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A Reliable Basis for Approximate Association
Rules

Yue Xu, Yuefeng Li, Gavin Shaw

Abstract—For most of the work done in developing association
rule mining, the primary focus has been on the efficiency of
the approach and to a lesser extent the quality of the derived
rules has been emphasized. Often for a dataset, a huge number
of rules can be derived, but many of them can be redundant
to other rules and thus are useless in practice. The extremely
large number of rules makes it difficult for the end users to
comprehend and therefore effectively use the discovered rules
and thus significantly reduces the effectiveness of rule mining
algorithms. If the extracted knowledge can’t be effectively used
in solving real world problems, the effort of extracting the
knowledge is worth little. This is a serious problem but not
yet solved satisfactorily. In this paper, we propose a concise
representation called Reliable Approximate basis for representing
non-redundant approximate association rules. We prove that the
redundancy elimination based on the proposed basis does not
reduce the belief to the extracted rules. We also prove that all
approximate association rules can be deduced from the Reliable
Approximate basis. Therefore the basis is a lossless representation
of approximate association rules.

Index Terms—Non-redundant association rule mining, approx-
imate association rules, closed itemsets, certainty factor.

I. INTRODUCTION

One big problem in association mining is the huge amount
of the extracted rules which severely hinders the effective use
of the discovered knowledge. Moreover, many of the extracted
rules produce no value to the user or can be replaced by
other rules thus considered redundant. Many efforts have been
made on reducing the size of the extracted rule set. The ap-
proaches can be roughly divided to two categories, subjective
approach and objective approach. In the subjective approach
category, one technique is to define various interestingness
measures and only the rules which are considered interesting
based on the interesting measurements are generated[2], [3].
Another technique in this category is to apply constraints
or templates to generate only those rules that satisfy the
constraints or templates [1], [8], [11], [15]. In the objective
approach category, the main technique is to construct concise
representative bases of association rules without using user-
dependent constraints. A concise representative basis contains
much smaller number of rules and is considered lossless
since all association rules can be derived from the basis. A
number of concise representations of frequent patterns have
been proposed, one of them, namely the closed itemsets, is of
particular interest as they can be applied for generating non-
redundant rules [9], [12], [19]. The notion of closed frequent
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itemset has its origins in the mathematical theory of Formal
Concept Analysis introduced in the early 80s’[5], [16]. The
use of frequent closed itemsets can greatly reduce the number
of extracted rules and also provides a concise representation
of association rules [13], [20]. Even though the number of
extracted rules can be reduced by only using frequent closed
itemsets, however, a considerable amount of redundancy still
remains.

Rules with confidence less than 1 are called Approximate
rules and rules with confidence equal to 1 are called Exact
rules. We have proposed a method to extract non-redundant
exact rules [17]. In this paper, we present a concise repre-
sentation basis called Reliable Approximate basis to extract
non-redundant approximate rules. Most importantly, in this
paper, we show that the redundancy elimination based on the
proposed basis will not reduce the inference capacity of the
extracted non-redundant rules. The certainty factor (CF) is an
important and popular used measure of belief to inference
rules [14]. We prove that the redundant rules eliminated by our
approach have less or equal CF belief values than that of their
corresponding non-redundant rules, and thus the elimination
of such rules will not reduce the belief to the extracted rules.
Moreover, we prove that all approximate association rules
can be deduced from the reliable approximate basis, thus
the reliable approximate basis is a lossless representation of
approximate association rules.

The paper is organized as follows. Section II discusses
redundancy in association rules and the elimination of the
redundancy. Section III firstly introduces the proposed reliable
basis for extracting non-redundant approximate rules, then
presents a method to derive all approximate rules from the
reliable basis. Experimental results are given in Section IV.
Section V briefly discusses some related work. Finally, Section
VI concludes the paper.

