
VRExplorer: A Model-based Approach for
Semi-Automated Testing of Virtual Reality Scenes

Zhengyang Zhu∗‡, Hong-Ning Dai†, Hanyang Guo∗, Zeqin Liao∗, Zibin Zheng∗
∗School of Software Engineering, Sun Yat-sen University, Zhuhai, China

{zhuzhy57, guohy36, liaozq8}@mail2.sysu.edu.cn, zhzibin@mail.sysu.edu.cn
†Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, hndai@ieee.org

‡Peng Cheng Laboratory, Shenzhen, China

Abstract—With the proliferation of Virtual Reality (VR)
markets, VR applications are rapidly expanding in scale and
complexity, thereby driving an urgent need for assuring VR
software quality. Different from traditional mobile applications
and computer software, VR testing faces unique challenges due
to diverse interactions with virtual objects, complex 3D virtual
environments, and intricate sequences to complete tasks. All of
these emerging challenges hinder existing VR testing tools from
effectively and systematically testing VR applications. In this
paper, we present VRExplorer, a novel model-based testing tool
to effectively interact with diverse virtual objects and explore
complex VR scenes. Particularly, we design the Entity, Action,
and Task (EAT) framework for modeling diverse VR interactions
in a generic way. Built upon the EAT framework, we then
present the VRExplorer agent, which can achieve effective scene
exploration by incorporating meticulously designed path-finding
algorithms into Unity’s NavMesh. Moreover, the VRExplorer
agent can also systematically execute interaction decisions on
top of the Probabilistic Finite State Machine (PFSM). Experi-
mental evaluation on 11 representative VR projects shows that
VRExplorer consistently outperforms the state-of-the-art (SOTA)
approach VRGuide by achieving significantly higher coverage and
better efficiency. Specifically, VRExplorer yields up to 122.8% and
52.8% improvements over VRGuide in terms of executable lines
of code (ELOC) coverage and method (function) coverage, re-
spectively. Furthermore, ablation results also verify the essential
contributions of each designed module. More importantly, our
VRExplorer has successfully detected two functional bugs and
one non-functional bug from real-world projects.

Index Terms—Software Testing, Virtual Reality, Model-based
Testing, Scene Exploration

I. INTRODUCTION

Virtual reality (VR), working together with other relevant
technologies, such as Augmented Reality (AR) and Extended
Reality (XR), aims to provide users with an immersive mixed
reality (MR) experience [1]. Current VR applications have
proliferated in diverse fields, such as medical treatment, ed-
ucation, audiovisual entertainment, training simulations, man-
ufacturing, and gaming [1–6]. According to Fortune’s market
report [7], the global VR market is projected to grow from
$44.4 billion in 2025 to $244.84 billion in 2032.

With the proliferation of VR markets, VR applications are
also rapidly expanding in terms of scale and complexity. En-
suring the software quality of such complex VR applications
becomes an urgent need. As a critical procedure of software
development, testing can thoroughly evaluate a software to

check whether both requirements and functional needs are ful-
filled without defects. To cater to this growing demand in VR
applications, extensive efforts have been made in VR testing,
while many of them still largely rely on manual testing, which
remains highly labor-intensive and inefficient [8, 9]. Most
recently, several studies have aimed to test VR applications
automatically. As an early attempt, VRTest [10] explores VR
scenes by controlling the orientation of the camera to inter-
act with virtual objects. VRGuide [11] has further improved
VRTest by optimizing exploration routes to circumvent oc-
cluded objects. Besides VRTest and VRGuide, other researchers
also explore using other techniques, such as computer vision
(CV) and generative artificial intelligence (GenAI) to achieve
scene exploration [12] or understanding [13]. However, these
testing tools are still struggling to test VR applications with
increased complexity.

The challenges in VR testing stem from the unique fea-
tures of VR applications, sharply different from conventional
mobile applications and computer software. First, enabled
by diverse peripheral devices (e.g., VR headsets, controllers,
joysticks, wands, and haptic gloves), VR systems can support
a larger diversity of interactions (such as grabbing, pressing,
touching, pulling, climbing, and shooting) than conventional
mobile systems and PCs [14, 15]. Unfortunately, current VR
testing tools cannot properly characterize and represent the
diverse interaction behaviors. For example, the state-of-the-
art (SOTA) VR testing tool, VRGuide, can only test virtual
objects with the “click” interaction. Second, VR applications
contain complex 3D virtual environments with interactions
with virtual objects, thereby introducing a vast exploration
state space. Take EscapeGameVR, a popular open-source VR
gaming application, as an example, which contains 44 scenes,
8,256 GameObjects, and 1,377 C# script files. Third, VR
testing often requires completing a sequence of tasks, e.g.,
finding a key, then using the key to open a door, next turning
a handle, and finally pressing a button to escape. It is non-
trivial to accomplish these complex tasks since they involve
diverse interactions and trigger either events or actions in a
specific order. In summary, the diverse and intricate nature of
the VR interactions, coupled with large-scale virtual spaces
and complex task-completion sequences, makes it difficult
to comprehensively and efficiently test VR applications in a
systematic and repeatable manner.

Our Approach. To address the above challenges, we
present VRExplorer to thoroughly test Unity-based VR appli-
cations by conducting in-depth scene exploration and compre-
hensive interactions with virtual objects. Notably, we consider
Unity-based VR applications mainly due to Unity’s dominant
role in VR/MR markets [16]. To tackle the first challenge
mentioned above, we design the Entity, Action, and Task
(EAT) framework for modeling VR interaction behaviors in a
generic way. This hierarchical framework enables a reusable
modeling process across VR applications developed by diverse
Unity versions and interaction plugins, such as XRIT [17, 18],
STEAMVR [19–21], and MRTK [22, 23], thereby enhancing
cross-project generalizability. To address the second chal-
lenge, we present the VRExplorer agent built upon the EAT
framework. Incorporating meticulously designed path-finding
algorithms into Unity’s NavMesh, the VRExplorer agent can
achieve autonomous navigation in 3D virtual environments.
Moreover, the VRExplorer agent can also systematically exe-
cute diverse interaction decisions on top of the Probabilistic
Finite State Machine (PFSM). To address the third challenge,
the proposed model-based approach transforms intricate VR
task execution sequences into structured task models to enable
systematic testing and automated execution.

Evaluation. To comprehensively evaluate the proposed VR-
Explorer, we conduct extensive experiments on 11 representa-
tive VR projects. The experimental results demonstrate that
the proposed VRExplorer outperforms the SOTA approach
VRGuide with average performance gains of 122.8% and
52.8% in terms of executable lines of code (ELOC) coverage
and method (function) coverage, respectively. Moreover, the
ablation study on the five ablated variants of VRExplorer also
validates the necessity of all modules of the EAT frame-
work. More importantly, VRExplorer has successfully detected
two previously unknown real-world bugs (i.e., one functional
bug and one non-functional bug), which can nevertheless
be detected by the baseline. Further, VRExplorer has also
successfully detected one previously-confirmed bug.

Main Contributions are summarized as follows:

• We design the EAT framework for modeling complex
interaction behaviors and tasks in VR applications. To the
best of our knowledge, EAT is the first generic three-layer
abstraction framework for VR testing based on the object-
oriented programming (OOP) paradigm.

• We present VRExplorer1, a novel model-based testing tool
to achieve effective interactions with diverse virtual objects
and the exploration of complex VR scenes.

• We evaluate VRExplorer extensively on 11 representative
VR projects and demonstrate its consistent performance
superior to the SOTA approach in terms of ELOC coverage,
method coverage, and interactable object coverage while
preserving high efficiency. Moreover, our VRExplorer can
also successfully detect real-world bugs in VR projects.

1https://github.com/TsingPig/VRExplorer Release

II. BACKGROUND

Interactions in Unity-based VR Applications. A Unity-
based VR application typically consists of multiple Scenes,
each of which is structurally represented by a hierarchy of
GameObjects. These GameObjects represent all visible and
interactive elements in the 3D virtual environment and can
be composed of various components, such as meshes, scripts,
and colliders. Unity provides VR application developers with
a rich set of tools for implementing immersive interactions.
As Unity’s official framework, XRIT [17] can support com-
mon VR input modalities such as ray-based selection, di-
rect grabbing, teleportation, and gesture recognition. These
interactions are typically implemented using component-based
scripts attached to objects, while often relying on trigger
colliders or physics events. However, the implementation logic
varies significantly across projects, especially when third-
party packages are used, thereby increasing the complexity of
generalizing automated testing across different VR projects.

Mono Scripts in Unity-based Application Development.
In Unity-based VR application development, Mono scripts
constitute the fundamental building blocks for implementing
interactive behaviors. These C# classes inherit properties from
Unity’s core MonoBehaviour [24] base class, enabling them
to leverage Unity’s component-based architecture. Through the
Unity Inspector, developers attach these scripts to GameOb-
jects to create diverse objects. For example, a gun can be
attached with a XRGun class inherited from MonoBehaviour,
with properties referencing the bullet prefab2, Shoot(), etc.

NavMesh-Based Navigation in Unity. Unity’s NavMesh
system [25–27] provides a mechanism to traverse 3D environ-
ments using navigation meshes generated from static scene
geometry. It supports obstacle avoidance, pathfinding, and
dynamic updates, making it suitable for simulating players’
movement. In VR testing, NavMesh can be leveraged to
automate scene exploration by guiding a virtual agent through
reachable areas. However, it only supports locomotion and
requires external control logic to handle task-specific actions,
such as interacting with objects or triggering events.

