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Abstract

Graph Neural Networks (GNNs) have exhibited remarkable
capabilities for dealing with graph-structured data. However,
recent studies have revealed their fragility to adversarial at-
tacks, where imperceptible perturbations to the graph struc-
ture can easily mislead predictions. To enhance adversarial
robustness, some methods attempt to learn robust representa-
tion through improving GNN architectures. Subsequently, an-
other approach suggests that these GNNs might taint feature
information and have poor classifier performance, leading to
the introduction of Graph Contrastive Learning (GCL) meth-
ods to build a refining-classifying pipeline. However, existing
methods focus on global-local contrastive strategies, which
fails to address the robustness issues inherent in the contexts
of adversarial robustness. To address these challenges, we
propose a novel paradigm named GRANCE to enhance the
robustness of learned representations by shifting the focus to
local neighborhoods. Specifically, a dual neighborhood con-
trastive learning strategy is designed to extract local topologi-
cal and semantic information. Paired with a neighbor estima-
tor, the strategy can learn robust representations that are re-
silient to adversarial edges. Additionally, we also provide an
improved GNN as classifier. Theoretical analyses provide a
stricter lower bound of mutual information, ensuring the con-
vergence of GRANCE. Extensive experiments validate the
effectiveness of GRANCE compared to state-of-the-art base-
lines against various adversarial attacks.

Introduction

Graph Neural Networks (GNNs), with their effective mes-
sage passing mechanisms, have excelled in numerous graph-
related tasks (Chen et al. 2023b; Wan et al. 2024; Wau,
Zhang, and Fan 2024) such as anomaly detection (Pan et al.
2023; Cai et al. 2024; Zhang et al. 2024; Liu et al. 2024), ge-
nomics (Li et al. 2022a; Hickey et al. 2023), network analy-
sis (Yu et al. 2024; Wu et al. 2024; Chen et al. 2023a), and
disease propagation modeling (Lao et al. 2022; Gao et al.
2023), thanks to their ability to learn and uncover complex
patterns from neighbor exchanges (Li et al. 2024; Wu et al.
2023; Chen et al. 2024). However, despite their successes,
GNNs demonstrate vulnerabilities to adversarial attacks in-
volving noisy or deliberately crafted edges (Zhu et al. 2022;

*Corresponding Authors.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13473

Ziigner, Akbarnejad, and Gilinnemann 2018; Wang et al.
2024c), exposing significant robustness flaws that threaten
security in critical environments. Addressing these vulnera-
bilities is essential for broadening GNNs’ applications.

Due to the unique characteristics of graphs and mecha-
nisms of GNNs (Gilmer et al. 2017; Zhuang et al. 2024;
Lu et al. 2024; Zheng et al. 2023), structural attacks (Xu
et al. 2019; Zugner and Gunnemann 2019) have emerged as
a more effective and prevalent method of targeting GNNs
compared to traditional feature attacks. To defend against
structural attacks, some researchers re-engineered the GNN
models to refine the representation through an in-processing
way (Zhu et al. 2019; Wang et al. 2024a). Nonetheless, the
inherent message-passing mechanism within these models
permitted interactions between representations and the con-
taminated graph structure, which inevitably taints feature
information so that capping performance potential. In re-
sponse to these challenges, there has been a shift towards
decoupling this process, i.e., first refining and then clas-
sifying using a GNN (Wu et al. 2019). Typically, the re-
fining is a static procedure, driven solely by feature in-
formation. This approach, while preventing contamination,
tends to underutilize the untainted segments of the structure.
To overcome these drawbacks, Graph Contrastive Learning
(GCL), which learns invariant information from perturbed
graphs (Wang et al. 2024b; Zheng et al. 2022b,a), is be-
ing considered as a representation refining technique. Al-
though GCL also suffered severely from structural attacks,
STABLE (Li et al. 2022b) surprisingly revealed that by in-
tegrating GCL with supervised GNNs, exceptional perfor-
mance can be achieved. The core idea involves a rough pre-
processing to construct contrastive views and refining rep-
resentations via GCL. Ultimately, an improved GNN is per-
formed to derive robust classification results.

Following this idea, some research (Tao et al. 2024) has
made further progress. However, the GCL-based refining-
classifying pipeline is still in its infancy, where STABLE
and other existing methods have not explored the intrin-
sic challenges of adversarial robustness. They directly adopt
the well-known global-local contrastive strategy (Velickovic
et al. 2019), which is contrary to the principle of adversarial
defense as it disrupts the intrinsic geometric structure in the
feature space. It is worth mentioning that decoupling aims
to protect feature information, but these methods still poten-
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Figure 1: (a) Similarity matrices and neighbor overlap rate for original and learned features on Cora using the global-local
contrastive strategy; (b) Similarity curves of global representations at different attack rates versus unattacked representations;
(c) Descriptions of the global-local and proposed dual neighborhood contrastive strategies.

tially compromise it. They generate global embedding for
the perturbed graph through readout, which unreasonably
assumes the read global information can effectively reflect
subtle attacks, and also neglects the locality of operators in
GNNs as well as the effects of structural attacks on node
neighborhoods. We detail the discussion later, where we ar-
gue that the global-local strategy is not suitable enough.

