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Abstract—Unlike the data approached in traditional data 

mining activities, software data are featured with 
partial-repeatability or parepeatics, which is an invariant 
property that can neither be proved in mathematics nor validated 
to a high accuracy in physics, but still (partially) governs the 
behavior of the data. Parepeatics emerges as a result of the 
inaccurate universe. The universe comprises all possible C 
language programs is an example that cannot be accurately 
characterized since human writes defect-prone programs. In this 
paper we design a parepeatic mining framework for software data 
diming, where the mined knowledge is represented in terms of 
parepeatic models. A parepeatic model consists of central 
knowledge, a knowledge fluctuation zone and a correctness factor. 
Our approach can generate the required parepeatic model as a 
new form of knowledge representation from a given dataset and 
apply it to software data mining. Experimental results with real C 
language programs show that the proposed approach is effective. 
 

Index Terms—Knowledge representation, parepeatic model , 
parepeatics, Partial-repeatability, software data mining, 
uncertainty 
 

I. INTRODUCTION 
Data mining is an active or vigorous area nowadays and has 

found extensive applications in market analysis, investment 
assessment, security guarantee, manufacturing process 
analysis, Web searching, and scientific data analysis, among 
others [1-4]. It attempts to reveal or discover valuable 
information or knowledge from vast amount of data. The 
valuable knowledge can be represented in terms of patterns, 
clusters, association rules, significant structures and so on. 
These forms of knowledge can be discovered using various 
approaches such as clustering techniques, decision trees, neural 
networks and case-based reasoning methods. In contrast with 
traditional statistical data analysis that is assumption-driven 
and applicable to analyzing modest amount of data, data mining 
is discovery-driven and applicable to analyzing vast amount of 
data. 
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Roughly speaking, there are two implicit assumptions 
underlying existing approaches for data mining. First, there are 
invariant valuable patterns or knowledge among the dataset 
under mining. Second, the intended knowledge can be 
represented in a conventional form such as equivalence classes 
(clusters), statistical models, decision trees, induction rules, 
and neural networks. The first assumption is concerned with 
technical aspects as well as non-technical aspects. From the 
technical viewpoint we need to consider if the intended 
knowledge can be mined from the given dataset or if the given 
dataset is minable. From the non-technical viewpoint we need 
to consider if the data mining process is cost-effective. The 
second assumption is mainly technical. For example, suppose 
the given dataset is { }nxxx ,,, 21 K  and we want to cluster 
them into a number of classes. Then existing clustering 
techniques [5] will generate a few disjoint classes of data, 
{ }mCCC ,,, 21 K , from the dataset as the intended 
knowledge. The second assumption implies that 
{ }mCCC ,,, 21 K  is an appropriate representation of the 
intended knowledge. 

However, our previous work in software data analysis has 
revealed that second assumption mentioned above can hardly 
hold in software engineering as a result of partial-repeatability 
featured with software data unless new models of knowledge 
representation are introduced [6, 7]. For example, given a 
software program, we may calculate the number of lines of 
code, the number of distinct usages of operators, the number of 
distinct usages of operands, the number of total usages of 
operators, and the number of total usages of operands. Then are 
there any invariant laws that govern these five measures 
regardless of the particular features of various software 
programs? The laws, if any, can hardly be represented as a 
single absolute assertion such as a deterministic function 

( )xfy =  or a statistical model. A more appropriate 
representation form is the one that includes central function 
(knowledge), fluctuation zone, and the corresponding 
correctness factor [7]. Such a new model or representation form 
is intended to characterize the feature of partial-repeatability in 
vast amount of software data. By partial-repeatability it is 
meant that complex phenomena may demonstrate an invariant 
property that can neither be proved in mathematics nor 
validated to a high accuracy in physics, but still (partially) 
governs the behavior of the phenomena. (Conventional science 
and technology follows the top criterion of full repeatability 
that scientific arguments must either be proved repeatably in 
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mathematics or validated to a high accuracy repeatably (even in 
a statistical sense) in physics (experimentally)) This means, 
traditional data mining techniques are not appropriate to 
software data analysis/mining. 

In this paper we design a parepeatic mining framework for 
software data mining for dealing with the partial-repeatability 
problem. The main contributions in this paper include:  

The notion of partial-repeatability is further clarified as a 
new kind of uncertainty in comparison with randomness and 
fuzziness.  

The parepeatic model1 is treated as a new form of knowledge 
representation. This model comprises the central knowledge 
such as valuable patterns and association rules, a fluctuation 
zone, and a correctness factor. If the fluctuation zone contains 
only the central knowledge and the correctness factor is equal 
to one, then the parepeatic model reduces to an existing or 
conventional model of intended knowledge.  

A new criterion is introduced to measure the quality of 
conventional clustering. This criterion takes account of not 
only the homogeneity within each cluster and separability 
between the distinct clusters, but also the number of distinct 
clusters.  

A new approach is proposed for data mining, which 
generates a partial-repeatability or parepeatic model from the 
given dataset for the intended knowledge.  