II. REDUNDANCY AND REDUNDANCY ELIMINATION

Let I = {I1, I2, . . . , Im} be a set of m distinct items,
t be a transaction that contains a set of items such that
t ⊆ I , T be a database containing different identifiable
transactions. An association rule is an implication in the form
of X ⇒ Y , where X, Y ⊂ I are sets of items called itemsets,
and X

⋂
Y = ∅. Association rule mining is to find out

association rules that satisfy the predefined minimum support
(denoted as minsupp)and confidence (denoted as mincof) from
a given database. The problem is usually decomposed into
two subproblems: to find frequent itemsets and to generate
association rules from those frequent itemsets. For the popular
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TABLE I
ASSOCIATION RULES (MUSHROOM DATASET, MINSUPP=0.8,

MINCONF=0.8)

Rules (supp, conf)
1 gill-attachment-f ⇒ veil-type-p (0.97415,1.0)
2 veil-color-w ⇒ veil-type-p (0.97538 ,1.0)
3 gill-attachment-f,veil-color-w ⇒ veil-type-p (0.97317,1.0)
4 gill-attachment-f,ring-number-o ⇒ veil-type-p (0.89808,1.0)
5 gill-spacing-c,veil-color-w ⇒ veil-type-p (0.81487,1.0)
6 gill-attachment-f,gill-spacing-c ⇒ veil-type-p,veil-color-w (0.81265,1.0)
7 gill-attachment-f,gill-spacing-c⇒ veil-type-p (0.81265,1.0)
8 gill-attachment-f,gill-spacing-c,veil-type-p ⇒ veil-color-w (0.81265 ,1.0)
9 gill-attachment-f ⇒ veil-type-p,veil-color-w ( 0.97317,0.99899 )
10 gill-attachment-f ⇒ veil-type-p,ring-number-o (0.89808,0.92191)
11 veil-color-w ⇒ gill-spacing-c,veil-type-p (0.81487,0.83544)
12 veil-color-w ⇒ gill-attachment-f,gill-spacing-c,veil-type-p (0.81265,0.83317)
13 gill-attachment-f,veil-color-w ⇒ gill-spacing-c,veil-type-p (0.81265,0.83506)
14 gill-attachment-f,veil-color-w ⇒ veil-type-p,ring-number-o (0.8971,0.92183)
15 gill-attachment-f,ring-number-o ⇒ veil-type-p,veil-color-w (0.8971,0.9989)
16 gill-spacing-c,veil-color-w ⇒ gill-attachment-f,veil-type-p (0.81265,0.99728)
17 gill-attachment-f ⇒ veil-color-w (0.97317,0.99899)
18 gill-attachment-f ⇒ ring-number-o (0.89808,0.92191)
19 gill-attachment-f,veil-color-w ⇒ gill-spacing-c (0.81265,0.83506)
20 gill-attachment-f,ring-number-o ⇒ veil-color-w (0.8971,0.9989)

TABLE II
CLOSED ITEMSETS AND MINIMAL GENERATORS (MUSHROOM DATASET,

MINSUPP=0.8)

Closed itemsets Minimal Generators Support
{ veil-type-p } 1.0
{gill-attachment-f,veil-type-p} {gill-attachment-f} 0.97415
{gill-spacing-c,veil-type-p} {gill-spacing-c} 0.8385
{veil-type-p,veil-color-w} {veil-color-w} 0.97538
{veil-type-p,ring-number-o} {ring-number-o} 0.9217
{gill-attachment-f, {gill-attachment-f,
veil-type-p,veil-color-w} veil-color-w} 0.97317
{gill-attachment-f,veil-type-p, {gill-attachment-f,
ring-number-o} ring-number-o} 0.8981
{gill-spacing-c,veil-type-p, {gill-spacing-c,
veil-color-w} veil-color-w} 0.81487
{gill-attachment-f,gill-spacing-c, {gill-attachment-f,
veil-type-p,veil-color-w} gill-spacing-c} 0.81265
{gill-attachment-f,veil-type-p, {veil-color-w,
veil-color-w,ring-number-o} ring-number-o} 0.8971

used Mushroom dataset (http://kdd.ics.uci.edu/), with minimal
support 0.8 and minimal confidence 0.8, we can generate 88
association rules, 20 of them are displayed in Table I.

