart Contract 𝑆𝐶
output :Network 𝑄

𝑄 ← InitializeNetwork(); 𝑠 ← getInitState();
𝐴,𝐺 ← groupFunctions(𝑆𝐶);
for 𝑘 ← 1 to 𝑇 do

𝑎← getRandomOrBestAction(𝐴,𝑄 , 𝜖);
𝑓 (𝑥) ← selectFunction(𝐺 [𝑎]);
𝑠′, 𝑟 ← executeFunction(𝑓 (𝑥),𝑆𝐶);
saveExperience(𝑠, 𝑎, 𝑟, 𝑠′);
𝑠 ← 𝑠′;
if 𝑘 mod 𝐸 == 0 then

{(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠′𝑖)}← loadExperience(𝑀);
𝑄 ← train({(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠′𝑖)}, 𝑄);

end

end

group (action) to let Agent avoid only choosing the function group
that contains the vulnerable function. In particular, we use the block
coverage as the reward of code coverage denoted by 𝑅block, which
is the fraction of the executed basic blocks to all basic blocks2. We
firstly count the block coverage of each function group (action)
according to the classification in § 4.3.1, and then take their average
as our reward of code coverage, which is expressed as follows:

𝑅cov =
1
𝑁

𝑁∑︁
𝑖=1

(1
𝑀𝑖

𝑀𝑖∑︁
𝑗=1

𝑅block (𝑓𝑗)
)
, (1)

where 𝑁 is the number of function groups (actions) and𝑀𝑖 is the
number of functions in the 𝑖-th function group. In this way, we
can use 𝑅cov to represent the block coverage of contracts while
reducing the influence of the unbalanced number of functions on
different groups. Finally, we propose an appropriate reward that
effectively guides Agent to generate specific function-call sequences
for revealing the vulnerabilities related to multiple functions. The
reward is expressed as follows:

𝑅mix = 𝛼𝑅bugs + (1 − 𝛼)𝑅cov, (2)

where 𝛼 is an adjustment factor. The proposed reward considers
both the vulnerability and code coverage (given in Eq. (1)). Table 3
summarizes all the above rewards.

4.3.4 Neural Network of Agent. According to the continuous state
space and the discrete action space as described above, we use
Deep Q-learning Network (DQN) [23] to construct the reinforce-
ment learning network for fuzzing since DQN has strengths in
efficiently handling a large state space. However, DQN is limited in
the sense that they learn from a limited number of past steps, and
the function-call sequence is too long for DQN to learn. To address
this issue, we add recurrency to DQN by replacing a linear layer
with a recurrent LSTM, and the new network called Deep Recurrent

Q-Network (DRQN) [14].

2A basic block is a sequence of straight-line opcodes without in-branches except for
the entry and without out-branches except for the exit.

Table 4: Test oracles for vulnerabilities

ID Bug Description

EL

Ether
Leaking

The contract can be stolen ethers by attackers.

SC

Suicidal
Contract

The contract can be destroyed by attackers.

BD

Block State
Dependency

The contract transfer ethers depends on block state variable
(e.g., timestamp, blocknum).

UE

Unhandled
Exception

The contract does not check the return of external call.

DD

Dangerous
Delegatecall

The contract allow attacker to arbitrarily inject the
arguments of delegatecall.

EF

Ether
Frezzing

The contract can only receive ethers but does not contain
create, call, delegatecall and selfdestruct opcodes (only
ways to send out ethers).

Algorithm 1 describes the complete workflow of training RLF.
At each step, we use the 𝜖-greedy strategy to choose the action
(i.e., selecting the action randomly with 𝜖 probability or selecting
the action by Agent) and randomly call the function according to
the action (i.e., the function group). After the function is executed,
we save the experience (𝑠, 𝑎, 𝑟, 𝑠′) so as to replay the experience to
update the network 𝑄 . In particular, the randomness of RLF may
impact the learning component. For example, a function-call se-
quence may trigger vulnerabilities but the fuzzer assigns it with bad
parameters. However, these kinds of sequences do not influence
updating neural network since they have no reward. In our RLF,
only the function-call sequences with proper parameters can trig-
ger vulnerabilities and then can obtain the reward, consequently
updating the neural network. As a result, the neural network can
generate these kinds of function-call sequences in the testing phase.

4.4 Detector

To detect vulnerabilities, inspired by [9, 15], we set up six test
oracles, which are listed in Table 4 with corresponding brief de-
scriptions. Specifically, we extract the execution log (e.g., executed
opcodes) of the tested smart contract during fuzzing and apply the
test oracles to identify whether the vulnerabilities are triggered.

5 EVALUATION

In this section, we conduct extensive experiments to evaluate our
RLF by addressing the following questions.
• RQ1. How does the reward impact RLF’s performance?
(§ 5.3)
• RQ2. Does RLF detect vulnerabilities more efficiently than
existing state-of-the-art tools? (§ 5.4)
• RQ3. How does RLF perform on real-world smart contracts?
(§ 5.5)

5.1 Experiment Setup

Implementation of RLF. We run RLF on a modified backend
based on [15] that supports fast executing transactions natively
without performing Remote Procedure Call (RPC). On the top of
Pytorch [2], we implement the neural network that consists of three
linear layers and one LSTM layer. In the training phase, we assign
𝜖 with a large value so that Agent can explore as many states and
actions as possible while in the testing phase, we decrease 𝜖 to 0.15

4.3.4 Neural Network of Agent. According to the continuous state
space and the discrete action space as described above, we use
Deep Q-learning Network (DQN) [23] to construct the reinforce-
ment learning network for fuzzing since DQN has strengths in
efficiently handling a large state space. However, DQN is limited in
the sense that they learn from a limited number of past steps, and
the function-call sequence is too long for DQN to learn. To address
this issue, we add recurrency to DQN by replacing a linear layer
with a recurrent LSTM, and the new network called Deep Recurrent
Q-Network (DRQN) [14].

2A basic block is a sequence of straight-line opcodes without in-branches except for
the entry and without out-branches except for the exit.

Table 4: Test oracles for vulnerabilities

ID Bug Description

EL

Ether
Leaking

The contract can be stolen ethers by attackers.

SC

Suicidal
Contract

The contract can be destroyed by attackers.

BD

Block State
Dependency

The contract transfer ethers depends on block state variable
(e.g., timestamp, blocknum).

UE

Unhandled
Exception

The contract does not check the return of external call.

DD

Dangerous
Delegatecall

The contract allow attacker to arbitrarily inject the
arguments of delegatecall.

EF

Ether
Frezzing

The contract can only receive ethers but does not contain
create, call, delegatecall and selfdestruct opcodes (only
ways to send out ethers).

Algorithm 1 describes the complete workflow of training RLF.
At each step, we use the ϵ-greedy strategy to choose the action
(i.e., selecting the action randomly with ϵ probability or selecting
the action by Agent) and randomly call the function according to
the action (i.e., the function group). After the function is executed,
we save the experience (s,a, r , s ′) so as to replay the experience to
update the network Q . In particular, the randomness of RLF may
impact the learning component. For example, a function-call se-
quence may trigger vulnerabilities but the fuzzer assigns it with bad
parameters. However, these kinds of sequences do not influence
updating neural network since they have no reward. In our RLF,
only the function-call sequences with proper parameters can trig-
ger vulnerabilities and then can obtain the reward, consequently
updating the neural network. As a result, the neural network can
generate these kinds of function-call sequences in the testing phase.

4.4 Detector

To detect vulnerabilities, inspired by [9, 15], we set up six test
oracles, which are listed in Table 4 with corresponding brief de-
scriptions. Specifically, we extract the execution log (e.g., executed
opcodes) of the tested smart contract during fuzzing and apply the
test oracles to identify whether the vulnerabilities are triggered.

5 EVALUATION

In this section, we conduct extensive experiments to evaluate our
RLF by addressing the following questions.
• RQ1. How does the reward impact RLF’s performance? (§ 5.3)
• RQ2. Does RLF detect vulnerabilities more efficiently than
existing state-of-the-art tools? (§ 5.4)
• RQ3. How does RLF perform on real-world smart contracts?
(§ 5.5)

5.1 Experiment Setup

Implementation of RLF. We run RLF on a modified backend
based on [15] that supports fast executing transactions natively
without performing Remote Procedure Call (RPC). On the top of
Pytorch [4], we implement the neural network that consists of three
linear layers and one LSTM layer. In the training phase, we assign
ϵ with a large value so that Agent can explore as many states and
actions as possible while in the testing phase, we decrease ϵ to 0.15
so that Agent can utilize the trained neural network to generate

ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA Su et al.

Table 5: Datasets Used.

ID Source Used For Avg. LoC Num. of Contracts

D1 VeriSmart [2] RQ1, RQ2, RQ3 330 85
D2 XBlock [6] RQ3 343 1206

Table 6: The number of functions in each group (action) that

are classified by status operations. The function group with

• (◦) means the functions contain (not contain) the status

operations. The function group with□means the functions

contain either status operations or no status operations.