The rest of this paper is organized as follows. Section 2 
clarifies the notion of partial-repeatability as a new kind of 
uncertainty. Section 3 presents the proposed approach for 
mining data with partial-repeatability. Section 4 applies the 
new approach to mining software data. Concluding remarks are 
contained in Section 5. The Appendix details our mining 
algorithm for generating the required parepeatic model of 
clustering from the given dataset. 

  

II. PARTIAL-REPEATABILITY AS A NEW FORM OF 
UNCERTAINTY 

As mentioned in Section 1, before data mining, one must 
decide what he or she wants to extract from the dataset under 
mining. The intended knowledge must be represented in an 
appropriate form. If no uncertainty is associated with the given 
dataset and what we want to extract from the dataset is a 
causality relation or deterministic function, then we can use 
classic or crisp sets to represent the relation or function. For 
example, suppose the given dataset is 
{ }nizyxyxyx iimimiiii ,,2,1;,,,,,,, 2211 KK =

 

ij

, where 

 is the number of copies of books of type  sell at a book 

store of concern on the  day,  is the price of books of 

type  sell at the book store on the  day, and  is the 

total income of books sell at the book store on the  day. If 

we are interested in the causes of  being increasing or 

decreasing, or we are interested in whether  is a increasing 

function of x  or , then the answer is positive and crisp. 

There holds . This relation is deterministic and 

gives all information for the intended knowledge. No 
uncertainty is associated with the answer or intended 
knowledge. It is sufficient for a crisp singleton set of 
deterministic function or relation to represent the intended 
knowledge.  

ijx j
thi ijy

j thi iz
thi

1   Parepeatics is an abbreviated term for partial-repeatability, and 
accordingly, ‘parepeatic’ is the adjective form of ‘parepeatics’. 
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However one may argue whether the crisp answers of this 
kind are really interesting or valuable. They look trivial. More 
often than not, we are interested in answers with uncertainty. 
For example, what is the underlying relation among 

iimimiiii zyxyxyx ,,,,,,, 2211 K  and ? Suppose the 

intended knowledge is represented in form of 

i

( ) 0,,,,,,,; 2211 =iimimiiii zyxyxyxif K . Then how to 

determine or represent the intended relation ? Obviously, 
uncertainty must be associated with  and the answer can not 
be deterministic. A natural framework to represent the 
underlying uncertainty is probabilistic or statistical. We may 
assume that  is a random function. If n  or the number of 
days of concern becomes huge and the relation among 

f
f

f

iimimiiii zyxyxyx ,,,,,,, 2211 K  and  looks over 

complicated, then we may exploit human experience or 
heuristic and assume that  is fuzzy function. No matter 
whatever models (deterministic, random, or fuzzy) are used to 
represent the intended knowledge, existing approaches for data 
mining assume that the intended knowledge is represented in 
terms of a single relation . More specifically, the single 
relation can be a statistical model, a fuzzy model, a decision 
tree, an induction rule, a neural network and so on. 

i

f

f

Now the problem is whether a single relation  is sufficient 
to characterize the intended knowledge. By adopting the single 
relation , we implicitly follow the philosophy of full 
repeatability that have been treated as the top scientific criterion 
in thousands of years of history of conventional science and 
technology. By full repeatability it is meant that scientific 
arguments can either be proved repeatably in mathematics or 
validated to a high accuracy repeatably in physics 
(experimentally). The correctness of the scientific arguments 
should be independent of the investigators who present or 
prove them. It is the nature of full repeatability or high 
quantitative accuracy that enables existing physics or science to 
gain enduring respect and reputation. Existing approaches for 
data mining treat the intended knowledge as a conventional 
scientific argument that can be fully repeatable even in a 
statistical sense. 

f

f

Unfortunately full repeatability may fall as observed in our 
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previous work [6, 7]. For example, a course of fish may not be 
fully repeatable if cuisine is involved: no chef can make a 
course of fish twice at exactly identical sweetness or saltiness. 
The bones of a human face may be slowly evolving; the skins 
may be slightly faster evolving. The face pattern continues to 
evolve over age. One cannot assure that the face at two 
different time instants would be fully identical, although they 
might be essentially similar. Things of this kind are only 
partially repeatable. This can be further justified in software 
engineering. No human can write exactly the same program 
twice for a single software requirement specification. No 
software test process can be exactly repeated twice. The 
behavior of software systems and the software development 
process can not be fully repeatable. However different software 
systems produced from different development processes for a 
single requirement specification can work similarly and do not 
fail in most cases, although one is not quite sure how to 
measure or quantify “similarly” or “most” even in a statistical 
sense. Software systems and software development processes 
behave partially repeatably. For the example given at the 
beginning of this section, we can treat the underlying relation as 
a function of n , denoted as . Then how can 

 behave fully repeatably as a single 
relation ? In very complicated situations, can 

 behave partially repatably and 
fluctuates among a number of typical relations? We argue in 
our previous work [6, 7] that there is something lying between 
full repeatability (conventional scientific arguments) and 
miracles (the unrepeatable). This is partial-repeatability by 
which it is meant that complex phenomena may demonstrate an 
invariant property that can neither be proved in mathematics 
nor validated to a high accuracy in physics, but still (partially) 
governs the behavior of the phenomena. Partial-repeatability is 
a new kind of uncertainty that is distinctly different from 
randomness and fuzziness. If we treat the deterministic physical 
laws as type I laws (where causality dominates), the statistical 
physical laws as type II laws (where randomness dominates), 
then we can treat the laws governing the phenomena of partial 
repeatability as type III laws. In quantitative terms, a single 
relation or formula describing a type III law is not valid to a 
high accuracy (actually, a number of relations should be given), 
and substitution operations of variables may lead to significant 
errors. 