The definition of closed itemsets comes from the closure
operation of the Galois connection [5]. Let I denote the set of
items and T denote the set of transactions, 2I and 2T are the
power set of I and T , respectively. ∀i ∈ I and ∀t ∈ T , if item
i appears in transaction t, then i and t has a binary relation δ
denoted as iδt. The Galois connection of the binary relation
is defined by the following mappings where X ⊆ I , Y ⊆ T :

τ : 2I → 2T , τ(X) = {t ∈ T |∀i ∈ X, iδt} (1)

γ : 2T → 2I , γ(Y ) = {i ∈ I|∀t ∈ Y, iδt} (2)

τ(X) is called the transaction mapping of X . γ(Y ) is called
the item mapping of Y . γ ◦ τ(X), called the closure of X ,
gives the common items among the transactions each of which
contains X .

Definition 1: (Closed Itemsets) Let X be a subset of I . X
is a closed itemset iff γ ◦ τ(X) = X .

Definition 2: (Generators) An itemset g ∈ 2I is a generator
of a closed itemset c ∈ 2I iff c = γ ◦ τ(g) and g ⊂ γ ◦ τ(g).
g is said a minimal generator of the closed itemset set c if
6 ∃g′ ⊂ g such that γ ◦ τ(g′) = c.

For the Mushroom dataset, the closed itemsets and their
minimal generators (minsupp=0.8) are given in Table II.

A challenge to association mining is the huge amount of
the extracted rules. Recent studies have shown that using
closed itemsets and generators to extract association rules
can greatly reduce the number of extracted rules [13], [19].
However, considerable amount of redundancy still exists in the
extracted association rules extracted based on closed itemsets.
In this section, firstly some examples are given to show the
existence of redundancy in the extracted rules, then we define
the redundancy to be removed, and at the end of this section
we prove that the elimination of the defined redundancy won’t
reduce the belief to the extracted non-redundant rules. In
Section 3, we describe a concise representation of the defined
non-redundant association rules, from which all approximate
association rules can be derived.

A. Redundancy Definition
The rules in Table I are considered useful based on the

predefined minimum support and confidence. However, some
of the rules actually do not contribute new information. The
consequent concluded by some rules can be obtained from
some other rules without requiring more conditions but with
higher or the same confidences. For example, in order to
be fired the rules 5, 8, 13, and 20 in Table I require more
conditions than that of rules 2, 6, 11, and 9, respectively, but
conclude the same or less results which can be produced by
rules 2, 6, 11, and 9. That means, without rules 5, 8, 13,
and 20, we still can achieve the same result using other rules.
Therefore, rules 5, 8, 13, and 20 are considered redundant to
rules 2, 6, 11, and 9, respectively. Comparing to rules 2, 6,
11, and 9, the redundant rules 5, 8, 13, and 20 have a longer
or the same antecedent and a shorter or the same consequent,
respectively, and the confidence of the redundant rules is not
larger than that of their corresponding non-redundant rules.
The following definition defines such kind of redundant rules.

Definition 3: (Redundant rules) Let X ⇒ Y and X ′ ⇒ Y ′

be two association rules with confidence cf and cf ′, respec-
tively. X ⇒ Y is said a redundant rule to X ′ ⇒ Y ′ if X ′ ⊆ X ,
Y ⊆ Y ′, and cf ≤ cf ′.

Based on Definition 3, for an association rule X ⇒ Y , if there
does not exist any other rule X ′ ⇒ Y ′ such that the confidence
of X ′ ⇒ Y ′ is the same as or larger than the confidence of
X ⇒ Y , X ′ ⊆ X or Y ⊆ Y ′, then X ⇒ Y is non-redundant.
Definition 3 is similar to Pasquier’s definition of min-max
association rules [13]. However, Pasquier’s definition requires
that a redundant rule and its corresponding non-redundant rule
must have identical confidence and identical support, while
Definition 3 here only requires that the confidence of the
redundant rule is not larger than that of its corresponding non-
redundant rule. In the following subsection, we prove that the
requirement relaxation to redundancy will not reduce the belief
to the extracted non-redundant rules.

