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Abstract— Pervasive Computing refers to a seamless and invis-
ible computing environment which provides dynamic, proactive
and context-aware services to the user by acquiring context
knowledge from the environment and composing available ser-
vices. In this paper, we demonstrate how heterogeneous Web
services can be made interoperable and used to support Pervasive
Computing. We present an architecture how a service flow can be
automatically composed using syntactic, semantic and pragmatic
knowledge. Thus, this paper addresses three problems: (1) How
do heterogeneous Pervasive Computing services interoperate in a
Pervasive Computing service flow, composed by using syntactic,
semantic and pragmatic knowledge; (2) How do we define,
distinguish between, and justify the need for these three different
kinds of knowledge to be used in service descriptions; and (3)
How can we perform ontology integration to enable the automatic
composition of Web services into a service flow. A Pervasive
Computing prototype system, based on this architecture, has been
implemented as a proof-of-concept.

Index Terms— Ontology, Semantic Web Services, Service Dis-
covery and Composition, Pragmatic Knowledge, Pervasive Com-
puting

I. I NTRODUCTION

There are reasons to believe that Pervasive Computing
may be the next frontier of computing after the Internet
revolution. Pervasive Computing aims to revolutionize the
current paradigm of human-computer interaction. Computers
have been used in various aspects of human life, but in
most cases human beings have had to adapt their behavior
to existing systems. Pervasive Computing, as envisioned by
Weiser [49], is a computing environment in which comput-
ing systems weave themselves into the fabric of everyday
life and become invisible. Invisibility is the most important
aspect of Pervasive Computing. The user is exposed to a
few sets of services available to him/her and is oblivious to
the complex system implementing those services [38]. This
takes the human-computer interaction into a whole different
dimension, where the user is surrounded by a complete smart
environment with devices/sensors communicating with each
other and aggregating their functionalities to provide a set of
consolidated services.

In order to build a Pervasive Computing environment,
existing methodologies use smart devices, which have some
processing power and are specialized to perform a set of
specific tasks. Usually the user needs to carry these devices
with her/him as s/he moves either within or across Pervasive
Computing environments. However, we present an alternate
approach and use Semantic Web technologies for Pervasive
Computing environments. This allows context information
to be stored on the Web, Pervasive Computing services to
be dynamically composed based on Web Services, and then
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shared across Pervasive Computing environments via the Web
to provide Pervasive Computing services.

There are several challenges that we are facing in Per-
vasive Computing. First, it requires acquiring context from
the environment and dynamically building computing models
dependent on context. Context-awareness is a pivotal aspect
of Pervasive Computing. Dey and Abowd [10] defined the
concept of context as a piece of information that can be used
to characterize the situation of a participant in an interaction.
Brown [3] defined the context as location, environment and/or
identity of people and time. By sensing context information,
context enabled applications can present context relevant infor-
mation to users, or modify their behavior according to changes
in the environment. Context is however very subjective, in
the sense that it can include any factors that may affect a
users interaction with the system. This makes the modeling
of context extremely difficult especially because we have to
capture abstract and subjective factors.

In the past few years, the WWW has changed from being
nothing more than an indexed repository of documents towards
being a repository of interconnected services and documents.
Web users are now routinely checking the Web for services
such as currency converters, mortgage calculators, shortest
driving distance with directions generators, etc. Unfortunately,
not every required service is available on the Web, and if it
is, it might be hidden at position 1921 of 2000 search engine
hits. Therefore Web research has turned to the time-honored
approach of its parent discipline and attempts to provide
complex services by, in effect, combining simple services in
the way of a workflow of services, what we call aservice flow.
However, the problem of creating a service flow for a given
specification is difficult, and it is a part of the vision of the
Semantic Web [2] to let roaming agents perform this difficult
task. For that purpose, (simple) services need to be described
in an agent-readable form.

The automatic composition of services requires more than
descriptions of service capabilities and input/output parame-
ters. Rather, a service should also indicate in what situations
and in what ways it should be used. This is comparable to
the manual of an electronic device that provides a service. For
example, a cell phone manual describes “use cases” of the
services that the cell phone offers: Making phone calls, playing
games, maintaining a calendar, etc. In case of an emergency,
most cell phones allow a 911 call without the payment of a
fee. While it is obvious that this kind of knowledge needs
to be provided and bundled with the device itself, it is only
recently becoming clear that Web services need to have the
same kind of knowledge attached to them.

We call this additional level of description of Web ser-
vices pragmatic or contextual knowledge. A service should
be described by a pragmatic annotation that represents this
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pragmatic knowledge, in addition to the semantic and syn-
tactic knowledge that describes the necessary parameters and
functionalities of the service. We propose an ontology as
a model for representing knowledge to describe services.
Specifically, we use ontologies to represent syntactic, semantic
and pragmatic knowledge about services.

Clearly, the service composition faces an immediate prob-
lem when every service is described using terms from its
own underlying domain. The pragmatic and semantic knowl-
edge ontology may contain a collection of these terms [2].
Therefore, the discovery of correct component Web services
will often require additional preliminary steps to integrate the
ontologies used to describe these Web services. In many cases
it will be necessary to integrate the ontology of an agent,
searching for a service, with an ontology describing a service.
This will have to be done on the fly and at great speed to
decide whether a specific service is a possible candidate for
the desired service flow.

In this paper, we demonstrate how heterogeneous Web
services can be made interoperable and used to support Per-
vasive Computing. We present an architecture how a service
flow can be automatically composed using syntactic, semantic
and pragmatic knowledge. Thus, this paper addresses three
problems: (1) How do heterogeneous Pervasive Computing
services interoperate in a Pervasive Computing service flow,
composed by using syntactic, semantic and pragmatic knowl-
edge; (2) How do we define, distinguish between, and justify
the need for these three different kinds of knowledge to be
used in service descriptions; and (3) How can we perform
ontology integration to enable the automatic composition of
Web services into a service flow.