( )nf
( ) ( ) (nf ) KK ,,,, 21 ff

f
( ) ( ) ( ) KK ,,,, 21 nfff

Simply, we can identify partial–repeatability as a new kind 
of uncertainty as follows. Suppose  is the universe of 
discourse and can be accurately characterized. For example, 

 comprises all positive integers. Further, let 

{ }uU =

U A  be an object 
of interest (e.g., integers greater than 6, integers around 9). A  
is a crisp set if we can absolutely assert  or Au ∈ Au ∉  for 
all . If in general  holds to some extent and 

 to another extent simultaneously, then 
Uu ∈ Au ∈

Au ∉ A  is a fuzzy 
set. If for any  there must be  or Au ∈ uA = uA ≠ , but we 

are sure which u  leads to  or , then we say that uA = uA ≠
A  is a random variable. Randomness and fuzziness assume 

that the universe of discourse is characterized accurately. 
However in some circumstances it is nearly impossible to 
characterize the universe of discourse accurately. For example, 
suppose the universe of discourse comprises all C language 
programs. Since human writes defect-prone programs and 
defects are in various forms, it is impossible to describe all 
possible C language programs. Another example can be 
encountered when we need to extract invariant patterns from all 
possible human faces. How can all possible human faces be 
represented accurately if they constitute a single U ? In this 
way uncertainty is associated with the universe of discourse. 
Partial-repeatability emerges as a result of uncertain universes, 
no matter whether the relation between the object of interest 
and the universe of discourse is crisp, fuzzy or random. The 
object of concern is accordingly referred to as a parepeatic 
object. An example parepeatic object is the statement that the 
number of distinct usages of operators is less than that of 
distinct usages of operands in a C language program. The 
statement can hardly be assessed in a fuzzy or statistical context 
since the universe of C language programs is not accurate. 

For the book-selling example mentioned at the beginning of 
this section, the universe of discourse comprises all possible 
selling scenarios that may take place at the book-store. The 
numbers of copies of books of various types sell at the book 
store, the corresponding prices and the number of days of 
concern serve as the features or feature variables defined for the 
universe, and the given dataset 
{ }nizyxxyx iimimiii ,,2,1;,,,,,, 211 KK =yi, 2  is an 

observation of the universe in terms of the feature variables. 
The interested object is just the intended knowledge that we 
want to extract from the observation for the universe in terms of 
the feature variables. If we can accurately describe all possible 
selling scenarios, then we can argue that the uncertainty 
associated with the intended knowledge acts as randomness, 
fuzziness or a mixture of them. Otherwise the intended 
knowledge should be a parepeatic object. 

Therefore we can introduce a framework of parepeatic data 
mining as described in Figure 2.1. The universe of discourse is 
parepeatic. Notice that there are elements in the universe that 
can not be given accurately as a result of the uncertainty 
associated with the universe. For each given element of the 
universe, we define several features or feature variables, which 
will lead to various observations. Based on the features and the 
corresponding observations, we need to extract intended 
knowledge for the parepeatic universe. So, in such a 
data-mining framework, two fundamental questions must be 
addressed. First, how should the intended knowledge be 
represented? Crisp, random and fuzzy models are not enough. 
We need a new form of knowledge representation. This is the 
so-called parepeatic model that will be defined in Section 3. 
Second, how can the intended knowledge be extracted from the 
given observations? An approach will be proposed for this in 
Section 3 and detailed in the Appendix. 
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Figure 2.1 Parepeatic Data Mining 

 

III. THE PROPOSED PAREPEATIC APPROACH FOR DATA MINING 

A. Mathematical Definition of a Parepeatic Model 

Suppose  is the parepeatic universe of interest, and ( )pU X  
the vector of feature variables of interest. For each element of 

, ( )pU X  takes a vector value in , which is referred to as 

the feature universe. Let  be a mapping from 

( )fU
f

( )fU2  to V , 

where  denotes the power set of , and V  is 
referred to as the knowledge universe of interest.  is the 

parepeatic object of interest. Suppose S  is a subset of 

( )fU2 ( )fU
f

( )fU  
and defines the given set of values that X  actually takes. Then 
we can write  as  if no confusion can otherwise 

arise. Note that  actually defines the central knowledge 

that we are going to extract from S  for 

( )Sf ( )Xf
( )Sf

( )pU  with the 
understanding that X  is a simplifying representation of a 
generic element of . Let  or  be a subset of 

, or . We call the triplet 

( )pU ( )SE ( )XE
V ( ) VXE 2∈ ( ) ( )( )c,XEXf ,  a 

parepeatic model, where  is referred to as central 

knowledge

( )Xf
2,  the knowledge fluctuation zone, and c  

the corrector factor. There should hold 

( )XE
( ) ( ) VXEX ⊂∈

 

f  

and . [ ]1,0∈c
In software engineering, we can use the parepeatic universe 

 to represent the collection of all C language programs. 
Obviously, uncertainty is associated with the collection since it 
is nearly impossible to accurately define this collection. We 
have no idea how many C language programs there may be and 
whatever a C language program may be. This is particularly 

true if we consider the possibility that defects may be remaining 
in a C language program such that the synthetic and/or semantic 
requirements of C language are violated. Let 

( )pU

2  In our previous work [7] we call  the central function. Obviously 
function can be a form of knowledge of interest. However knowledge of interest 
can be defined in other forms such as clustering, patterns, association rules, and 
so on. 

( )Xf

[ ]τ521 ,,, xxxX K=  be the column vector of feature 
variables of interest, where τ  denotes the transpose of a matrix 
and 

operands of usages  totalofnumber    the:
operators of usages  totalofnumber    the:

operands of usagesdistinct  ofnumber    the:
operators of usagesdistinct  ofnumber    the:

code source of lines ofnumber    the:

5

4

3

2

1

x
x
x
x
x

 

X  is a simplifying representation of a C language program, 
( ) [ ) [ ) [ )∞××∞×∞=∈ ,0,0,0 LfUX . Given a set of C 

language programs, suppose we are interested in clustering 
them. Then we can define . The central 

knowledge is 

{ K,3,2,1=V }
( )Xf  that defines the best number of clusters 

that the C language programs should be divided, the fluctuation 
zone ( )XE  defines the set of all appropriate clustering, and 

 defines the degree of correctness of the clustering relation c
( ) ( )XEXf ∈ . Note that each cluster represents an 

equivalence class of C language programs in terms of X . 
Given a set of C language programs, there is a possibility that 
the given fluctuation zone  is inappropriate. For 
example, suppose the generated parepeatic model is 

( )XE

{ }( )9.0,7,5,3,2,3 . That is, the given set of C language 
programs suggests that all the C language programs should best 
be divided into 3 disjoint clusters, and it is also acceptable to 
divide all the C language programs into 2, 5, or 7 disjoint 
clusters. However these different clustering is still subject to 
uncertainty. One may argue that the best clustering that can be 
generated from the given set of C language programs should 
lead to ( ) 4=Xf . Note . We only have { 7,5,3,24 ∉ }

9.0=c  degree of confidence that ( ) ( )XEXf ∈ . 

B. Mining a Parepeatic Model from a Given Dataset 

Suppose ( ) ( ) ( ){ }nXXX ,,, 21 K  is a set of observations for 
the vector of feature variables X . We want to extract intended 
knowledge from the given dataset. Let the intended knowledge 
be represented in terms of a parepeatic model 

( ) ( )( )cXEXf ,, . In general, the parepeatic model can be 
determined as follows. 

Step 1. Obtain the dataset ( ) ( ) ( ){ }nXXX ,,, 21 K  from  

elements of the given parepeatic universe 

n
( )pU . 

Step 2. Pre-process the dataset ( ) ( ) ( ){ }nXXX ,,, 21 K  to 
remove the undersirable data or outliers. Consequently, a new 
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dataset, ( ) ( ) ( ){ }nXXX ′′′ ,,, 21 K  with , is obtained. 
The new dataset can be further transformed into 

nn ≤′

( ) ( ) ( ){ }nYYY ′′′ ,,, 21 K  if necessary. 

Step 3. Determine the knowledge fluctuation zone ( )XE  

from the dataset ( ) ( ) ( ){ }nYYY ′′′ ,,, 21 K  according to some 
evaluation criterion. 

Step 4. Determine the central knowledge ( )Xf  as a 

representative of  according to some evaluation 
criterion. 

( )XE

Step 5. Determine the correctness factor c  finally. 
In Step 3 a sampling technique is applied to sample a number 

of subsets of the data from the given dataset for the purpose of 
determining the knowledge fluctuation zone. These sampled 
data can be treated as the training dataset of the fluctuation 
zone. A sampling technique is applied also in Step 5 for the 
purpose of determining the correctness factor. The resulting 
data can be treated as the validation dataset of the fluctuation 
zone. Note that the above 5 steps for parepeatic data mining is 
rather abstract. The Appendix details how a parepeatic model 
as a new form of knowledge representation is generated from a 
given dataset, where a new criterion is introduced to measure 
the quality or performance of conventional data clustering in 
Step (11) of the algorithm detailed in the Appendix. The new 
criterion takes account of not only the homogeneity within each 
cluster and separability between the distinct clusters, but also 
the number of distinct clusters. 

C. Discussion 
One may observe that there is some similarity between a 

parepeatic model presented in Section 3.1 and a confidence 
interval representation in conventional statistical setting. 
However we should note that there are several essential 
differences between them. First, in conventional statistical 
interval estimation the parameter under estimation is given a 
priori. In a parepeatic model the perepeatic object of interest or 
the central knowledge  must be generated from the 
given dataset. It is not given a priori. A given dataset may 
generate different central knowledge, depending on the used 
generation criterion. Second,  is widely interpreted. It 
can represent clustering, patterns, scenarios, association rules 
and so on, depending on application context of interest. 

( )Xf

( )Xf

( )Xf  
is not stuck to a particular parameter. Finally, as we will 
observe more clearly in the rest of this paper, no statistical 
assumptions are taken for determining a parepeatic model. 
However statistical assumptions are essential for conventional 
interval estimations. 

Notice the parepeatic data mining algorithm presented in 
Section 3.1 and the Appendix is closely related to data 
clustering. This is because we assume the knowledge universe 
characterizes the number of disjoint clusters of the parepeatic 
universe. That is, the central knowledge represents the number 
of clusters. However the algorithm presented in this paper 

differs from existing clustering algorithms in data mining [8] at 
least in two dimensions. First, existing data clustering 
algorithms measure the quality of clustering in terms of the 
homogeneity within each cluster and separability between the 
distinct clusters, but the number of distinct clusters is not taken 
into account. This is not true for the algorithm presented in this 
paper. Second, existing clustering algorithms generate a 
partition of the universe of discourse or the central knowledge. 
They do not produce the knowledge fluctuation zone or 
correctness factor. 

In general, the essential difference between existing 
approaches to data mining and the parepeatic data mining 
approach lies in the different philosophies they follow and the 
different knowledge representation models they adopt. The 
existing approaches assume that the universe of discourse is 
accurately given and no partial-repeatability is involved. The 
adopted knowledge representation model is actually given in 
terms of central knowledge which can be clusters, statistical 
models, fuzzy models, decision trees, neural networks, 
induction rules and so on. On the other hand, the parepeatic 
approach assumes that the universe of discourse involves 
uncertainty and can not be given accurately. The adopted 
knowledge representation model comprises not only central 
knowledge, but also a knowledge fluctuation zone and a 
correctness factor. A parepeatic model coincides with an 
existing model if the knowledge zone contains only the central 
knowledge and the correctness factor is equal to one. The 
existing knowledge representation models can be treated as a 
special class of parepeatic models. 

Here we note that data mining is related to the so-called 
granular computing [9]. Data clustering results in a number of 
disjoint clusters, which can each be treated as an information 
granule. Following this philosophy, we can see that there exists 
potential for the parepeatic data mining approach to be 
interpreted from the granular computing perspective. 

 

IV. EXPERIMENTAL RESULTS IN SOFTWARE DATA MINING 
Software data mining, in some sense, can be traced back to 

Halstead’s work on software science [10], although he neither 
adopted the terminology of data mining and nor recognized the 
importance of data mining. Halstead argued that there existed 
physics-like laws that obeyed each piece of software. He 
defined a number of software metrics such as those defined in 
Section 3 and proposed a set of the so-called software science 
formulae for these metrics. Empirical data were then collected 
from real software programs to validate the proposed formulae. 
We can treat these formulae as intended knowledge or intended 
laws and thus Halstead’s work can be treated as a kind of 
software laws mining. 

Unfortunately, as observed in our previous work [6, 7], 
Halstead’s work still follows the philosophy of full 
repeatability and thus fails to stand. As argued in Section 2, the 
universe of software programs is parepeatic and thus software 
laws should be formulated in terms of parepeatic models. The 
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algorithm described in the Appendix can be employed to 
extract the required parepeatic models. 

In order to test the algorithm described in the Appendix, we 
collected a set of 5437 C language programs. Some of the 
programs were downloaded from open source Web sites, and 
some of them came from undergraduate and graduate students’ 
projects. For each program, we obtained a data point as that 
defined in Section 3. This has been performed in an automatic 
data collection tool. After the data pre-processing (i.e., Step (2) 
of the algorithm proposed in the Appendix), the dataset was 
reduced to a new dataset comprising 3471 data points. Figure 
4.1 shows the histograms of these data points for  

and . This new dataset (
421 ,,, xxxx

5x ( ) ( ) ( ){ }347121 ,,, TTT K  as 
specified in Step (2) in the algorithm described in Appendix) 
was then used to generate the required parepeatic model. 

  

49 50 100
300

1500

1742

0
0

200
400
600
800

1000
1200
1400
1600
1800
2000

      50      100     200     500    1000   5000  >5000

 
(a) Number of lines of source code 

 

147

510
392 400 451

1841

0

200

400

600

800

1000

1200

1400

1600

1800

2000

                       10       20       30        40        50
>50

 
(b) Number of Distinct Usages of Operators 
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(e) Number of Total Usages of Operands 

Figure 4.1 Histograms of Software Metrics for the Dataset 
 
We carried out five experiments for the dataset 
( ) ( ) ( ){ }347121 ,,, TTT K , that is, the algorithm described in the 

Appendix was applied for 5 times. In Steps (10) and (15) we 
applied a cut-set-based fuzzy clustering algorithm to do 
clustering, where the cut level was chosen as 0.975. Table 4.1 
summarizes the experimental results. Different experiments 
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generated the training datasets of different sizes. However the 
validation datasets generated in these experiments had the same 
size ( 100≡cκ ). 

 
TABLE 4.1 EXPERIMENTAL RESULTS FOR PAREPEATIC SOFTWARE DATA 

MINING 

( ) 25,41.0,36.0,23.0 321 ==== Nwww
Correctness factor 

 c
Experi
ment 
No. 

κ
 

Size of 
knowled

ge 
fluctuati
on zone 

Central 
knowledge 

 ( )Xf
cκ

 0ε =0.

001 
0ε =0.

005 
1 35 28 <11, 0.537088> 10

0 
0.91 0.97 

2 13
5 

133 <11, 0.537075> 10
0 

0.92 0.97 

3 15
5 

153 <10, 0.520748> 10
0 

0.94 0.87 

4 16
5 

163 <10, 0.520748> 10
0 

0.91 0.99 

5 17
5 

173 <10, 0.520748> 10
0 

0.92 0.99 

 
From the experimental results we can see that: 
(1). As expected, greater value of 0ε  leads to greater value 

of . This is understandable since Step (26) of the algorithm 
described in the Appendix implies that more data points are 
acceptable for the relation  if greater value of 
threshold is adopted.  

c

( ) ( )XEXf ∈

(2). As the size of the training dataset grows, the central 
knowledge tends to be stable, although the size of the 
corresponding fluctuation zone tends to grow too. The 
corresponding correctness factor also behaves steadily. This 
implies that the generated parepeatic models are trustworthy 
and the algorithm described in the Appendix does work well. 

 

V. CONCLUSION  
Partial-repeatability or parepeatics emerges in complex 

phenomena if the complex phenomena demonstrate an 
invariant property that can neither be proved in mathematics 
nor validated to a high accuracy in physics, but still (partially) 
governs the behavior of the phenomena. This is particularly 
true in software engineering since software is developed by 
human. Software development processes and software system 
behavior are too complicated to be characterized accurately 
even in a statistical sense, but they still work and tend to serve 
human requirements, although they happen to fail to function. 
The notion of partial-repeatability was proposed in our 
previous work to contrast that of full repeatability that has been 
followed as the top criterion in traditional science and 
technology [6, 7]. By full repeatability it is meant that scientific 
arguments can either be proved repeatably in mathematics or be 
validated to a high accuracy repeatably (even in a statistical 
sense) in physics (experimentally). 

 
In the preceding sections we have further clarified the notion 

of partial-repeatability as a new kind of uncertainty that is 
distinctly different from randomness and fuzziness. Suppose 
the universe of discourse is given and characterized accurately 
and an object is of interest. If the relation between the object 
and the universe is crisp, or each of the elements of the universe 
can be clearly identified to belong or not to belong to the object, 
then the relation is binary and the object is a crisp set. If the 
relation can be determined clearly, and each of the elements of 
the universe can belong to the object to some extent, and cannot 
belong to the object to another extent simultaneously, then the 
relation is fuzzy and the object is a fuzzy one. If each of the 
elements of the universe must either belong to or not belong to 
the object, but which elements belong to the object is not 
clearly determined, then the relation is random and the object is 
a random one. On the other hand, if the universe of discourse 
cannot be characterized accurately, then partial-repeatability 
emerges as a new kind of uncertainty. The corresponding 
object is a parepeatic one. An example universe is the one that 
comprises all possible C language programs. 

Following the notion of partial-repeatability, we have 
proposed a new approach to data mining. In this approach the 
intended knowledge that is to be extracted from the given 
dataset is treated as a parepeatic object and represented in terms 
of parepeatic models. A parepeatic model consists of central 
knowledge, a knowledge fluctuation zone, and a correctness 
factor. Although a parepeatic model looks similar to 
conventional statistical confidence interval in some sense, there 
are essential differences between them. We have shown how to 
generate a parepeatic model (intended knowledge) from the 
given datset. The effectiveness of the proposed approach is 
justified by our experiments with software data mining. 

The importance of the work presented in this paper is 
two-fold. First, partial-repeatability is clearly identified as a 
new kind of uncertainty that is distinctly different from 
randomness and fuzziness. This implies that we need to 
develop new mathematical framework to characterize this new 
kind of uncertainty and explore the underlying physical laws 
(or type III laws as mentioned in our previous work [7]). 
Second, a new framework of data mining, i.e., parepeatic data 
mining, is proposed. In this framework the intended knowledge 
is treated as a parepeatic object and parepeatic models are 
treated as a new form of knowledge representation. A lot of 
research work can be done by extending existing frameworks 
of data mining to the parepeatic counterpart. Pareaptic data 
mining reduces to conventional data mining if no uncertainty is 
associated with the underlying universe of discourse. This 
paper is only a small step towards to a new research direction 
and is speculative somewhat. 

APPENDIX 
Algorithm of Mining a Parepeatic Model: 
In the context of software data mining, suppose the given 

parepeatic universe ( )pU  comprises all possible C language 
programs and the feature variables are  as given 
in Section 3.1. Given the observations 

521 ,,, xxx K
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( ) ( ) ( ){ }nXXX ,,, 21 K , with , 
where 

( ) ( ) ( ) ( )[ ]τjjjj xxxX 521 ,,, K=
τ  denotes the transpose of a matrix (vector) we want to 

cluster them into several classes. After data pre-processing, we 
have ( ) ( ) ( ){ }nYYY ′′′ ,,, 21 K  and want to divide these data into 

a number of disjoint classes, say, { , where }mDDD ,,, 21 K

( ) ( ){ }inii
i YYD ,,1 K= , )(, jiDD ji ≠=∩ φ , 

. nnnn m ′=+++ L21

In general, the amount of observations 
( ) ( ) ( ){ }nXXX ,,, 21 K  is huge and these observations are not 

used in total to determine the knowledge fluctuation zone and 
the correctness factor. Rather, the sampling techniques may be 
applied. More specifically, we may follow the following the 
procedure to do parepeatic software data mining. 

Step (1). Obtain the dataset ( ) ( ) ( ){ }nXXX ,,, 21 K  from 

 elements of the given parepeatic universe n ( )pU , where 

 ( ) ( ) ( ) ( )[ ]τjjjj xxxX 521 ,,, K=
Step (2). Remove all the data points which satisfy the 

condition , that is, the data points with no 
usages of any operators or operands are treated as outliers. The 
resulting dataset with outliers being removed is denoted as 

0521 =xxx L

( ) ( ) ( ){ }nTTT ,,, 21 K , with . ( ) ( ) ( ) ( )[ ]τjjjj tttT 521 ,,, K=
Step (3). Determine the maximal number of disjoint classes 

that the dataset is allowed to be divided. Denote this number as 
. N

Step (4). Determine the number of sampling sets which are 
to be obtained from ( ) ( ) ( ){ }nTTT ,,, 21 K ; let the number be 
κ . 

Step (5). Let 1=α . 
Step (6). Generate a random positive integer over the range 

; this number is denoted as . [ 21, ss ] ( )αs
Step (7). Sample  data points one by one from the 

dataset 

( )αs
( ) ( ) ( ){ }nTTT ,,, 21 K  without replacement; that is, if 

( )1T  is sampled, then it will not be returned back to the sampled 
dataset and thus the resulting  data points must be distinct; 
let the resulting  data points make up the dataset 

( )αs
( )αs

( ) ( ) ( )( ){ }αsΓΓΓ ,,, 21 K , with . ( ) ( ) ( ) ( )[ ]τγγγ jjjjT 521 ,,, K=

Step (8). Transform the dataset ( ) ( ) ( )( ){ }αsΓΓΓ ,,, 21 K  into 
( ) ( ) ( )( ){ }αsLLL ,,, 21 K  such that 

, ( ) ( ) ( ) ( ) ( )iiiiiL 323222 loglog γγγγ += ( )αsi ,,2,1 K= ; that 

is,  is the Halstead length of a C language program. ( )iL
Step (9). Transform the dataset ( ) ( ) ( )( ){ }αsLLL ,,, 21 K  into 

( ) ( ) ( )( ){ }αsYYY ,,, 21 K  such that 

( )
( ) ( )

( ) ( )i

i

i

i

i

i

i

i

LL

LL
Y

αα

α

≤≤≤≤

≤≤

−

−
=

11

1

minmax

min
, ( )αsi ,,2,1 K= ; that is, the 

dataset is normalized and ( ) [ ]1,0∈iY , ( )αsi ,,2,1 K= . 

Step (10). Cluster the dataset ( ) ( ) ( )( ){ }αsYYY ,,, 21 K  into a 

number of disjoint classes, say, ( ) ( ) ( )( )ααα
αnCCC ,,, 21 K  

according to some clustering algorithm (e.g., fuzzy clustering 
algorithm); there hold  for ( ) ( )αα

kj CC ∩ kj ≠ , 
( ) ( ) ( ) ( ){ }αααα

jjdjjj rrrC ,,, 11 K= , and 

( ) ( ) ( ) ( ) ( ) ( )( ){ }α

α

ααα s
n YYYCCC ,,, 21

21 KL =∪∪∪ . 

Step (11). Evaluate the performance of the resulting 
clustering ( ) ( ) ( )( )ααα

αnCCC ,,, 21 K  as 

( )
( )

⎪⎩

⎪
⎨
⎧

∞

≤++
=

otherwise                                    

if32
1 Nn

N
w

D
w

Rw
p αα

α

α  

where [ ]1,0,, 321 ∈www  are weighting coefficients, with 

1321 =++ www , ( ) ( ) ( )α
ν

α
βνβ

α

α
jjdnj

rrR
j

−=
≤≤≤≤ ,11

maxmax , 

( ) ( ) ( ) ( )αα
ν

α
βνβ

α

α
jiddnji

rrD
ji

−=
≤≤≤≤≤≤ 1,1,1

minmin ; that is, R  is the 

maximum of the diameter of a class, and  the minimum of 
the distances between two distinct classes. A good clustering 
should lead to small 

( )αD

( )αR  and large . So, the smaller ( )αD
( )αp , the better the clustering. 
Step (12). Obtain the result of the clustering as a data pair 

( )αα pn , . 

Step (13). Let 1+= αα ; if κα ≤ , go to Step (6). 
Step (14). Obtain the result of data sampling and processing 

as a new dataset ( ) ( ) ( )( )κκ pnpnpn ,,,,,, 2211 K . 
Step (15). Obtain the knowledge fluctuation zone by 

removing the possible outliers from the dataset 
( ) ( ) ( )( )κκ pnpnpn ,,,,,, 2211 K ; 

( ) ( ) ( ) ( )( )κκ ′′′′′′= pnpnpnXE ,,,,,, 2211 K , with 
κκ ≤′ ; that is, the dataset 

( ) ( ) ( )( )κκ pnpnpn ,,,,,, 2211 K  is divided into two classes, 
the fluctuation zone and the outliers, by using some clustering 
algorithm (e.g., fuzzy clustering algorithm). 

Step (16). Transform the dataset 
( ) ( ) ( )( )κκ ′′′′′′ pnpnpn ,,,,,, 2211 K  into 

( ) ( ) ( )( )κκηηη ′′′′′′ ppp ,,,,,, 2211 K , with 
N
nα

αη = . 
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Step (17). Let ∑
′

=′
=

κ

α
αη

κ
η

1

1
, ∑

′

=′
=

κ

α
ακ 1

1 pp  

Step (18). Let ( ) ( )22

1
minarg pp −+−=

′≤≤ αακα
ηης ; 

that is, ( )ςςη p,  is the one that is closest to ( )p,η . 

Step (19). Choose ( )ςςη p,  as the central knowledge, that 

is, ( ) ( )ςςη pXf ,= . 

Step (20). Determine the number of sampling sets which are 
to be obtained from ( ) ( ) ( ){ }nTTT ,,, 21 K ; let the number be 

cκ . 
Step (21). Re-perform Steps (5) to (13) except that κ  is 

replaced by cκ . 
Step (22). Obtain the output of Step (21) as a new dataset 

( ) ( ) ( )( )
cc

qlqlql κκ ,,,,,, 2211 K  as that obtained in Step (14); 

this dataset is used to assess the knowledge fluctuation zone 
and obtain the corresponding correctness factor. 

Step (23). Transform the dataset 
( ) ( ) ( )( )

cc
qlqlql κκ ,,,,,, 2211 K  into 

( ) ( ) ( )( )
cc

qqq κκωωω ,,,,,, 2211 K , with 
N
lα

αω = . 

Step (24). Let ( ) ( )22

1
min jijiji pq −+−=

′≤≤
ηωε

κ
, 

where ( )jj p,η  is specified in Step (16); iε  measures the 

distance between the data point (  and the knowledge 
fluctuation zone. 

)ii ql ,

Step (25). Determine a distance threshold 0ε . 
Step (26). Determine the correctness factor as 

∑
=

=
c

i
i

c

c
κ

δ
κ 1

1
, where 

⎩
⎨
⎧ ≤

=
otherwise      0

 if       1 0i εε
δ i  

Step (27). 
End. 
 
Remarks 
(1). The central knowledge we want to extract from the given 

dataset by using the above algorithm is an approximate 
clustering. Different intended central knowledge should lead to 
different data mining algorithm. In our previous work [7], the 
intended central knowledge is a functional relation among 
several feature variables. 

(2). Data pre-processing takes place in Step (2). However it 
also takes place in Steps (7), (8), (9) and (21). That is, besides 
in the beginning of data mining, data pre-processing may take 
place throughout the rest process of data mining. 

(3). Steps (3) to (15) are devoted to determining the 
fluctuation zone, Steps (16) to (19) to determining the central 
knowledge, and Steps (20) to (26) to determining the 
correctness factor. 

(4). The sampling technique plays a major role in the 
parepeatic data mining algorithm given above. It is used both in 
determining the fluctuation zone and in determining the 
correctness factor. The dataset 
( ) ( ) ( )( )κκ pnpnpn ,,,,,, 2211 K  obtained in Step (14) can 

be treated as the training dataset for the parepeatic model of the 
intended knowledge, whereas the dataset 
( ) ( ) ( )( )

cc
qlqlql κκ ,,,,,, 2211 K  obtained in Step (22) can be 

treated as the validation dataset for the parepeatic model. 
(5). The performance evaluation criterion  adopted in 

Step (11) is key part of the intended knowledge. It evaluates 
how good the clustering is. It makes trade-offs among the 
diameters of a class, the distances among distinct classes, and 
the number of distinct classes by using the weighting 
coefficients  and . The allowed maximal number of 

distinct classes, N , is also required for the performance 
evaluation.  

αp

21, ww 3w

(6). In determining the correctness factor c , the distance 
threshold 0ε  must be specified. Different values of 0ε  will 
lead to different values for c . 

(7). Besides the parameters 0321 ,,,, εNwww , the 
algorithm given above also requires the positive integer interval 
[ ]21, ss  to be specified for the sampling processes of 
determining the fluctuation zone and the correctness factor. 
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