B. Redundancy Elimination
The certainty factor theory were first introduced in MYCIN

[14] to express how accurate and truthful a rule is and how
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reliable the antecedent of the rule is. The certainty factor the-
ory is based on two functions: measure of belief MB(X, Y )
and measure of disbelief MD(X, Y ) for a rule X ⇒ Y , as
given below.

MB(X, Y ) =

{
1 P (Y ) = 1
0 P (Y/X) ≤ P (Y )
P (Y/X)−P (Y )

1−P (Y ) otherwise
(3)

MD(X, Y ) =

{
1 P (Y ) = 0
0 P (Y/X) ≥ P (Y )
P (Y )−P (Y/X)

P (Y ) otherwise
(4)

where, in the context of association rules, P (Y/X) and P (Y )
are the confidence of the rule and the support of the conse-
quent, respectively. The values of MB(X, Y ) and MD(X, Y )
range between 0 and 1 measuring the strength of belief or
disbelief in consequent Y given antecedent X . MB(X, Y )
weighs how much the antecedent X increases the possibility
of Y occurring. If the antecedent completely support the
consequent, then P (Y/X) will equal to 1 thus MB(X, Y ) will
be 1. MD(X, Y )=1 indicates that the antecedent completely
denies the consequent thus the disbelief in the rule reaches its
highest value. The total strength of belief or disbelief in the
association captured by the rule is measured by the certainty
factor which is defined as follows:

CF (X, Y ) = MB(X, Y )−MD(X, Y ) (5)

The value of a certainty factor is between 1 and -1. Negative
values represent cases where the antecedent is against the con-
sequent; positive values represent that the antecedent supports
the consequent; while CF=0 means that the antecedent does
not influence the belief to Y . Obviously, association rules with
high CF values are more useful since they represent strong
positive associations between antecedents and consequents.
Indeed, the aim of association rule mining is to discover strong
positive associations from large amount of data. Therefore, we
propose that the certainty factors can be used to measure the
strength of discovered association rules.
Theorem 1 below states that the CF value of a redundant
rule defined by Definition 3 will never be larger than the CF
value of its corresponding non-redundant rules. It means that,
the association between the antecedent and consequent of the
non-redundant rule is stronger than that of the redundant rule.

Theorem 1: Let X ⇒ Y and X ′ ⇒ Y ′ be two associ-
ation rules. If Y ′ ⊆ Y , and P (Y/X) ≥ P (Y ′/X ′), then
CF (X, Y ) ≥ CF (X ′, Y ′).

Proof: From Equation (5) we have
CF (X, Y ) - CF (X ′, Y ′)
= MB(X, Y )-MB(X ′, Y ′)+MD(X ′, Y ′)-MD(X, Y )

1) Assuming that P (Y ′/X ′) ≥ P (Y ′). From condition Y ′ ⊆ Y ,
we have P (Y ) ≤ P (Y ′). Because P (Y/X) ≥ P (Y ′/X ′),
so we have P (Y/X) ≥ P (Y ). In this case, MD(X ′, Y ′)-
MD(X, Y ) = 0. To prove the theorem, we need to prove
that MB(X, Y ) - MB(X ′, Y ′) ≥ 0. From Equation (3), we
have:
MB(X, Y ) - MB(X ′, Y ′) = P (Y/X)−P (Y )

1−P (Y )
−

P (Y ′/X′)−P (Y ′)
1−P (Y ′)

= (P (Y/X)−P (Y ))(1−P (Y ′))−(P (Y ′/X′)−P (Y ′))(1−P (Y ))
(1−P (Y ))(1−P (Y ′))

= P (Y/X)−P (Y ′/X′)+P (Y ′/X′)P (Y )−P (Y/X)P (Y ′)−P (Y )+P (Y ′)
(1−P (Y ))(1−P (Y ′))

Let α = P (Y/X) − P (Y ′/X ′), the above expression
becomes:
= α+P (Y ′/X′)P (Y )−(α+P (Y ′/X′))P (Y ′)−P (Y )+P (Y ′)