III. APPROACH

As shown in Fig. 1, the proposed VRExplorer works by first
collecting and analyzing open-source VR projects in § III-A.
Then, it implements the EAT framework in § III-C after model
extraction in § III-B. Next, it conducts testing by VRExplorer
in § III-D based on the EAT framework, NavMesh, and PFSM.

A. Project Collection and Analysis

To comprehensively investigate interaction behaviors in
VR, we collect open-source Unity VR projects with diverse
applications, interactions, and scene types (details in § V-A).

Based on this dataset, we perform a two-pass semi-
automated analysis — static pass and dynamic pass—and
then consolidate the results to construct Model Abstraction,
including Object and Action abstractions (§ III-B). These

2Prefab is a reusable template encapsulating GameObjects and components.

https://github.com/TsingPig/VRExplorer_Release

VRExplorer Testing (§III-D)

PFSM

Collider

Camera

Hand Controller

VRExplorer Agent

Behavior Execution and Scene Exploration3

Task Generator

Interaction & Scene Analysis

Output
Input Next Interactable

T
a

s
k

E
x
e

c
u

tio
n

Decision Making

Implementation

Interface
2

Scripts Implemented

Entity Interface

Customizing Entity

Interface Configuration

Core Scripts

Full Project

Task Execution Autonomous
Event Invocation

A
u

to
n

o
m

o
u
s

E
v
e

n
t In

v
o

c
a

tio
n

Task Model

Action Layer Entity Layer Mono ScriptsTask Layer C# Scripts FileEntity Interface GameObjectsUnity Scene Third Plugins NavMesh Data

Bake

NavMesh

Original Scene

Scene with NavMesh

(for navigation)

Preliminary Scene

Configuration
1

Model Abstraction (§III-B) B

Extract

abstraction models

H
e

u
ris

tic
 ru

le
s
 &

e
x
p
e
rie

n
c
e
s

Heuristic rules &

experiences

Abstract Models

XR Box XR Joystick XR Button

Implement

D

Base Action

Grab Action Trigger Action

Inherit

Base Entity

Grabbable Entity Triggerable Entity

Inherit

Grab Trigger

Task Generator & Customized Task Model

Parallel and serial combinations

EAT Framework (§III-C) C

Implement Implement

Inherit

Inherit

Decision Making

Project Collection
& Analysis (§III-A)

Open Source

Repositories

Collect by Tags

Unity-based

VR Projects

A

D
y
n
a
m

ic

A
n
a
ly

s
is

S
ta

tic

A
n
a
ly

s
is

Interactables
Environment

BoxS1. Scene/prefab scan

S2. Script binding extraction

S3. Interaction pattern identification

D1. Runtime state observation

D2. Interaction flow tracing

D3. Heuristic validation of task logic

Fig. 1: Overview of VRExplorer

abstractions are subsequently fed into the EAT framework
(§ III-C) and the PFSM-based testing workflow (§ III-D).
Static pass (S1–S3). S1: Scene/prefab scan. We parse scene
hierarchies and prefabs to enumerate GameObjects with at-
tached components, and prune non-interactable infrastructure
(e.g., static walls) that are not connected to core interactions.
S2: Script binding extraction. We inspect MonoBehaviour-
based scripts and their serialized fields to recover object–
script bindings (e.g., references to targets). S3: Interaction
pattern identification. We analyze interaction-related APIs
and callback signatures to fingerprint typical behaviors. The
interaction distribution will be detailed in § IV-A.
Dynamic pass (D1–D3). Static inspection cannot observe
runtime object creation, dynamic component attachment, or
goal-oriented task logic. To complement this effect, we con-
duct a lightweight but human-guided runtime analysis guided
by gameplay flows and task objectives: D1: Runtime state
observation. At each frame t, we record snapshots of active
GameObjects Gt and their component sets Ct. Comparing
consecutive states (∆Gt, ∆Ct), we identify dynamically instan-
tiated objects and runtime-added components. D2: Interaction
flow tracing. Following execution evidence such as console
outputs, function call stacks, and Unity event dispatches during
gameplay, we trace when and how scripts are actually triggered
(e.g., input events, collision handlers, and task-specific event
chains). D3: Heuristic validation of task logic. Four expe-
rienced engineers heuristically reconstruct event sequences
observed during gameplay to approximate these flows and
validate whether each interaction contributes essentially to task
progression or it is only incidental.

B. Model Abstraction

Heuristic Model Abstraction. We summarize the heuristic
experiences and rules extracted from the project analysis in or-
der to test the framework’s effectiveness and get a preliminary
model abstraction. Specifically, during the project analysis
process, we merge static and dynamic findings into abstraction
models heuristically and classify common VR interaction
behaviors into abstract actions based on OOP principles, as

shown in Part B in Fig. 1. When testing a real-world project,
engineers can absolutely use the model we had constructed,
while also experiencing core gameplay and performing the
two-pass manual analysis as described in § III-A if they
have customized testing demands. New interaction patterns
are either matched with existing types or newly defined
via new Action interfaces automatically. While execution is
fully automated, abstraction still requires human-in-the-loop
analysis due to the complexity of VR interactions and the
limited domain-specific knowledge of existing tools. Objects
are annotated with interactable features (e.g., Grabbable,
Triggerable, and Transformable); interactions are lifted into
abstract actions. This consolidated model (i) seeds the Entity
Interface Layer in EAT by proposing interface candidates (e.g.,
IGrabbable and ITriggerable), (ii) provides action-level
semantics to the Action Class Layer, and (iii) surfaces callable
functions and UnityEvents to populate the task (§ III-D).

TABLE I: Example of Generalizing VR Interactable Objects
VR Interactable Objects Interactable Features
Box, Coin, etc. Grabbable
Button Triggerable
Joystick Transformable
Gun, Cigarette Lighter, etc. Grabbable and Triggerable

Abstraction of Interactable Objects. We first generalize
VR interactable objects into abstract objects containing inter-
actable features. Table I gives an example of VR interactable
objects with interactable features, which can determine inter-
action properties. For instance, objects like boxes and coins
can be typically classified as Grabbable, meaning that they
can be picked up, while objects like buttons and joysticks are
considered Triggerable with two attributes triggering and trig-
gered. Notably, some objects may possess multiple interactable
features. For instance, a gun or a cigarette lighter possesses
both Grabbable and Triggerable attributes, representing com-
plex interactions to support not only grabbing but also acting
on its function, such as shooting or turning on a button.

Abstraction of Actions. We then classify VR interaction
behaviors into abstract actions. Table II shows an example of
a VR interactive scene, in which pressing a button, closing or

TABLE II: Generalizing Interactions into Abstract Actions
VR Interaction Behaviors Abstract Actions
Move Around, Jump, Fly, etc. Move Action
Press, Pull, Open/Close, Turn On/Off, etc. Trigger Action
Grab, Throw Grab Action
Move/Scale/Rotate Objects Transform Action

1
Move to

Approach

The Gun

2
Try to Grab

the Gun

3
Move Around

Randomly; Try to

Fire the Gun

(a) GASG Process

The Grab-And-Shoot-Gun Task

Move Action Grab Action

Move Action

Asynchronous Action

P
a

ra
ll

e
l
A

c
ti

o
n

Move Action

Trigger

Action

1 Move to Approcach

The Gun

2 Try to Grab

the Gun

3 Move Around Randomly;

Try to Fire the Gun

Trigger

Action
Trigger

Action

(b) Action Model of GASG task
private List<BaseAction> GrabAndShootGunTask(

IGrabbableEntity grabbableEntity, ITriggerableEntity triggerableEntity)
{

List<BaseAction> task = new List<BaseAction>(){
new MoveAction(_navMeshAgent, moveSpeed,

grabbableEntity.transform.position),
new GrabAction(leftHandController, grabbableEntity,

new List<BaseAction>(){
new ParallelAction(new List<BaseAction>(){

new MoveAction(_navMeshAgent, moveSpeed,
GetRandomTwitchTarget(transform.position)),

new TriggerAction(2.5f, triggerableEntity)
})

})
};
return task;

}

(c) C# Code Snippet of GASG task

Fig. 2: Task Instance of Grab-And-Shoot-Gun

opening a door, turning on or off a lamp, and pulling a joystick,
can be conceptualized as compositions of a continuous process
with a following event. Specifically, the player’s action, pulling
a joystick, can be classified into a continuous pulling process
and an event triggered after pulling is over. We classify a
behavior with such characteristics into Trigger Action.

C. EAT Framework

Based on the model abstraction in § III-B, we propose a
three-layer framework called EAT, as shown in Part C in Fig. 1.

Entity Interface Layer. Based on the interactable objects’
abstraction, we define specific interfaces to encapsulate their
corresponding attributes. Particularly, we define a base in-
terface, called BaseEntity, which includes the Transform

property to represent the object’s position, rotation, and scale,
as well as the Name property. Thereafter, all other entity
interfaces inherit this base interface. For example, an interface
Triggerable includes two attributes triggering and triggered
with the Enum property. The Entity Interface layer provides
customized interfaces tailored to specific features required
by the Action layer. Notably, complex interactable features
can be efficiently represented through multi-inheritance by
multiple interfaces, thereby allowing for higher flexibility and
modularity in defining VR interactions.

Action Class Layer. We then extract behaviors with iden-
tical characteristics into the same action. We first define an
abstract base class, namely BaseAction with a virtual asyn-
chronous Execute() method. All other action classes inherit
this base class. The Action layer can interact with the Entity
Interface Layer and provide functional APIs for VRExplorer to
simulate real players’ interactive actions. For example, Trigger
Action can be concreted into the TriggerAction class, which

(a) Doors Closed (NavMesh separated) (b) Doors Opened (NavMesh connected)

Fig. 3: Dynamic doors with NavMesh Obstacle (Carve enabled)

consists of an asynchronous method Triggering() and a
synchronous method Triggered().