The three different types of compositional knowledge are
expressed by compositional rules that a software agent can use
for the automatic generation of a service flow. We present an
ontology for these compositional rules, applying them to the
description of Web services. OWL-S and Jena rule (HP Jena
[19]) are used as formats for compositional knowledge [9]. The
paper also illustrates one approach how to integrate terms from
several ontologies in an efficient manner, using the framework
of Terminological Knowledge Bases [13]. These are two-level
ontologies where the semantics of concepts at the lower levels
are constrained by assigning concepts to semantic types at the
upper level.

The paper is organized as follows. In Section II, we in-
troduce our motivating application. In Section III, we discuss
different types of compositional knowledge, followed in Sec-
tion IV by a semantic methodology for heterogenous service
composition. In Section V, we present an overall system archi-
tecture and implementation for semantic Pervasive Computing
services. Relevant work and conclusions are presented in
Section VI and Section VII, respectively.

II. M OTIVATION

Existing methodologies for implementing a Pervasive Com-
puting environment use smart devices, which have some
processing power and are specialized in performing a set
of specific tasks. Usually the user needs to carry these de-
vices with her/him as s/he moves either within or across

Pervasive Computing environments. These devices are not
readily available and are often difficult to build. The issues
that limit fabrication of such personal devices are limitations
like battery power, shape and weight, making practical use
of such devices extremely difficult. The advantage of using
smart devices is their ability to communicate with each other
by building and storing contextual information, which may
be used by the Pervasive Computing environment to offer
services based on the stored information. In addition, current
devices are costly, and thus it is difficult to replace all current
devices with smart devices to implement Pervasive Computing
environments. Finally, smart devices need to have functionality
beyond what they are expected to do, because they are integral
to the environments.

Our solution reduces the need for smart devices by using the
Semantic Web to build dynamic service composition knowl-
edge (context) models as a user moves from one environment
to another. We can achieve dynamic building of contexts
by sharing knowledge and context information between local
Pervasive Computing environments through the Semantic Web.
Furthermore, Pervasive Computing services can be dynami-
cally composed by considering the contexts determined by
the Pervasive Computing framework. In this approach we
can utilize currently available resources (data, information,
services, devices, etc), letting the devices do their basic tasks
without saddling them with any pre-requisites to participate
in Pervasive environments. Also we believe that this approach
will help us quickly implement Pervasive Computing, since
we can use currently available resources and do not need
specialized devices.

III. D EFINITIONS: SYNTACTIC , SEMANTIC , PRAGMATIC

KNOWLEDGE

In a previous publication we have introduced the use of
syntactic, semantic and pragmatic knowledge for services and
workflows [42]. Of these, syntactic and semantic knowledge
are well known in computer science, but this is less so
for pragmatic knowledge. Pragmatic knowledge has been an
issue mostly in philosophy of language and some branches
of linguistics, such as discourse understanding [25]. Giving a
general definition of pragmatic knowledge and distinguishing
it from semantic knowledge is difficult. However, by limiting
ourselves to the fairly well defined environment of services,
the distinction becomes easier.

Instead of jumping directly into a set of definitions, we will
clarify our distinctions between syntactic knowledge, semantic
knowledge and pragmatic knowledge by the example of a
cellular phone. Our basic approach is to observe the different
mistakes that users of a cell-phone may make. Every user
that does NOT make those mistakes appears to have some
knowledge on how to correctly use a cell phone.

This approach is metaphorically related to Cognitive Sci-
ence methods that study the working brain using data from
aphasia patients. By linking observable damage to certain
areas of the brain with observable performance failures, it
becomes possible to hypothesize which part of the brain is
responsible for which cognitive activity. Instead of looking
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for physical damage linked to performance failures we are
looking for presumed missing knowledge items that would
lead to performance failures.

The mistakes that a cell phone user can make vary widely,
and therefore different kinds of mistakes give rise to observa-
tions of different kinds of knowledge.

We will now turn to syntactic errors. If a person types in
a 6 digit phone number in the continental United States, this
should (after some waiting period) result in a voice saying
“your call cannot be completed as dialed.” Attempting to dial
a six digit phone number is a syntactic error. In programming
languages, syntactic errors can (usually) be detected by a
compiler, and similarly, dialing too few digits can be detected
by the phone SW. Thus, the essence of a syntactic error
is that it violates simple (“knowledge free”) rules that can
be checked mechanically without reference to any additional
knowledge. Thus, syntactic knowledge is knowledge which
can be expressed in rules that do not refer to any outside
database. As usual in computer science, syntactic knowledge
is easier to understand than semantic knowledge.

We next turn to semantic errors and semantic knowledge.
A person attempting to call a friend, who has memorized her
phone number incorrectly, is making a semantic error. He will
end up dialing a different person, or possibly a non-existent
phone number. To verify that a number is non-existent, it is
necessary, at least in theory, to have a knowledge base of all
existing phone numbers. Thus, this cannot be checked by a set
of self-contained rules and requires a substantial data base. To
detect that a user is calling a wrong phone number, the phone
would need to “know” who the user is trying to call and also
need to know the phone number of that person. Again, this
requires a database and cannot be done with self-contained
rules alone.

In some cases, a database is not sufficient for semantic
knowledge. The process of reasoning is essential to meaningful
knowledge processing. For example, a person might have the
phone number of a friend, but without the area code. Making a
phone call without area code would result in a call to the given
phone number in the area of the caller. If the caller and the
callee live in the same area code, this would be a successful
call, but otherwise it would result in a failure by calling a
different person than the one intended.

If the caller lives in New Jersey and knows that his friend
lives in Manhattan, he can still place a successful call. By
knowing the area code for manhattan, he will be able to reason
out and construct a complete and correct phone number. Thus,
besides simple rules and a database we need to assume a
knowledge base with some reasoning abilities for semantic
knowledge.

However, semantic knowledge clearly does not avoid all
errors. One should not call a friend at 1:00 AM. Doing it
would make the friend upset and would be a pragmatic error.
On the other hand, if the house of the friend is on fire, one
should call him at any time, even at 1:00 AM. If one has an
emergency, he should call 911. If one has an emergency and
is in Austria, he should call 112.