(1−P (Y ))(1−P (Y ′))

= α+P (Y ′/X′)P (Y )−αP (Y ′)−P (Y ′/X′)P (Y ′)−P (Y )+P (Y ′)
(1−P (Y ))(1−P (Y ′))

= α(1−P (Y ′))+P (Y ′/X′)(P (Y )−P (Y ′))−P (Y )+P (Y ′)
(1−P (Y ))(1−P (Y ′))

= α(1−P (Y ′))+(P (Y ′)−P (Y ))(1−P (Y ′/X′))
(1−P (Y ))(1−P (Y ′))

Because P (Y ) ≤ P (Y ′) and P (Y/X) ≥ P (Y ′/X ′) which
makes α ≥ 0, we prove that the above expression ≥ 0. Hence,
MB(X, Y ) - MB(X ′, Y ′) ≥ 0

2) Assuming that P (Y ′/X ′) ≤ P (Y ′). In this situation, we
have two cases.
(i) P (Y/X) ≤ P (Y )
In this case, MB(X, Y )-MB(X ′, Y ′) = 0. To prove
the theorem, we need to prove that MD(X ′, Y ′)-
MD(X, Y ) ≥ 0. From Equation (4), we have
MD(X ′, Y ′)-MD(X, Y ) = P (Y ′)−P (Y ′/X′)

P (Y ′) − P (Y )−P (Y/X)
P (Y )

After expanding the above expression and eliminating identical
dual terms, we have
MD(X ′, Y ′)-MD(X, Y ) = P (Y/X)P (Y ′)−P (Y ′/X′)P (Y )

P (Y )P (Y ′) .

≥ P (Y/X)P (Y ′)−P (Y/X)P (Y )
P (Y )P (Y ′) .

Again, since P (Y ) ≤ P (Y ′), we get
MD(X ′, Y ′)-MD(X, Y ) ≥ 0.

(ii) P (Y/X) ≥ P (Y )
In this case, MD(X, Y )=0 and MB(X ′, Y ′) = 0. To prove
the theorem, we need to prove that
MD(X ′, Y ′)+MB(X, Y ) ≥ 0. Because P (Y ′/X ′) ≤
P (Y ′) and P (Y/X) ≥ P (Y ), from the equations (3) and
(4), it is true that
MD(X ′, Y ′)+MB(X, Y ) ≥ 0

Combining the results of the above cases, we have
CF (X, Y ) - CF (X ′, Y ′) ≥ 0, hence
CF (X, Y ) ≥ CF (X ′, Y ′)

According to Theorem 1, the CF value of a redundant
rule defined by Definition 3 is never higher than that of its
corresponding non-redundant rule and thus the elimination of
such redundant rules is reliable since it won’t reduce the belief
to the extracted non-redundant rules.

III. CONCISE BASIS FOR NON-REDUNDANT APPROXIMATE
ASSOCIATION RULES

Pasquier et al. [13] proposed a condensed basis to represent
non-redundant approximate association rules, which is defined
as follows:

Definition 4: (Min-max Approximate Basis) Let C be the
set of frequent closed itemsets and G be the set of minimal
generators of the frequent closed itemsets in C. The min-max
approximate basis is:

MinMaxApprox = {g ⇒ (c\g)|c ∈ C, g ∈ G, γ ◦ τ(g) ⊂ c}

For the 88 rules extracted from the Mushroom dataset
mentioned above, there are 71 approximate rules. Based on
the Min-max approximate basis, 25 approximate rules, as
displayed in Table III, are extracted and considered non-
redundant in terms of the redundancy definition given in [13].
However, under Definition 3, some of the rules extracted from
the min-max approximate basis are redundant such as rules
22 to 25 which are redundant to rules 17, 11, 10, and 16,
respectively.
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TABLE III
NON-REDUNDANT APPROXIMATE RULES EXTRACTED FROM MIN-MAX

APPROXIMATE BASIS (MUSHROOM DATASET, MINSUPP=0.8,
MINCONF=0.8)