To tackle this, we design a new refining-classifying frame-
work called robust GNNs with ReliAble Neighborhood
Contrastive rEfinement (GRANCE), which deeply into the
insight of adversarial robustness on graphs through a fine-
grained perspective. Instead of focusing on global informa-
tion, we recognize that adversarial attacks are exactly de-
signed to corrupt vulnerable local neighborhoods in glob-
ally imperceptible ways. Unlike traditional GCL which uses
artificially perturbed graphs as augmentations, GRANCE
creates a relatively clean view alongside several perturbed
views through varied pre-processing, leveraging the natu-
ral “perturbations” by attacks as augmentations. Our neigh-
borhood contrastive strategy then maximizes the agreement
between the same node and its neighborhoods across dif-
ferent views, and meanwhile forces them to be distinguish-
able from other nodes, thereby emphasizing local robustness
against attacks. Neighborhoods are defined both topologi-
cally and semantically, with topology based on graph struc-
ture and semantics derived from local geometry in feature
space. The reliability of all these neighbors is estimated in
the clean view to fully exploit feature semantics. Based on
this framework, multiple views within the refinement mod-
ule collaborate during training. This collaboration leads to
a robust representation that is resilient to adversarial edges
within neighborhoods.

In summary, we have the following main contributions:

e Articulate the refining-classifying graph defending
paradigm and provide detailed analyses on drawbacks of
the existing methods, revealing their inherent challenges
of achieving adversarial robustness.

* Propose an effective and robust GCL framework, shift-
ing focus from the global perspective to the crucial local
neighborhoods under the context of structural attacks.

» Extensive experiments demonstrate the outstanding ad-
versarial robustness and performance of our method, sur-

13474

passing state-of-the-art defense models such as STABLE.

Proposed Method

Notations Consider an undirected graph G = (V, £) with
adjacency matrix A € {0,1}"*", where V is the set of
nodes with [V| = n and € is the set of edges. X € R"*™ is
the feature matrix containing the feature information, where
each node is associated with an m-dimensional feature vec-
tor. The degree matrix is defined as D, where the ¢-th di-
agonal element is d; = ) inj and A;; = 1 denotes the

existence of edge (v;, v;) € & linking nodes v;, v; € V.

Emprical Findings We analyze the issues of existing
GCL-based defenders and address the following questions:
Does global-local strategy hurt features? Taking STA-
BLE on the Cora dataset as an example, we tested the nearest
neighbors of nodes in the original features and the learned
representation under 25% attack rate, respectively. Figure 1
(a) illustrates partial similarity matrices of the original fea-
ture and representation in the lower left and upper right tri-
angles, respectively. It can be observed that the node simi-
larities in the original and latent spaces are significantly dif-
ferent. We also discovered that 73.1% of the nearest neigh-
bors had changed after training with the global-local strat-
egy, clearly indicating that the representations do hurt node
features by disrupting the semantic information. A possible
reason is the global-local strategy neglects attention to local
geometry and forces the nodes to learn global information.
Can global information capture subtle attacks? We em-
ployed the Cora dataset, subjected to various degrees of
structural attacks, to generate the global representation
through GNNs and an average readout function (following
STABLE). Taking the global representation at 0% attack rate
as a baseline, we tested and plotted the similarity of global
representations at other attack rates to it in Figure 1 (b). It
can be seen that the global representation hardly changes
as the attack rate increases, indicating that it struggles to
capture the effects of structural attacks. Therefore, existing
methods do not effectively learn attack-resilient embedding
from contrastive strategies with global representations.
What do these two findings imply? Structural adversar-
ial attacks are destructive, only leaving two subtle openings
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Figure 2: Overview of the proposed GRANCE. It generates relatively clean and perturbed views through semantic-based pre-
processing, then conducts dual neighborhood graph contrastive learning, considering both semantic and topological neighbor-
hoods. The reliability of neighbors is calculated by an estimator. Finally, results are obtained using an improved GNN.

to capitalize on: the uncorrupted or easily defensible fea-
ture information and the partially correct structural infor-
mation. Maximizing the use of these two aspects is criti-
cal for effective defense, which has led to the development
of refining-classifying pipelines. We illustrate the global-
local contrastive strategy on the left side of Figure 1 (c),
which disrupts the feature space’s geometric structure while
compromising reliable information and failing to capture lo-
cal nuances through global representations. This deficiency
makes model training against such destruction challenging.
In contrast, our method focuses on “local” and develops a
fine-grained way. We introduces a dual neighborhood con-
trastive strategy, considering the critical role of local neigh-
borhoods in graphs and GNNs. By integrating an estimator,
our method effectively leverages accurate neighborhood in-
formation, fully protecting and utilizing the feature space.

Overall Framework As shown in Figure 2, GRANCE
first generates relatively clean and perturbed views via
semantic-based preprocessing, and then implements dual
neighborhood GCL that accounts for both semantic and
topological neighborhood contexts. The reliability of these
neighbors is determined by an estimator. Ultimately, it yields
results through an enhanced GNN classifier.

Semantic-based Graph Pre-processing According to the
preliminary experiments and analyses, existing graph de-
fense methods do not sufficiently utilize node features, de-
spite the critical importance of feature information for ad-
versarial robustness. Beyond the topological structure pro-
vided by graphs, node features carry rich real-world se-
mantics and form an inherent semantic geometric structure
within the feature space, representing the intrinsic associa-
tions among samples. However, classical methods may not
effectively preserve semantic structures and adversarial at-
tacks may delete edges, so it is necessary to complete the
graph. Formally, we begin by calculating the similarity be-
tween samples

ey

Sij = SiHl(Xi7 Xj),

13475

where sim is a certain similarity measure defined over X,
and x; denotes the feature of the ¢-th sample. Then we define
a completion operation. For an given graph G with the edge
set &, the edge completion is performed by

gCom - T91 (ga 5) = (Vv Eu gCom)a (2)

where Ecom = {(vi,vj) € €| si; > 61} is the edge set
to be completed, 6 is the threshold for completing and U is
the set union operation. As optional, it can also be defined
as Ecom = {(vi,v;) ¢ €| s;; € Topy(s;.)}, where the
function Top,, returns the set of & largest values. Comple-
tion integrates the inherent geometric structure of the feature
space into the graph via constructing the semantic neigh-
borhood, achieving feature information preservation during
subsequent learning processes. For generalization, we set a
trade-off parameter o to measure the importance of semantic
versus topological edges.

On the other hand, graph structure attacks tend to add
edges against this semantic structure. Therefore, by lever-
aging semantic information, we can also effectively elimi-
nate a portion of the easily detectable adversarial edges. In
a similar manner, the similarity between pairs of samples is
first calculated using a similarity function. We then define
the following cut operations:

gCut = T@z (g7 S) = (Vug\gcut)7 (3)

where Ecuy = {(vi,vj) € €] s;; < B2} is the edge set to be
cut, 65 is the threshold for cutting and \ is the set difference
operation. Consequently, we can sever all edges connecting
nodes with a similarity below a predetermined threshold, re-
sulting in a graph that is cleaner relative to the original.
After defining the completion and cut operations, we ex-
plore how to generate views for GCL. Initially, we con-
struct a relatively clean graph, called the clean view, through
completion and cutting. This view employs strong cut-
ting—setting a high threshold—to ensure it contains a
higher proportion of normal edges, though some structural
information may be lost. Subsequently, we obtain a set of



edges with slight cutting by performing random sampling
within the set Eqyt, as

Eue = {(vi,v5) € Ecus | tij = Litij ~ B(p)}, (4

where ¢; ; is a random variable that follows the Bernoulli
distribution B(p) with parameter p. Through slight cutting,
the resulting graph has more noise compared to the clean
view but also retains more information, termed the perturbed
view. By conducting V' random samplings, we can generate
V distinct perturbed views {G1,Ga, - - , Gy }. Without loss
of generality, we consider the scenario with one clean view
and one perturbed view, denoted as G’ and G”'.

The proposed pre-processing is illustrated in Figure 2,
where completion constructs semantic neighborhood by
adding edges between semantically similar nodes while
strong and slight cutting generate contrastive views by re-
moving suspicious edges in different levels. Based on the
semantic information, the completion enhances the protec-
tion of the intrinsic geometric structure of nodes. After-
ward, strong cut leads to a clean view, while slight cuts
produce perturbed but informative views, the difference be-
tween them is mainly composed of adversarial edges, thus
this approach utilizes the natural adversarial edges as self-
supervised information. Again, we note that perturbed views
are generated by completion and slight cut, and “clean” view
refers to the relatively clean graph obtained by completion
and strong cut, which does not imply that unattacked graphs
are available in this paper.

Dual Neighborhood Contrastive Learning Formally, we
specify the relatively clean and perturbed graphs as G’ =
(V, &) with adjacency matrix A’ and ¢” = (V,&") with
adjacency matrix A"”. To encode the two graphs G’ and G”,
we typically define the following GNN encoder to learn cor-
responding node representations:

U:fw(A/,X), V:fW(A”7X)a (5)

where fyy is the GNN encoder with trainable parameter
set W, U and V are the clean and perturbed view node
representations, respectively. Existing GCL-based defend-
ers are built upon the local-global Mutual Information (MI)
maximization framework (Li et al. 2022b), which poten-
tially makes several unreasonable assumptions in the con-
text of adversarial attacks and has been found to compro-
mise valuable semantic information. We instead consider a
more fine-grained contrastive learning framework. Inspired
by InfoNCE and previous GCL work (Zhu et al. 2020), we
first construct a basic node contrastive loss, i.e., for node ¢
in representation U selected as the anchor, we have

poss (usi)

gfw (UZ) = IOg posy, (ui)—&-negfw (ui)” (6)
where the posy, = and negy,  are typically specified as
pos () = e¥(w)/7,
(7

i#]
where u; and v; are the embedding of node ¢ from views
G’ and G”, respectively. k is a specified similarity measure

negfw(ui) = (eﬁ(ui,Uj)/T+M).

N————

intra-view inter-view
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Figure 3: An illustration of semantic-based graph pre-
processing, where nodes and bidirectional arrows with shad-
ing represent semantic information.

defined over node representations and 7 is a temperature
parameter. However, this strategy treats nodes as indepen-
dent entities, which still leaves them vulnerable to corrup-
tion under adversarial attacks. Structural attacks aim to in-
ject anomalous edges in a globally imperceptible manner,
causing nodes to acquire incorrect neighborhood informa-
tion via message passing, which leads to reversed prediction
outcomes. The locality of graphs and GNNs makes them
particularly susceptible to structural attacks. Conversely, by
thoroughly analyzing local neighborhoods, we can construct
a robust framework in response.

Therefore, in the neighborhood-based contrastive loss, the
terms pos;,and negy = can be improved as

posy,, (u;) =
er(uivi) /T Z er(uwiug)/T Z efﬁ(uq',uj)/‘F7 g
JENE, JENE, ®)
topological semantic
negy,. (u;) =
k(uwg,uj)/T r(wg,v;)/T
IR SR
JENE UNE, FENE, UNG,

intra-view inter-view

where Nui denotes the neighborhood, i.e., the collection of
neighbors of node 7 defined over graph G’. N;tu and ./\/',SLL, are
topological and semantic neighborhoods respectively and
we have NV, = N}, UN . This dual neighborhood con-
trastive learning objective fully considers neighborhood in-
formation across dual spaces, enabling the model to learn
node representations that are robust to anomalous edges
within neighborhoods in a simple and effective manner.

Neighborhood Reliability Estimation Although the
aforementioned contrastive strategy provides foundational
robustness, there remains a potential risk of the clean
view’s information being influenced by the perturbed
view. Therefore, we explore how to protect as well as use
the integrated feature information and relatively accurate
structural information in the clean view to further enhance
robustness. To achieve this, we define neighbor reliability
within neighborhoods:

rij = go(wi,u;), Vi € Nu,, (10)



where 7; ; is the reliability score of neighbor u; to anchor
u; and gg is an estimator with learnable parameter set ®.
The estimated reliabilities are leveraged to adjust the afore-
mentioned dual neighborhood contrastive objective. Taking
the objective on topological positive pairs in Equation (8) as
an example, it is redefined as

Z i e (wiug) /7

2 ehn,gcp (ui»uj)'/"-
JENE, JENE,

(11)

for convenience, where h, 4, is a composite function of &
and gg. Consequently, we obtain the final contrastive objec-
tive of u;:

POSfy 99 (i)
POSf . g (ui)—i-negfw (ui)”

Cfyy g0 (ui) = log (12)

where we have

pOsy,, g (ui) = €X020/7

n Z ehn,gq,(uivuj)/T—i— Z e}ln,gq)(ui«uj)/7'7 (13)
JENL, JENE,

reliable topological reliable semantic

This mechanism exploits feature semantics and clean topol-
ogy, enabling the neighborhood contrastive learning to
maintain resilience against neighborhood information influ-
enced by anomalous edges, thereby enhancing robustness.
Our robust dual neighborhood contrastive learning prompts
the model to learn better representations and continuously
refine the estimator. Together, these elements collaborate
effectively to achieve refined representations on attacked
graphs. For specific implementations of the estimator, we
choose a simple soft clustering algorithm (Wilder et al.
2019), whose details are deferred to Appendix A'.

Improving GNN Classifier The refinement module pro-
duces a robust representation U. This section discusses im-
provements to the subsequent GNN classifier. A basic form
of message passing in GNN classifiers is defined as

l
BT = (1-e) 3]

JEN;

Y 4 enl® 4

@

where ~; ; is the weight for message between node ¢ and

j in the [-th layer. For the vanilla GCN, the weight is

%(lj)- = 1/,/d;d;, where the message from each neighbor
is dependent on only the degrees. That may cause the sur-
vival adversarial edges to still affect the classifier. Exist-
ing studies suggest that the message passing in traditional
GNNs can be viewed as a form of Laplacian smoothing (Li,
Han, and Wu 2018): Solely relying on this approach, which
indiscriminately smooths all node representations within a
neighborhood, inevitably leads to the vulnerability of GNNs.
Since we have already obtained high-quality node represen-
tation during the refinement stage, nodes have the potential
to adaptively select the information they receive during the
classification phase. Therefore, an adaptive reweighting fac-
O]

tor 7); ; is introduced, which leads to %(lj) = nfl])/ Vdid;.

Intuitively, we set its range between —1 and 1, allowing the
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messages passed through adversarial or noisy edges to be
treated as “negative messages.” Essentially, the key insight
behind this improvement is to introduce Laplacian sharpen-
ing (Park et al. 2019), such that each node is able to adap-
tively balance between the smoothing and sharpening. For
implementation, the factor is learned by a gating mechanism
(refer to Appendix A). This simple manner fully leverages
the refined representations and further enhances adversarial
robustness and classification performance.

Training Objective In summary, the overall training ob-
jective that needs to be maximized is defined as follows,

N

1
L(UV) = 50D e () + L u (00). - (15)
i=1

To explore the effectiveness of this objective function, we
provide an analysis of the connection between maximizing
this objective and maximizing mutual information.

Theorem 1 Given two node representations U,V € RF
obtained by encoding views G' and G", our proposed con-
trastive objective L(U, V) is a lower bound of mutual in-
formation between encoder input feature matrix X and node
representations U,V from two graph views:

L(U,V) <I(X;U,V). (16)
The proof is deferred to Appendix A. Theorem 1 establishes
the relationship between objective £(U, V) and mutual in-
formation I(X; U, V). According to this theorem, the ob-
jective L(U, V) serves as a stricter lower bound on MI.
Therefore, maximizing £(U, V) is equivalent to maximiz-
ing a lower bound on the mutual information shared between
input node features X and learned representations U, V, en-
suring model convergence (Bachman, Hjelm, and Buchwal-
ter 2019; Tian, Krishnan, and Isola 2020).

Experiments

Experiment Setup Dataset: We evaluate GRANCE' and
baselines on several widely used real-world datasets, includ-
ing Cora, Citeseer, Cora-ML, and BlogCatalog. Compared
Methods: We compare GRANCE with ten representative
methods to assess its robustness under adversarial attacks,
including: 1) baseline methods: GCN (Kipf and Welling
2017) and GAT (Velickovié et al. 2017); 2) state-of-the-
art GNN defenders: RGCN (Zhu et al. 2019), Jaccard (Wu
et al. 2019), Pro-GNN (Jin et al. 2020), SimPGCN (Jin
et al. 2021), ElasticGNN (Liu et al. 2021), STABLE (Li
et al. 2022b), Mid-GCN (Huang et al. 2023), and GraphRSP
(Wang et al. 2024a). Attack Methods: The experiments are
conducted under five attack strategies, including: 1) Non-
targeted attack: Mettack (Zugner and Gunnemann 2019),
PGD (Xu et al. 2019), DICE (Waniek et al. 2018), and Ran-
dom attack; 2) Targeted Attack: Nettack (Ziigner, Akbarne-
jad, and Giinnemann 2018). See Appendix B for details.

'The appendix and code are available at https:/github.com/
shumanzhuang/GRANCE.



Attacks Clean Poisoning (Acc%) Evasion (Acc%)

Ptb rate (%) 5 15 25 5 15 25
GCN 83.51(0.36) | 76.65 (0.78) 66.18 (1.64) 47.34(1.92) | 79.88 (0.81) 78.86 (1.11) 77.21(1.42)
GAT 8350 (0.72) | 79.83 (0.67) 71.18 (1.31)  55.29(0.80) | 80.36 (0.78) 69.78 (1.48)  53.61 (1.44)
RGCN 83.24 (0.31) | 76.16 (0.39) 69.16 (0.73) 52.36 (1.06) 82.40(0.37) 81.79(0.45) 80.83 (0.57)
Jaccard 81.84 (0.35) | 79.28 (0.40) 72.66 (0.74) 62.75(1.46) | 79.34 (1.01) 78.33 (1.00) 76.63 (1.55)

< | Pro-GNN 83.10 (0.40) | 80.93 (0.57) 72.44(0.59) 68.65(0.64) | 78.97 (1.24) 7694 (1.36) 72.88 (0.72)

8 SimPGCN 82.30 (0.46) | 78.07 (0.53) 73.94 (1.03) 65.44 (1.76) 81.98 (0.57) 81.97(0.57) 81.02 (0.46)
ElasticGNN | 84.62 (0.72) | 82.06 (0.93) 73.17(0.85) 65.32 (1.03) - - -
STABLE 84.46 (0.42) | 81.15(0.66) 78.48 (1.64) 75.89 (1.72) 82.56 (0.28)  80.96 (0.42)  80.98 (0.33)
Mid-GCN | 83.96 (0.45) | 82.31(0.57) 76.63(0.75) 72.15(1.03) | 82.38(0.90) 80.69 (0.73)  77.56 (1.29)
GraphRSP 81.03 (0.37) | 80.10(0.23) 78.15(0.31) 70.77 (0.46) 82.18 (0.17)  81.65(0.24) 81.13(0.30)
GRANCE 84.71 (0.40) | 81.33(0.78) 80.30(0.39) 78.50 (0.92) | 82.60 (0.75) 82.07 (1.09) 81.38 (1.28)
GCN 71.63 (0.61) | 70.29 (0.77) 64.36 (1.30) 56.31(0.85) | 69.38 (0.79) 68.32 (0.57) 67.08 (1.04)
GAT 73.76 (0.69) | 72.57 (0.74) 68.07 (1.24) 61.32(1.03) | 73.11(1.32) 69.29 (1.26) 61.79 (0.64)
RGCN 73.43(0.20) | 71.33(0.31) 64.45(0.60) 57.82(0.93) | 72.77 (0.51) 71.78 (0.40) 72.11(0.31)
Jaccard 72.23 (0.11) | 71.27 (0.34) 67.18 (0.89) 61.37 (1.12) | 69.06 (0.71) 68.89 (0.81) 67.58 (0.78)

§ Pro-GNN 73.18 (0.18) | 72.23(0.32) 65.61(1.05) 55.84(0.63) | 71.84(0.24) 68.03 (1.23) 68.47 (1.25)

§ SimPGCN 73.10 (0.75) | 72.99 (0.84) 70.44 (1.56) 67.83(3.21) | 74.03 (0.74) 73.86 (0.61) 73.63 (0.84)

S | ElasticGNN | 73.71 (0.46) | 72.54 (0.56) 71.08 (0.70)  62.87 (1.17) - - -
STABLE 74.07 (1.34) | 73.75(0.84) 72.86(1.32) 71.17(1.02) | 73.77 (0.84) 73.66 (0.62) 73.52 (0.45)
Mid-GCN | 73.82(0.39) | 73.36 (0.16) 72.89 (0.56)  68.55 (1.31) | 73.83 (0.18) 74.16(0.22)  71.24(0.26)
GraphRSP 73.88 (0.62) | 72.52 (0.35) 67.68 (0.50) 62.06 (0.71) | 70.29 (0.21)  70.25(0.20) 69.51 (0.31)
GRANCE 75.07 (0.61) | 74.80 (1.05) 73.79 (0.56) 74.36 (0.53) | 75.43(0.74) 75.04 (0.42) 74.77 (0.51)
GCN 8531 (0.23) | 80.17 (0.30) 54.15(0.58) 49.42 (0.64) | 82.26 (0.56) 81.41 (0.84)  81.35 (0.65)
GAT 85.52(0.35) | 81.45(0.68) 57.53(1.03) 45.41(3.36) 81.03(0.64) 57.41(1.16) 45.60(2.70)
RGCN 85.66 (0.49) | 81.48 (0.38) 55.93(0.63) 50.85(0.35) | 82.18 (0.15) 56.05(0.23) 46.02 (0.24)

B Jaccard 84.64 (0.34) | 80.46 (0.51) 57.24(1.45) 50.03 (0.42) 82.29 (1.24)  79.98 (0.68)  78.59 (0.84)

S | Pro-GNN 85.38 (0.36) | 83.32(0.57) 53.57(0.32) 51.32(0.73) 81.59 (0.69) 7291 (3.41) 67.34(2.54)

é SimPGCN 85.32(0.42) | 83.34(0.39) 76.69 (6.03) 69.67 (10.31) | 84.15(0.25) 81.96(1.01) 81.74 (2.31)

S| ElasticGNN | 85.60 (0.84) | 83.46 (1.05) 71.35(1.69)  54.07 (0.42) - - -
STABLE 85.81(0.34) | 81.62(0.23) 76.22 (0.49) 70.19 (3.11 82.01 (0.29) 81.18 (0.27)  79.59 (0.54)
Mid-GCN 82.77 (0.39 | 78.14(0.29) 74.13 (0.45) 71.27 (0.65 82.82(0.39) 80.62 (0.60)  79.60 (0.33)
GraphRSP 84.19 (0.17) | 81.28 (0.22) 78.76 (0.25) 76.38 (0.62) | 83.04 (0.47) 81.07 (0.18) 74.09 (0.36)
GRANCE 86.17 (0.30) | 84.11 (0.20) 81.21(0.40) 79.66 (0.70) | 83.36(0.37) 82.12(0.63) 82.30 (0.79)
GCN 85.96 (1.16) | 69.51 (1.34) 48.65(1.46) 36.51(3.23) | 70.84 (2.72) 50.50 (1.68)  39.67 (3.79)
GAT 69.63 (1.64) | 63.96(2.05) 52.09(9.03) 39.14(6.06) | 65.57 (1.55) 49.86 (11.04) 32.26 (5.45)
RGCN 72.71 (2.87) | 67.16 (3.20) 53.20(7.09) 59.19 (8.93) | 68.47 (2.36) 63.83 (1.74) 60.86 (1.72)

& Jaccard - - - - - - -

s | Pro-GNN 76.27 (1.34) | 67.33(2.03) 60.74 (3.45) 63.59(5.32) | 71.26(0.78) 48.70 (0.59) 38.19 (3.36)

S| SimPGCN | 90.03 (0.22) | 86.52(0.30) 8573 (0.21)  84.53(1.20) | 87.09 (1.05) 86.22(1.13)  85.26 (3.76)

EDD ElasticGNN | 88.05 (0.58) | 87.74 (0.18) 82.88 (1.03)  80.54 (1.90) - - -

M | STABLE 86.21 (0.71) | 80.55(0.65) 70.80 (1.27) 67.37 (0.35) 84.34 (1.28) 76.56 (1.39)  70.99 (1.03)
Mid-GCN 86.39 (0.69) | 85.68 (1.28) 81.45(6.27) 79.79(5.72) | 85.69 (1.97) 8498 (1.92) 83.21 (3.88)
GraphRSP 89.64 (1.86) | 85.10 (1.63) 80.52 (2.66) 76.95 (3.45) 85.83(1.25) 84.72(1.30) 83.83(2.22)
GRANCE 91.91 (0.20) | 90.31 (0.17) 88.55(0.43) 88.39 (0.38) | 87.56 (0.20) 86.87 (0.26) 85.76 (0.42)

Table 1: Node classification accuracy (mean% and standard deviation%) under different perturbation of Mettack. The top two

results are highlighted in bold and underlined. Some methods encounter errors, with the corresponding results marked as

Performance against Non-targeted Attacks We first
present the classification accuracy of all the models against
non-targeted adversarial attacks at varying perturbation
rates. The results for the Mettack, in both poisoning (at-
tack during training) and evasion (attack during testing) set-
tings, are shown in Table 1. Based on these results, the fol-
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lowing observations can be made: 1) GRANCE consistently
outperforms other baselines against both attacks across
most datasets, indicating its effectiveness. 2) GRANCE and
STABLE show superior performance over most end-to-
end defenders, validating the advantages of the GCL-based
refining-classifying pipeline. Notably, GRANCE performed
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Figure 4: Accuracy on Cora under PGD, DICE, Random, and Nettack attack.
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Figure 5: t-SNE visualization of node embedding in BlogCatalog dataset under Mettack.

especially well under severe perturbation ratios. We fur-
ther evaluate the performance of GRANCE under additional
non-targeted attacks, including PGD, DICE, and random at-
tack. Using Cora dataset as an example, GRANCE exhibits
slower accuracy degradation across varying attack rates and
outperforms most competitors, as shown in Figure 4 (a)-(c).

Performance against Targeted Attacks. For the tar-
geted attack experiments, we follow the default settings of
(Jin et al. 2020) using Nettack (Ziigner, Akbarnejad, and
Giinnemann 2018) to generate attacks. Specifically, we per-
turb the neighbors of each target node by incrementally in-
creasing the number of adversarial edges from 1 to 5. Fol-
lowing (Jin et al. 2020), we select target nodes with a degree
greater than 10 from the test set. In Figure 4 (d), we ob-
serve that GRANCE achieves the best performance on Cora
dataset. Similar to the results under other attacks, the per-
formance gains of GRANCE over baselines become more
significant as perturbations increase. As the number of per-
turbations per target node grows, GRANCE maintains stable
performance, showing effectiveness in fully utilizing correct
neighborhood structures to defend against attacks.

Embedding Visualization To further evaluate our
model’s capabilities, we visualize the generated embed-
dings using the t-SNE (Van der Maaten L 2008) algorithm,
as shown in Figure 5. We focus on both a non-adversarial
scenario (ptb rate = 0%) and a heavily perturbed scenario
(ptb rate = 25%) on BlogCatalog, which has the highest
number of edges and a relatively large number of classes.
We observe that the embeddings produced by GRANCE are
more tightly clustered and exhibit clearer class boundaries,
while those generated by STABLE are more dispersed with
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blurred class separations. This difference may arises from
STABLE’s limited ability to preserve semantic information
and effectively leverage correct topological structures.

Parameter Sensitivity We conduct a sensitivity analysis
of GRANCE under Mettack (25%) on Cora and Citeseer,
focusing on its four key parameters: «, 05, ¢, and €. Specif-
ically, v controls the weight of semantic edges, 6> denotes
the threshold for cutting, c is the number of clusters in soft-
clustring-based estimator, and ¢ is used in the GNN classi-
fier. Figure 6 (a)-(b) illustrate GRANCE’s performance w.r.t.
(a, 62) while ¢ and ¢ is fixed. Key findings include: 1) Op-
timal performance occurs when « is between 0.2 and 0.3,
highlighting the benefit of the semantic neighborhood, espe-
cially in heavily perturbed scenarios. 2) Any 5 improves
performance compared to no threshold (f; = 0), affirm-
ing the effectiveness of semantic-based edge cutting. For ¢
and ¢, varying ¢ from 5 to 30 and € from O to 0.9 shows
general robustness within specific ranges (Figure 6 (c)-(d)).
Key observations are: 1) Performance generally improves as
€ increases up to an optimal point, supporting the benefits
of preserving semantic structure for robustness. 2) Perfor-
mance stability across different values of ¢, suggests that
GRANCE’s effectiveness is not significantly impacted by
the number of clusters in reliable estimation.

Ablation Study To validate the importance of each com-
ponent in GRANCE, we perform an ablation study to assess
their impact under Mettack (ptb rate = 25%). Specifically,
we construct four variants of GRANCE by removing indi-
vidual components: w/o ES (without semantic-based edge
supplementation), w/o EC (without semantic-based edge
cutting), w/o RNE (without reliable neighborhood estima-
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Figure 7: Ablation study (mean% and standard deviation%)

tion), and w GCN (using vanilla GCN as the classifier).
Figure 7 presents the performance comparison of these vari-
ants with GRANCE on Cora and Citeseer. We observe: 1)
The absence of semantic-based pre-processing leads to the
most significant performance drop. This clearly illustrates
the effectiveness of leveraging semantic information in de-
fending against structural adversarial attacks. 2) Removing
reliable neighborhood estimation also results in a noticeable
performance decline. Such mechanism better utilizes cor-
rect topological information, allowing fine-grained evalua-
tion that reduces interference from noisy adversarial edges.
3) Our classifier is more robust compared to vanilla GCN.

Related Work

Adversarial Attacks on Graphs Many studies have
explored adversarial attacks of graph structures to ex-
pose the vulnerability of GNNs (Ziigner, Akbarnejad, and
Giinnemann 2018; Waniek et al. 2018; Zugner and Gunne-
mann 2019; Xu et al. 2019; Geisler et al. 2021). These at-
tack methods fall into two categories based on their attack
targets: 1) Non-targeted attacks aim to degrade the model’s
performance on the test set by attacking the entire dataset.
For instance, (Waniek et al. 2018) adopts the principle of in-
ternal disconnection and external connection. (Zugner and
Gunnemann 2019) introduces a meta-learning-based global
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attack (Mettack) that treats graph structures as hyperparam-
eters. (Xu et al. 2019) proposes a first-order topology attack
(PGD) to identify minimal edge perturbations in the global
graph structure. 2) Targeted attacks focus solely on perturb-
ing specific target nodes to mislead the model. A prominent
targeted attack method is Nettack (Ziigner, Akbarnejad, and
Giinnemann 2018), which manipulates graph structures and
node attributes while preserving degree distribution and fea-
ture co-occurrence. The above adversarial attacks pose sig-
nificant challenges to GNNs, highlighting the critical need
to design robust GNNs to withstand such attacks.

Adversarial Defense on Graphs Extensive work has
been devoted to developing robust GNN-based models, we
divide defense methods into three main categories. 1) Re-
fine and classify in-process: These methods design robust
architectures for GNNS, so that the refinement and classifi-
cation are performed simultaneously. (Zhu et al. 2019) uses
variance-based attention to mitigate adversarial influences,
while (Zhang and Zitnik 2020) assesses neighbor impor-
tance via cosine similarity. (Liu et al. 2021) introduces an
elastic message passing mechanism. But these models allow
for interactions between representations and perturbed graph
structures, inevitably contaminating feature information. 2)
Decoupling refining and classifying: A more direct approach
is to separately refine the graph structure before training.
For example, (Wu et al. 2019) removes suspicious edges us-
ing Jaccard similarity. Similarly, (Entezari et al. 2020) ap-
plies low-rank approximations to reduce noise. (Zhu et al.
2023) employs bi-level structural learning to sanitize the
input. Nonetheless, they cannot learn the topology adap-
tively. Given the lack of knowledge regarding adversar-
ial edges, mis-deletions can undermine their effectiveness.
Therefore, these methods, while preventing contamination,
often under-utilize the uncontaminated parts of the struc-
ture. 3) GCL-based Refining then classifying pipeline: To
overcome these drawbacks, GCL learns invariant informa-
tion from perturbed graphs, which is being considered as a
refining technique. (Li et al. 2022b) proposes an unsuper-
vised method to optimize the graph structure, while Tao et
al. (Tao et al. 2024) also adopts a GCL strategy to refine rep-
resentations. However, these approaches fail to address the
robustness of the unsupervised learning process itself.

Conclusion

In this paper, we reveal the inherent challenges of exist-
ing refining-classifying graph defense frameworks through
both analytical and empirical studies. The widely adopted
global-local strategies inevitably disrupt the intrinsic geo-
metric structure in the feature space and fail to capture subtle
attacks. Motivated by these findings, we propose GRANCE,
a model that learns robust representations through reliable
neighborhood contrastive learning. Extensive experiments
on five adversarial attacks against state-of-the-art GNN de-
fenders validate the robustness of GRANCE. One potential
limitation of this work may be that we only consider first-
order neighbors, and we plan to explore the incorporation of
higher-order neighbors in future work.
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