If one has a phone that does not work, he should call 611
(presumably using another phone that works). If one does not

know the phone number of a friend, one should call 411 to
get it. If one has no money to call, he should only call 888
and 800 numbers or attempt to make a collect call. All these
rules describe pragmatic knowledge that links situations with
the actions that should be taken. They do not just require
knowledge as it is stored in a database or reasoning that
involves a knowledge base, they require situational awareness.

In the simplest cases, situational awareness deals with time
(Is this a reasonable time to phone?) and space (In which
country am I? In which area code am I?) Sometimes complex
combinations of time and space need to be reasoned about. If
your friend just left your house and lives an hour’s drive away,
it makes no sense to call him at his home phone number after
5 minutes. Determining what constitutes an emergency that
would allow one to call at all hours, or to call 911 requires even
more complex knowledge of ownership and values of objects.
Pragmatic knowledge also includes social relationships and au-
thorities of people. Thus, the essence of pragmatic knowledge
for services is that it incorporates some kind of knowledge of
the context (or situation) in which a service should be used. A
subset of this kind of knowledge may be expressed in terms
of time and space, which themselves are already (for time) or
in the foreseeable future (GPS systems for space) integrated
into all computer systems. This is the point where Pervasive
Computing becomes important.

Social situations may be incorporated into services, in orga-
nizations with well defined hierarchies such as in the military.
A service may provide more information for privileged users
(”super-users”).

Thus, the border line between semantic knowledge and
pragmatic knowledge in our approach is that semantic knowl-
edge relies on the retrieval or the reasoning with knowledge
from a knowledge base, while pragmatic knowledge requires
retrieval of situational information from an outside source.
Thus, we have formulated a border line between semantic
knowledge and pragmatic knowledge, limited to our services
domain.

We will now carry over these general remarks to actual
services. If we view a service as a procedure or function that
takes certain inputs and produces certain outputs, then we can
require the same syntactic constraints as on functions:

For functions, the number, order, directionality (in/out),
data type and optionality (mandatory/optional) of inputs and
outputs need to be correct. Otherwise there is a syntactic
mismatch. Our view of syntactic knowledge is guided by this
idea.
Syntactic knowledge for a serviceconsists of self-contained
rules that can automatically determine whether the input
parameters received by the service are correct in number,
order, directionality, data type and optionality.
Semantic knowledge for a serviceconsists of rules that
describe how to correctly use the service. These rules may
access an outside database to retrieve information and/or an
outside knowledge base to reason with information. We call
them semantic rules.
Pragmatic knowledge for a serviceconsists of rules that
describe in what situations to use the service. These rules
may access the same information as the rules of semantic
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knowledge. In addition, these rules may access information
about the current situation, such as time, location of the service
requester and the service provider, hierarchical (“privilege”)
status of the service requester and the service provider, etc.
We call them pragmatic rules.

IV. A M ETHODOLOGY FORHETEROGENOUSSERVICE

COMPOSITION

In this section we address the issue of the heterogeneity of
Web services that were developed independently, using terms
from different ontologies, and present the methodology to
match those concepts from different ontologies, called OnInt
(Ontology Integration).

A. Ontology Integration

Every realistic service model consist necessarily of two
kinds of elements. On one hand there are elements that are
specific to OWL-S itself. These elements correspond to what
would be called “reserved words” in a programming language.
The number of types of these elements is strictly limited,
but the elements are composable, in the same way in which
FOR loops in a programming language may be composed
by nesting. On the other hand there are elements that are
specific to the service domain itself. These elements would
correspond to the variable names, constant names, function
names, type names and module names of a program. Every
good program closely mirrors its domain by the choice of
meaningful function and variable names. Therefore, there
are as many different (sets of) function names as there are
domains. The same applies to services. Thus, a good service
description will need to use terms from its underlying domain,
and the number of terms available will be as unlimited as the
domains themselves.

When an agent is looking for a service, it will carry with
it a description of the kind of service that it is looking for,
in terms of its underlying domain. It will encounter service
descriptions using the same or different terms from the domain
of the service provider. Unfortunately, even if the agent domain
and the service provider domain are the same, that does not
mean that the agent and the provider can smoothly interact,
because there is no global shared ontology of domain terms.
The situation is comparable to an Italian tourist in America that
tries to order a meal from a Chinese waiter, and both know
only subsets of English food language. The waiter and the
tourist cannot start talking with each other directly. They need
to establish a common language first, by discovering shared
terms and finding mappings (hard!) between differing terms.

In ontology research this kind of process is described as a
form of ontology integration. The heart of this process is to
find mappings between differing terms for the same concept.
This integration process has to be performed quickly, as one
agent may be visiting many services with service ontologies in
its attempt to construct a service flow. For any pair of sizable
ontologies it is out of the question to perform a brute force
attempt of matching every term in one ontology with every
term in the other ontology. To overcome this problem we have
developed an extensive method of semantic specification and

semantic integration, using two-level ontologies, which is used
as a precursor to a the actual integration algorithm [13], [16].
This semantic integration algorithm greatly limits the number
of matching attempts involved in every integration task. Details
of this matching and integration method would go well beyond
the scope of this paper, but we summarize the basic ideas and
some of the formalism in this section.

B. Two Level Ontologies for Integration

Definition: Terminological Knowledge Base.We call any
structure that consists of (1) a semantic network of semantic
types; (2) a thesaurus of concepts; and (3) assignments of
every concept to at least one semantic type aTerminological
Knowledge Base(TKB).

TKB =< Ĉ, Ŝ, µ > (1)

in which Ĉ is a set of concepts,̂S is a set of semantic types
(i.e., high-level categories), andµ is a set of assignments of
concepts to semantic types. Every concept must be assigned
to at least one semantic type. The opposite condition does not
hold. We will use capital letters to represent semantic types
and small letters to represent concepts.1

Ŝ = {W,X, Y, ...}; Ĉ = {a, b, c, d, e, ...} (2)

Finally, µ consists of pairs (c, S) such that the conceptc is
assigned to the semantic typeS.

µ ⊂ {(c, S)| c ∈ Ĉ & S ∈ Ŝ} (3)

We define that two conceptsc, d are similar,c ' d, if they
are assigned to exactly the same set of semantic types of a
TKB.

c ' d : ∀S ∈ Ŝ [(c, S) ∈ µ ⇔ (d, S) ∈ µ] (4)

If two conceptsc andd are assigned to the same semantic
type X, then these two concepts have similar semantics. On
the other hand, if a concepta is assigned toX and a conceptb
is assigned toY , thena andb will have semantics that are not
similar in the formal sense defined above. The case of concepts
with sets of several assigned semantic types that may have a
non-empty intersection is discussed in [30]. With our notion
of similarity, we need to decide how strict we want to be with
respect to accepting partial matches of concepts.

There is a spectrum of what requirements one could impose
to accept two concepts as matching. On one extreme, one
might insist that there be only perfect matches. The other
extreme is to insist that all (or almost all) concepts of the
smaller ontology are matched against concepts in the larger
ontology, as long as there is at least some structural similarity.
This extreme could be based on the assumption that both
ontology designers did a reasonable job to cover the domain,
and thus all fundamental concepts simply have to appear in
both ontologies, no matter what each one is called, and no
matter how exactly it is structured. Our solution is closer to the

1Both roman and italic fonts
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second extreme. We are optimistic that with the development
of the Semantic Web many subdomains of the world will
be described by ontologies which cover their domain to a
reasonably complete degree. Thus, one would expect that most
concepts of one such ontology exist in the other ontologies for
the same domain. We note that for people the lack of exact
matches does not normally make communication impossible.
Indeed, philosophers would point out that we can never be
sure of how another person is thinking about a concept, a fact
denoted as “solipsism.”2

Now we will show how the two-level structure limits the
required number of matching attempts. By our construction of
the Terminological Knowledge Bases, two concepts,q from
TKB′ and r from TKB′

2, can only match if they are both
assigned to the same semantic type. There are three cases:

(1) Assume a semantic typeS exists in TKB′ that has
assigned conceptsx, y, z, .... Further assume thatS does not
exist in TKB′

2 or, there are no concepts assigned toS in TKB′
2.

Then, by the similarity definitions given above, no concepts
corresponding tox, y, z, ... exist anywhere in TKB′2. Thus,
these concepts do not need to be matched at all.

(2) The above observation applies in reverse also. If a
semantic typeS exists in TKB′2 that does not exist in TKB′,
then the conceptsx, y, z, ... assigned toS will not have cor-
responding concepts anywhere in TKB′. Thus, these concepts
do not need to be matched at all.

(3) Concepts assigned to the semantic typeS in both
TKB′ and TKB′

2 are potentially similar (') and need to
be matched. As mentioned above, we allow partial matches
between concepts that have been determined to be similar.
The exact cut-off is decided by a threshold value.

C. Scoring Concept Similarities

Now we describe details of how scores for concept similar-
ities are computed. We use three aspects to determine whether
a match exists between similar concepts. Initially we rank
pairs of concepts according to their terms (or synonyms) and
then according to attribute similarity. After establishing some
initial matches in this way, we use relationships that point
from one concept to another concept to iteratively recompute
the similarity value between two concepts.

1) Ranking Concepts by their Terms:If two concepts have
similar names (defined below, based on bigrams) then they are
possibly matches. The existence of synonyms and homonyms
causes problems for concept matching. We include the use of
synonyms during the concept matching step itself. If no match
is found for a concept, then it is attempted to use its synonyms
for matching.

The bigram approach [23] is known to be a very effective,
simply programmed means of determining a similarity mea-
sure between strings. The bigram approach consists of three
steps. (1) Sequences of two consecutive letters within a string
are extracted (e.g., the word “calendar” contains ’ca’, ’al’, ’le’,
. . . ’ar’); (2) Two sequences of bigrams are compared, and
a raw similarity score is computed; (3) A matched score is
computed from the raw score, i.e., the number of the common

2IEP

bigrams is divided by the average number of bigrams in the
two strings.

2) Ranking Candidates by Attributes:Assume that we are
given a pair of concepts from two different ontologies. These
concepts have different terms, therefore, a priori there is no
reason for a computer to assume that they are in fact describing
the same concepts. In order to establish whether they are
indeed the same concept, we need to compare attributes.

We assign to every pair of concepts a score as follows.

• Two concepts, that have the same number of attributes,
are considered perfectly matched, with a score of 1, only
if for every attribute in one concept there is an attribute in
the other concept of the same name and same data type,

• If two attributes (of two concepts from two ontologies)
have the same name but are of different data types, we
assign them a score ofk (k < 1, k � 0).

• Then we compute the ratio of matched attribute scores
divided by the number of attributes of the concept that
has more attributes.

• The final decision about similarity is made, based on a
minimum threshold for the computed combined score.

3) Ranking Candidates by Relationships using Propaga-
tion: In the previous step we have established matches be-
tween concepts from two different ontologies, based on pairs
of terms and attributes. However, two concepts that point to
exactly the same concepts with the same relationships are pre-
sumably very similar to each other. We view the relationship
targets as data types, and two concepts that point to all the
same data types are likely to be quite similar. However, we
would have a chicken and egg problem here, if we start with
considering relationships from the beginning. That is the case
because the relationships targets cannot be used for matching
if they themselves have not been matched up.

This is why we start by matching up a few concepts
using terms and attributes alone. By this step, we create an
initialization for matching up additional concepts by using
relationships. Thus, two concepts with different names that
point to several target concepts that all have been matched up
between two ontologies are presumably themselves a match.
We can use a similar ratio criterion as for attributes, however,
now the targets carry more semantics than the undifferentiated
data types of attributes. Thus, we are willing to assign a pair of
relationships a high score if the targets are the same OR if the
relationship names are the same. Let us assume now that a set
of concept pairs has been established such that the concepts in
each pair match and are from two different ontologies. Then
any pair of concepts that point to these matched concepts
would also be considered highly ranked for being matches.
Thus, after establishing initial matches, we continue ranking
concepts by similarity using a process similar to a Waltz
filtering [48].

The process of finding matches needs to be recomputed
until a score change of one concept pair does not result in a
score change of any concepts pointing to that pair anymore.
This state of equilibrium can be achieved, as we are using
a threshold. If there are only changes that do not cross the
threshold, the update process would terminate.
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4) Combining Matching Scores:Two concepts are consid-
ered matched if their terms, their attributes and their relation-
ships are (on average) similar. A weight is assigned to each
similarity aspect of a concept (term similarity, average attribute
similarity, average relationship similarity). Considering these
three criteria, we now compute the degree of the similarity
of concepts from two distinct ontologies. For this purpose,
we use a Multiple Attribute Decision Making (MADM) ap-
proach, a simple additive weight-based solution [20]. This
approach determines a combined score of concept matches
between ontologies. LetCi = {Ci1, Ci2, . . . Cim} and Cj =
{Cj1, Cj2, . . . Cjn} be sets of concepts for given ontologies,
and let F ={F1, F2, . . . Fp} be a set ofp features (in this
paperp = 3) that characterize the degree of similarity. The
weight vectorW reflects the importance of each attribute
W = {W1,W2, . . . ,Wp}, where

∑
Wi = 1. We compute the

scores for each of thep features for each ofl matching cases
(l � n or m) in a decision matrixD = dij .

The method is comprised of three steps: first, scale the
scores into a range [0, 1], with the best score represented by
1, using

rij = (dij − djmin)/(djmax − djmin) (5)

Second, apply weights and third, sum up the values for each
of the alternatives, using

Si =
∑

Wjrij

l
(6)

After a combined score has been computed, we compare the
weighted sum with a given thresholdα. Some matches may be
lacking attributes or relationships. In this case, a weight of zero
will be assigned to these aspects of a concept. All combined
similarity values greater thanα are stored in a matrixGT . In
this matrix, rows correspond to concepts from one ontology.
Columns represent concepts from the other ontology. At each
row/column intersection the similarity value of two terms is
stored.

Subsequently, concept pairs with similarity values above the
threshold are constructed, starting with the maximal similarity
value. If there are several equal maximal similarity values,
they are processed in random order. Whenever the next largest
similarity value has been identified between two conceptsc
and d, then the complete row ofc and the complete column
of d in the similarity matrixGT are set to 0. This is becausec
andd are not available for matching anymore. Details of this
algorithm are given in [30].

Our approach to ontology integration simplifies the match-
ing task by identifying sets of semantically similar concepts
before starting with the actual matching steps. Terms from two
ontologies only need to be compared for integration if they
are already classified as semantically similar. Therefore, our
methodology reduces the computational cost of the matching
operations. Fewer pairs of terms have to be matched against
each other. For more details on the Terminological Knowledge
Base Framework see [13], [16].

V. PERVASIVE COMPUTING SERVICES

There are several challenges that we are facing in Pervasive
Computing. The first is, how to acquire context models from

the environment and dynamically build computing models
dependent on context. By sensing context information, context
enabled applications can present context information to users,
or modify their behavior according to changes in the environ-
ment. Secondly, the environment should be flexible enough to
provide composite services by incorporating existing services
of the Pervasive Computing environment at run time. Here we
show how the proposed approach, service composition, helps
in dealing with these challenges in Pervasive Computing.

A. Context Ontologies

The context ontologies are two-part ontologies in OWL
format: The upper ontology provides a description of various
concepts that together characterize a particular situation. The
lower ontologies describe each of these concepts in more
detail. For instance, the upper ontology contains Location as
one of the concepts while the lower ontology contains the
description of the current location i.e. location of rooms, floors
etc.

The context ontologies consist of concepts from our own
User Profiling ontology and several extensions of the CONON
(COntext ONtology) [50], the SOUPA (the Standard Ontol-
ogy for Ubiquitous and Pervasive Computing3), which is the
outcome of a collaborative effort between researchers in the
field of Pervasive Computing and Semantic Web and the
Content Selection for Device Independence(DISelect4). The
upper ontology is based on the CONON ontology for context.
CONON provides all the basic concepts needed to model
context. This ontology however needs lower ontologies that
are extensions to reflect the current domain. For instance the
Location concept can be extended to model a building or a city.
The descriptions of Location and Time as context elements
was obtained from SOUPA. The following context elements
are of specific interest.

• Individual: Representing the person whose context is
represented. Our Pervasive Computing framework, called
SeMEther [40], contains a user profile ontology, which
was mapped to the individual concept in the CONON
ontology.

• Time: The temporal features associated with the current
situation. They were designed based on the specifications
of the SOUPA ontology.

• Location: The spatial location features of the person
involved. They were designed based on the specifications
of the SOUPA ontology.

• Computing Entity used: The Computing Entity used by
the person in the current context. The SeMEther in its
current implementation does not have extensive device
modeling. The only two existing concepts describing the
devices are MobileDevice and StaticDevice which indi-
cate whether a device has a fixed location or whether its
location can change. We are currently incorporating the
Content Selection for Device Independence(DISelect5)
and Foundation for Intelligent Physical Agents(FIPA6)

3http://pervasive.semanticweb.org/soupa-2004-06.html
4http://www.w3.org/TR/cselection/
5http://www.w3.org/TR/cselection/
6http://www.fipa.org/
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Ontology Type SeMEther Ontologies
Upper Ontology Context Ontology (CONON)

Lower Ontologies Concept Specific Ontologies
User context SeMEther User Profile Ontology
Location Standard Ontology for Ubiquitous and Pervasive Computing (SOUPA)
Time Standard Ontology for Ubiquitous and Pervasive Computing (SOUPA)
Computing Entity W3C DISelect, FIPA Device ontology
Activity AIAI Activity ontology

TABLE I

SEMETHER ONTOLOGIES

Ontologies that provide a formal description of devices
and device capabilities.

• Activity Performed: The activity being performed by
the person. This activity can be deduced (e.g. from his
schedule) or explicitly specified.