Rules (supp, conf)
1 veil-type-p ⇒ gill-attachment-f (0.97415,0.97415)
2 veil-type-p ⇒ gill-spacing-c (0.8385 ,0.8385)
3 veil-type-p ⇒ veil-color-w (0.97538,0.97538)
4 veil-type-p ⇒ ring-number-o (0.92171,0.92171)
5 veil-type-p ⇒ gill-attachment-f,veil-color-w (0.97317,0.97317)
6 veil-type-p ⇒ gill-attachment-f,

ring-number-o (0.89808,0.89808)
7 veil-type-p ⇒ gill-spacing-c, veil-color-w ( 0.81487,0.81487)
8 veil-type-p ⇒ gill-attachment-f,gill-spacing-c,

veil-color-w (0.81265,0.81265)
9 veil-type-p ⇒ gill-attachment-f,veil-color-w,

ring-number-o (0.8971,0.8971)
10 gill-attachment-f ⇒ veil-type-p,

veil-color-w (0.97317, 0.99899 )
11 gill-attachment-f ⇒ veil-type-p,

ring-number-o (0.89808,0.92191 )
12 gill-attachment-f ⇒ gill-spacing-c,veil-type-p,

veil-color-w ( 0.81265,0.83422)
13 gill-attachment-f ⇒ veil-type-p,veil-color-w,

ring-number-o (0.8971,0.9209)
14 gill-spacing-c ⇒ veil-type-p,veil-color-w (0.81487,0.97181 )
15 gill-spacing-c ⇒ gill-attachment-f,veil-type-p,

veil-color-w (0.81265,0.96917)
16 veil-color-w ⇒ gill-attachment-f,

veil-type-p (0.97317, 0.99773 )
17 veil-color-w ⇒ gill-spacing-c,veil-type-p (0.81487,0.83544 )
18 veil-color-w ⇒ gill-attachment-f,gill-spacing-c,

veil-type-p(0.81265, 0.83317)
19 veil-color-w ⇒ gill-attachment-f,veil-type-p,

ring-number-o (0.8971,0.91974)
20 ring-number-o ⇒ gill-attachment-f,

veil-type-p (0.89808, 0.97436 )
21 ring-number-o ⇒ gill-attachment-f,veil-type-p,

veil-color-w (0.8971, 0.97329)
22 gill-attachment-f,veil-color-w ⇒ gill-spacing-c,

veil-type-p (0.81265,0.83506 )
23 gill-attachment-f,veil-color-w ⇒ veil-type-p,

ring-number-o (0.8971, 0.92183)
24 gill-attachment-f,ring-number-o ⇒ veil-type-p,

veil-color-w (0.8971,0.9989 )
25 gill-spacing-c,veil-color-w ⇒ gill-attachment-f,

veil-type-p (0.81265, 0.99728)

A. Reliable Approximate Basis

Corresponding to the Min-max approximate basis, we pro-
pose a more concise basis called Reliable Approximate basis
as defined in Definition 5.

Definition 5: (Reliable Approximate Basis) Let C be the
set of frequent closed itemsets and G be the set of minimal
generators of the frequent closed itemsets in C. The Reliable
approximate basis is:
ReliableApprox
= {g ⇒ (c\g)|c ∈ C, g ∈ G, γ ◦ τ(g) ⊂ c,¬(g ⊇ ((c\c′) ∪ g′))

or conf(g ⇒ (c\g)) > conf(g′ ⇒ (c′\g′))
where c′ ∈ C, g′ ∈ G, g′ ⊂ g, γ ◦ τ(g′) ⊂ c′}

The correctness of the above definition can be proved by
the following theorems and properties.

Lemma 1: Let c ∈ C and C be the set of frequent closed
itemsets, let g ∈ G and G be the set of minimal generators of
the closed itemsets in C, and γ◦τ(g) ⊂ c. If ∃c′ ∈ C, ∃g′ ∈ G,
γ◦τ(g′) ⊂ c′, g′ ⊂ g, g ⊇ ((c\c′)∪g′), and conf(g ⇒ c\g) ≤
conf(g′ ⇒ c′\g′), then g ⇒ c\g is redundant to g′ ⇒ c′\g′.