Payable Call Store Selfdestruct Number

Group 1 • • □ ◦ 51
Group 2 ◦ • □ ◦ 242
Group 3 • ◦ □ ◦ 97
Group 4 ◦ ◦ • ◦ 659
Group 5 □ □ □ • 55

Pure/View Functions ◦ ◦ ◦ ◦ 929

vulnerable transaction sequences. In particular, the tested contract
reverts to the initial state after every 50 steps to avoid getting stuck
in a locked condition during fuzzing.
Comparing Tools and Configurations.We mainly consider the
vulnerability-detection tools that are publicly available and can
support transaction generation. These tools can be divided into two
categories: symbolic execution and fuzzing. Regarding symbolic ex-
ecution, there exist several well-known tools, such as Mythril [25],
teEther [19] and SmarTest [31]. For comparison, we select an
industry tool Mythril, which has shown its powerful performance
on vulnerability detection [12], and a vulnerability-guided symbolic
executor SmarTest [31]. With respect to fuzzing, the representa-
tive tools include ContractFuzzer [17], ILF [15], sFuzz [26], and
Smartian [11]. We choose ILF and Smartian since they have su-
perior performance to others. Moreover, all the experiments are
conducted on a Ubuntu machine with an Intel(R) Core(TM) i9-
10980XE (3.00GHz) CPU (36 cores and 72 threads in total), a GPU
at 3090Ti, and 256 GB of memory.
Datasets. To conduct our experiments, we build two datasets. The
first dataset is obtained from a labeled dataset [31], which contains
Ether-Leaking and Suicidal Contract vulnerabilities. Note that they
are typical vulnerabilities that need specific transaction sequences
to trigger. Since each tool can detect vulnerabilities within different
ranges, we only use 85 vulnerable contracts that can be successfully
analyzed by every selected tool as our first dataset, namely D1. In
these 85 vulnerable contracts, there are 108 functions with Ether-
Leaking and 46 functions with Suicidal Contract vulnerabilities.
Particularly, some contracts in dataset D1 are created or modified
manually. Thus, to evaluate the effectiveness of each tool on real-
world contracts, we build up the second dataset from the smart
contracts deployed on the Ethereummainnet. To satisfy the running
requirements of all the tools, we choose the smart contracts with
0.4.25 version and collect them from XBlock [37] and remove the
duplicates. After this process, we randomly sample 1,206 smart
contracts as the second dataset, namely D2. Table 5 summarizes
these two datasets.

Leaking (83) Suicidal (41)
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f a
ll

bu
gs 91.6%

100.0%

81.9%
97.6%

75.9%

97.6%

mix
bugs
cov

Figure 4: Detected vulnerabilities by fuzzers with different

rewards. The number of all vulnerabilities is computed as

the union of all vulnerabilities detected by each fuzzer.

5.2 Distribution of Functions in Actions

Before answering the RQs, we illustrate how to group the functions
as the action space for RLF, and briefly discuss the distribution of
the functions in each action.

We collect all the functions from dataset D1 and finally obtain
2,033 functions. Based on the four status operations specified in
§ 4.3.1, we try several combinations to group the functions and
conduct small-scale experiments for evaluation. Finally, we classify
the functions into six groups and present the results in Table 6.
These function groups have different combination schemes of sta-
tus operations. For example, the functions in Group 1 have Payable
and Call operations while having no Selfdestruct operation. Mean-
while, they have or have no Store operation. Particularly, there is
no intersection of different function groups.

It is worth noting that half of the functions are pure/view func-
tions in smart contracts. Excluding these pure/view functions in
our action space can improve the efficiency of fuzzing since these
functions cannot mutate the status of smart contracts. Thus, we
exclude the group with pure/view functions and use the rest five
groups as our actions. We also consider this grouping scheme to
construct actions for other smart contracts in dataset D2. Despite
its simplicity, this grouping scheme is constructive to an effective
action space for RLF without too many overheads.

5.3 RQ1: Impacts of Rewards

To answer RQ1, we conduct comparative experiments on RLF with
different rewards in order to investigate the relationship between
the rewards and the performance of vulnerability detection. In this
group of experiments, we perform a standard 2-fold cross valida-
tion. Specifically, we randomly split dataset D1 into two partitions.
Each time we select one partition as the training data and another
partition as the testing data. We repeat this training and testing pro-
cedure two times on the different splits and obtain testing results
on the entire dataset D1. For each reward, RLF runs for 2,000 steps
on each contract in testing phase. Moreover, we let α = 0.7 for Rmix
(i.e., Rmix = 0.7Rbugs + 0.3Rcov). Fig. 4 presents the vulnerabilities
being found by RLF with different rewards, Rbugs, Rcoverage and
Rmix in terms of the percentage of the number of detected vulnera-
bilities (bugs) to the total number of vulnerabilities, which is the
union of all the vulnerabilities detected by each fuzzers.

We have the following observations from Fig. 4: 1) For Ether-
Leaking (EL), RLF with Rbugs detects 6% more vulnerabilities than

Effectively Generating Vulnerable Transaction Sequences in Smart Contracts with Reinforcement Learning-guided Fuzzing ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA

Table 7: Vulnerabilities reported by different tools in D1.

The number in () is the number of functions with corre-

sponding vulnerabilities. TP is the number of True Positives

and # is the number of reported vulnerabilities.

Tools

EL (108) SC (46) ALL (154)

TP # TP # TP #

Symbolic

Executors

Mythril [25] 9 12 26 26 35 38

SmarTest [31] 62 63 41 41 103 104

Fuzzers

Smartian [11] 21 21 22 22 43 43

ILFretrained [15] 78 78 41 41 119 119

ILF [15] 86 88 43 43 129 131

our RLF 98 100 43 43 141 143

that with Rcov, implying that the reward of vulnerabilities can effec-
tively guide RLF to generate the vulnerable transaction sequences.
2) RLF with Rmix detects the most number of vulnerabilities, par-
ticularly, 9.7% more than that with Rbugs only. This is because the
reward of the code coverage steers RLF to explore the vulnerable
transaction sequences with multiple functions. As a result, the RLF
with Rmix outperforms that with a single vulnerability reward Rbugs.
3) Compared to Ether-Leaking, Suicidal (SC) is relatively easier to
detect, since it needs simpler transaction sequences to trigger. As a
result, for Suicidal, RLF with Rmix only detects one more vulnera-
bility than others. In summary, combining the vulnerability reward
and the code coverage reward can effectively guide RLF to generate
more vulnerable transaction sequences.

Answer to RQ1: Rbugs guides RLF to detect 6% more vulnera-
bilities than RLF with Rcov. When both Rbugs and Rcov are used
together, Rmix enables RLF to detect the most number of vulnera-
bilities, i.e., 9.7% and 15.7% more than those with Rbugs and Rcov,
respectively.

5.4 RQ2: Efficiency of RLF

In this experiment, we evaluate the efficiency of tools in detect-
ing Ether-Leaking and Suicidal Contract vulnerabilities. We run
Mythril, SmarTest, Smartian, ILF and RLF on D1. For Mythril
and SmarTest, we let the analysis timeout be 30 minutes and the
Z3 timeout be 90s per contract. For RLF, we let the reward of RLF
be Rmix with α = 0.7 (Rmix = 0.7Rbugs + 0.3Rcov) and perform a
standard 2-fold cross validation as the experiments in § 5.3. Partic-
ularly, since ILF is also a learning-based fuzzer, we not only run ILF
with the pre-trained neural network, but also retrain ILF with our
dataset according to the settings in its GitHub source [1], named
as ILF and ILFretrained, respectively (for a fair comparison). In the
testing phase, we run each fuzzer for 30 minutes per contract.

After automated detection, we identify the reported vulnerabil-
ities according to the labels in D1 and list the results in Table 7.
Accordingly, we also plot the number of true vulnerabilities being
found versus time (second) by different tools in Fig. 5. Within 30
minutes (1,800s), RLF demonstrates its efficiency in vulnerability
detection and detects the most number of true vulnerabilities. We
next compare RLF with other symbolic executors and fuzzers.

0 300 600 900 1200 1500 1800
Time (second)

0

20

40

60

80

100

120

140

Nu
m

be
r o

f D
et

ec
te

d
Vu

ln
er

ab
ilit

ie
s RLF ILF retrained ILF Smartest Smartian

Figure 5: True vulnerabilities being found versus time (sec-

ond) by different tools in D1.

Comparing RLF to Existing Symbolic Executors. Both RLF
and SmarTest find much more true vulnerabilities than Mythril.
This is because our RLF and SmarTest are vulnerability-guided
approaches so that they focus on generating vulnerable transaction
sequences rather than covering the non-vulnerable code for merely
high code coverage. Comparing RLF to SmarTest, RLF detects
25% (i.e., 141−103

154) more true vulnerabilities than SmarTest. This
is because SmarTest fails to detect the vulnerabilities related to
multiple functions (e.g., the Ether-Leaking vulnerability as shown
in the example of Fig. 1). In addition, Fig. 5 shows that the number
of vulnerabilities detected by SmarTest still increases rapidly in
the last 900s (from 900s to 1,800s); it may imply that the number of
its detected vulnerabilities has not achieved the maximum value
even after a long time. This is mainly because the low efficiency of
the symbolic execution mechanism (e.g., the SMT solver) limits the
performance of SmarTest.
Comparing RLF to Existing Fuzzers. Comparing ILFretrained to
ILF, ILF detects 6% (i.e., 129−119

154) more vulnerabilities. According to
the analysis of loss values during training, we find that the neural
network of ILF cannot converge at the end of training. This is
because the number of smart contracts in dataset D1 is too small
to train the complex neural network of ILF, which requires a huge
smart-contract dataset to train. As a result, ILFretrained performs
worse than ILF with the pre-trained network.

Next, we compare our RLF to ILF, RLF detects 8% (i.e., 141−129
154)

more true vulnerabilities. This is mainly because ILF is a coverage-
guided fuzzer with an aim to cover as many execution paths as
possible, inevitably leading to huge time consumption. By contrast,
as a vulnerability-guided fuzzer, RLF mainly focuses on reaching
vulnerable execution paths. Moreover, ILF consumes more time in
calculating the inputs of functions while RLF simplifies this process
by randomly generating the inputs. Specifically, ILF is composed of
a more complex neural network than our RLF. The neural network
of ILF consists of 650,367 parameters, which are much larger than
our RLF with 238,778 parameters. Consequently, for each smart con-
tract in dataset D1, RLF generates an average of 290k transactions
for testing but ILF only generates an average of 160k transactions.
In addition, ILF uses imitation learning to learn from the symbolic
executor, which may fail to generate enough effective test cases for
fully training the neural network and limit the performance of ILF.
However, RLF can be fully trained via fuzzing since fuzzing can effi-
ciently generate a massive number of test cases so that we can select
useful test cases for training. As a result, RLF detects more vulnera-
bilities than ILF with the same amount of time. As for Smartian, it

ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA Su et al.

Table 8: Vulnerabilities reported by different tools in D2. TP

is the number of True Positives and # is the number of re-

ported vulnerabilities.

Bug ID

SmarTest [31] Smartian [11] ILF [15] Our RLF

TP # TP # TP # TP #

EL 46 46 19 19 15 15 20 20

SC 8 8 6 6 45 45 47 47

BD / / 92 98 90 92 90 92

UE / / 16 17 16 17 16 17

DD / / 0 0 1 1 1 1

EF / / 0 0 1 1 1 1

detects the fewest vulnerabilities than other tools though having
no false positives. In general, our RLF outperforms state-of-the-art
fuzzers in terms of efficiency in detecting vulnerabilities.
False Positives Analysis.We manually identify true vulnerabil-
ities according to the labels in dataset D1 and analyze the false
positives (FP) reported by each tool. All FP results belong to Ether-
Leaking vulnerabilities. We further observe that the three FP re-
sults reported by Mythril are from the same smart contract. These
three FP functions are essentially safe since they are protected by a
whitelist. We also note that SmarTest reported one FP, which is
only virtually safe though predefined safety conditions can be vio-
lated. In addition, both RLF and ILF report two identical FP results,
which are also virtually safe while satisfying the predefined test
oracles. Totally, only a few false positives being reported by each
tool and our RLF achieves 98.6% (i.e., 141

143) precision rate in D1.

Answer to RQ2: RLF is more efficient in detecting Ether-Leaking
(EL) and Suicidal (SC) vulnerabilities than other state-of-the-art
tools. Within 30 minutes, RLF detects 8%-69%more vulnerabilities
than the compared tools in D1. In addition, RLF achieves 98.6%
precision rate in D1.

5.5 RQ3: Performance on Real-world Contracts

In this experiment, we evaluate the performance of vulnerability
detection of RLF on real-world smart contracts. Due to the small
proportion of vulnerabilities in real-world smart contracts, it is
difficult to train a robust vulnerability-guided model (i.e., the neural
network). To address this issue, we first train the model on dataset
D1 and then evaluate its performance on dataset D2. We run our
RLF, ILF, Smartian and SmarTest for 1 minute per contract on
dataset D2. The experimental results are reported in Table 8. Since
the model of RLF is only trained for Ether-Leaking and Suicidal
vulnerabilities, we divide the results into two parts for discussion:
1) the results on Ether-Leaking and Suicidal vulnerabilities and 2)
the results on other vulnerabilities.
Ether-Leaking and Suicidal. Comparing RLF to coverage-guided
fuzzers (i.e., Smartian and ILF), RLF generates vulnerable trans-
actions more efficiently to reveal Ether-Leaking and Suicidal vul-
nerabilities. This result also demonstrates the effectiveness of our
RLF on real-world smart contracts. In particular, RLF also detects
more Suicidal (SC) vulnerabilities than SmarTest though it finds
fewer Ether-Leaking (EL) vulnerabilities than SmarTest (i.e., 20

1 function play(uint256 _number){

2

3 if(msg.value == 1 ether && _number <= 1)

4 if (_number == 1)

5 {

6 // Ether -Leaking

7 msg.sender.transfer(this.balance);
8 }

9 ...

10 }

Figure 6: Example of the vulnerability hiding in specific con-

ditions.

vs. 46). Through manually checking, we find that most of the extra
vulnerabilities detected by SmarTest have execution paths with
specific conditions, which need specific inputs of function to satisfy.
Fig. 6 gives an example of this case, in which msg.sender can only
transfer the ethers when msg.value == 1 ether and _number == 1. It
is worth mentioning that it is very difficult for a fuzzer to generate
these specific inputs to meet this condition (e.g., the probability
of generating _number == 1 for a random fuzzer is 1/2256). Thus,
the above three fuzzers (i.e., RLF, Smartian and ILF) fail to reveal
these vulnerabilities, while the symbolic executor of SmarTest can
easily achieve this goal.
Other Vulnerabilities. Although the model of RLF is trained for
Ether-Leaking and Suicidal vulnerabilities, the vulnerable trans-
action sequences generated by RLF can still partly cover other
vulnerabilities. For example, the vulnerable functions with Block
State Dependence (BD) also have Call operations as the functions
with Ether-Leaking vulnerability do; this feature enables RLF to
cover Block State Dependence vulnerability while detecting Ether-
Leaking vulnerability. In general, our RLF obtains satisfactory re-
sults in detecting these vulnerabilities, performing only a little
worse than Smartian. Therefore, we believe that RLF can reveal
more vulnerabilities through training on the dataset with specific
vulnerabilities.

Answer to RQ3: Being trained on dataset D1, RLF outperforms
other fuzzers in detecting Ether-Leaking (EL) and Suicidal (SC)
vulnerabilities in real-world smart contracts in dataset D2. RLF
also achieves close performance on other vulnerabilities com-
pared to other fuzzers.

6 DISCUSSIONS

This section discusses RLF’s limitations and potential future im-
provement.

6.1 Dependency on Vulnerability

Different from other coverage-oriented fuzzers, which mainly pur-
sue high code coverage, we originally propose a vulnerability-
guided fuzzer with a focus on detecting vulnerabilities. Experimen-
tal results show that our RLF outperforms other compared fuzzers.
However, the performance of RLF heavily depends on the number
of vulnerabilities for training. In our experiments, RLF receives the
reward of vulnerability when test oracles identify any type of vul-
nerability. It is better to set the individual reward for each type of
vulnerability so that RLF can learn to generate targeted vulnerable

Effectively Generating Vulnerable Transaction Sequences in Smart Contracts with Reinforcement Learning-guided Fuzzing ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA

transaction sequences for different types of vulnerability. However,
the number of uncommon vulnerabilities is not enough for training
(e.g., Dangerous Delegatecall). Thus, we merge the reward of each
vulnerability (i.e., Rbugs) as the reward of RLF.

6.2 Effectiveness of Actions

In our RLF, we adopt heuristic ideas to group functions with similar
status operations so as to simplify the function space and construct
our action space. In this way, the agent can partially handle the sta-
tus operations by selecting the corresponding action (i.e., function
groups) to generate the specific function-call sequences to trigger
vulnerabilities. As shown in § 5.4, this action space is effective
for most smart contracts. However, with the increased number of
functions in smart contracts, each action (i.e., a function group)
may contain more functions so the effectiveness of the action space
would decline. To address this problem, we need a more precise
method to group the functions for a better action space, which can
easily upgrade our reinforcement learning framework.

6.3 Function Argument Selection

In our work, RLF only chooses functions to be invoked at each step,
where the arguments of the function are randomly selected from
seed pools. The random arguments may not satisfy the conditions
in the tested function (e.g., statement require). Although we can
repeatedly input different arguments to satisfy the conditions in
functions, an appropriate selection of arguments may effectively
improve the performance of fuzzing. In order to achieve this goal,
it is necessary to design a revised neural network architecture for
handling the selection of both functions and arguments. However,
this revised neural network (e.g., the network of ILF) may further
complicate the entire system design and also bring extra overheads,
thereby significantly slowing down the testing process. Therefore,
to handle this performance trade-off, we should adopt appropriate
strategies for different fuzzing scenarios.

7 RELATEDWORK

Symbolic execution and fuzzing are the mainstream techniques that
support generating transactions to explore the execution paths of
smart contracts and reveal their vulnerabilities.
Symbolic Execution. The core idea of symbolic execution [18] is
to execute the program with symbolic input rather than concrete
input. With the symbol input, the symbolic executor systemati-
cally explores all the possible execution paths and obtains their
constraints. The constraint solvers then calculate the concrete in-
stances of each constraint, which can be used as input to trigger
the corresponding execution path.

Symbolic execution has been commonly used to generate trans-
actions to test smart contracts. In 2016, Luu et al. [20] proposed a
novel symbolic executor, namely Oyente, which detects four classic
vulnerabilities in smart contracts. In addition to Oyente, other sym-
bolic executors such as Mythril [25], Manticore [24], Maian [27],
Verx [28], Mpro [36] have been proposed to detect vulnerabilities
in smart contracts. Moreover, recent studies proposed vulnerability-
guided symbolic executors to improve the efficiency of vulnerability
detection. In particular, Krupp et al. [19] presented a directed sym-
bolic executor, namely teEther, through analyzing the critical

paths with key instructions (e.g., ether transfer or code injection).
So et al. [31] presented Smartest to exploit language model-guide
symbolic execution to obtain the vulnerable transaction sequences.
Compared to these previous approaches, the proposed RLF compre-
hensively considers both the code coverage and vulnerability so as
to identify the vulnerabilities across multiple functions.
Fuzzing. Fuzzing has been increasingly adopted for fuzzing smart
contracts. Jiang et al. [17] presented ContractFuzzer, which gener-
ates fuzzing inputs based on the ABI specifications of smart con-
tracts and defines test oracles to detect security vulnerabilities.
Based on AFL [35], sFuzz [26] designs an efficient lightweight multi-
objective adaptive strategy with consideration of branch distance.
Harvey [34] is a commercial (closed-source) fuzzer that employs a
heuristic for predicting new inputs so that it is more likely to cover
new paths. The above fuzzers mainly focus on generating specific
inputs to satisfy complex conditions while failing to consider the
transaction sequences to trigger vulnerabilities.

To generate the transaction sequences, ILF [15] uses imitation
learning to learn from symbolic execution experts for generating
effective transaction sequences. In addition, Smartian [11] em-
ploys both static and dynamic analyses for fuzzing smart contracts.
However, both of them are coverage-guided fuzzers that may waste
a lot of time exploring the non-vulnerable transaction sequences.
By contrast, as a vulnerability-guided fuzzer, our RLF can reduce
the time for generating vulnerable transaction sequences.

In addition, it is worth noting that machine learning has been
commonly used in fuzzing outside the field of smart contracts and
has achieved outstanding results [8, 13, 30, 39].

8 CONCLUSION

In this work, we present a vulnerability-guided fuzzer based on
reinforcement learning, namely RLF, for effectively generating vul-
nerable transaction sequences in smart contracts. In particular, we
firstly model the process of fuzzing smart contracts as MDP to
construct our reinforcement learning framework. Then, we design
a new appropriate reward with consideration of both vulnerability
and code coverage so as to guide RLF to generate specific trans-
action sequences for revealing vulnerabilities, especially for the
complicated vulnerabilities related to multiple functions. Finally,
we design a neural network for RLF to automatically learn from
the previous sequences, so that our RLF can effectively generate
vulnerable transaction sequences. Extensive experimental results
demonstrate that the proposed RLF detects more vulnerabilities
than other state-of-the-art tools within a limited time. Our results
also validate the effectiveness of the designed reward (considering
both vulnerability and code coverage) contributing to the superior
performance of RLF.

ACKNOWLEDGMENTS

The research has been supported by the National Key R&D Program
of China (2020YFB1006002), Technology Program of Guangzhou,
China (202103050004), Hong Kong RGC Projects (PolyU15219319,
PolyU15222320, PolyU15224121), and HKBU COMP Department
Start-up Fund (41.4541.179432)

ASE 2022, Oct. 10-14, 2022, Ann Arbor, MI, USA Su et al.

REFERENCES

[1] 2019. ILF. https://github.com/eth-sri/ilf
[2] 2020. VeriSmart-benchmarks. https://github.com/kupl/VeriSmart-benchmarks
[3] 2022. ERC-721 NON-FUNGIBLE TOKEN STANDARD. https://ethereum.org/en/

developers/docs/standards/tokens/erc-721/
[4] 2022. Pytorch. https://pytorch.org/
[5] 2022. Solidity Documentation. https://docs.soliditylang.org/en/v0.8.16/
[6] 2022. Xblock. http://xblock.pro
[7] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Reliability

of Coverage-Based Fuzzer Benchmarking. In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). 1621–1633. https://doi.org/10.1145/
3510003.3510230

[8] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. 2018. Deep Rein-
forcement Fuzzing. In 2018 IEEE Security and Privacy Workshops (SPW). 116–122.
https://doi.org/10.1109/SPW.2018.00026

[9] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2022.
Defining Smart Contract Defects on Ethereum. IEEE Transactions on Software
Engineering 48, 1 (2022), 327–345. https://doi.org/10.1109/TSE.2020.2989002

[10] Ting Chen, Youzheng Feng, Zihao Li, Hao Zhou, Xiaopu Luo, Xiaoqi Li, Xiuzhuo
Xiao, Jiachi Chen, and Xiaosong Zhang. 2021. GasChecker: Scalable Analysis
for Discovering Gas-Inefficient Smart Contracts. IEEE Transactions on Emerging
Topics in Computing 9, 3 (2021), 1433–1448. https://doi.org/10.1109/TETC.2020.
2979019

[11] Jaeseung Choi, Gustavo Grieco, Doyeon Kim, Alex Groce, Soomin Kim, and
Sang Kil Cha. 2021. SMARTIAN: Enhancing Smart Contract Fuzzing with Static
and Dynamic Data-Flow Analyses. In The 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE/ACM. 227–239. https://doi.org/
10.1109/ASE51524.2021.9678888

[12] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 530–541. https://doi.org/10.1145/3377811.3380364

[13] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
learning for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 50–59. https://doi.org/10.1109/ASE.2017.
8115618

[14] Matthew Hausknecht and Peter Stone. 2015. Deep Recurrent Q-Learning for
Partially Observable MDPs. In AAAI 2015 Fall Symposium.

[15] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to Fuzz from Symbolic Execution with Application to
Smart Contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 531–548. https://doi.org/10.
1145/3319535.3363230

[16] Huawei Huang, Wei Kong, Sicong Zhou, Zibin Zheng, and Song Guo. 2021. A
survey of state-of-the-art on blockchains: Theories, modelings, and tools. ACM
Computing Surveys (CSUR) 54, 2 (2021), 1–42.

[17] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection (ASE 2018). Association for Computing Machinery,
New York, NY, USA, 259–269. https://doi.org/10.1145/3238147.3238177

[18] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[19] Johannes Krupp and Christian Rossow. 2018. TEETHER: Gnawing at Ethereum to
Automatically Exploit Smart Contracts. In Proceedings of the 27th USENIX Confer-
ence on Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association,
USA, 1317–1333.

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 254–269. https:
//doi.org/10.1145/2976749.2978309

[21] Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47,
11 (2021), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
(2013), 3111–3119.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[24] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-
Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 1186–1189. https://doi.org/10.1109/ASE.2019.00133

[25] Bernhard Mueller. 2018. Smashing Ethereum Smart Contracts for Fun and Real
Profit. In The 9th Annual HITB Security Conference in The Netherlands (HITB
SECCONF), Amsterdam, Vol. 9. 54.

[26] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
SFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,
USA, 778–788. https://doi.org/10.1145/3377811.3380334

[27] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings
of the 34th Annual Computer Security Applications Conference (San Juan, PR, USA)
(ACSAC ’18). Association for ComputingMachinery, New York, NY, USA, 653–663.
https://doi.org/10.1145/3274694.3274743

[28] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. VerX: Safety Verification of Smart Contracts. In 2020 IEEE
Symposium on Security and Privacy (SP). 1661–1677. https://doi.org/10.1109/
SP40000.2020.00024

[29] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss. 2019.
Security analysis methods on ethereum smart contract vulnerabilities: a survey.
arXiv preprint arXiv:1908.08605 (2019).

[30] Gary J Saavedra, Kathryn N Rodhouse, Daniel M Dunlavy, and Philip W
Kegelmeyer. 2019. A review of machine learning applications in fuzzing. arXiv
preprint arXiv:1906.11133 (2019).

[31] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. 2021. SmarTest: Effectively
Hunting Vulnerable Transaction Sequences in Smart Contracts through Language
Model-Guided Symbolic Execution. In 30th USENIX Security Symposium (USENIX
Security 21). 1361–1378.

[32] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). 67–82.

[33] Friedhelm Victor and Andrea Marie Weintraud. 2021. Detecting and Quantifying
Wash Trading on Decentralized Cryptocurrency Exchanges. In Proceedings of the
Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing
Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/3442381.3449824

[34] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A greybox fuzzer for
smart contracts. In Proceedings of the 28th ACM JointMeeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1398–1409.

[35] Michal Zalewski. 2014. American fuzzy lop (2017). URL http://lcamtuf. coredump.
cx/afl 14 (2014), 28.

[36] William Zhang, Sebastian Banescu, Leonardo Pasos, Steven Stewart, and Vijay
Ganesh. 2019. MPro: Combining Static and Symbolic Analysis for Scalable
Testing of Smart Contract. In 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE). 456–462. https://doi.org/10.1109/ISSRE.2019.
00052

[37] Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hong-Ning Dai. 2020. XBlock-ETH:
Extracting and Exploring Blockchain Data From Ethereum. IEEE Open Journal of
the Computer Society 1 (2020), 95–106. https://doi.org/10.1109/OJCS.2020.2990458

[38] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. 2020. An overview on smart contracts: Challenges,
advances and platforms. Future Generation Computer Systems 105 (2020), 475–491.

[39] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-Box
Fuzzing through Deep Learning. In Proceedings of the 29th USENIX Conference on
Security Symposium (SEC’20). USENIX Association, USA, Article 127, 15 pages.

https://github.com/eth-sri/ilf
https://github.com/kupl/VeriSmart-benchmarks
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://pytorch.org/
https://docs.soliditylang.org/en/v0.8.16/
http://xblock.pro
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1109/SPW.2018.00026
https://doi.org/10.1109/TSE.2020.2989002
https://doi.org/10.1109/TETC.2020.2979019
https://doi.org/10.1109/TETC.2020.2979019
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1145/3442381.3449824
https://doi.org/10.1109/ISSRE.2019.00052
https://doi.org/10.1109/ISSRE.2019.00052
https://doi.org/10.1109/OJCS.2020.2990458

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Contract
	2.2 Fuzzing
	2.3 Deep Reinforcement Learning

	3 Motivation
	3.1 Motivating Example
	3.2 Challenges to Generate Vulnerable Transaction Sequences

	4 The RLF System
	4.1 Modeling Fuzzing as MDP
	4.2 Overview of RLF
	4.3 Agent
	4.4 Detector

	5 Evaluation
	5.1 Experiment Setup
	5.2 Distribution of Functions in Actions
	5.3 RQ1: Impacts of Rewards
	5.4 RQ2: Efficiency of RLF
	5.5 RQ3: Performance on Real-world Contracts

	6 Discussions
	6.1 Dependency on Vulnerability
	6.2 Effectiveness of Actions
	6.3 Function Argument Selection

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