B. Rules for Pervasive Services Composition

The service composition knowledge (context) model can
be used to infer new knowledge about a user’s situation. For
instance, consider a messaging service that sends messages to
the users in their current locations. The messages are sent
depending on the devices that the user currently uses. A
user having a cell phone may receive SMS messages while
a user having a laptop may get an e-mail. Depending on
the framework events these messages are sent to the devices,
however context reasoning may affect this service.

Consider user A whose schedule indicates that he will be in
a meeting from 11:00 AM to 1:00 PM in Room 101. At 12:00
PM a buddyin environment event arrives that informs the
user that his buddy has entered the environment. The Context
Reasoner however reasons that the user’s scheduled activity
indicates he is in a meeting and the user must be busy at
this moment. It then asserts the fact in the knowledge base
that the user is currently busy. This suppresses the message
service from sending messages to the user. Rather, the message
will be forwarded to his/her secretary or converted to an email
message depending upon his/her profile.

SeMEther makes extensive use of such reasoning. The
domain-specific inferencing requires explicit rules. RULEML7

is an XML-based rule language and the current Semantic
Web efforts8 include building an RDF-based RuleAxiomLogic
layer over the current OWL-based Ontology layer in the
Semantic Web stack. Thus, we adopted Jena rules (an RDF
based language). Jena Rules, written in the Jena rule syntax
similar to the one described above, can be used to direct the
services provided to the user. An example rule shown below
indicates that if a user is in room 101 (conference room) during
the meeting time then his status must be set to busy. Such
composition rules can be added to guide the situation.

For pursuing advanced context reasoning, the location con-
text manager, which is a specialized reasoner, was developed to
manage the location context. As the user’s location changes in
an environment, this component tracks his/her spatial position.

7http://www.ruleml.org/
8http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[Rule1:
(?L

http://SeMEther/ontology/locationcontext#UserInLocation
http://SeMEther/ontology/location/floor1#room101)

(?Ts

http://SeMEther/ontology/timecontext#EventStartTime
http://SeMEther/ontology/time/startTime#1100)

(?Te

http://SeMEther/ontology/timecontext#EventEndTime
http://SeMEther/ontology/time/endTime#1300)
->

(?U
http://SeMEther/user/usercontext#status
http://SeMEther/user/usercontext#busy )]

[Rule2:
(http://SeMEther/ontology/timecontext#Time
http://SeMEther/ontology/timecontext#CurrentTime
?val),
greaterThan(?val,
http://SeMEther/ontology/timecontext#EventStartTime)

lessThan(?val,
http://SeMEther/ontology/timecontext#EventEndTime)
->

(http://SeMEther/ontology#EventManager
http://SeMEther/ontology#sendMessage
http://SeMEther/PatientHabits#CallForwarding)]

TABLE II

SEMETHER SERVICE COMPOSITIONRULES

Events are generated if the user changes floors (floor change
event) or rooms (room change event) etc. It reasons with the
current spatial position of the user and the spatial model stored
in the knowledge base in the form of a lower context ontology
described above. The events generated by the location manager
are used to trigger location-based services. For instance a
music service makes use of the room change event to continue
playing the user’s music preference, switching it from his old
room to the new room.

To illustrate the working of the location context manager
consider the floor change event. To generate this event the
location context manager performs the following query in
RDQL [36], which is a query language for RDF in Jena
models, to find out whether the user’s old location ”oldlo-
cationuri” is within the same region as the user’s new location
”newlocationuri”:

The location manager can verify whether the region is
within the same floor or not. It then compares to see if the
two rooms are on the same floor or not and generates the floor
change event accordingly.
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[Query 1
Select?a where
(<oldlocationuri / newlocationuri>,

<http://a.com/ontology#inRegion>,
?a)]

TABLE III

SEMETHER CONTEXT QUERY EXAMPLE
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Fig. 1. The SeMEther Framework Architecture

C. SeMEther Framework: Service Composition Subsystem Ar-
chitecture

As a proof of concept, the Web Service Composition Sub-
system (WSCS) has been implemented on top of a Pervasive
Computing framework called SeMEther [40]. The SeMEther
framework provides an efficient infrastructure for the WSCS
design and execution. We are in the process of developing
a set of applications, tailored to meet the needs for devel-
oping Semantic Pervasive Computing Services. In this paper,
we mainly highlight the WSCS. Before we demonstrate the
WSCS, we briefly introduce the architecture of the SeMEther
framework (Figure 1).

The Event Manager manages event-based communication
between components of the framework. Components in the
SeMEther framework communicate with each other by throw-
ing and listening to events at the Event Manager. The Event
Manager ensures that all services registered for an event
receive that event and don’t receive any duplicate events. The
KB Handler maintains a Knowledge Model which reflects the
current context. This context is acquired by listening to events
and converting them to knowledge facts which are added
or removed from the Knowledge Base (KB). The Resource
Manager manages the resources available in the environment.
It maintains the status of each resource and also takes care
of scheduling resources for different activities. In SeMEther,
a resource is anything that can be scheduled, including human
actors and devices. Each resource has a semantically annotated

schedule, which describes when a particular resource is avail-
able. When there is a request for a certain resource, the system
will look for its availability and then schedule that resource.

The Profile Manager is responsible for fetching user profile
information from the Web. We assume a centralized server,
where one can request user profiles or parts of them. The
SeMEther communicates with this server to get the user profile
or extract specific information about the user from his/her
profile.

The framework is designed to provide a dynamic user
interface (UI), that is, the interface can be changed depending
on the user role and the requirement of the service as well as
the device used to communicate with the user. For example,
the system generates different UI screens, corresponding to
a desktop or a PDA, or sends an SMS over a cell phone,
depending on what device the user is currently on. Thus, the
framework provides pervasiveness in the sense that it uses an
appropriate device to communicate with the user, depending
on the context. The Domain Services provide functionalities
specific to a given domain. These services use the framework
to communicate with each other, and the external environment,
and also to access the knowledge base of the system.

The Unified Information Base (UIB) integrates information
from disparate data sources present in the environment and
presents it at a more conceptual level by linking it to a local
domain ontology. For example, a database field ’BP’ in a
hospital setting can be linked to the concept “BloodPressure”
of a standard medical ontology like the UMLS. This creates
an abstraction of a single homogeneous data source for other
services, which need to refer to the data in terms of domain
concepts. The UIB thus allows linkage to a data element and
fetch or update of the same. The idea of a unified information
base is an extension to our previous work [8].

The proposed system architecture for the Web Service
Composition Subsystem (WSCS) is shown in Figure 2.

• Service Editor: A platform to model and create Seman-
tic Pervasive Computing Services over existing legacy
applications (Figure 3). The editor allows mapping of
service parameters (input, output, preconditions, effects)
to concepts in predefined ontologies. New ontologies can
be loaded into the editor. The editor has an ontology
search component which performs keyword based search
in the ontologies. The user can map resultant concepts
to service parameters. To facilitate faster development
and ease of use, we concentrated on development of
atomic services, hence making the model simpler and
easier to implement. The editor parses the WSDL (Web
service Definition Language) documents discovered by
the Service Crawler and creates the service grounding
descriptions. One interesting feature is the possibility of
plugging in of new context ontologies (required for map-
ping service parameters). Once stored in the composition
rule KB, these services are used by the Service Matcher.

• Service Crawler: The Service Crawler is crawling the
Web for services (Web form, WSDL, or OWL-S). A
multi-threaded Service Crawler crawls multiple URLs
in parallel. For efficiency, the Crawler crawls the Web
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Fig. 2. The Architecture of the Web Service Composition Subsystem

using URLs taken from DMOZ9, classifies any pages
containing such service descriptions into that particular
category/domain and stores them in a temporary database.

• Service Ontology:The Service Ontology is a repository
of services either developed or discovered from the Web.
Each service in the Service Ontology is semantically
annotated (OWL-S) according to its respective cate-
gory/domain. Thus, the services discovered by the Service
Crawler are transformed into Semantic Web Services
(OWL-S).

• Service Matcher: The Service Matcher matches a ser-
vice request to existing services available in the Service
Ontology. For this service matching, we could apply the
Ontology Integration (OnInt) methodology to each OWL-
S profile. In the profile, each service is represented by a
type of service and an IOPE (Input, Output, Precondition,
Effect) tuple. For two given service descriptions which
are the service parameters (IOPE), the Sevice Matcher
tries to match them.

• Service Composer: Using the Ontology integration
(OnInt) methodology as described in Section IV, this
module performs semantic matching of concepts. For
two given concepts which are service parameters, the
component tries to establish a match between them.
The service composition required an iterative approach:
matching of concepts followed by pragmatic evaluation.

• Service Execution Engine:Once the services have been
discovered and composed to satisfy the goal, this mod-
ule executes the services. We used the Taverna service
execution tool.10 This tool mandates the process spec-
ification in a specific format. In our case, the process
specifications are generated as the result of refinement of
the composition process.

• Service Evaluator: This component performs evaluation
of a service, based on the pragmatics defined for selection
of a particular service. We perform evaluation based on

9http://www.dmoz.org
10http://taverna.sourceforge.net/

some simple evaluation metrics, which are similar to
match algorithm described in [34]. In order to select
appropriate services, we need to evaluate whether they
satisfy the syntactic, semantic and pragmatic require-
ments of the desired composite service.

D. Implementation

We have implemented a prototype of SeMEther that demon-
strates the intended goals and shows the feasibility of the pro-
posed approach. Integrating some common computing devices
such as PDAs, cell phones and personal computers, we show
how the system actually functions and interacts seamlessly
with the user. To bring out the effectiveness of the framework,
we have implemented the Pervasive Service Compositions for
several scenarios. One simple, yet powerful, service that we
have implemented is the “Buddy” service. This service detects
buddies of a given user, determines if they are in the vicinity,
and in that case contacts them by the best possible means
available. The user is detected by a Bluetooth enabled device
such as a PDA or Cell Phone. Messages are delivered based
on the type of device he is carrying, like a dialog box for
the PDA or an SMS for the cell phone. Several other services
can be run concurrently on this framework. All these services
are pervasive in the sense that a user doesn’t depend on any
specific device to get that service. The environment proactively
detects the user, and based on his/her preferences, adapts these
services and provides him/her via the best available service.

Through the implementation we have verified the viability
of: (1) Generating service flow specifications in OWL-S to
model context-aware services; (2) Achieving dynamic service
matching and binding to the service flow; (3) Performing dy-
namic service composition using the compositional knowledge
we specified in Section 3.

We implemented an OWL-S Editor to assist the service flow
designer in modeling OWL-S specifications for the service
flow, which in addition provides a graphical interface to
model the abstract concepts. The Service Matching Agent
(SMA) handles the task of matching the Web Services for
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given specifications and the service matching rules. The task
execution engine was constructed as Java implementation (HP
Jena Toolkit [19]) and reads the process specifications in
OWL-S to execute the appropriate Web Service from a service
pool associated with each task.

 

Fig. 3. The WSCS Editor

The context visualization interface provides a Touchgraph
interface to visualize changes in context. As changes in
the knowledge base occur due to changes in context, the
Touchgraph morphs to reflect the changes. The graphl library11

was used for the visualization. A Java based client has been
developed for the visualization. The client makes an HTTP
connection to the SeMEther Autonomous System (AS) head
to download the latest context model. This model is in the form
of an RDF document that is generated every time the service
composition knowledge model changes in the knowledge base.
The client can be configured to poll the server for new models
at specific intervals of time. A screen shot of the context
visualization tool is given in Figure 4.