Task Model Layer. A composition task consists of multiple
parallel and sequential actions. Parallel action executes asyn-
chronous methods simultaneously, while sequential actions
follow a strict order to complete the previous action before pro-
ceeding to the next. The Task Model layer includes a task gen-
erator and multiple predefined VR interaction tasks. The task
generator creates tasks by accepting either a MonoBehaviour

instance or an array of entities (BaseEntity[]). We derive
the predefined tasks from commonly used task models. Fig. 2
depicts an example of the Grab-And-Shoot-Gun (GASG)
task, which consists of three steps: approaching the table,
picking up the gun, and shooting while walking in Fig. 2(a).
Fig. 2(b) elaborates on the corresponding action model, where
the horizontal axis represents the timeline of asynchronous
actions starting with Move Action, followed by Parallel Action,
within which three actions execute concurrently. The corre-
sponding code is also shown in Fig. 2(c).

D. VRExplorer Testing

As shown in Part D in Fig. 1, VRExplorer’s testing process
works in three sequential steps:

1 Preliminary Scene Configuration, before scene explo-
ration, we facilitate the agent’s navigation capability based on
Unity’s NavMeshAgent [26] via NavMesh baking. We first
configure terrain objects, such as floors and walls, to be static.
Regarding those objects that may dynamically move, such
as doors, we attach the NavMesh Obstacle [27] component
with the enabled Carve option, thereby allowing them to
dynamically modify the NavMesh. Fig. 3 depicts an example
of opening and closing dynamic doors.

2 Implementation Interface, on top of the EAT framework,
implementing interactable interfaces is the core to tackle two
challenges: (1) lack of generalizability caused by diverse Unity
versions and the fragmentation of the VR development ecosys-
tem; and (2) intricate scene exploration and VR interactions.
Using interfaces to encapsulate implementation details can
enable testing for a diversity of VR applications.

To ensure coverage and verify the reliability of interaction
methods, test engineers need to select and customize the
appropriate Entity layer interfaces for the Mono scripts related
to the core VR interaction logic in the target project with the
corresponding interface functions implemented. Take Proce-
dure 1 as an example3, in which a gun class XRGun possessing

3The implementation of the entity interface’s code lines is marked blue.

Procedure 1 Entity Interface Layer Implementation Example.
1: class XRGun implements ITriggerable, IGrabbable:
2: property TriggeringTime ← 1.5
3: property Name ← “Gun”
4: property Grabbable:
5: if component exists then return it
6: else add new Grabbable component
7: method Triggerring() do nothing
8: method Triggerred() calls Fire()
9: method OnGrabbed() do nothing

10: field projectilePrefab: GameObject
11: field startPoint: Transform
12: field launchSpeed: float
13: method Fire():
14: Instantiate projectile and apply forces
15: method ApplyForce(rigidbody):
16: Calculate and apply physics forces

both Grabbable and Triggerable features, can be implemented
by inheriting MonoBehaviour while simultaneously imple-
menting the IGrabbable and ITriggerable interfaces. This
design allows the gun object to be both grabbed and triggered
during VR interactions without additional script components.
This approach allows XRGun to seamlessly integrate multi-
ple interaction capabilities (i.e., grabbable and triggerable).
Leveraging interface composition, we can flexibly define and
extend object behaviors without modifying the base class
hierarchy, thereby promoting code reusability and achieving
modular design in the VR interaction system.

3 Scene Exploration with Behavior Execution. after com-
pleting the scene configuration and implementing interactable
interfaces, VRExplorer automatically performs scene explo-
ration and VR interactions by executing the corresponding
behaviors. We design two types of behaviors: task execution
and autonomous event invocation. When executing tasks,
VRExplorer perceives the scene and inputs MonoBehaviour

instances or an array of entities (BaseEntity[]) into the
task generator to obtain and execute the corresponding tasks.
Notably, players in VR environments not only interact with
objects but also invoke autonomous events, such as casting
skills to gain acceleration buffs.

PFSM. To comprehensively cover such testing cases, VREx-
plorer maintains a configurable list of UnityEvents, allowing
test engineers to easily customize the functions to be covered
by configuring them in the Inspector before testing. These two
types of behaviors constitute the behavior space, where each
behavior can be regarded as a node. The behavior space itself
forms a directed graph composed of these nodes. For behavior
decision-making, VRExplorer employs PFSM to determine
transitions between nodes, thereby defining the topology of the

𝑇𝑖: Grab-and-Shoot-Gun
𝐸𝑗: Release

Speed-Up Skills

𝑇𝑖+1: Press-Button
𝐸𝑗+1: Release Slow-

Time Skills

𝒑

𝒑

1

2

𝟏 − 𝒑3

……

……

……

Actual Transition Probable Transition

Fig. 4: Example of PFSM State Transition in a VR Scene.

TABLE III: State Transition Table of PFSM
Current State Next State Condition Probability
Ti Ti+1 Default 1− p
Ti Ej Default p
Ej Ej+1 Default p
Ej Ti+1 Default 1− p
Ti Ti+1 E exhausted 1.0
Ej Ej+1 T exhausted 1.0

directed graph. We use T = {T1, T2, . . . , TN} to denote the
set of all task states, where Ti represents the i-th task state in
the execution sequence, with i ∈ {1, 2, . . . , N}. Similarly, we
use E = {E1, E2, . . . , EM} to denote the set of exploration
states, where Ej represents the j-th exploration state in the
execution sequence, with j ∈ {1, 2, . . . ,M}. At each decision
point in PFSM, a variable determines the transition direction.
The probability of transitioning to an exploration state (Ej)
is denoted by p while the probability of transitioning to a
task state (Ti) is (1 − p). Fig. 4 depicts an example of state
transition in a VR scene, where Speed-Up Skills node
and Slow-Time Skills node are two example nodes of an
autonomous event adding buffs to the player, while GASG
node and Press-Button (PB) node are two example nodes of the
task. Those four nodes are independent of each other, while the
PFSM is responsible for decision-making and state transitions
among them. Table III lists all the state transitions.

Path-finding for Navigation. We implement two algo-
rithms: (i) a Greedy algorithm, which follows a local opti-
mization strategy based on the shortest path principle, and
(ii) a Backtracking algorithm with Pruning, which searches
for globally optimal solutions. Since the Greedy algorithm
significantly reduces time complexity, fulfilling the real-time
requirements of VR testing, we mainly adopt it in our exper-
iments (§ VI presenting a comparison of the two algorithms).

In summary, VRExplorer continuously obtains scene infor-
mation, decides the current behavior to execute, and receives
feedback after performing the behavior. This process is re-
peated until all interactable objects and events are covered.

IV. EVALUATION OF VRExplorer

A. Implementation

Project Collection and Analysis. We implemented a
crawler to collect Unity-based VR GitHub projects with key-
words like “VR”, “AR”, “unity”, and “xr”. From 971 initially
filtered projects, we manually performed quality checks (e.g.,
compilation errors and version conflicts), consequently retain-
ing 102 high-quality projects. We then analyze the structural
and interaction characteristics of all projects in the dataset to
assess their representativeness and complexity. Table IV shows
varied project sizes. While most projects are relatively small
(medians containing 71.5 scripts, 6,129 LOC, 620 files, and
8 scenes), a few of them with large sizes markedly raise the

TABLE IV: Statistical Metrics of Collected 102 Projects.
Metric Mean Variance Min Q1 Median Q3 Max

Scripts 166.45 110,953.52 2 26.25 71.50 130.25 2,004
LOC 19,910.85 1,851,165,810.13 256 2,707.25 6,129.00 13,762.75 237,725
Files 902.07 902,718.22 21 301.25 620.50 1,090.00 5,303
Scenes 18.12 455.06 1 4.00 8.00 30.25 128

10
1

10
2

10
3

Sc
rip

ts
 (l

og
 s

ca
le

)

10
3

10
4

10
5

LO
C

 (l
og

 s
ca

le
)

0

2000

4000

Fi
le

s

0

50

100

Sc
en

es

10
2

10
3

10
4

10
5

G
am

eO
bj

ec
ts

 (l
og

 s
ca

le
)

Fig. 5: Boxplots of scripts, LOC, files, and scenes.

Inventory
Dialogue Socket

Shoot/Fire/Attack

Walk/Rotate/Jump

Hand Gesture Interaction

Teleport/Locomotion

Trigger/Pull/Press Button/Switch

Ray Interactor / XR GUI Interaction

Classical Software GUI Interactions

Grab/Release/Throw/Place

2000

1500

1000

500

0
79 17 75

985
650

846
558

945 957

2267

1892

Number of Interactions

0

20

40

60

80

100

5 7
16

71 77 81 85 88 92 94 99
Number of Projects by Interaction Type

Fig. 6: Distribution of Interactions in Dataset.

medians. Fig. 5 plots their distribution. Fig. 6 indicates that
the dataset includes both prevalent interactions (e.g., grabbing,
GUI operations, and teleportation) and infrequent ones (e.g.,
inventory and dialogue). Together, these interactions cover all
major interaction tasks identified in [28], thereby highlighting
the constructed dataset’s representativeness and diversity.

We then perform the two-pass analysis (§ III-A), summa-
rizing heuristic rules for subsequent modeling.

Implementation of Model Abstraction. Based on the
above analysis, we extract abstract models using the derived
heuristics. The implementation comprises 6 scripts in the Ac-
tion layer, 4 scripts in the Entity layer, and 4 pre-defined Mono
scripts. Additionally, 5 pre-defined task models orchestrate
these components, resulting in more than 1,600 lines of code
in total. Manual exploration per project ranged from 30 to 90
minutes, depending on the engineer’s proficiency.

Implementation of the EAT Framework. We de-
rive Grabbable, Transformable, and Triggerable in-
terfaces from the base interface BaseEntity in the En-
tity layer. In the Action layer, we define GrabAction,
MoveAction, ParallelAction, TransformAction, and
TriggerAction as the subclasses of the abstract base class
BaseAction. Each subclass overrides the Execute() method
to implement its corresponding behavior. Thereafter, we pro-
vide the implementations of common task models as the code-
level compositions of actions, e.g., the PB and GASG tasks.

For each project, we analyze the interactable objects in
scenes and all the C# scripts referenced by the objects, and
select the codes corresponding to the core VR interaction
functionality, referred to as Core Code. Tool libraries, third-
party code, and other non-interaction scripts are excluded.
This selection serves two purposes: (i) evaluation of testing
performance via Assembly-Definition files, and (ii) flexible
customization and configuration for different VR projects.
Core Code is a heuristic criterion useful for any type of VR
applications (even Unity-based or non-Unity-based).

We then modify classes in Core Code to implement the
interfaces of the Entity Interface layer. To minimize additional
workload for developers, we provide a set of predefined scripts
inherited from MonoBehaviour for projects developed using

Attach Predefined Mono
Script to a Button Object

Fig. 7: Predefined Mono Script Component XRTriggerable

the XRIT framework. These commonly used Mono scripts
already implement the corresponding interfaces. Developers
can simply attach the predefined scripts to target objects and
configure the methods under test via UnityEvent [29] in
the Unity Inspector (see Fig. 7). This design allows easy
extension to diverse interactions across VR applications while
introducing minimal extra effort for developers, and ensures
that the Core Code is fully testable and easily configurable.

Implementation of VRExplorer. We equip the VREx-
plorer’s GameObject with a NavMeshAgent component for
navigation on NavMesh with the attached controller com-
ponent (like a player’s hands) to enable interactions with
objects. To support scene perception, we implement the
EntityManager class, which is responsible for registering
scene information and providing APIs for scene analysis
within VRExplorer. Then, we implement PFSM to support
conditional branching for decision-making, where PFSM’s
inputs are derived from scene analysis. Next, we implement
a TaskGenerator component to support task execution by
translating relevant inputs into the corresponding task model.

Environment. We implement and evaluate VRExplorer with
the comparison of other baselines (in § IV-C) on a computer
with AMD Ryzen 7 5800H with Radeon Graphics CPU, 32GB
RAM, and NVIDIA GeForce RTX 3060 GPU (6GB) Graphics
card. This computer is installed with Windows 11 and the same
Unity version as that used in all evaluated projects.

System Configuration Parameters. Since the proposed
VRExplorer simulates a player to explore the VR scene, the
move speed (MS) and the turn speed (TS) (also called rotation
speed in [11]) greatly affect the testing performance. Regard-
ing the move speed, excessive speed can introduce physical
and interactive issues (e.g., test tools may unintentionally move
out of a platform due to inertia), although a faster speed
may generally improve performance. Therefore, to balance
efficiency with practicality, we choose MS = 6 m/s and TS = 60
deg/s as the standard parameters for VRGuide and VRExplorer
in all subsequent experiments. § VI discusses the rationale for
these settings. Since these parameters are chosen to be the
same for all test tools, they are not repeated in detail in the
subsequent experimental results. An experiment is terminated
when a test tool reaches convergence. In the PFSM model,
the probability of transitioning to the next state is decided by
parameter p, which is set to 0.5, indicating the same propensity
for both state transitions.

B. Metrics

With reference to [11, 30–32], we consider ELOC coverage,
method coverage, interactable objects coverage, and conver-
gence time as evaluation metrics:

TABLE V: Quantitative Metrics of Selected VR Projects
Projects # of Scripts LOC # of Files Scenes # of GOs Version

G
ro

up
1 unity-vr-maze 158 25,261 212 1 278 5.x

UnityVR 150 24,858 330 3 124 2019.x
UnityCityView 182 28,335 446 34 1,194 2019.x

G
ro

up
2

Parkinson-VR1 275 38,437 968 33 1,566 2019.x
VGuns 81 10,900 848 36 1,653 2020.x
EE-Room2 88 4,450 1,063 8 1,517 2020.x
EscapeGameVR 91 6,659 1,377 44 8,256 2021.x
VRChess 160 26,591 414 4 280 2021.x
VR-Basics 62 2,677 724 5 2,143 2021.x
VR-Room 65 3,660 679 2 414 2022.x
VR-Adventure 11 260 91 2 288 2022.x

1 Parkinson-VR stands for Parkinson-App-Virtual-Reality.
2 EE-Room stands for Edutainment-Escape-Room.

• ELOC Coverage (EC). Since ELOC mainly focuses on
code lines containing executable programs, EC measures the
percentage of these executable lines with the exclusion of
blank lines, comments, and declaration statements during test-
ing. We adopt Code Coverage [33], an official tool provided by
Unity, to automatically record the EC of C# scripts. Running
in Unity Editor Mode, the testing tool exports the coverage
data as a historical report in .html and a summary in .xml.
• Method Coverage (MC). Besides EC, we also consider MC
to evaluate performance, quantifying the percentage of testing
methods (functions) that have been invoked during testing.
• Interactable Object Coverage (IOC). We adopt IOC to
fairly compare VRExplorer with SOTA baseline VRGuide [11].
Slightly different from [11], in which interactable objects
only include objects that can receive mouse “click” events,
we further extend interactable objects to all objects that
support user interaction in the VR environment. These inter-
actable objects are identified by analyzing and confirming the
MonoBehaviour scripts associated with the scene objects.
• Convergence Time. We also evaluate the efficiency of the
proposed approach. Particularly, we consider convergence time
to measure how fast a tool can reach the converged state,
which is defined as the status at which the testing tool no
longer seeks additional scene exploration. The convergence
time refers to the amount of time taken for the testing tool to
reach the converged state from the initial state.

C. Baselines

Given the unique characteristics of VR applications, such
as complex VR interactions and the fragmented nature of the
VR development ecosystem, current automated testing tools
and Android application testing frameworks are not suitable
for VR application testing. To the best of our knowledge, VR-
Guide [11] is the SOTA testing approach for VR applications.
Besides VRGuide, VRTest [10] is a previous version, which
nevertheless has inferior performance to VRGuide in terms of
both MC and IOC (only pointer click events received).

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate VRExplorer
and aim to investigate three research questions (RQs):
• RQ1: How does VRExplorer perform with comparison of
the existing SOTA approach in diverse VR projects?
• RQ2: How do different modules contribute to the perfor-
mance of VRExplorer?
• RQ3: Can VRExplorer detect real-world VR bugs?

0 25 50 75 100 125 150
Time (s)

0

20

40

60

80

100

Co
ve

ra
ge

 (%
)

43.82%

81.67%

100.00%

43.82%

66.53%

94.29%

VRExplorer ELOC Coverage
VRExplorer Interactable Coverage
VRGuide ELOC Coverage
VRGuide Interactable Coverage

(a) Coverage versus Time in Project unity-vr-maze

0 20 40 60 80
Time (s)

0

20

40

60

80

100

Co
ve

ra
ge

 (%
)

20.36%

92.22%
100.00%

20.36%

67.66%
60.00%

VRExplorer ELOC Coverage
VRExplorer Interactable Coverage
VRGuide ELOC Coverage
VRGuide Interactable Coverage

(b) Coverage versus Time in Project UnityCityView

0 2 4 6 8
Time (s)

0

20

40

60

80

100

Co
ve

ra
ge

 (%
)

18.52%

75.93%

100.00%

18.52%

64.81%

100.00%VRExplorer ELOC Coverage
VRExplorer Interactable Coverage
VRGuide ELOC Coverage
VRGuide Interactable Coverage

(c) Coverage versus Time in Project UnityVR

Fig. 8: EC versus time during the testing process in Group 1.
A. VRExplorer Performance

Constructing VR Projects for Evaluation. To evaluate
the proposed VRExplorer, we construct a project dataset4,
consisting of 11 representative VR projects, as summarized
in Table V. This project dataset can be divided into two
groups: (1) Group 1, in which we select the most complex
three projects also being included in VRGuide [11], and (2)
Group 2, into which we introduce the other eight Unity-based
VR projects developed by more recent versions (e.g., after
2020.x). It is worth noting that we construct Group 1 (with
relatively older Unity versions) primarily for a fair comparison
with VRGuide, as it only supports the “click” interaction.
Compared with Group 1, Group 2 contains VR projects
developed by recent Unity versions, which can support more
diverse interactions (while not being supported in VRGuide).

The 11 projects selected for experiments represent a diverse
and comprehensive subset of VR applications. Firstly, the
chosen projects cover all of the most commonly featured VR
application types as defined in [34]: (i) Action and Shooter
(VGuns), (ii) Simulation (VR-Basisc, VR-Room, UnityVR),
(iii) Adventure (unity-vr-maze, VR-Adventure), (iv)
Puzzle (Edutainment-Escape-Room, EscapeGameVR), (v)
Medical Care (Parkinson-VR), and (vi) Strategy Board
Game (VRChess). This diversity ensures that the experimen-
tal results are generalizable across different VR genres and
interaction manners. Second, these projects cover a wide
range of Unity versions, from older releases like 2019.4.2f1
(UnityCityView) to more recent versions such as 2022.3.7f1
(VR-Adventure), as well as the legacy version 5.4.1f1 (devel-
oped for unity-vr-maze). This version diversity ensures that
our testing approach is evaluated across different Unity engine
environments, demonstrating its robustness and compatibility.

4List of constructed project dataset can be found at https://github.com/
TsingPig/VRExplorer/blob/main/Artifacts/Evaluated Repo Url.md

https://github.com/TsingPig/VRExplorer/blob/main/Artifacts/Evaluated_Repo_Url.md
https://github.com/TsingPig/VRExplorer/blob/main/Artifacts/Evaluated_Repo_Url.md

TABLE VI: Results on Projects in Group 1
Projects Approaches EC (%) MC (%) IOC(%) Convergence Time Cost (s) # of Interactable Objects

unity-vr-maze VRGuide 66.53 70.59 94.29 145.0 35VRExplorer 81.67 (+22.8%) 82.35 (+16.7%) 100.00 (+6.1%) 81.4 (-43.9%)

UnityCityView VRGuide 67.66 78.38 60.00 45.0 15VRExplorer 92.22 (+36.3%) 100.00 (+27.6%) 100.00 (+66.7%) 89.3 (+98.4%)

UnityVR VRGuide 64.81 84.62 100.00 8.8 3VRExplorer 75.93 (+17.1%) 92.31 (+9.1%) 100.00 7.7 (-12.5%)

Moreover, the selected projects exhibit a variety of scales
and complexities. For instance, the number of C# scripts
ranges from as few as 11 in VR-Adventure to over 275 in
Parkinson-VR, with LOC spanning from around 260 to over
38,437. This selection allows us to assess the testing tools’
versatility from small and medium-sized VR applications to
large ones. These projects also differ in the number of scenes
and the number of GameObjects (GOs), with some projects
like EscapeGameVR having 44 scenes, reflecting complex and
rich environments, while others like VR-Room have fewer
scenes but have potentially dense and complicated interactions.

Results on Group 1. Fig. 8 plots EC versus time when
testing all the projects in Group 1 where initial EC is identical
across projects as initialization code (e.g., Awake()) runs
immediately, regardless of interactions. Table VI shows the
experimental results of VRExplorer compared with baseline
VRGuide in Group 1. To quantitatively evaluate the perfor-
mance improvement of VRExplorer over VRGuide (or other
compared methods in § V-B), we define the performance gain
of method A over method B in metric M as follows,

GAB(M) =
PA(M)− PB(M)

PB(M)
× 100%, (1)

where PA(M) and PB(M) denote the performance of meth-
ods A and B with respect to metric M , respectively. For
example, we evaluate the performance gain of VRExplorer
(E) over VRGuide (G) in project unity-vr-maze in terms of
EC as GEG(EC) = PE(EC)−PG(EC)

PG(EC) × 100% = 81.67−66.53
66.53 ×

100% = 22.8%. Similarly, GEG(MC) and GEG(IOC) are
16.7% and 6.1%, respectively, while the convergence time cost
is reduced by 43.9%. For project UnityCityView, we have
GEG(EC) = 36.3%, GEG(MC) = 27.6%, and GEG(IOC) =
66.7%. For project UnityVR, we have GEG(EC) = 17.1%,
GEG(MC) = 9.1%, and a reduced convergence time cost of
12.5%. Notably, VRExplorer reaches 100% IOC in all three
projects, while VRGuide achieves 100% IOC only in UnityVR.
In summary, these results demonstrate that VRExplorer con-
sistently outperforms VRGuide in coverage and efficiency.

Results on Projects of Group 2. Table VII reports the
results of VRExplorer compared with VRGuide on the eight
representative projects in Group 2 in EC and MC. Notably, we
omit the IOC here mainly because VRGuide exhibited lower
IOC than our VRExplorer due to its sole “clicking” interaction.
Therefore, we primarily focus on the code coverage (ELOC
and MC) of the core development logic of VR projects.

We observe that our VRExplorer consistently outperforms
VRGuide in all eight projects. Notably, VRExplorer achieves
GEG(EC) = 567.97% in VRChess significantly higher than
VRGuide. This is because this project contains numerous if-

TABLE VII: Results on Projects of Group 2
Projects Approaches EC (%) MC (%)

VR-Basics VRGuide 41.38 53.22
VRExplorer 80.17 (+93.8%) 91.93 (+72.8%)

VR-Room VRGuide 40.97 50.63
VRExplorer 77.61 (+89.4%) 83.54 (+65.0%)

VGuns VRGuide 28.68 38.89
VRExplorer 77.57 (+170.7%) 77.78 (+100.0%)

VR-Adventure VRGuide 54.12 65.00
VRExplorer 91.76 (+69.6%) 95.00 (+46.2%)

EE-Room VRGuide 38.08 58.06
VRExplorer 70.61 (+85.5%) 88.17 (+51.8%)

EscapeGameVR VRGuide 41.77 55.26
VRExplorer 71.08 (+70.2%) 73.68 (+33.3%)

Parkinson-VR VRGuide 42.03 53.85
VRExplorer 95.65 (+127.6%) 100.00 (+85.7%)

VRChess VRGuide 10.74 50.88
VRExplorer 71.74 (+568.0%) 87.72 (+72.4%)

else branches, difficult for VRGuide to fully cover. In contrast,
VRExplorer can effectively explore most of these branches.

Comprehensively considering experimental results in all
11 projects in both Group 1 and Group 2, VRExplorer has
achieved an average EC gain of 122.8% and average MC
gain of 52.8% compared to VRGuide. Experimental results
demonstrate that VRExplorer outperforms VRGuide (in diverse
performance metrics) consistently across various VR projects
(even those developed with different Unity versions).
Answer to RQ1: Experimental results on all 11 VR
projects demonstrate that VRExplorer outperforms the SOTA
approach VRGuide in EC, MC, and IOC. In particular,
VRExplorer achieves the average performance gains over
VRGuide in EC and MC by 122.8% and 52.8%, respectively,
across all the projects. Moreover, VRExplorer converges
faster or comparably faster than VRGuide while maintaining
substantially higher coverage. Performance improvements
are observed across diverse VR scenarios, demonstrating
VRExplorer’s strong generalizability in covering code and
interactable VR objects during automated testing.

B. Ablation Study

To assess the contribution of different components, we
perform an ablation study by selectively removing modules
from the proposed VRExplorer. Given that VRExplorer is
developed on top of the EAT framework, which decomposes
VR interactions into reusable action units. Thus, EAT serves
as the core exploration task of inherently focusing on in-
teracting with objects. As a result, our ablation primarily
targets the interaction-related components within EAT. The
EAT framework constitutes the key methodological contribu-
tion of VRExplorer and is the only component that can be
meaningfully isolated while preserving system functionality. In
contrast, other modules and components serve as indispensable

TABLE VIII: Results of Ablation Study
Projects Approaches EC (%) MC (%)

VR-Basics

VRGuide 41.38 53.22
VRExplorer 80.17 91.93

VRExplorer w/o T 68.10 (-15.0%) 77.42 (-15.9%)
VRExplorer w/o Tf 59.24 (-26.1%) 70.00 (-16.2%)

VR-Room

VRGuide 40.97 50.63
VRExplorer 77.61 83.54

VRExplorer w/o G 58.52 (-24.6%) 69.62 (-16.4%)
VRExplorer w/o T 64.12 (-17.3%) 67.00 (-19.7%)

VGuns

VRGuide 28.68 38.89
VRExplorer 77.57 77.78

VRExplorer w/o TG 50.37 (-35.3%) 61.11 (-16.7%)
VRExplorer w/o AE 65.07 (-16.1%) 63.89 (-17.9%)

prerequisites for enabling exploration in VR scenes and are
tightly integrated into the overall pipeline, rendering their
removal infeasible for independent evaluation.

We then evaluate these methods by comparing them with the
full-fledged VRExplorer framework in terms of EC and MC.
Notably, we also compare them with VRGuide to investigate
the performance improvement contributed by each module.

Ablation Experiment Configuration. As described in
§ III-C, interaction behaviors play a crucial role in the EAT
framework. To investigate these interaction behaviors, we
remove a specific interaction from a tested project’s modules
(as this module is used in this project). For example, we obtain
VRExplorer without (w/o) T by removing the Triggerable
module from the Entity layer’s interface Triggerable, the
Action layer’s class TriggerAction, all tasks involve trigger-
ing in the Task layer, and the corresponding Mono C# scripts
XRTriggerable.cs. Similarly, we obtain VRExplorer’s other
ablated variants: w/o Tf (without Transformable), w/o G
(without Grabbable), w/o TG (without both Triggerable and
Grabbable), and w/o AE (without autonomous event).

Results of Ablation Study. Table VIII presents the ex-
perimental results of the ablation study in three projects:
VR-Basics, VR-Room, and VGuns, where the best results
are highlighted with underline and bold. These ablation ex-
periments cover all the VRExplorer’s variants and span all
the Unity versions of the projects in Group 2 (from 2020
to 2022). Specifically, we compare VRGuide and VRExplorer
with its five ablated variants: VRExplorer w/o G, w/o T, w/o
Tf, w/o TG, and w/o AE. To quantitatively evaluate the effect
of removing each module, we also calculate the performance
gain of a method over another one according to Eq. (1).

In VR-Basics, the full-fledged VRExplorer achieves the
best performance in terms of 80.17% EC and 91.93% MC.
We observe that removing the Triggerable module causes a
15.0% (68.10−80.1780.17 × 100%) decrease in EC and a 15.9%
decrease in MC and the removal of the Transformable module
leads to a 26.1% decrease in EC and 16.2% in MC. In
VR-Room, we also find that the removal of the Grabbable
module has the most pronounced effect, i.e., reducing EC by
24.6% and MC by 16.4%. Disabling the Triggerable module
also leads to an ELOC decrease of 17.3% and a MC decrease
of 19.7%. In VGuns, we observe that the removal of both the
Triggerable and Grabbable modules causes a 35.3% decrease
in EC and a 16.7% decrease in MC. Moreover, the removal of
the autonomous event module causes a 16.1% decrease in EC

and a 17.9% decrease in MC, indicating that the autonomous
event module as described in Step 3 (§ III-D) also contributes
significantly. These results confirm the significant contribution
of each interaction module to VRExplorer.

Overall, removing any individual module leads to a substan-
tial drop in code coverage (in terms of EC and MC), further
confirming the importance of integrating all three interaction-
aware modules in the EAT framework. The full-fledged VR-
Explorer consistently yields the highest code coverage.

Answer to RQ2: Removing any module from the EAT leads
to a substantial decrease in EC and MC. The degree of
impact caused by the ablated module varies across diverse
projects and interaction types. These results validate the
necessity and effectiveness of integrating all the modules in
VRExplorer for comprehensive interaction-aware VR testing.

C. Bug Detection in VR Projects
Since the primary goal of software testing is to detect or

identify potential bugs, we also investigate whether the pro-
posed VRExplorer can detect real-world bugs in VR projects.
We have scanned all 11 projects through comprehensive testing
conducted by VRExplorer. Thereafter, we have successfully
detected two functional5 bugs and one non-functional bug in
total, from projects EscapeGameVR, UnityCityView, and
EscapeGameVR. Notably, two functional bugs have been
found in EscapeGameVR and UnityCityView while we
have detected one non-functional bug in EscapeGameVR.
Moreover, the bug from UnityCityView has been fixed by
developers (after checking the commits), while two bugs from
EscapeGameVR reported by us have not been confirmed by
developers so far. Our VRExplorer can detect all these VR
bugs, which are either functional or non-functional. Although
VRGuide is able to detect the bug in project UnityCityView,
it misses the other two bugs in EscapeGameVR.

Detected Bugs Validity Confirmation. To further con-
firm the validity of detected bugs, we validated all re-
ported issues through Unity console logs, runtime exception
traces, and script-trigger chains. Among them, the bug in
UnityCityView has been confirmed and fixed by its de-
velopers (evidenced by later commits). For the two bugs
in EscapeGameVR, we performed root-cause analyses: the
functional bug is an Unassigned Reference Exception, consis-
tent with CWE-395 [35] and CodeQL’s rule on improper
initialization [36], while the non-functional bug is caused
by a missing ArrowPrefab resource, which is a common
Unity issue documented in the official Prefab guidelines [37].
We also reported these issues to the original developers of
EscapeGameVR, but no response was received till now.

Functional Bug Root-cause Analysis. Fig. 9 shows the
testing process in Unity and Fig. 10 shows a screenshot of
one functional bug detected by our VRExplorer in project
EscapeGameVR. This bug occurs due to assignment excep-
tion, which can be explained as follows. When a bow re-
leases an arrow, the method ReleaseArrow() is invoked

5A functional bug refers to a bug that causes the VR application not to work
as expected, while a non-functional bug denotes a bug not directly related to
the functionality (may be relevant to performance and usability issues).

PlacingCubeB Task

Start Application

PlacingCubeA Task

PlacingCubeC Task Draw Bow Task

Application Event: A new

bow is instantiated

Condition: Correct

placement of three cubes

Bug2 Detected: Unassigned
Reference Exception

Testing Broken Draw Bow Task

Condition: Arrow Hit Targets

Application End

Bug1 Detected: loss of
the ArrowPrefab resource

Game Bug Manually Fixed Continue Testing

Fig. 9: Testing Process of EscapeGameVR

with the attempt to access the arrowSpawnPoint field of
the ArrowController class. However, the developers have
mistakenly failed to assign a value to this field (or the
assignment was unintentionally lost), thereby resulting in
an Unassigned Reference Exception [35, 36] bug, which is a
Unity-specific runtime exception occurring when a serialized
reference field (typically declared as public or marked with
[SerializeField] [38]) in a MonoBehaviour class is
accessed without being assigned a value in the Unity Inspector.

Non-functional Bugs Root-cause Analysis. Another non-
functional bug in EscapeGameVR is caused by the loss of
the ArrowPrefab resource. This bug can be identified by our
VRExplorer through a simple manual inspection. The reason
why these two bugs are not detected by VRGuide is that
triggering these two bugs requires complicated actions and
multiple types of interactions, while VRGuide cannot handle
them. Differently, our VRExplorer can complete this difficult
testing task through our model-based framework. In particular,
VRExplorer requires the correct placement of three cubes
onto platforms of the corresponding color, thereby ensuring
that none of them fall outside the designated platform areas.
Once this condition is satisfied, a new bow is instantiated.
Consequently, triggering the bug needs the bow to be drawn
and released by VRExplorer. This type of complex interactive
task contains two or even more interactive patterns, which
can not be completed by VRGuide (only supporting “clicking”
interaction), while our approach handles this task properly.
Answer to RQ3: VRExplorer can successfully detect three
real-world bugs in VR projects. More importantly, our VR-
Explorer is capable of detecting complex VR bugs, which
can only be triggered after complex interactions.

VI. DISCUSSIONS

Threats to External Validity. Although we have covered
as many types of VR applications (developed by diverse
Unity versions) as possible, there are still types of scenarios
and interaction patterns not fully covered in our approach.
Moreover, while our framework is currently tailored for VR
applications developed in Unity, it can be extended to sup-
port other engines, such as Unreal Engine [39], with further
adaptation, thereby enabling its broader applicability.

Threats to Internal Validity. The primary threats to
internal validity arise from potential human errors during
the selection of Core Code (CC) and the implementation
of the interface. Specifically, during the CC selection phase,
errors could be introduced due to subjective judgment. To
minimize this threat, we have leveraged a majority-voting

Fig. 10: A Detected Bug in EscapeGameVR

mechanism, where four test engineers (with VR developing
experience) have independently selected code segments. The
final decision has been made according to the majority vote.
Moreover, during the interface implementation phase, potential
inconsistencies or biases among test engineers are also present.
To address this threat, we have arranged for four test engineers
to collaboratively discuss the design and reach a consensus.

Discussion on Path-finding Algorithms. We also revisit
the design choice of adopting the Greedy algorithm for nav-
igation. As described in § III-D, VRExplorer supports both
a Greedy strategy and a Backtracking-with-Pruning (B&P)
algorithm. The latter solves the navigation task as a Trav-
eling Salesman Problem (TSP) to compute globally optimal
Hamiltonian paths. To quantify their differences, we performed
additional experiments on randomized tasks with up to 100
interactable objects. Results show that the B&P algorithm
achieves a 17.5% improvement in runtime efficiency (1233.70s
vs. 1494.41s over 100 rounds) over the Greedy baseline. How-
ever, this improvement comes at the cost of significantly higher
computational overhead, leading to reduced frame rates. This
trade-off confirms our design decision: the Greedy algorithm
remains more practical for maintaining smooth interactive
performance in real-time testing than the B&P algorithm.

Impacts of Speed Parameters. To explore optimal speed
parameters, we test three sets of values in unity-vr-maze.
Specifically, we have chosen (i) MS = 3 m/s, TS = 30 deg/s,
(ii) MS = 6 m/s, TS = 30 deg/s; and (iii) MS = 6 m/s,
TS = 60 deg/s. Fig. 11 shows the coverage performance of
VRExplorer compared to VRGuide in unity-vr-maze with
different speed parameters. We observe the same trends for
all three parameters. Notably, VRExplorer takes less time to
reach convergence than VRGuide with higher EC and IOC.
These results also indicate that TS has a minimal impact on
efficiency, whereas MS shows a more significant effect.

Generality of VRExplorer. Our approach systematically
unifies these diverse interactions by decomposing VR objects
into a finite set of interactable features, which are then repre-
sented as abstract actions. Based on OOP principles, the Entity
Layer and Action Layer encapsulate input modalities and
target objects separately, effectively treating them as reusable
and generic components. Within this feature–action hierarchy,
abstract actions are further integrated into PFSM as semantic
nodes and transitions, allowing frequent and domain-specific
behaviors to be expressed uniformly. This design ensures

0 25 50 75 100 125 150 175 200
Time (s)

0
20
40
60
80

100

Co
ve

ra
ge

 (%
)

43.82%

100.00%
81.67%

43.82%

91.43%

66.53%

Move Speed = 3 m/s, Turn Speed = 30 deg/s

VRExplorer Line Coverage
VRExplorer Interactable Coverage
VRGuide Line Coverage
VRGuide Interactable Coverage

0 25 50 75 100 125 150 175
Time (s)

0
20
40
60
80

100

Co
ve

ra
ge

 (%
)

43.82%

100.00%
81.67%

43.82%

94.29%

66.53%

Move Speed = 6 m/s, Turn Speed = 30 deg/s

VRExplorer Line Coverage
VRExplorer Interactable Coverage
VRGuide Line Coverage
VRGuide Interactable Coverage

0 20 40 60 80 100 120 140 160
Time (s)

0
20
40
60
80

100

Co
ve

ra
ge

 (%
)

43.82%

100.00%
81.67%

43.82%

94.29%

66.53%

Move Speed = 6 m/s, Turn Speed = 60 deg/s

VRExplorer Line Coverage
VRExplorer Interactable Coverage
VRGuide Line Coverage
VRGuide Interactable Coverage

Fig. 11: Coverage on different MS and TS in unity-vr-maze

generality across projects while preserving extensibility to new
interactions. For those not mentioned in § III, it only requires
modeling a simple composition of task nodes and an additional
configuration, without modifying the core logic. This OOP-
based design allows the framework to scale naturally to a wide
spectrum of VR interactions. For example, GUI Interactions
(e.g., typing and pressing) can be represented by customized
tasks composed of Trigger Action nodes, which provide event
lists and function call chains for simulating different GUI
interactions. Similarly, Hand Gesture-based interactions can be
supported by treating gestures as input-trigger components in
the Entity Layer, while a dedicated Gesture Action class in the
Action Layer encapsulates concrete gestures such as swipe,
pinch, and point. These gestures can then be mapped to task
transitions in PFSM, e.g., “swipe-to-turn-the-page” or “pinch-
to-zoom,” in § III-D. In summary, the EAT framework is
inherently agnostic to input types: each project only needs
to define its input actions and associated targets, after which
abstraction and task composition are handled systematically
through the generic OOP framework.

Limitations and Future Work. VRExplorer still needs to
analyze scenes manually and implement customized interfaces,
inevitably introducing some extra workloads (despite being
low) and a certain learning curve for test engineers. As future
work, we will improve VRExplorer’s capability of automati-
cally understanding VR scenes inspired by recent advances in
multi-modal large models. Further, we will also automate the
interface implementation and task model generation.

VII. RELATED WORK

Automated Game Testing. As a code-based data augmen-
tation technique, GLIB [40] can automatically detect game
GUI glitches. Macklon et al. [41] present an approach to
automatically detect visual bugs in <canvas> games. Prasetya
et al. [42] leverage graph-based path-finding techniques in
automated game navigation and exploration. As a Java-based
multi-agent programming framework, IX4XR [43, 44] facil-
itates game testing by enabling test agents to interact with
the game under test. As a Belief-Desire-Intention library,
APLIB [32] supports developing intelligent agents capable of
executing complex testing tasks. Ferdous et al. [45] propose a
model-based approach by leveraging EFSM to model game be-
havior. However, these game testing approaches are generally
tailored to specific types of games instead of VR applications.

Automated Mobile Application Testing. Stoat [46] is a
stochastic model-based testing tool for Android apps with
combined dynamic and static analysis to generate tests. Chen
et al. [47] propose a model-based GUI testing approach for
HarmonyOS applications with the adoption of the arkxtest[48]
framework. AutoConsis [49] leverages a specially tailored
Contrastive Language-Image Pre-training (CLIP) multi-modal
model to automatically analyze Android 2D GUI pages. FAST-
BOT2 [50] leverages a probabilistic model that memorizes
key information for testing based on a model-guided testing
strategy. KEA [51] is a property-based testing tool for finding
functional bugs in Android apps. However, these mobile ap-
plication testing approaches can only address 2D GUI testing.

RL-Based Testing. Tufano et al. [52] employ RL to train
an agent to play games in a human-like manner to identify
areas that lead to FPS drops. RLBT [31] applies a curiosity-
based RL approach to automate game testing by maximizing
coverage. Bergdahl et al. [53] adopts a modular approach,
in which RL complements classical test scripting. Wuji [54]
leverages evolutionary algorithms, RL, and multi-objective
optimization for game testing. However, RL-based approaches
alone are very limited in complex VR scene exploration.

VR Application Testing. Rzig et al. [8] analyze 314 open-
source VR applications, revealing that 79% of them lack
automated tests. Harms [55] proposes an automated approach
that extracts task trees from real VR usage recordings to
detect usability smells without predefined tasks or settings.
PREDART [9] predicts human ratings of virtual object place-
ments, serving as test oracles in AR testing. VRTest [10]
extracts information from a VR scene and controls the user’s
camera to explore the scene and interact with virtual objects.
VRGuide [11] applies a computational geometry technique
called Cut Extension to optimize camera routes for covering all
interactable objects. Qin and Weaver [12] explore Generative
AI for field of view analysis in VR testing. However, these
approaches cannot address complicated VR interactions.

VIII. CONCLUSION

In this paper, we design the EAT framework, a generic
three-layer abstraction framework based on OOP for mod-
eling complex interaction behaviors and tasks in testing VR
applications. Based on EAT, we present VRExplorer, a novel
model-based testing tool to achieve effective interactions with
diverse virtual objects and explorations of complex VR scenes.
To validate the performance of our approach, we evaluate VR-
Explorer on 11 representative VR projects. The experimental
results validate our approach’s superior performance to the
SOTA method in terms of coverage and efficiency, as well as
the ability to detect complicated real-world bugs.

IX. ACKNOWLEDGEMENT

This work was supported in part by the National Key Research
and Development Program of China under Grant 2023YFB2704100,
the National Natural Science Foundation of China (No. 62032025),
the Seed Funding for Collaborative Research Grants of HKBU (with
Grant No. RC-SFCRG/23-24/R2/SCI/06), the Major Key Project of
Peng Cheng Laboratory under Grant PCL2025AS07.

REFERENCES

[1] R. Radoeva, “Overview on hardware characteristics of
virtual reality systems,” in 2022 International Congress
on Human-Computer Interaction, Optimization and
Robotic Applications (HORA). IEEE, 2022, p. 31.00.

[2] P. Rajeswaran, J. Varghese, P. Kumar, J. Vozenilek, and
T. Kesavadas, “AirwayVR: Virtual Reality Trainer for
Endotracheal Intubation,” in 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), 2019, pp.
1345–1346.

[3] D. Hamilton, J. McKechnie, E. Edgerton et al., “Immer-
sive virtual reality as a pedagogical tool in education: a
systematic literature review of quantitative learning out-
comes and experimental design,” Journal of Computers
in Education, vol. 8, pp. 1–32, 2021.

[4] Y. Liu, Q. Sun, Y. Tang, Y. Li, W. Jiang, and J. Wu,
“Virtual reality system for industrial training,” in 2020
International Conference on Virtual Reality and Visual-
ization (ICVRV), 2020, pp. 338–339.

[5] B. Wang, L. Zheng, Y. Wang, W. Fang, and L. Wang,
“Towards the industry 5.0 frontier: Review and prospect
of XR in product assembly,” Journal of Manufacturing
Systems, vol. 74, pp. 777–811, 2024.

[6] M. A. Muhanna, “Virtual reality and the cave: Taxonomy,
interaction challenges and research directions,” Journal
of King Saud University - Computer and Information
Sciences, vol. 27, no. 3, pp. 344–361, 2015.

[7] F. B. Insights, “Virtual Reality (VR) Market
Size, Share & Industry Analysis,” https:
//www.fortunebusinessinsights.com/industry-reports/
virtual-reality-market-101378, 2024.

[8] D. E. Rzig, N. Iqbal, I. Attisano, X. Qin, and F. Hassan,
“Virtual Reality (VR) Automated Testing in the Wild:
A Case Study on Unity-Based VR Applications,” in
Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, p.
1269–1281.

[9] T. Rafi, X. Zhang, and X. Wang, “Predart: Towards
automatic oracle prediction of object placements in
augmented reality testing,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2023.

[10] X. Wang, “VRTest: An Extensible Framework for Au-
tomatic Testing of Virtual Reality Scenes,” in 2022
IEEE/ACM 44th International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-
Companion), 2022, pp. 232–236.

[11] X. Wang, T. Rafi, and N. Meng, “VRGuide: Efficient
Testing of Virtual Reality Scenes via Dynamic Cut Cov-
erage,” in Proceedings of the 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering.
IEEE Press, 2024, p. 951–962.

[12] X. Qin and G. Weaver, “Utilizing Generative AI for
VR Exploration Testing: A Case Study,” in Proceed-
ings of the 39th IEEE/ACM International Conference

on Automated Software Engineering Workshops, 2024,
p. 228–232.

[13] S. Li, B. Li, Y. Liu, C. Gao, J. Zhang, S.-C. Cheung,
and M. R. Lyu, “Grounded GUI Understanding for
Vision Based Spatial Intelligent Agent: Exemplified
by Virtual Reality Apps,” 2024. [Online]. Available:
https://arxiv.org/abs/2409.10811

[14] J. Wentzel, M. Lakier, J. Hartmann, F. Shazib, G. Casiez,
and D. Vogel, “A Comparison of Virtual Reality Menu
Archetypes: Raycasting, Direct Input, and Marking
Menus,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 31, no. 9, pp. 4868–4882, 2025.

[15] T. Wan et al., “Design and evaluation of controller-based
raycasting methods for efficient alphanumeric and special
character entry in virtual reality,” IEEE Transactions on
Visualization and Computer Graphics, vol. 30, no. 9, pp.
6493–6506, 2024.

[16] VentureBeat, “Unity financial results (q2-2024),”
2024. [Online]. Available: https://venturebeat.com/
games/unity-financial-results-q2-2024/

[17] “XR Interaction Toolkit,” 2024. [Online]. Avail-
able: https://docs.unity3d.com/Packages/com.unity.xr.
interaction.toolkit@3.0/manual/index.html

[18] V. Juránek, “Virtual reality toolkit for the unity game
engine [online],” 2021 [cit. 2025-01-24].

[19] “SteamVR,” 2024. [Online]. Available: https://github.
com/ValveSoftware/steamvr unity plugin

[20] S. Bovet, A. Kehoe, K. Crowley, N. Curran et al., “Using
Traditional Keyboards in VR: SteamVR Developer Kit
and Pilot Game User Study,” in 2018 IEEE Games,
Entertainment, Media Conference (GEM), 2018, pp. 1–9.

[21] V. Corporation, “Steam VR Plugin,” https:
//assetstore.unity.com/packages/tools/integration/
steamvr-plugin-32647, 2024.

[22] “Mixed reality toolkit,” 2022. [Online]. Available:
https://github.com/microsoft/MixedRealityToolkit-Unity

[23] S. Ong and V. K. Siddaraju, Introduction to the
Mixed Reality Toolkit. Berkeley, CA: Apress, 2021,
pp. 85–110. [Online]. Available: https://doi.org/10.1007/
978-1-4842-7104-9 4

[24] “Unity monobehaviour class,” 2022. [Online]. Avail-
able: https://docs.unity3d.com/2022.3/Documentation/
ScriptReference/MonoBehaviour.html

[25] U. Technologies, “Building a navigation mesh,” 2020.
[Online]. Available: https://docs.unity3d.com/2020.1/
Documentation/Manual/nav-BuildingNavMesh.html

[26] Unity Technologies, “Unity - manual: Navmesh agent,”
2025. [Online]. Available: https://docs.unity3d.com/
Manual/class-NavMeshAgent.html

[27] U. Technologies, “Unity - manual: Nav mesh obstacle,”
Unity Technologies, 2025. [Online]. Available: https://
docs.unity3d.com/Manual/class-NavMeshObstacle.html

[28] J. Hertel, S. Karaosmanoglu, S. Schmidt, J. Bräker,
M. Semmann, and F. Steinicke, “A taxonomy of interac-
tion techniques for immersive augmented reality based on
an iterative literature review,” in 2021 IEEE International

https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378
https://arxiv.org/abs/2409.10811
https://venturebeat.com/games/unity-financial-results-q2-2024/
https://venturebeat.com/games/unity-financial-results-q2-2024/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html
https://github.com/ValveSoftware/steamvr_unity_plugin
https://github.com/ValveSoftware/steamvr_unity_plugin
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://github.com/microsoft/MixedRealityToolkit-Unity
https://doi.org/10.1007/978-1-4842-7104-9_4
https://doi.org/10.1007/978-1-4842-7104-9_4
https://docs.unity3d.com/2022.3/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2022.3/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2020.1/Documentation/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/2020.1/Documentation/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/Manual/class-NavMeshAgent.html
https://docs.unity3d.com/Manual/class-NavMeshAgent.html
https://docs.unity3d.com/Manual/class-NavMeshObstacle.html
https://docs.unity3d.com/Manual/class-NavMeshObstacle.html

Symposium on Mixed and Augmented Reality (ISMAR),
2021, pp. 431–440.

[29] Unity Technologies, “UnityEvent Documentation,” 2025.
[Online]. Available: https://docs.unity3d.com/6000.0/
Documentation/ScriptReference/Events.UnityEvent.html

[30] Y. Lan, Y. Lu, M. Pan, and X. Li, “Navigating Mobile
Testing Evaluation: A Comprehensive Statistical Analy-
sis of Android GUI Testing Metrics,” in Proceedings of
the 39th IEEE/ACM International Conference on Auto-
mated Software Engineering, 2024, p. 944–956.

[31] R. Ferdous, F. Kifetew, D. Prandi, and A. Susi, “Towards
Agent-Based Testing of 3D Games using Reinforcement
Learning,” in the 37th IEEE/ACM International Confer-
ence on Automated Software Engineering, 2023.

[32] I. S. W. B. Prasetya, M. Dastani, R. Prada, T. E. J. Vos,
F. Dignum, and F. Kifetew, “Aplib: Tactical Agents for
Testing Computer Games,” in Engineering Multi-Agent
Systems. Springer, 2020, pp. 21–41.

[33] “Code coverage,” 2023. [Online]. Available:
https://github.com/needle-mirror/com.unity.testtools.
codecoverage

[34] M. Foxman, B. Klebig, A. Leith, D. Beyea, R. Ratan,
and V. Chen, “Virtual reality genres: Comparing prefer-
ences in immersive experiences and games,” in Extended
Abstracts of the 2020 Annual Symposium on Computer-
Human Interaction in Play, 11 2020.

[35] MITRE, “CWE-395: Use of NullPointerException Catch
to Detect NULL Pointer Dereference,” https://cwe.mitre.
org/data/definitions/395.html, 2021.

[36] GitHub CodeQL, “Avoid catching nullreferenceex-
ception,” https://codeql.github.com/codeql-query-help/
csharp/cs-catch-nullreferenceexception/, 2022.

[37] Unity Technologies, “Brokenprefabasset,”
https://docs.unity3d.com/6000.1/Documentation/
ScriptReference/BrokenPrefabAsset.html, 2025.

[38] ——, “Unity Scripting API: SerializeField,”
https://docs.unity3d.com/6000.1/Documentation/
ScriptReference/SerializeField.html, 2024.

[39] Epic Games, “Unreal engine 5,” 2025. [On-
line]. Available: https://www.unrealengine.com/en-US/
unreal-engine-5

[40] K. Chen, Y. Li, Y. Chen, C. Fan, Z. Hu, and W. Yang,
“Glib: towards automated test oracle for graphically-
rich applications,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, 2021, p. 1093–1104.

[41] F. Macklon et al., “Automatically Detecting Visual Bugs
in HTML5 Canvas Games,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2023.

[42] Prasetya et al., “Navigation and exploration in 3D-game
automated play testing,” in Proceedings of the 11th ACM
SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation, 2020, p. 3–9.

[43] I. S. W. B. Prasetya, F. Pastor Ricós et al., “An agent-

based approach to automated game testing: an experience
report,” in Proceedings of the 13th International Work-
shop on Automating Test Case Design, Selection and
Evaluation, 2022.

[44] S. Shirzadehhajimahmood et al., “Using an agent-based
approach for robust automated testing of computer
games,” in Proceedings of the 12th International Work-
shop on Automating TEST Case Design, Selection, and
Evaluation, 2021, p. 1–8.

[45] R. Ferdous, F. Kifetew, D. Prandi, I. S. W. B. Prasetya,
S. Shirzadehhajimahmood, and A. Susi, “Search-based
automated play testing of computer games: A model-
based approach,” in Search-Based Software Engineering:
13th International Symposium, 2021, p. 56–71.

[46] T. Su, G. Meng et al., “Guided, stochastic model-based
GUI testing of Android apps,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, p. 245–256.

[47] Y. Chen, S. Wang, Y. Tao, and Y. Liu, “Model-based GUI
Testing For HarmonyOS Apps,” in Proceedings of the
39th IEEE/ACM International Conference on Automated
Software Engineering, 2024, p. 2411–2414.

[48] “Arkxtest,” 2022. [Online]. Available: https://gitee.com/
openharmony/testfwk arkxtest

[49] Y. Hu, H. Jin, X. Wang et al., “AutoConsis: Automatic
GUI-driven Data Inconsistency Detection of Mobile
Apps,” in Proceedings of the 46th International Confer-
ence on Software Engineering: Software Engineering in
Practice, 2024, p. 137–146.

[50] Z. Lv, C. Peng, Z. Zhang, T. Su, K. Liu, and P. Yang,
“Fastbot2: Reusable Automated Model-based GUI Test-
ing for Android Enhanced by Reinforcement Learning,”
in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2023.

[51] Y. Xiong, T. Su, J. Wang, J. Sun, G. Pu, and Z. Su,
“General and practical property-based testing for android
apps,” in Proceedings of the 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
2024, p. 53–64.

[52] R. Tufano, S. Scalabrino, L. Pascarella, E. Aghajani,
R. Oliveto, and G. Bavota, “Using reinforcement learning
for load testing of video games,” in 2022 IEEE/ACM
44th International Conference on Software Engineering
(ICSE), 2022, pp. 2303–2314.

[53] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén,
“Augmenting automated game testing with deep rein-
forcement learning,” 2020 IEEE Conference on Games
(CoG), pp. 600–603, 2020.

[54] Y. Zheng, X. Xie, T. Su et al., “Wuji: Automatic online
combat game testing using evolutionary deep reinforce-
ment learning,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2019, pp. 772–784.

[55] P. Harms, “Automated usability evaluation of virtual
reality applications,” ACM Transactions on Computer-
Human Interaction, vol. 26, no. 3, Apr. 2019.

https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Events.UnityEvent.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Events.UnityEvent.html
https://github.com/needle-mirror/com.unity.testtools.codecoverage
https://github.com/needle-mirror/com.unity.testtools.codecoverage
https://cwe.mitre.org/data/definitions/395.html
https://cwe.mitre.org/data/definitions/395.html
https://codeql.github.com/codeql-query-help/csharp/cs-catch-nullreferenceexception/
https://codeql.github.com/codeql-query-help/csharp/cs-catch-nullreferenceexception/
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/BrokenPrefabAsset.html
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/BrokenPrefabAsset.html
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/SerializeField.html
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/SerializeField.html
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://gitee.com/openharmony/testfwk_arkxtest
https://gitee.com/openharmony/testfwk_arkxtest

	Introduction
	Background
	Approach
	Project Collection and Analysis
	Model Abstraction
	EAT Framework
	VRExplorer Testing

	Evaluation of VRExplorer
	Implementation
	Metrics
	Baselines

	Experimental Results
	VRExplorer Performance
	Ablation Study
	Bug Detection in VR Projects

	Discussions
	Related Work
	Conclusion
	Acknowledgement