Proof: Let A = c\c′ so that c ⊆ A ∪ c′ and A ∩ c′ = ∅.
Therefore, we have c\((c\c′)∪ g′) ⊆ (A∪ c′)\(A∪ g′). From
γ ◦ τ(g′) ⊂ c′, we have g′ ⊂ c′. Since A ∩ c′ = ∅, then

A ∩ g′ = ∅. So,
c\((c\c′)∪g′) ⊆ (A∪c′)\(A∪g′) = ((A∪c′)\A)\g′) = c′\g′.
That is, c\((c\c′) ∪ g′) ⊆ c′\g′. Because g ⊇ ((c\c′) ∪ g′),
we have c\g ⊆ c\((c\c′) ∪ g′) ⊆ c′\g′, hence, c\g ⊆ c′\g′.
Since c\g ⊆ c′\g′, g ⊃ g′, and conf(g ⇒ c\g) ≤ conf(g′ ⇒
c′\g′), according to Definition 3, we can conclude that g ⇒
c\g is redundant to g′ ⇒ c′\g′.
According to Modus tolen inference rule, i.e., if the consequent
of an implication is false, the antecedent of the rule must be
false, from Lemma 1, we get the following corollary:

Corollary 1: Let c ∈ C and C be the set of frequent closed
itemsets, let g ∈ G and G be the set of minimal generators of
the closed itemsets in C, and γ ◦ τ(g) ⊂ c. If g ⇒ c\g is a
non-redundant rule, then ∀c′ ∈ C, ∀g′ ∈ G, γ ◦τ(g′) ⊂ c′ and
g′ ⊂ g, we have ¬(g ⊇ ((c\c′) ∪ g′)) or conf(g ⇒ c\g) >
conf(g′ ⇒ c′\g′).

Theorem 2: Let c ∈ C and C be the set of frequent closed
itemsets, let g ∈ G and G be the set of minimal generators of
the closed itemsets in C, and γ ◦ τ(g) ⊂ c. g ⇒ c\g is a non-
redundant rule iff ∀c′ ∈ C, ∀g′ ∈ G, g′ ⊂ g, γ◦τ(g′) ⊂ c′, and
¬(g ⊇ ((c\c′) ∪ g′)) or conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′).

Proof:
1) =⇒. The proof follows the conclusion of Corollary 1.
2) ⇐=. (i) Assuming that ¬(g ⊇ ((c\c′) ∪ g′)),

we get g ⊂ (c\c′) ∪ g′, or g ∩ ((c\c′) ∪ g′) = ∅, or
(g∩((c\c′)∪g′) ⊂ ((c\c′)∪g′))∧(g∩((c\c′)∪g′) ⊂ g).

(1). In the case that g ⊂ (c\c′) ∪ g′ is true, assuming
that g ⇒ c\g is redundant, then we get, ∃c′ ∈ C,
∃g′ ∈ G, and γ ◦ τ(g′) ⊂ c′ (hence g′ ⊂ c′) such that
g′ ⊆ g and c′\g′ ⊇ c\g.
From c′\g′ ⊇ c\g and g′ ⊆ c′, we have
c′ ⊇ c′\g′ ⊇ c\g, i.e., c′ ⊇ c\g. Since γ ◦ τ(g) ⊂ c
thus g ⊂ c, obviously we have c = (c\g) ∪ g and
(c\g)∩g = ∅; also (c\c′)∪c′ ⊇ c and (c\c′)∩c′ = ∅ are
true. Therefore, we have (c\c′)∪c′ ⊇ c = (c\g)∪g, i.e.:

(c\c′) ∪ c′ ⊇ (c\g) ∪ g (a)
Because c′ ⊇ c\g, (c\c′) ∩ c′ = ∅ and (c\g) ∩ g = ∅,
after c′ being removed from the left side of (a) and
c\g being removed from the right side of (a), the
formula (a) becomes c\c′ ⊆ g. From g′ ⊆ g, we get
(c\c′) ∪ g′ ