
24

Snippet Comment Generation Based on Code Context

Expansion

HANYANG GUO, School of Software Engineering, Sun Yat-Sen University and Department of Computer

Science, Hong Kong Baptist University, China

XIANGPING CHEN, Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion,

School of Communication and Design, Sun Yat-Sen University, China

YUAN HUANG and YANLIN WANG, School of Software Engineering, Sun Yat-Sen University, China

XI DING, School of Computer Science and Engineering, Sun Yat-sen University, China

ZIBIN ZHENG, School of Software Engineering, Sun Yat-Sen University, China

XIAOCONG ZHOU, School of Computer Science and Engineering, Sun Yat-sen University, China

HONG-NING DAI, Department of Computer Science, Hong Kong Baptist University, China

Code commenting plays an important role in program comprehension. Automatic comment generation helps

improve software maintenance efficiency. The code comments to annotate a method mainly include header

comments and snippet comments. The header comment aims to describe the functionality of the entire

method, thereby providing a general comment at the beginning of the method. The snippet comment ap-

pears at multiple code segments in the body of a method, where a code segment is called a code snip-

pet. Both of them help developers quickly understand code semantics, thereby improving code readability

and code maintainability. However, existing automatic comment generation models mainly focus more on

header comments, because there are public datasets to validate the performance. By contrast, it is challeng-

ing to collect datasets for snippet comments, because it is difficult to determine their scope. Even worse,

code snippets are often too short to capture complete syntax and semantic information. To address this

challenge, we propose a novel Snippet Comment Generation approach called SCGen. First, we utilize the

context of the code snippet to expand the syntax and semantic information. Specifically, 600,243 snippet

code-comment pairs are collected from 959 Java projects. Then, we capture variables from code snippets and

extract variable-related statements from the context. After that, we devise an algorithm to parse and traverse

abstract syntax tree (AST) information of code snippets and corresponding context. Finally, SCGen gener-

ates snippet comments after inputting the source code snippet and corresponding AST information into a

The work described in this article is supported by the Key-Area Research and Development Program of Guangdong

Province (2020B010164002), the National Natural Science Foundation of China (62032025, 61976061), and the Guangdong

Basic and Applied Basic Research Foundation (2023A1515010746).

Authors’ addresses: H. Guo, School of Software Engineering, Sun Yat-Sen University and Department of Computer Science,

Hong Kong Baptist University, China, 519000; email: guohy36@mail2.sysu.edu.cn; X. Chen, Guangdong Key Laboratory

for Big Data Analysis and Simulation of Public Opinion, School of Communication and Design, Sun Yat-Sen University,

Guangzhou, China; email: chenxp8@mail.sysu.edu.cn; Y. Huang, Y. Wang, and Z. Zheng (corresponding author), School

of Software Engineering, Sun Yat-Sen University, Zhuhai, China; X. Ding and X. Zhou, School of Computer Science and

Engineering, Sun Yat-sen University, Guangzhou, China; emails: 769019734@qq.com, isszxc@mail.sysu.edu.cn; H.-N. Dai,

Department of Computer Science, Hong Kong Baptist University, Hong Kong, China.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/11-ART24 $15.00

https://doi.org/10.1145/3611664

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://orcid.org/0000-0002-5687-2655
https://orcid.org/0000-0001-8234-3186
https://orcid.org/0000-0002-9548-0208
https://orcid.org/0000-0001-7761-7269
https://orcid.org/0000-0002-3409-9382
https://orcid.org/0000-0002-7878-4330
https://orcid.org/0000-0003-3756-3483
https://orcid.org/0000-0001-6165-4196
mailto:permissions@acm.org
https://doi.org/10.1145/3611664
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611664&domain=pdf&date_stamp=2023-11-23

24:2 H. Guo et al.

sequence-to-sequence-based model. We conducted extensive experiments on the dataset we collected to eval-

uate our SCGen. Our approach obtains 18.23 in BLEU-4 metrics, 18.83 in METEOR, and 23.65 in ROUGE-L,

which outperforms state-of-the-art comment generation models.

CCS Concepts: • Software and its engineering→ Software maintenance tools; • Computing methodolo-

gies→ Artificial intelligence;

Additional Key Words and Phrases: Snippet comment generation, code summarization, neural machine trans-

lation, contextual information

ACM Reference format:

Hanyang Guo, Xiangping Chen, Yuan Huang, Yanlin Wang, Xi Ding, Zibin Zheng, Xiaocong Zhou, and Hong-

Ning Dai. 2023. Snippet Comment Generation Based on Code Context Expansion. ACM Trans. Softw. Eng.

Methodol. 33, 1, Article 24 (November 2023), 30 pages.

https://doi.org/10.1145/3611664

1 INTRODUCTION

Code comment refers to the explanation and description of code functionality. Its purpose is to
make software developers easily understand code semantics [24, 27]. Therefore, it plays an impor-
tant role in program comprehension and code readability [10, 18]. High-quality code comments
can help software maintainers have a detailed understanding of software source code and thereby
improve the efficiency of discovering and fixing bugs [7, 34]. Although code comments are impor-
tant in software maintenance, writing code comments manually costs lots of time and effort [30].
To this end, many studies focus on automatic comment generation [40, 45].

Automatic comment generation is also important to methods in object-oriented program-

ming (OOP), where a method is a programmed procedure defined in a class and instantiated
by an object. There are two kinds of comments to annotate a method: (1) header comments [46]
and (2) snippet comments [6]. Header comments are used to summarize the whole method (or
called function) information [1, 51]. They are typically located at the head of the method. Snippet
comments are fine-grained comments, which are typically embedded inside the method. They are
generally used to explain some specific intentions of the code and form a complementary relation-
ship with header comments [17, 47]. Both snippet comments and header comments are important
in program comprehension for developers [19]. Generally, a header comment has a fixed scope,
i.e., the whole method. By contrast, a snippet comment has a variable scope, which can be one line
of code or several continuous lines of code.

In recent years, many studies have proposed automatic comment generation approaches based
on deep neural networks (DNNs) due to their outstanding comment generation performance
[15, 29, 54]. These approaches utilize neural machine translation (NMT) algorithms to “trans-
late” source code into comments [53], though they have mainly been used in header comment
generation by inputting semantics and structure information of method code (code covered by
header comments) to the deep learning model. However, the performance of generating snippet
comments is not as good as generating header comments when code snippets are input to the
NMT approach [16]. DNN-based approaches essentially aim at a translation task, which needs an
independent and complete unit as the input. As mentioned above, the header comments cover
the entire method or the function, which has complete syntax and semantic information. By
contrast, snippet comments only cover a part of the code snippet of the method in most cases.
As a result, their semantic and syntactic information is fragmented and incomplete. Therefore,
those previous NWT methods cannot achieve a good performance on snippet comment generation
[19].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://doi.org/10.1145/3611664

Snippet Comment Generation Based on Code Context Expansion 24:3

Compared with header comments, snippet comments contain not only relations with covered
code snippets but also expanded information from the code context. Take Figure 1(a) as an ex-
ample,1 where line 13 shows a snippet comment written by the developer with the comment
scope at line 14. It can be found that data and written are the keywords to represent the key
meaning of comments, though they do not exist in the code snippet. If the scope of the code snip-
pet is broadened to the whole method where the code snippet is located, then two key tokens,
i.e., the DatagramChannel and write tokens can be located in lines 7 and 12, respectively. These
two contextual statements (i.e., variable definition and usage statements) can be obtained through
the data flow analysis of variable dc. Moreover, it is also necessary to determine the scope of
the variable to determine the scope of the context. Take Figure 1(b) as another example, where
line 54 shows the snippet comment and the comment scope is line 55. The code snippet does
not contain the seed token from the comment. Through data flow analysis of variable i, the re-
lated statements in lines 15, 24, and 53 can be obtained although variable i in line 55 only works
in the for loop structure from line 53 to line 56. Therefore, the context statement actually only
includes line 53. The seed token in the comment can be obtained in this line. Considering that
snippet comments are related to the context of code snippets, it is feasible to extract information
from the context of code snippets by data flow analysis as the input to improve snippet comment
generation.

It is another important issue to extract and capture abstract syntax trees (ASTs) from code
snippets with context. AST is a tree representation of the source code structure, which includes
semantic, lexical, and syntax information of code. Existing DNN-based comment generation ap-
proaches utilize ASTs as one of the inputs to capture this information to improve comment gen-
eration performance. ASTs of codes covered by header comments can be easily parsed, because
the entire method forms a tree with complete structure information. However, code snippets and
the corresponding context may have fragmented syntax and semantics information, which can be
scattered in different subtrees or nodes of the AST. Therefore, how to parse and capture ASTs of
code snippets with expanded context is a challenge.

In this article, we propose an approach, namely, Snippet Comment Generation (SCGen). Specif-
ically, we search the variable in the code snippet and utilize data flow analysis and AST analysis
to find statements related to the variable definition and variable usage [50]. We parse the AST of a
method (or a function) to extract the AST subtrees related to the code snippet and variable-related
statements. After that, we utilize AST analysis information to recover the structure node with
subtrees, thereby obtaining the snippet AST with expanded information from the context. Then,
we traverse the type and value information of the AST separately to ensure that syntactic and
semantic information can be captured at the same time. Next, we employ a model based on the
encoder-decoder model taking AST sequences with context and source code snippet sequences
as the input and then the model outputs comments. We obtain 600,243 snippet code-comment
pairs from 959 Java projects to construct the dataset. We then conduct experiments to evaluate our
SCGen on the dataset. In particular, We find that using data flow and AST analysis information
from the context can improve the generation of snippet comments. The BLEU-4 result of the pro-
posed model is 18.23, which is better than other state-of-the-art approaches. SCGen can play an
important role in the lifecycle of fully automated comment generation, providing automatic snip-
pet comment generation after the adoption of the automatic commenting location determination
approach [17]. To facilitate research and application, we make SCGen and the dataset available at
https://github.com/Anonymous123xx/SCGen.

1Codes of Figure 1 are from https://github.com/google/j2objc and https://github.com/google/guava

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://github.com/Anonymous123xx/SCGen
https://github.com/google/j2objc
https://github.com/google/guava

24:4 H. Guo et al.

Fig. 1. Examples showing context helpful in generating snippet comments.

The contributions of this work can be summarized as:

— We propose a snippet comment generation model called SCGen to generate snippet com-
ments automatically. This approach utilizes not only the code snippet but also the context
to expand code information and improve the comment generation performance.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:5

— We present an AST construction approach for code snippets and the context. This approach
utilizes data flow and AST analysis to extract variable-related information (i.e., variable def-
inition and usage-related information) from the context and utilize AST structure informa-
tion to construct snippet ASTs. We propose a unique way to traverse the type and value
information of ASTs to capture syntax and semantics information.

— We construct a public snippet code-comment dataset that aims to train and test snippet com-
ment generation models. It consists of 600,243 code-comment pairs from 959 Java projects.

— We compare our approach with other state-of-the-art approaches based on different evalu-
ation metrics. The results show that the proposed approach outperforms other approaches.
We find that the code data flow expansion contributes to performance improvement.

The rest of the article is shown as follows: Related work is introduced in Section 2. The details
of the approach are provided in Section 3. Section 4 presents the experiment implementation, eval-
uation, and discussion. Section 5 points out the threats to validity, and Section 6 concludes the
article and outlines future work.

2 RELATED WORK

2.1 Automatic Comment Generation

Most of the research has focused on the header comment generation. We first discuss the works
related to the header comment generation and then survey the works related to snippet comment
generation.

Algorithms of automatic header comment generation can mainly be classified into three
types: template filling-based algorithm [38], information retrieval-based algorithm [55], and deep
learning-based algorithm [26]. In the template filling-based algorithm, researchers [38, 39] often
analyzed the signature, method body, and context information of the method to identify the be-
havior or role played by the method and then utilized approaches to generate comments in natural
language formats based on the predefined template. For example, Sridhara et al. [46] utilized Soft-

ware Word Usage Model (SWUM) to predefine some heuristic rules to identify keywords from
code text and generate the template comments for Java methods. This approach could generate
comments with a good format and sometimes could represent the function of method codes ac-
curately. Besides, McBurney et al. [35, 36] proposed to collect method invocation information as
the context of the target source code of Java methods. Then they used keywords to describe the
context and utilized SWUM to identify the different parts of speech. At last, they adopted PageR-
ank to select keywords as the template to generate Java method comments. However, in general,
the current template filling-based algorithms have limited ability to summarize the code. On the
one hand, designing the model to generate templates and rules costs a lot of manpower. On the
other hand, the types of comments that can be only generated depend on the types of predefined
templates.

The main idea of information retrieval is to search codes similar to the target code in the dataset
or corpus to match, extract the comments corresponding to the matching code, and use these com-
ments to generate the comments of the target code [33, 58]. Haiduc et al. [11] utilized Latent

Semantic Indexing (LSI) to construct Java class comments. Based on this research, they pro-
posed to use LSI and Vector Space Model (VSM) to improve summary generation performance
[12]. Ying et al. [60] also utilized LSI to achieve code fragment summarization on the Web. They
exploited syntactic features of the source code and whether a line is related to the given query.
Fowkes et al. [9] proposed the TASSAL approach, which automatically generated the correspond-
ing comment when folding non-core code. The core of the approach is to identify and retrieve
the most relevant tokens for the code content based on VSM and the topic model. However, the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:6 H. Guo et al.

success rate of generating code comments by information retrieval is limited, because the retrieved
similar codes that can be reused are very limited in the dataset.

With the rapid development of deep learning algorithms, many researchers have begun to use
deep learning techniques to directly translate codes into comments. Iyer et al. [21] designed an
approach to automatically generate comments for C# code fragments based on LSTM. Hu et al.
[15] proposed an NMT-based Java method comment generation model that takes AST as the input
to generate the comments. Based on this model, they [16] proposed an improved NMT model with
two encoders and a decoder for source code and AST inputs. This approach also aims to achieve
Java method comment generation. LeClair et al. [25] proposed a GRU-module-based encoder-
decoder model that combines source codes and ASTs to generate code summaries. Besides, some
deep learning-based approaches utilized information retrieval methods as an assistant. For exam-
ple, Zhang et al. [62] retrieved the most similar code and similar AST from the training set and then
input them and the target code snippet into the encoder-decoder model to improve comment gen-
eration performance. Wei et al. [55] proposed to retrieve the similar code and extract the comment
of the similar code, the target code, and the AST as the model input to improve the performance of
header comment generation. In addition, some researchers have proposed to expand the context
of code for improving code summarization. Haque et al. [13] proposed to utilize other subroutine
codes from the same file as the target subroutine combined with the target subroutine code and
the AST to improve subroutine comment generation. This approach captures only the semantic
information of the coarse-grained context.

Although the above methods achieve some excellent results in header annotation generation
and some of them use contextual information, they are generally coarse-grained to take the con-
text of other functions within the same file (e.g., directly take the source code information and
API information). This will cause context redundancy and is not suitable for snippet comment
generation. Different from the approaches above, we take variable-related AST nodes outside the
code snippet as one of the inputs of the deep learning network to attain not only semantics but
also syntax information of the fine-grained context. We also control the structure size to prevent
contextual redundancy. This approach is suitable to achieve snippet comment generation.

There is a small amount of research focusing on snippet comment generation. Feng et al. [8]
proposed a pre-trained model called CodeBERT for programming and natural language transfer
based on the transformer. This model can be fine-tuned to achieve the source code-to-natural
language task including snippet comment generation. Huang et al. [17] proposed an automatic
approach to identify the location of adding the block (i.e., snippet) comment by adopting context
information. They utilized machine learning techniques to predict the comment locations. The
result showed the feasibility and effectiveness of the proposed approach. Sridhara et al. [47] pro-
posed a heuristics approach to achieve specific snippet comment generation to describe high-level
abstract algorithmic actions. Huang et al. [19] proposed a reinforcement learning-based approach
to generate snippet comments. This approach utilized AST as the input. Existing snippet comment
generation methods only considered the target snippet code segment itself as the research object.
They lack the mining of snippet code structure information from the context. Therefore, we put
forward to use the snippet AST and the context information of the code snippet to improve the
performance of snippet comment generation.

2.2 Empirical Study of Code Comments

There was some research working on the analysis of code comments. For example, Huang et al.
[20] proposed a statistical analysis of header comments and snippet comments and proposed an
automatic approach to detect whether a method code needed a header comment automatically.
Developers could add comments to method codes with the help of this approach. Wen et al. [56]

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:7

Fig. 2. The overview of SCGen.

analyzed inconsistencies in code-comment. They investigated which commit type might cause
comment updates and indicated that these findings can guide fixing code-comment inconsisten-
cies. McBurney et al. [37] conducted an empirical study to evaluate method comments written by
developers, readers, and automatic comment generation approaches. Their result showed that the
quality of human-written comments could be evaluated by the textual similarity of source codes.
It indicated that good comments should have a high semantic similarity to the source code. Steidl
et al. [49] proposed a comment quality evaluation approach based on machine learning. They
proposed four criteria to evaluate the comment quality including consistency between codes and
comments.

Some researchers worked on the analysis of the header comment and snippet comment den-
sity. Oman et al. [41] evaluated the comment quality by calculating the proportion of code com-
ments. Arafat et al. [2, 3] counted the comment density for the open-source projects that are well
maintained and the result was 18.67%. They also concluded that commenting on source code is a
consistently followed practice of successful open-source projects.

Some researchers worked on evaluating code comment generation performance. For instance,
Stapleton et al. [48] made a comparison between human-written comments and model-generated
comments. The findings indicated that developer participants were able to complete the program-
ming better with the help of human-written comments, although they did not realize the difference
between human-written comments and model-generated comments.

3 APPROACH

This section elaborates on the detailed design of SCGen. Figure 2 depicts the overview of SCGen.
First, we extract method codes and filter out invalid data (e.g., template comments). We utilize
a comment scope prediction approach [6] to extract pairs of code snippets and comments. The
method code where the code snippet is located and the code snippet are used to generate comments.
We parse the AST of the method where the code snippet is located and adopt data flow analysis
based on the control flow graph to extract variable-related information and ensure the context
scope with AST analysis information. This variable-related information and context information
consists of scattered AST subtrees and nodes. We also utilize AST structure analysis information to
obtain structure nodes to connect scattered subtrees and nodes and then construct the snippet AST.
After that, we traverse the type and value information of the snippet AST to create the AST type

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:8 H. Guo et al.

sequence and the AST value sequence. The source code snippet is also traversed into the sequence.
In the model training phase, the snippet AST sequence (i.e., type sequence and value sequence) and
the source code sequence are input to an NMT model called the hybrid encoder-decoder model. By
exploiting snippet comments in the dataset as ground truth, we train a model to generate snippet
comments automatically. In the testing phase, the code snippet to be commented is parsed into
two kinds of token sequences (i.e., source code token sequences and snippet AST token sequences
containing type sequences and value sequences) and both of them are fed into the trained model
and then the comment is generated.

3.1 Data Processing

We download Java projects from the open-source code repository. Then, we utilize regular expres-
sion matching to extract method codes in the project. After that, we filter out those comments
generated according to templates in the dataset, such as comments in setter and getter methods
or comments generated by the template predefined in the IDE comment plugin. Comments on
these types of code are trivial for training the model. We filter out these codes and comments to
eliminate the impact of these template comments on model training.

Next, we extract snippet comments from the method codes. We employ a comment scope de-
tection approach proposed by Chen et al. [6] to extract the code snippet and comment pairs. This
approach adopts code features (e.g., statement types, No. of sub-statements, No. of layers of nested
statements, No. of lines in the statement and same method calls) and comment features (e.g., length
of the comment, No. of verbs, No. of nouns) for training a supervised machine learning model to
determine the code range covered by each snippet comment. We utilize this approach to detect
the comment scope automatically and then randomly sample data to validate the accuracy of this
approach. Specifically, we utilize the trained comment scope detection model proposed by the ref-
erence to detect the comment scope and then we take a random sample of 1,500 entries in the
validation dataset and 500 entries in the test dataset to manually validate the accuracy of the com-
ment scope detection. The accuracy is 80.20% and 80.67%, respectively, which are similar to the
result proposed in the reference (81.45%). We also correct the samples that are detected incorrectly
by the comment scope detection model and utilize corrected data as the input of the comment
generation model to generate snippet comments. We find that comment generation results have
no significant difference from SCGen’s result. The detailed result is shown in Section 4.5.1. There-
fore, by using this comment scope detection approach, snippet code-comment pairs are attained.
Moreover, we also retain the method code where the code snippet is located to capture its context.

3.2 Code Context Expansion and Snippet AST Construction

Figure 1 showcases the importance of extracting the context to supplement the missing tokens for
comment generation. To improve the performance of snippet comment generation, we propose
to introduce the context of the code snippets. The source code of the whole project constructs
the context of the code snippet. However, not all the contexts are related to the code snippets. In
object-oriented programming, methods are the main part of basements for expressing algorithmic
intentions. In fact, it is the method that is the foundation of program behavior. Therefore, the
whole method where the code snippet is located is viewed as the context scope. Considering that
not all code in the context method is related to the code snippet for comment generation, we also
use the information from AST analysis and data flow to extract the context code related to the
target code snippet. The unrelated context code is deleted, because it may not contribute to the
comment generation.

Recently, several approaches adopt control flow and data flow information to split the method
AST, thereby obtaining code structure and hierarchy information to generate header comments

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:9

Fig. 3. The abstract AST of the source code example in Figure 1(b).

[31]. In our study, we use data flow and AST analysis information to extract contextual nodes re-
lated to the code snippet from the AST and construct the snippet AST. We first extract the ASTs
from method code using a Python module javalang.2 Each node in the AST of a method has fea-
tures information including type, value, and children nodes. The corresponding line number in the
source code is also recorded for each node.

We extract the AST of the code snippet and its corresponding context. The details are shown in
Algorithm 1. First, we input the method AST and the start line and end line of the code snippet to
find all the code snippet-related AST subtrees. The AST subtrees consist of AST nodes correspond-
ing to the code snippet. For each AST node in code snippet-related subtrees, if it is a variable-related
node, then we utilize find_context method to get the variable information and adopt data flow in-
formation to find the variable definition and variable usage-related AST nodes in the method AST.
The data flow information is attained by data flow analysis based on control flow information (e.g.,
control flow graph). In particular, for some variables defined in a loop structure or selective struc-
ture, we use the nearest relevant structure nodes in the AST (e.g., if, for, and blocks enclosed with
“{”and “}”) as the working scope for these variables before adding the variable-related nodes to the
context. That is the working process of method find_variable_scope. We utilize this method before
finding context. For example, in Figure 1(b), we find the variable i only works in the loop structure
from line 53 to line 56. So, we only search for variable-related information in this scope. We search
variable-related information in line 53.

For code snippets and the corresponding context, their semantics and structure information
are fragmented, which may consist of several subtrees or nodes in method ASTs. As shown in
Figure 3, in the abstract AST of the source code example in Figure 1(b), the subtree and nodes
corresponding to the code snippet and the context are marked with the red box. The code snippet
consists of one subtree and the context consists of two subtrees. How to integrate the scattered
subtrees and nodes into a tree while keeping the information of subtrees complete and concise is a
challenge. We utilize the method AST structure information to construct the tree (i.e., snippet AST).
Specifically, after we get the subtrees and AST nodes of the code snippet and the context, we search

2https://github.com/c2nes/javalang

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://github.com/c2nes/javalang

24:10 H. Guo et al.

Algorithm 1: Extract Snippet AST

Input: M : The set of node statements of the method AST;

s : Start line number of the code snippet;

e : End line number of the code snippet;

l : AST length threshold;

Output: B: The set of node statements of the snippet AST;

Begin

1: function Extract_snippet_AST(M,s,e)

2: context ← ∅
3: B← ∅
4: // Search subtrees of the code snippet;

5: subtr ee_set = f ind_subtr ee (M,s,e)

6: For st in subtree_set do:

7: For node in st do:

8: If (node.type == variable) then:

9: variable_scope = f ind_var iable_scope (node.value)

10: context ← f ind_context (method_ast,node.value,

variable_scope)

11: End If

12: End For

13: End For

14: B← subtree_set

15: // Find the least common ancestor node without context;

16: root_source = LCA(M,B)

17: If (len(B) >l) then:

18: B← root_source

19: Return B;

20: End If

21: B← context

22: // Find the least common ancestor with context;

23: root = LCA(M,B)

24: If (len(B) <l) then:

25: B← root

26: Return B;

27: Else:

28: While (len(B) >l):

29: max_distance = 0

30: remove_node = null

31: For node in context do:

32: If (distance(node,subtree_set) >max_distance) then:

33: max_distance = distance(node,subtree_set)

34: remove_node = node

35: End If

36: End For

37: B = B−remove_node

38: End While

39: B← root

40: Return B;

41: End If

42: end function

End

the least common ancestor (LCA) nodes for subtrees and nodes in the method AST according
to the tree structure. The purpose is to obtain a structural node in the method AST to connect the
scattered subtrees and nodes corresponding to the code snippet and contextual information and
then construct a snippet AST.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:11

In particular, adding context nodes and structural nodes will extend the scale of snippet AST. If
the scale is too large, then the traversed result of the AST will be so long that it has to be truncated
by the comment generation model. This may cause AST key information to be lost. To add relevant
contextual information while ensuring that as much information as possible related to the code
snippet itself is not lost in the AST, we design a set of rules to control the scale of extending context.
Specifically, we set 100 AST nodes as a threshold first. The reason why we set 100 nodes is that we
set the truncation length of the model as 400. This length can cover 99.55% of the dataset, that is,
99.55% of the samples in the dataset have a sequence length of less than 400. If the length of the
AST subtree set without expanded nodes (i.e., the node number of the AST subtree) of the code
snippet exceeds this threshold, then we directly adopt the AST subtree set of the code snippet
and utilize the structure node directly to construct snippet ASTs without adding any context node
for expansion. For the expanded AST with more than the length threshold, we will remove the
farthest node according to the distance between the expanded node and the AST subtree set of
code snippets, until the AST length is less than the threshold. The distance of expanded node EN

and AST subtree set of code snippet is calculated as follows:

distance(EN , subtreesset) =
N∑

i=1

path(EN , nodei), (1)

where nodei refers to the node in the AST subtree set, N is the amount of AST subtree nodes, and
path is the length of the AST path between the expanded node and the AST subtree node, which
is calculated as follows:

path(EN , node) = length(EN ,LCA) + length(node,LCA), (2)

where LCA is the least common ancestor node of the expanded node and the AST subtree node.
Then, we construct the snippet AST. By constructing the snippet AST, we achieve code context
expansion on the AST level based on data flow and AST analysis information.

3.3 AST Traversal Algorithm

Because the AST has a tree structure, it can be traversed into a sequence to obtain features and
then be input into the comment generation model. Some AST traversal algorithms are proposed to
convert the AST to a sequence. For example, Hu et al. [15] proposed an algorithm called Structure-

based Traversal (SBT) to traverse AST. Sequences obtained by classical traversal methods (e.g.,
pre-order traversal) are lossy, since the original ASTs cannot unambiguously be reconstructed back
from them and the ambiguity may cause different Java methods (each with different comments)
to be mapped to the same sequence. SBT utilizes brackets to generate construction information to
solve the lossy problem of pre-order traversal. Specifically, as for a root node, a pair of brackets is
used to represent the tree structure and put the root node itself behind the right bracket, i.e., (root
node)root node. Then, the subtrees of the root node are traversed in pre-order and all root nodes
of subtrees are put into the brackets. Recursively, each subtree is traversed until all nodes are
traversed and the final sequence is obtained. For non-leaf nodes, only type information is kept
in the sequence, and for leaf nodes, both type and value information are included in the sequence
and linked with underscores. However, this algorithm loses some semantics information, because it
discards the value information of non-leaf nodes to control the sequence length of AST. Moreover,
many brackets and underscore symbols are added to the sequence. Therefore, the model can only
truncate the long sequence, which causes the lost information of the AST sequence. Because the
information included in the code snippet is limited, it is important to control the length of the
sequence while maintaining the integrity of the AST sequence information (i.e., type and value
information of all nodes).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:12 H. Guo et al.

Fig. 4. An example of traversing an AST to two kinds of sequences.

To address this problem, we propose a new traversal algorithm based on the SBT algorithm
called Multi-based Traversal (MBT). The proposed MBT works as follows: According to the
parsing results of snippet AST, each AST node has features including type and value. Type infor-
mation declares the statement type of the node, such as MethodDeclaration and FormalParameter.
Value refers to the specific token in the code snippet, which can represent the semantics informa-
tion of the code snippet. We consider the example as illustrated in Figure 3, where the type of the
root node is MethodDeclaration, while the value of this node is the method name testRemovalNo-

tification_clear_basher. We separate the type feature and the value feature. We then use the same
traversal order and the same way of adding parentheses as SBT to convert two kinds of features
into two sequences. In this way, our method well retains complete semantic and structural infor-
mation of AST. At last, these two sequences will be combined into a list after embedding later.
Compared with SBT, we transfer AST to two sequences (i.e., type sequence and value sequence)
rather than one. We also combine them into one sequence after embedding. Thereby, we control
the length of sequences and capture both the type sequences and value sequences of all nodes, so
we keep the completeness of the AST information. The traversed result of an illustrative example
is presented in Figure 4. In this example, the value super in the StatementExpression node means
that the name of the function called directly in line 2 is called “super.” The value super in Super-

ConstructionInvocation means that the name of the parent constructor is called “super.” So, we can
attain inheritance from the value information of AST. By executing MBT, both the type sequence
and the value sequence are generated.

3.4 Hybrid Encoder-decoder Model

The detailed structure of the hybrid encoder-decoder model is shown in Figure 5. There are two
kinds of inputs in this approach: (i) the source code snippet sequence and (ii) the AST token se-
quence (including type sequence and value sequence) of the code snippet and the expanded context.
We employ an NMT model called the hybrid encoder-decoder model. It is a sequence-to-sequence-
based model [4], which is composed of two encoders and a decoder. The two encoders can encode
these two kinds of sequences and convert inputs into two vector sequences. Then, the decoder
decodes these vectors and restores them to another sequence, i.e., the output sequence.

Each sequence can be represented as x = [x1,x2, . . . xL]T and L is the sequence length. Each
token in these two sequences will be converted into a word vector through the word embedding

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:13

Fig. 5. The structure of hybrid encoder-decoder model.

layer. Specifically, as for the source code snippet, each source code token is embedded in a vector
vs . The process is represented as follows:

vs =Wsxt , (3)

whereWs is the embedding matrix, which is a trainable parameter, and xt is the source code token
at each time step t . As for AST, there are type and value sequences. We then embed tokens from
these two sequences, denoted by vt and vv as follows:

vt =Wtx
′
t , (4)

vv =Wvx
′′
t , (5)

where vt and vv are the type vector and value vector, respectively. Terms Wt and Wv are the

embedding matrices, and x
′
t and x

′′
t are the AST type token and AST value token, respectively.

After that, we merge them to integrate these two features. Finally, the vector of AST tokens is
obtained as follows:

va = vt +vv . (6)

In the encoders, both of the vector sequences are input to a Long Short-Term Memory (LSTM)

network [57, 59, 64]. Compared with recursive neural network (RNN) [63], the gate structure
of LSTM can effectively alleviate the gradient vanishing or explosion problems that may occur in
long sequence input. At the same time, compared with transformer [52], LSTM has the advantage
of being lightweighted and having less computing cost. By utilizing LSTM, hidden states of the two

sequences are obtained. In particular, hidden states at time t denoted by ht and h
′
t are expressed

by

ht = lstm(ht−1,vs), (7)

and

h
′
t = lstm(h

′
t−1,va). (8)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:14 H. Guo et al.

To improve the performance of the hybrid encoder-decoder model, we utilize the attention mech-
anism [4, 43] to assign weights to hidden states. There are two sets of hidden state weight distri-
butions, because we employ two attention layers in the two encoders. The semantics vector is the
weighted sum of these two sets of hidden states, shown as follows:

ct
′ =

T∑
t=1

αt
′
tht +

T
′∑

t=1

α
′

t
′
t
h
′
t , (9)

where T and T
′

are lengths of source code token sequence and snippet AST token sequence, re-

spectively. Terms αt
′
t and α

′

t
′
t

are weight distributions of source code tokens and snippet AST

tokens, respectively. They can be calculated as follows:

αt
′
t =

exp(et
′
t)∑T

k=1 exp(et
′
k)
, (10)

α
′

t
′
t
=

exp(e
′

t
′
t
)

∑T
′

k=1 exp(e
′

t
′
k

)
. (11)

In Equations (10) and (11), et
′
t and e

′

t
′
t

can be calculated by

et
′
t = a(st

′−1,ht), (12)

e
′

t
′
t
= a(st

′−1,h
′
t), (13)

where a is the alignment model aiming to evaluate the correlation between the input word at

timestep t and the output word at timestep t
′
.

In the decoder, we aim to generate comment tokens yt
′ based on context vector ct

′ and previ-
ously generated comment tokens:

P (yt
′ |y1,y2, . . . ,yt

′−1, ct
′) = p (yt

′−1, st
′ , ct

′), (14)

where st
′ is the hidden state. The object function is shown as follows:

H (y) = − 1

n

n∑
i=1

T
′∑

t
′
=1

logp (yi

t
′), (15)

where n is the total number of training set samples and yi

t
′ represents the predicted word at

timestep t
′

in the ith sample. By minimizing object function by gradient descent [28], we can ob-
tain the model parameters. In addition, the hybrid comment generation model utilizes beam search
[23], a heuristic graph search algorithm to find the comments with the minimum value computed
by the objective function (15). Compared with the greedy search algorithm, beam search can make
the comment generation results closer to the global optimum.

4 EXPERIMENTS AND EVALUATION

In this section, we conduct experiments to evaluate the performance of SCGen in snippet comment
generation and analyze the influencing factors of SCGen performance. We are concerned with the
following research questions:

RQ1: What is the performance of SCGen compared with other comment generation approaches?
RQ2: What are the effects of different context expansion levels on the performance of snippet

comment generation?

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:15

RQ3: What are the effects of different modules on the performance of snippet comment
generation?

RQ4: What are the effects of preceding code expansion and following code expansion on the
performance?

RQ5: How does the length of the code affect the performance of snippet comment generation?

4.1 Data Preparation

The goal of SCGen is to achieve automatic comment generation for the code snippet. The target
programming language of our approach is Java. Although there are some datasets focusing on
automatic comment generation, existing datasets are collected and constructed mainly for header
comment generation. There is a lack of general datasets for snippet comment generation. There-
fore, we construct a dataset of Java from GitHub. We download the top 1,000 Java projects based
on the evaluation score (e.g., Star) provided by GitHub and remove the projects without comments.
Then, we obtain a dataset with 1,949,290 comments from 959 projects. We extract method codes
and execute data cleaning to filter out invalid data (e.g., template comments), as mentioned in Sec-
tion 3.1. Then, we remove the header comments. Thereafter, we leave 600,243 snippet comments
and the method codes, where the snippet comments are located.

After that, we utilize the comment scope prediction model to find out the corresponding code
snippets of snippet comments to build code-comment pairs. As for each code plain text and each
comment, we also conduct CamelCase splitting, snake_case splitting to reduce OOV tokens [12]. For
example, suppose the vocabulary we set only has words get and index but does not have the word
getindex. In that case, we can only use an unknown symbol (e.g., <UNK>) to represent the token
getIndex. But getIndex can be represented by using the words in the vocabulary if we use CamelCase

splitting to split getIndex to get and index. Hence, it is not an OOV token. The process of snake_case

is similar. We also conduct these two kinds of token-splitting methods in AST value sequences. We
provide more details about how the token-splitting method decreases the source code vocabulary
size in Section 4.5.2 to demonstrate the effectiveness of the function of token splitting.

Figure 6 plots the length distributions of the code snippet and comments. The code lengths
are mainly scattered in the range of 10–20 tokens and longer than 150 tokens. Except for lengths
shorter than 10 tokens and longer than 150 tokens, the data size decreases with the increased
code length. Moreover, most comments are less than 5 tokens. It demonstrates that most snippet
comments are short. We split the dataset into three partitions based on cross-project: (i) 80% for
training data, (ii) 10% for validation data, and (iii) 10% for testing data. All snippet code-comment
pairs in one project are grouped into one category. The purpose is to prevent the training data
from leaking duplicate information to the validation dataset and the test dataset.

4.2 Experiment Configuration

The model hyperparameters are configured as follows: We set the vocabulary sizes as 50,000, 1,000,
50,000, and 50,000 for code, AST type, AST value, and comment, respectively. The batch size is
configured as 32, and the maximum number of epochs is set as 120. The model embedding size is
512, and the truncation length is set as 400. As for the optimizer, we utilize Adam [22] with the
learning rate 10−4. The dropout rate is set as 0.25. All experiments are conducted on two servers.
One is configured with two GPUs of NVIDIA Tesla V100 and the other is configured with two
GPUs of NVIDIA GeForce RTX 2080 Ti.

4.3 Effectiveness Evaluation Metrics

In this article, we utilize BLEU (Bilingual Evaluation Understudy) [42], METEOR [5], and
ROUGE-L [32] to evaluate the performance of our approach.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:16 H. Guo et al.

Fig. 6. Length distribution of the data.

4.3.1 BLEU. BLEU is a popular evaluation metric that is implemented in neural machine trans-
lation and conversation systems [42]. Its purpose is to evaluate the difference between the sen-
tences generated by the model (i.e., candidate sentence) and a set of ground truth sentences (i.e.,
reference sentence). BLEU uses n-gram for matching and calculates the ratio of n groups of word
similarity between generated sentences and reference sentences. The utilization of BLEU has some
advantages such as low computational cost and it is easy to understand. The specific calculation
process of BLEU is given as follows:

BLEU = BP · exp �
�

m∑
n=1

ωn logpn
�
�
, (16)

where ωn is the weight of n-gram and pn is the precision of n-gram. Usually, the maximum value
of n is 4, which is represented by BLEU-4. BP is the brevity penalty factor for generated comment
length, which is shown as follows:

BP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 , lc > lr ,

exp

(
1 − lr

lc

)
, lc ≤ lr ,

(17)

where lc is the length of generated comment and lr represents the reference comment. In this
article, we employ BLEU from 1-gram (BLEU-1) to 4-grams (BLEU-4).

4.3.2 Meteor. METEOR was proposed by Banerjee and Lavir [5] after discovering the signifi-
cance of recall in the evaluation metrics. Based on single-precision weighted harmonic mean and
single-word recall rate, METEOR aims to solve some inherent defects in the BLEU standard.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:17

METEOR is calculated as the harmonic average of the accuracy and recall between the candidate
sentence and the reference sentence:

METEOR = (1 − Pen)Fmean, (18)

where Pen is the penalty parameter and Fmean is the harmonic average of precision and recall. Pen
is calculated as follows:

Pen = γ

(
ch

m

)θ

. (19)

Fmean is calculated as follows:

Fmean =
PmRm

αPm + (1 − α)Rm
, (20)

where α , γ , and θ are the default parameters for evaluation. The term ch is the number of tokens
and m represents match tokens. Pm represents unigram precision, i.e., the ratio of match tokens
and candidate sentence tokens. Rm represents unigram recall, i.e., the ratio of match tokens and
reference sentence tokens.

4.3.3 ROUGE-L. ROUGE-L [32] is a similarity measurement method based on recall rate. It
mainly examines the adequacy and authenticity of generated sentences. It calculates the co-
occurrence probability of the longest common subsequence (LCS) in the reference sentence
and the candidate sentence. ROUGE-L can be calculated as follows:

Rlcs =
LCS (X ,Y)

m
, (21)

Plcs =
LCS (X ,Y)

n
, (22)

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
, (23)

where LCS (X ,Y) is the length of the longest common subsequence of reference sentence X and
candidate sentence Y . Rlcs and Plcs represent recall rate and precise rate, respectively. The term
Flcs is the ROUGE-L value. Usually, β is set to a very large number, so ROUGE-L almost only
considers Rlcs , i.e., the recall rate.

4.4 Results�

�

�

�RQ1: What is the performance of SCGen compared with other comment generation approaches?

To verify the effectiveness of SCGen, we compare it with seven state-of-art approaches, namely,
Rencos [62], CodeBERT [8], Code-NN [21], DeepCom [15], Hybrid DeepCom [16], ast-attendgru [25],
and RLcom [19]. Rencos is a code summarization generation model based on information retrieval
and the encoder-decoder model. The model takes a similar source code and retrieved similar AST
as input to assist the comment generation of the target code. CodeBERT is a pre-trained model
for programming and natural language based on the transformer. This model can be fine-tuned to
achieve the source code-to-natural language task. Code-NN is an LSTM-based comment generation
approach for C# language. The source code sequences and the comment token sequences are the
input and the output, respectively. We also employ it as one of the comparative approaches in Java
comment generation. DeepCom was a sequence-to-sequence-based approach that aims to gener-
ate header comments. It utilizes SBT to traverse AST to generate the model input. The sequence-
to-sequence approach translates the AST sequences to the code comments. Hybrid DeepCom is
a deformation based on DeepCom. It combines method source codes and ASTs as the input and
then generates the corresponding comments. Similarly, ast-attendgru also combines source codes

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:18 H. Guo et al.

Table 1. Evaluation Results for the Competing Approaches

Approaches
BLEU

METEOR ROUGE-L
1 2 3 4

Rencos 17.88 14.28 13.26 12.80 10.70 11.81
CodeBERT 16.09 12.47 11.29 10.94 15.33 25.59
Code-NN 15.72 12.56 11.70 11.36 11.90 17.13
DeepCom 17.02 13.99 13.10 12.73 13.26 18.18
Hybrid DeepCom 18.16 15.00 14.08 13.67 14.43 19.57
ast-attendgru 17.16 13.98 13.04 12.64 13.41 18.48
RLcom 17.24 12.24 11.15 11.19 10.35 16.38
Our SCGen 22.36 (23.13%) 19.50 (30.00%) 18.65 (32.46%) 18.23 (33.36%) 18.83 (22.83%) 23.65 (–7.58%)

The percentage in parentheses is the growth rate of SCGen compared to the best baseline.

and ASTs to generate code summaries, though it is based on GRU module-based encoder-decoder
model. Moreover, we also adopt RLcom, a snippet comment generation model based on reinforce-
ment learning and the encoder-decoder model.

To make a fair model training, we train these seven baseline approaches with the same dataset
as SCGen, which is proposed in Section 3.1. Table 1 shows the model performance of all the ap-
proaches. It can be found that our approach achieves superior performance than other methods in
most of the metrics. In particular, the BLEU-4 of SCGen is 42.42% higher than that of Rencos. As for
METEOR and ROUGE-L, SCGen outperforms 75.98% and 100.25% than Rencos. The results of SCGen

are all statistically different from Rencos (all p-values are less than 0.01 in Wilcoxon signed-rank
test). The input of Rencos is the source code and its similar AST and source code in the training
set. As for the comment generation of methods, it is easy to search for method codes with similar
semantics and syntax. But it is difficult to search similar codes for code snippets because of the
short length of code snippets. It is difficult to catch complete semantics and syntax to achieve in-
formation retrieval. Therefore, information retrieval-based approaches like Rencos do not perform
well on snippet comment generation.

SCGen also outperforms CodeBERT, Code-NN, DeepCom, and RLcom in BLEU-4, METEOR, and
ROUGE-L. The input of CodeBERT and Code-NN is the source code only, while the input of Deep-

Com and RLcom is the AST. SCGen achieves 66.64%, 60.48%, 43.21%, and 62.91% higher BLEU-4
scores than CodeBERT, Code-NN, DeepCom, and RLcom, respectively, with statistical significance
(i.e., p-values are less than 0.01). Moreover, SCGen has 22.83%, 58.24%, 42.01%, and 81.93% higher
METEOR scores than these four approaches with statistical significance (p-values are less than
0.01). SCGen also performs 38.06%, 30.09%, and 44.38% better than Code-NN, DeepCom, and RLcom,
respectively, with statistical significance (p-values are less than 0.01), though it is 7.58% slightly
worse than CodeBERT in ROUGE-L. It is because many generated comments from CodeBERT are
short. One piece of evidence is that the average number of tokens for comments generated by
SCGen is 9.88, while the average number of tokens for comments generated by CodeBERT is 3.15.
Therefore, it has a high recall rate and a better performance in ROUGE-L. In conclusion, it indicates
that combining code and AST information contributes to comment generation.

SCGen also performs better than Hybrid DeepCom, ast-attendgru by 33.36% and 44.22% on BLEU-
4. Moreover, it outperforms these two approaches by 30.49% and 40.42% in terms of METEOR, and
20.85% and 27.98% in terms of ROUGE-L. All the results have statistical significance, too (p-values
are less than 0.01). All these three approaches take code and AST as input, though Hybrid DeepCom

and ast-attendgru do not use context information. Thus, the results indicate that adding context
(i.e., expanding code information) can improve the performance of snippet comment generation.
Furthermore, because Hybrid DeepCom only combines the type information of the AST with the
code snippet, utilizing both type and value information can improve the performance of snippet
comment generation. In particular, the BLEU-4 result of Hybrid DeepCom in this article is 13.67,
which is much lower than the reference [16]. The reason is that both these two approaches are

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:19

Table 2. The Performance of Different Context Expansion Levels

Context
Expansion Level

BLEU
METEOR ROUGE-L

1 2 3 4
1st Level 22.36 19.50 18.65 18.23 18.83 23.65
2nd Level 21.54 18.57 17.66 17.24 (**p < 0.01) 17.89 23.09
3rd Level 21.85 18.86 17.95 17.50 (**p < 0.01) 18.17 23.12
4th Level 21.60 18.66 17.76 17.32 (**p < 0.01) 18.12 22.94
Infinite Level 21.60 18.63 17.74 17.31 (**p < 0.01) 17.91 22.98

aimed at header comment generation but not snippet comment generation. In addition, the datasets
in references are not split based on cross-project, thereby achieving better results. This is also the
reason why the BLEU-4 result of RLcom is lower than the reference [19].

�

�

�

	

RQ2: What are the effects of different context expansion levels on the performance of snippet

comment generation?

To answer RQ2, we investigate the impact of the level of context expansion on comment gener-
ation. In other words, we aim to answer whether the more level of context expansion, the better
the performance of comment generation, or whether there is a threshold for context expansion. As
mentioned above, the snippet comment is related to the statements in the context, which involve
variables in the code snippet. We call it the 1st level context expansion. In these variable-related
statements, there may exist some usage of other variables except those related to code snippets.
According to data flow, it may cause another layer of context expansion, which we call the 2nd
level context expansion. For example, referring to Case 1 to be illustrated in Table 6, line 12 is the
code to be commented, and there exists usage of variables numItemsLeft, contiguousCount, and
numToRemove. Lines 4, 5, 8, 10, 14, 17, and 20 are the 1st level context. In line 14, there is a variable
floorOfEachRun that does not exist in the code snippet. The context using floorOfEachRun is
included in the 2nd level context (i.e., lines 21). Similarly, if there exists the usage of new variables
in 2nd level context expansion, it may cause the 3rd level context expansion. The 4th level will
also exist if there are usages of new variables in 3rd level context expansion. Besides, we treat the
whole method where the code snippet is located as the infinite-level context expansion. We want
to analyze whether different kinds of context expansion levels have an impact on the result of
comment generation. Table 2 shows the performance of different context expansion levels. It can
be shown that the BLEU score, METEOR score, and ROUGE-L of the 1st level are all the highest.
The results are 4.17%~5.74%, 3.63%~5.25%, and 2.29%~2.43% better than the 2nd level, the 3rd level,
and the 4th level on BLEU-4, METEOR, and ROUGE-L. A Wilcoxon signed-rank test also confirms
that the 1st level indeed has higher BLEU-4 scores than the 2nd level, 3rd level, and the 4th level
with statistical significance (the p-values are equal to 1.16 ·10−14, 8.80 ·10−9, and 2.26 ·10−12, respec-
tively). It indicates that increasing context expansion levels does not improve comment generation
performance. When we utilize the method as the context, the result is not better than the 1st level,
either (p-value = 1.30 · 10−12). It means the information from the whole method indeed contains re-
dundancy, which impacts the performance negatively. The context information needs to be filtered.
Therefore, we regard 1st level context expansion as the context expansion layer, which ensures a
good comment generation performance.

�

�

�

�RQ3: What are the effects of different modules on the performance of snippet comment generation?

As mentioned in Section 3.2, we utilize AST analysis information to define the fine-grained
scope of the context and use data flow information to find variable information in the context
to construct snippet ASTs. In Section 3.3, we utilize MBT to traverse the AST type and value

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:20 H. Guo et al.

Table 3. Ablation Study

BLEU
METEOR ROUGE-L

1 2 3 4
SBT 18.16 15.00 14.08 13.67 14.43 19.57
Traverse Type & Value Information
in One Sequence

18.19 15.09 14.18 13.77 14.46 19.48

MBT 19.69 16.67 15.74 15.28 16.16 21.10
MBT & AST Analysis 19.95 16.96 16.04 15.58 16.47 21.34
MBT & AST Analysis & Data Flow
(Our approach)

22.36 19.50 18.65 18.23 18.83 23.65

information to keep the AST information complete. To analyze the influence of different kinds
of information on snippet comment generation, we conduct an ablation study. We evaluate the
performance by comparing our approach with three models: (1) the model with SBT traversal
approach and without any AST analysis and data flow information; (2) the model with traversal
approach that traversal type and value information in one sequence; (3) the model with MBT
traversal approach; (4) the model with MBT traversal approach and AST analysis information. The
result is reported in Table 3. It indicates that adding type information of non-leaf nodes can improve
the comment generation performance by 0.73% on BLEU-4. If the type and value information is
encoded separately (i.e., MBT), then it can improve the comment generation performance by 11.78%
on BLEU-4 compared with SBT. MBT traversal approach and AST analysis information can have
an improvement by 13.97% over SBT on BLEU-4. Adding the MBT traversal approach, AST analysis
information, and data flow information can improve by 33.36% over SBT on BLEU-4. The result
shows that adding value information, AST analysis information, and data flow information all
improve snippet comment generation performance.

�

�

�

	

RQ4: What are the effects of preceding code expansion and following code expansion on the

performance?

The expanded information in the context includes the preceding context and the following con-
text. We analyze what are the effects of this information on snippet comment generation. The
results are reported in Table 4. We process the dataset in three ways: (i) retain all the extracted
context with code snippets, (ii) retain only the preceding context with code snippets, and (iii) re-
tain only the following context with code snippets. We also utilize code snippets removing all
the context as the baseline. We train the model with these four kinds of data and utilize BLEU-4
to measure their comment generation performances. It can be found that the generation perfor-
mance is improved when adding the preceding information or adding the following information.
Among them, adding both the preceding and following information has the best improvement,
which is 6.17% better than that with no context. It indicates that programmers can utilize SCGen to
generate snippet comments when the complete method codes have been written. Moreover, only
adding the preceding information has an improvement of 3.96%, indicating that programmers can
utilize SCGen to generate snippet comments during development when they have not completely
implemented the whole method. Adding the preceding information only also performs better than
adding the following information only (17.85 and 17.41). This is because we add both data flow in-
formation and AST analysis information when adding the preceding information. However, AST
analysis information such as if, for loop information is not included in the following information,
thereby limiting the improvement brought by only adding the following information.

�

�

�

�RQ5: How does the length of the code affect the performance of snippet comment generation?

Compared with the header comment, the length of the source code covered by the snippet com-
ment is shorter. Thus, it is difficult to have a good comment generation performance. To analyze

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:21

Table 4. Effects of Context on Snippet Comment Generation

No Context
Only

Preceding
Code

Only
Following

Code

Preceding and
Following Code

BLEU-4 17.17 17.85 17.41 18.23
Improvements
Compared
to No Context

- 3.96% 1.40% 6.17%

Fig. 7. The performance of SCGen over the code snippets with different lengths.

the impact of input code length on the effect of snippet comment generation, we compare the
BLEU, METEOR, and ROUGE-L scores of the code snippets of different lengths in the test set.
Figure 7 plots the results. The results show that codes with a length between 60–70 tokens have
the best generation performance based on different metrics. The average number of lines of codes
covered by 60–70 tokens is 4.94 lines. The corresponding average BLEU-4 score is 20.25. The av-
erage METEOR score is 20.90 and the ROUGE-L score is 26.14. The code length of 0–10 tokens
has the worst performance. They are samples, for which no variable-related information could be
found in the context, and these samples represent about 0.48% of the dataset. The average code line
number is 2.49. The average BLEU-4 score is 13.20. The average METEOR score is 14.01 and the
ROUGE-L score is 18.77. As the code length increases, the code comment generation performance
has been maintained in a range between 13 to 21 for BLEU-4. The METEOR and ROUGE-L scores
are located in ranges of 14~22 and 18~27. Moreover, with the increased code length, the comment
generation performance does not show a clear upward or downward trend. Therefore, code length
has a limited influence on the comment generation performance.

4.5 Discussion

4.5.1 The Influence of Comment Scope Detection Approach. As mentioned in Section 3.1, we
utilize a comment scope detection approach proposed by Chen et al. [6] to attain snippet code-
comment pairs. We utilize the trained model in the reference and validate the accuracy of our
dataset. We randomly sample 1,500 entries in the validation dataset and 500 entries in the test
dataset, consequently obtaining accuracy rates of 80.20% and 80.67%, respectively. Those results
are quite close to the result proposed in the reference (81.45%). To evaluate the impact of this
approach’s inaccuracy on snippet comment generation, we correct the samples that are detected
incorrectly by the comment scope detection model. Then, we utilize the data samples before the
correction and those after the correction as the input of the model to generate snippet comments,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:22 H. Guo et al.

Table 5. The Influence of Comment Scope Detection Approach

Samples
BLEU

METEOR ROUGE-L
1 2 3 4

1,500 Validation Entries before Manual
Comment Scope Correction

24.04 21.68 20.90 19.35 21.13 26.33

1,500 Validation Entries after Manual
Comment Scope Correction

23.74 21.53 20.81 19.30 21.09 26.01

500 Test Entries before Manual
Comment Scope Correction

22.41 19.40 18.61 18.22 18.53 23.82

500 Test Entries after Manual
Comment Scope Correction

22.30 19.38 18.34 18.15 18.76 23.55

respectively. The results are shown in Table 5. It can be found the performance of entries before
and after comment scope correction has no significant difference in all the metrics (i.e., thep-values
are greater than 0.05). Therefore, the comment scope detection approach’s inaccuracy has limited
influence on snippet comment generation.

4.5.2 The Function of Token Splitting. As mentioned in Section 4.1, we use CamelCase splitting,
snake_case splitting to address OOV issue. In this section, we discuss more details. Since we set
the vocabulary size as 50,000 for the source code, the total number of unique tokens in our source
code dataset is 1,440,654, and the OOV rate is 96.53% if we do not conduct token splitting. But
the number of unique tokens is decreased to 58,261, and the OOV rate is decreased to 14.18% if we
conduct token splitting. Therefore, using token splitting can effectively alleviate the OOV problem.

4.5.3 Qualitative Analysis. To illustrate the validity of SCGen, we show a qualitative analysis
on two real snippet code-comment pairs in Table 6. We collect these two cases from GitHub. One
comes from project Voldemort,3 the other is from hindex.4 In Table 6, we highlight the code snippet
to be commented and its corresponding context, which is utilized in the generated comment in
the first row. The commented code snippet is in the red box and its context is in the green box.
The original comment represents the comment written by programmers. The reference comment
indicates the original comment after lemmatization, which is the ground truth. The comments
generated by several approaches are also proposed. We compare detailed generation results of
seven kinds of comment generation approaches. The words that are the closest to the ground truth
are bolded. It can be found that the results of SCGen in both two cases are closest to the ground truth.
In Case 1, SCGen can generate run token, which exists in the context in line 10. Although other
approaches, such as Hybrid DeepCom and ast-attendgru, can generate some comment tokens, which
match with the ground truth (e.g., num, break), they are not able to generate tokens that do not
exist in code snippet but in the context. Similarly, in Case 2, based on line 7 in the context, SCGen

can generate configuration tokens, existing in the reference comment. Moreover, our approach
generates value token in the comment. We conjecture it is because there is a combination of tokens,
such as configuration value in the snippet comments of the training set, which may generate noise
and lead to the generation of such tokens in the test set. However, our approach based on semantic
expansion can still capture context semantics information to generate snippet comments, which
are semantically very similar to the reference comment.

4.5.4 Context Contribution. To demonstrate how the context feature contributes to snippet
comment generation, we provide an example to illustrate that the attention mechanism acts on the

3https://github.com/voldemort/voldemort
4https://github.com/Huawei-Hadoop/hindex

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://github.com/voldemort/voldemort
https://github.com/Huawei-Hadoop/hindex

Snippet Comment Generation Based on Code Context Expansion 24:23

Table 6. Comments Generated by Different Approaches

context and has an impact on snippet comment generation, which is shown in Figure 8. Figure 8(a)
shows the source code snippet, the generated comment, and the method where the comment is lo-
cated. The corresponding snippet AST is shown in Figure 8(b), and the LCA, the extracted context
subtree, and the code snippet subtree are highlighted. Line 2 subtree is excluded by the snippet
AST. We traverse the AST tokens and input them into the model. We utilize the attention heatmap
to visualize the weight of each AST token when generating each comment token, which is shown
in Figure 8(c). In the attention heatmap, the horizontal axis represents the AST token sequence
number, and the vertical axis represents the generated comment token sequence number. It can be

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:24 H. Guo et al.

Fig. 8. The case of context contribution.

found from the heatmap that No. 4, 5, 8, 104, and 105 AST tokens play important roles when gen-
erating each comment token. These tokens are key, fields2, set, type, and tuple5 in the AST token
sequence. They all belong to variable-related tokens and the LCA in the context (i.e., extracted con-
text). Their corresponding statements are located in lines 1, 3, and 4 in Figure 8(a). Therefore, data
flow information and AST analysis information in the context contribute to generating snippet
comments.

4.5.5 Human Evaluation. Besides utilizing automatic NMT metrics, we also conduct a human
evaluation to compare the performance of different comment generation approaches. Specifically,
we randomly select 30 samples from the test set. Then, we make a questionnaire by using a ques-
tionnaire production website called Wenjuanxing5 and invite 10 volunteers with more than three
years of software development experience and good English ability to rate the samples on a scale
between 1 and 5 (the higher, the better). Seven of them are graduate students and three of them

5https://www.wjx.cn/

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://www.wjx.cn/

Snippet Comment Generation Based on Code Context Expansion 24:25

Fig. 9. Example questions of our questionnaire.

are Java software development practitioners. We send the questionnaire link to them by email or
social media. Similar to previous work [44], those volunteers are asked to rate from three aspects:
similarity of the generated comments and the reference comments, naturalness (i.e., grammat-
icality and fluency), and informativeness (i.e., content adequacy). To ensure the fairness of the
human evaluation, we also mask the model names and make participants evaluate only on the
basis of source codes and generated comments. Figure 9 shows example questions of our question-
naire. Each comment is evaluated by 10 volunteers, and we average their ratings to get the score
of the comment being evaluated. Table 7 shows the evaluation result. It can be found that our ap-
proach outperforms other approaches in three aspects. Our approach gets 3.45 in informativeness,
3.68 in naturalness, and 3.33 in similarity, while other approaches get 2.49~3.01 in informativeness,
2.75~3.55 in naturalness, and 2.27~2.81 in similarity. It means that our approach can generate com-
prehensive snippet comments. In addition, we confirm the superiority of SCGen using Wilcoxon
signed-rank tests for human evaluation. And the results reflect that the improvement of SCGen

over other approaches is statistically significant with most p-values smaller than 0.05 at 95% con-
fidence level (except for Rencos, CodeBERT, Code-NN on Naturalness).

4.5.6 Motivating Scenario. SCGen is an automatic snippet comment generation approach that
essentially performs a conversion task from programming language to natural language (PL-NL
task). Therefore, it is possible that the approach can be applied to other similar PL-NL tasks. For

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

24:26 H. Guo et al.

Table 7. Human Evaluation Results

Approaches Informativeness Naturalness Similarity

Rencos 2.98 3.55 2.67
CodeBERT 2.84 3.51 2.52
Code-NN 2.98 3.49 2.68
Deepcom 2.94 3.43 2.66
Hybrid Deepcom 2.98 3.37 2.73
ast-attendgru 3.01 3.40 2.81
RLcom 2.49 2.75 2.27
Our SCGen 3.45 3.68 3.33

example, using function code to user notice [14] or using program code to achieve App Privacy
Policy generation automatically [61]. The prerequisite for these tasks is the availability of a suitable
dataset and a reasonable code feature extraction method for these tasks.

5 THREATS TO VALIDITY

In this section, we introduce the threats that can affect the results of our case studies.
Threats to internal validity refer to the scale and quality of the dataset for training the model.

In this article, we collect 959 projects containing 600,243 snippet comments from GitHub. The size
is limited and increasing the data size can increase the diversity of samples and improve the scal-
ability of the model. Moreover, we adopt a comment scope detection approach based on machine
learning. The non-perfect accuracy of this approach may allow the dataset to contain noise. We
have verified its accuracy by random sampling parts of data in both the validation dataset and
test dataset to prove the limited effects of noise. Due to the data size, we cannot manually verify
all the data. But we can find that the comment scope detection approach’s inaccuracy has limited
influence on snippet comment generation based on the results. In addition, the soundness and
completeness of the data-flow analysis may influence the result of capturing the context, since we
utilize static analysis methods (data flow information) to extract the context. For example, some
incorrect or unrelated context will be captured if the analysis result is sound. If the analysis result
is complete, then some related contexts are missed. Furthermore, some Java language features such
as reflection and native code may also influence the accuracy of static analysis methods, thereby
influencing the accuracy of extract context and the comment generation performance. The extent
of the impact needs further investigation.

Threats to external validity refer to the scalability of the proposed model. In this article,
SCGen utilizes code snippets written in Java language. When the proposed approach is applied in
other languages, such as C, C++, and Python, they may have slightly different code features. These
kinds of features should be carefully processed when inputting the AST or source code. Therefore,
more investigation by analyzing codes written by other languages should be executed.

Threats to construct validity mean the suitability of our evaluation approach. In this article,
we utilize BLEU, METEOR, and ROUGE-L, which are all machine translation evaluation metrics
to calculate the performance of comment generation models. SCGen is also compared with the
baseline models in terms of these metrics. Thus, we believe that there is little threat to the suitability
of our evaluation method.

6 CONCLUSION AND FUTURE WORK

Code comments including header comments and snippet comments play a vital part in program
comprehension and software maintenance, and automatic comment generation helps improve soft-
ware development efficiency. In this article, we propose a snippet comment generation approach

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

Snippet Comment Generation Based on Code Context Expansion 24:27

called SCGen. We first download Java projects from GitHub. After that, we extract snippet com-
ments and utilize a comment scope prediction model to collect snippet code-comment pairs data
and utilize data flow and AST analysis information of code snippets to expand the context in-
formation. The context information is variable-related information and structural information
for constructing snippet ASTs. We input the source code and ASTs with expanded information
into a sequence-to-sequence-based model to generate snippet comments. The experimental results
demonstrate that SCGen has a better performance compared with other state-of-the-art comment
generation approaches. Moreover, the context information contributes to improving the effective-
ness of snippet comment generation. In the future, we will improve the model so it can also play
a role in the comment generation of other programming languages.

REFERENCES

[1] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention network for extreme sum-

marization of source code. In Proceedings of the 33rd International Conference on Machine Learning (IMCL’16),

Maria Florina Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, NY, 2091–2100. Retrieved from

http://proceedings.mlr.press/v48/allamanis16.html

[2] Oliver Arafat and Dirk Riehle. 2009. The comment density of open source software code. In Proceedings of the 31st

International Conference on Software Engineering-Companion Volume (ICSE-Companion’09). IEEE, 195–198. DOI:https:

//doi.org/10.1109/ICSE-COMPANION.2009.5070980

[3] Oliver Arafat and Dirk Riehle. 2009. The commenting practice of open source. In Proceedings of the 24th ACM SIG-

PLAN Conference Companion on Object Oriented Programming Systems Languages and Applications (OOPSLA’09).

ACM, New York, NY, 857–864. DOI:https://doi.org/10.1145/1639950.1640047

[4] Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to

align and translate. In Proceedings of the International Conference on Learning Representations (ICLR’15). DOI:https:

//doi.org/abs/1409.0473

[5] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correla-

tion with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for

Machine Translation and/or Summarization. 65–72. Retrieved from https://aclanthology.info/papers/W05-0909/w05-

0909

[6] Huanchao Chen, Yuan Huang, Zhiyong Liu, Xiangping Chen, Fan Zhou, and Xiaonan Luo. 2019. Automatically

detecting the scopes of source code comments. J. Syst. Softw. 153 (2019), 45–63. DOI:https://doi.org/10.1016/j.jss.

2019.03.010

[7] Qiuyuan Chen, Xin Xia, Han Hu, David Lo, and Shanping Li. 2021. Why my code summarization model does not

work: Code comment improvement with category prediction. ACM Trans. Softw. Eng. Methodol. 30, 2, Article 25

(2021), 29 pages. DOI:https://doi.org/10.1145/3434280

[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,

Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A pre-trained model for programming and natural languages. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’20). ACL. Retrieved from

https://arxiv.org/abs/2002.08155

[9] Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata, and Charles Sutton.

2017. Autofolding for source code summarization. IEEE Trans. Softw. Eng. 43, 12 (2017), 1095–1109. DOI:https://doi.

org/10.1109/TSE.2017.2664836

[10] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to comment “Translation”: Data, met-

rics, baselining & Evaluation. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE’20). IEEE, 746–757. DOI:https://doi.org/10.48550/arXiv.2010.01410

[11] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program comprehension with source code sum-

marization. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 2 (ICSE’10).

IEEE, New York, NY, 223–226. DOI:https://doi.org/10.1145/1810295.1810335

[12] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the use of automated text summariza-

tion techniques for summarizing source code. In Proceedings of the 17th Working Conference on Reverse Engineering

(WCRE’10). IEEE, New York, NY, 35–44. DOI:https://doi.org/10.1109/WCRE.2010.13

[13] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. 2020. Improved automatic summarization of sub-

routines via attention to file context. In Proceedings of the 17th International Conference on Mining Software Reposito-

ries. Association for Computing Machinery, New York, NY, 300–310. Retrieved from https://doi.org/10.1145/3379597.

3387449

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

http://proceedings.mlr.press/v48/allamanis16.html
https://doi.org/10.1109/ICSE-COMPANION.2009.5070980
https://doi.org/10.1145/1639950.1640047
https://doi.org/abs/1409.0473
https://aclanthology.info/papers/W05-0909/w05-0909
https://doi.org/10.1016/j.jss.2019.03.010
https://doi.org/10.1145/3434280
https://arxiv.org/abs/2002.08155
https://doi.org/10.1109/TSE.2017.2664836
https://doi.org/10.48550/arXiv.2010.01410
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1145/3379597.3387449

24:28 H. Guo et al.

[14] Xing Hu, Zhipeng Gao, Xin Xia, David Lo, and Xiaohu Yang. 2021. Automating user notice generation for smart

contract functions. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE’21). 5–17. DOI:https://doi.org/10.1109/ASE51524.2021.9678552

[15] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In IEEE/ACM 26th International

Conference on Program Comprehension (ICPC’18). ACM, New York, NY, 200–210. DOI:https://doi.org/10.1145/3196321.

3196334

[16] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment generation with hybrid lexical and syn-

tactical information. Empir. Softw. Eng. 25, 3 (2020), 2179–2217.

[17] Yuan Huang, Xinyu Hu, Nan Jia, Xiangping Chen, Yingfei Xiong, and Zibin Zheng. 2020. Learning code context

information to predict comment locations. IEEE Trans. Reliab. 69, 1 (2020), 88–105. DOI:https://doi.org/10.1109/TR.

2019.2931725

[18] Yuan Huang, Xinyu Hu, Nan Jia, Xiangping Chen, Zibin Zheng, and Xiapu Luo. 2020. CommtPst: Deep learning

source code for commenting positions prediction. J. Syst. Softw. 170 (2020), 110754. DOI:https://doi.org/10.1016/j.jss.

2020.110754

[19] Yuan Huang, Shaohao Huang, Huanchao Chen, Xiangping Chen, Zibin Zheng, Xiapu Luo, Nan Jia, Xinyu Hu, and

Xiaocong Zhou. 2020. Towards automatically generating block comments for code snippets. Inf. Softw. Technol.

127 (2020), 106373. DOI:https://doi.org/10.1016/j.infsof.2020.106373

[20] Yuan Huang, Nan Jia, Junhuai Shu, Xinyu Hu, Xiangping Chen, and Qiang Zhou. 2020. Does your code need com-

ment? Softw.: Pract. Exper. 50, 3 (2020), 227–245.

[21] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a neural

attention model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL’16).

ACL, 2073–2083. DOI:https://doi.org/10.18653/v1/P16-1195

[22] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd

International Conference on Learning Representations, Yoshua Bengio and Yann LeCun (Eds.). Retrieved from http:

//arxiv.org/abs/1412.6980

[23] Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In Pro-

ceedings of the Conference of the Association for Machine Translation in the Americas (AMTA’04), Robert E. Frederking

and Kathryn B. Taylor (Eds.). Springer Berlin, 115–124. DOI:https://doi.org/10.1007/978-3-540-30194-3_13

[24] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved code summarization via a graph

neural network. In Proceedings of the 28th International Conference on Program Comprehension (ICPC’20). ACM, New

York, NY, 184–195. DOI:https://doi.org/10.1145/3387904.3389268

[25] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating natural language sum-

maries of program subroutines. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering

(ICSE’19). IEEE, New York, NY, 795–806. DOI:https://doi.org/10.1109/ICSE.2019.00087

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.

[27] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. 2020. DeepCommenter: A deep code comment generation

tool with hybrid lexical and syntactical information. In Proceedings of the 28th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’20). ACM, New

York, NY, 1571–1575. DOI:https://doi.org/10.1145/3368089.3417926

[28] Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang Yan. 2021. A blockchain-based de-

centralized federated learning framework with committee consensus. IEEE Netw. 35, 1 (2021), 234–241. DOI:https:

//doi.org/10.1109/MNET.011.2000263

[29] Zheng Li, Yonghao Wu, Bin Peng, Xiang Chen, Zeyu Sun, Yong Liu, and Deli Yu. 2021. SeCNN: A semantic CNN

parser for code comment generation. J. Syst. Softw. 181 (2021), 111036. DOI:https://doi.org/10.1016/j.jss.2021.111036

[30] Yuding Liang and Kenny Zhu. 2018. Automatic generation of text descriptive comments for code blocks. Proc. AAAI

Conf. Artif. Intell. 32, 1 (2018). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/11963

[31] Chen Lin, Zhichao Ouyang, Junqing Zhuang, Jianqiang Chen, Hui Li, and Rongxin Wu. 2021. Improving code summa-

rization with block-wise abstract syntax tree splitting. In Proceedings of the IEEE/ACM 29th International Conference

on Program Comprehension (ICPC’21). 184–195. DOI:https://doi.org/10.1109/ICPC52881.2021.00026

[32] Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Proceedings of Workshop on Text

Summarization Branches Out, Post-conference Workshop of ACL. ACL, 74–81.

[33] Peng-fei Liu and Xiao-meng Wang. 2020. Utilizing keywords in source code to improve code summarization. In

Proceedings of the IEEE 6th International Conference on Computer and Communications (ICCC’20). IEEE, New York,

NY, 664–668. DOI:https://doi.org/10.1109/ICCC51575.2020.9345066

[34] Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. 2020. Automating just-in-time comment updating. In Proceedings

of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE’20). ACM, New York, NY,

585–597. DOI:https://doi.org/10.1145/3324884.3416581

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://doi.org/10.1109/ASE51524.2021.9678552
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1109/TR.2019.2931725
https://doi.org/10.1016/j.jss.2020.110754
https://doi.org/10.1016/j.infsof.2020.106373
https://doi.org/10.18653/v1/P16-1195
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-540-30194-3_13
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1145/3368089.3417926
https://doi.org/10.1109/MNET.011.2000263
https://doi.org/10.1016/j.jss.2021.111036
https://ojs.aaai.org/index.php/AAAI/article/view/11963
https://doi.org/10.1109/ICPC52881.2021.00026
https://doi.org/10.1109/ICCC51575.2020.9345066
https://doi.org/10.1145/3324884.3416581

Snippet Comment Generation Based on Code Context Expansion 24:29

[35] Paul W. McBurney and Collin McMillan. 2014. Automatic documentation generation via source code summariza-

tion of method context. In Proceedings of the 22nd International Conference on Program Comprehension (ICPC’14).

Association for Computing Machinery, New York, NY, 279–290. DOI:https://doi.org/10.1145/2597008.2597149

[36] Paul W. McBurney and Collin McMillan. 2016. Automatic source code summarization of context for Java methods.

IEEE Trans. Softw. Eng. 42, 2 (2016), 103–119. DOI:https://doi.org/10.1109/TSE.2015.2465386

[37] Paul W. McBurney and Collin McMillan. 2016. An empirical study of the textual similarity between source code and

source code summaries. Empir. Softw. Eng. 21, 1 (2016), 17–42.

[38] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock, and K. Vijay-Shanker. 2013. Auto-

matic generation of natural language summaries for Java classes. In Proceedings of the 21st International Conference

on Program Comprehension (ICPC’13). IEEE, New York, NY, 23–32. DOI:https://doi.org/10.1109/ICPC.2013.6613830

[39] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus, and Gerardo Canfora. 2017.

ARENA: An approach for the automated generation of release notes. IEEE Trans. Softw. Eng. 43, 2 (2017), 106–127.

DOI:https://doi.org/10.1109/TSE.2016.2591536

[40] Laura Moreno and Andrian Marcus. 2017. Automatic software summarization: The state of the art. In Proceedings

of the IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C’17). 511–512. DOI:https:

//doi.org/10.1109/ICSE-C.2017.169

[41] Paul Oman and Jack Hagemeister. 1992. Metrics for assessing a software system’s maintainability. In Proceedings of

the Conference on Software Maintenance. IEEE, 337–344. DOI:https://doi.org/10.1109/ICSM.1992.242525

[42] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A method for automatic evaluation

of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics

(ACL’02). ACL, 311–318. Retrieved from http://www.aclweb.org/anthology/P02-1040.pdf

[43] Rohit Prabhavalkar, Tara N. Sainath, Yonghui Wu, Patrick Nguyen, Zhifeng Chen, Chung-Cheng Chiu, and Anjuli

Kannan. 2018. Minimum word error rate training for attention-based sequence-to-sequence models. In Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’18). IEEE, New York, NY,

4839–4843. DOI:https://doi.org/10.1109/ICASSP.2018.8461809

[44] Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun. 2021. CAST: En-

hancing code summarization with hierarchical splitting and reconstruction of abstract syntax trees. EMNLP.

[45] Xiaotao Song, Sakib Haque Sun, Xu Wang, and Jiafei Yan. 2019. A survey of automatic generation of source code

comments: Algorithms and techniques. IEEE Access 7 (2019), 111411–111428. DOI:https://doi.org/10.1109/ACCESS.

2019.2931579

[46] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-Shanker. 2010. Towards automatically

generating summary comments for Java methods. In Proceedings of the IEEE/ACM International Conference on Auto-

mated Software Engineering. ACM, New York, NY, 43–52. DOI:https://doi.org/10.1145/1858996.1859006

[47] Giriprasad Sridhara, Lori Pollock, and K. Vijay-Shanker. 2011. Automatically detecting and describing high level

actions within methods. In Proceedings of the 33rd International Conference on Software Engineering (ICSE’11). ACM,

New York, NY, 101–110. DOI:https://doi.org/10.1145/1985793.1985808

[48] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart, Westley Weimer, Kevin Leach, and Yu

Huang. 2020. A human study of comprehension and code summarization. In Proceedings of the 28th International

Conference on Program Comprehension. ACM, New York, NY, 2–13. Retrieved from https://doi.org/10.1145/3387904.

3389258

[49] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality analysis of source code comments. In Pro-

ceedings of the 21st International Conference on Program Comprehension (ICPC’13). IEEE, New York, NY, 83–92.

DOI:https://doi.org/10.1109/ICPC.2013.6613836

[50] Hieu Tran, Ngoc Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. 2019. Recovering variable names for mini-

fied code with usage contexts. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering

(ICSE’19). IEEE, New York, NY, 1165–1175.

[51] Carmine Vassallo, Sebastiano Panichella, Massimiliano Di Penta, and Gerardo Canfora. 2014. CODES: Mining source

code descriptions from developers discussions. In Proceedings of the 22nd International Conference on Program Com-

prehension (ICPC’14). ACM, New York, NY, 106–109. DOI:https://doi.org/10.1145/2597008.2597799

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and

Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the Conference on Advances in Neural Informa-

tion Processing Systems (NIPS’17), I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[53] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Improving auto-

matic source code summarization via deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering (ASE’18). ACM, New York, NY, 397–407. DOI:https://doi.org/10.1145/

3238147.3238206

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1109/TSE.2015.2465386
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1109/TSE.2016.2591536
https://doi.org/10.1109/ICSE-C.2017.169
https://doi.org/10.1109/ICSM.1992.242525
http://www.aclweb.org/anthology/P02-1040.pdf
https://doi.org/10.1109/ICASSP.2018.8461809
https://doi.org/10.1109/ACCESS.2019.2931579
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1985793.1985808
https://doi.org/10.1145/3387904.3389258
https://doi.org/10.1109/ICPC.2013.6613836
https://doi.org/10.1145/2597008.2597799
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3238147.3238206

24:30 H. Guo et al.

[54] Deze Wang, Yong Guo, Wei Dong, Zhiming Wang, Haoran Liu, and Shanshan Li. 2019. Deep code-comment under-

standing and assessment. IEEE Access 7 (2019), 174200–174209. DOI:https://doi.org/10.1109/ACCESS.2019.2957424

[55] Bolin Wei. 2019. Retrieve and refine: Exemplar-based neural comment generation. In Proceedings of the 34th

IEEE/ACM International Conference on Automated Software Engineering (ASE’19). IEEE, New York, NY, 1250–1252.

DOI:https://doi.org/10.1109/ASE.2019.00152

[56] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-scale empirical study on code-comment

inconsistencies. In Proceedings of the IEEE/ACM 27th International Conference on Program Comprehension (ICPC’19).

IEEE, New York, NY, 53–64.

[57] Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin. 2019. Tied transformers: Neural machine translation

with shared encoder and decoder. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’19), Vol. 33.

AAAI, 5466–5473. DOI:https://doi.org/10.1609/aaai.v33i01.33015466

[58] Guang Yang, Ke Liu, Xiang Chen, Yanlin Zhou, Chi Yu, and Hao Lin. 2022. CCGIR: Information retrieval-based code

comment generation method for smart contracts. Knowl.-based Syst. 237 (2022), 107858. DOI:https://doi.org/10.1016/

j.knosys.2021.107858

[59] Yatao Yang, Zibin Zheng, Xiangdong Niu, Mingdong Tang, Yutong Lu, and Xiangke Liao. 2021. A location-based

factorization machine model for web service QoS prediction. IEEE Trans. Serv. Comput. 14, 5 (2021), 1264–1277.

DOI:https://doi.org/10.1109/TSC.2018.2876532

[60] Annie T. T. Ying and Martin P. Robillard. 2013. Code fragment summarization. In Proceedings of the 9th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE’13). ACM, New York, NY, 655–658. DOI:https://doi.org/10.1145/

2491411.2494587

[61] Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang. 2017. Toward automatically generating privacy policy for

Android apps. IEEE Trans. Inf. Forens. Secur. 12, 4 (2017), 865–880. DOI:https://doi.org/10.1109/TIFS.2016.2639339

[62] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020. Retrieval-based neural source code

summarization. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering (ICSE’20). IEEE,

New York, NY, 1385–1397.

[63] Xiaoqin Zhang, Runhua Jiang, Tao Wang, and Jinxin Wang. 2021. Recursive neural network for video deblurring.

IEEE Trans. Circ. Syst. Vid. Technol. 31, 8 (2021), 3025–3036. DOI:https://doi.org/10.1109/TCSVT.2020.3035722

[64] Zibin Zheng, Xiaoli Li, Mingdong Tang, Fenfang Xie, and Michael R. Lyu. 2022. Web service QoS prediction via

collaborative filtering: A survey. IEEE Trans. Serv. Comput. 15, 4 (2022), 2455–2472. DOI:https://doi.org/10.1109/TSC.

2020.2995571

Received 22 August 2022; revised 22 May 2023; accepted 3 July 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 24. Pub. date: November 2023.

https://doi.org/10.1109/ACCESS.2019.2957424
https://doi.org/10.1109/ASE.2019.00152
https://doi.org/10.1609/aaai.v33i01.33015466
https://doi.org/10.1016/j.knosys.2021.107858
https://doi.org/10.1109/TSC.2018.2876532
https://doi.org/10.1145/2491411.2494587
https://doi.org/10.1109/TIFS.2016.2639339
https://doi.org/10.1109/TCSVT.2020.3035722
https://doi.org/10.1109/TSC.2020.2995571