VI. RELATED WORK

Current Web services support a certain level of interop-
erability in using and accessing them. The next level of
interoperability cannot be achieved by just making services
available, but requires providing automatic mechanisms so
that the services can be linked in appropriate and meaningful
ways [14]. Semantic interoperability is essential for automated
discovery, matching and composition of services. This en-
hancement depends on the existence of ontologies for the
terms used by Web services. The Semantic Web research work,
following the DARPA Agent Markup Language (DAML),
includes DAML+OIL [17] for the creation of arbitrary domain
ontologies and DAML+OIL/RDF(S) [14] for the semantic me-
diation between services and workflow logic. Some research
has focused on the composition of services using workflow
management. Automatic composition of Web services [28] has
been achieved through automated mapping, composition and

11http://home.subnet.at/flo/mv/graphl/

 

Fig. 4. Visualization of the Pragmatic Knowledge in SeMEther

interoperation of services, service verification, and execution
monitoring. Process modeling languages such as PIF [29], PSL
[41], and frame based models of services [12] were designed
to support process management. There are other emerging
relevant approaches such as indexing services based on pro-
cess models [26] and reasoning and matching over service
descriptions for choosing computational resources [35].

Several applications require that multiple ontologies are
combined into a single coherent ontology [33]. Many lines
of research have addressed ontology matching in the context
of ontology construction and integration [5] and effective
methodologies for automated mappings [31]. Similarity mea-
sure studies were introduced for effective ontology integra-
tion. Tversky’s feature-based approach [47] is one of the
most powerful similarity models, but depends on the struc-
ture of ontology features. Resnik [37] considered the extent
of shared information between concepts. Lin [27] proposed
an information-theoretic notion of similarity based on the
joint distribution of properties. Jiang and Conrath’s similarity
measurement [24] is based on the conditional probability of
encountering a child synonym set given a parent synonym set.

Ontologies are used for constraining the parameters of dy-
namic service configurations. Reasoning to ensure the seman-
tic validity of compositions is used for automated workflows.
Scientific workflow [4] is supposed to support interoperation
through semantics. It may have the potential to support Web
service descriptions for service discovery, invocation, activa-
tion and execution of an identified service by an agent or other
service [28]. Unlike these efforts, our approach emphasizes
the importance of different kinds of knowledge, especially
pragmatic knowledge, and the ontological methodology for
heterogeneous semantics for the automatic composition of
service flows.

There have been efforts in representing business contracts
for service evaluation and negotiations [15] but how to use
such pragmatic knowledge for service matching remains still
unresolved. We show the semantic and pragmatic represen-
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tations for Pervasive Computing service flows and how the
Pervasive Computing community can reap the benefits of
using semantic and pragmatic rules over the Semantic Web.
In other work [4], workflows in Pervasive Computing settings
have been studied, but their efforts are more geared towards
QoS (Quality of Service) and workflow execution aspects.
We address the need to consider a broad set of pragmatic
rules (including QoS) to compose a service flow of Pervasive
Computing services for the Semantic Web.

Mennie et al. [32] provide an insight how to achieve
dynamic service modification and up-gradation. Specifically,
they describe switching or updating services without bringing
down the system. A new service can be incorporated into the
system by dynamic service composition. Tripathi et al. [46]
define access policies for “collaboration spaces” which can
also be referred to as pervasive domains. They also describe
creating ubiquitous and context-aware applications from high
level specifications coupled with a policy driven middleware.
Their idea of a user’s ’View’ of the system, with static
or dynamic binding to actual resources, governed by access
policies, is highly relevant to our approach.

Amann et al. [1] focused on knowledge management in
distributed environments, adaptive decision support and assis-
tance with dissemination of relevant information and knowl-
edge among geographically dispersed user groups. The key
technical contribution is the integration of the extended tuple
space concept to adapt, co-ordinate and control a set of ordered
events as well as applications and devices in mobile settings.
Henricksen et al. [18] introduced appropriate context modeling
issues for Pervasive Computing, such as wide variations in
information quality, the existence of complex relationships
amongst context information, and temporal aspects of context.
They provide a very good understanding and a solid model for
modeling context; however they utilize a traditional database
to store context information and relationships, while we think
an ontology is a better structure to model context.

In Strang et al. [45] Con-text Ontology Language (CoOL)
is derived from the model, which may be used to enable
context-awareness and contextual interoperability during ser-
vice discovery and execution in a proposed distributed system
architecture. Specifically, Indulska et al. [21] present a loca-
tion management system able to gather process and manage
location information from a variety of physical and virtual
location sensors. Their approach scales to the complexity of
context-aware applications, to a variety of types and a large
number of location sensors and clients, and to a geographical
size of the environment. The objective of CoBrA [7] is to
provide a centralized model of context that can be shared by
all devices, services, and agents in the space. They acquire
contextual information from sources that are unreachable by
the resource-limited devices. They also reason about contex-
tual information that cannot be directly acquired from the
sensors (e.g., intentions, roles, temporal and spatial relations).
The main idea in [6] is that of a central context broker which
manages the context knowledge base using a context reasoning
engine. This is analogous to our idea of a KBHandler. As the
centralized KB approach discussed here becomes a bottleneck,
this paper proposes a distributed knowledge base. For instance,

the building agent maintains knowledge about a building and
these agents then exchange/share knowledge. Our approach
differs from CoBrA in that we propose a completely service-
based architecture, in contrast to their agent-based one.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have laid out an architecture of the
knowledge processing that is necessary for composing services
automatically, using different kinds of knowledge. We showed
heterogeneous Pervasive Computing services interoperate in
a Pervasive Computing service flow, composed by using
syntactic, semantic and pragmatic knowledge. We defined,
distinguished between, and justified the need for these three
different kinds of knowledge to be used in service descriptions.
Finally, we demonstrated principles of ontology integration
to enable the automatic composition of Web services into a
service flow. We have developed a prototype of a Pervasive
Computing service flow as a proof-of-concept. This prototype
allows the routing of information to a user with the most
appropriate device for a given context.

Future work includes the extension of compositional knowl-
edge to include negotiation rules. When certain services in the
process of service selection do not exactly meet the conditions
of a rule, then there should be a possibility to relax the con-
ditions to continue with the selection and integration process.
This is best modeled as a form of inter-agent negotiation. We
are also planning to work on a user service request model and
representation that support a wide range of different services.
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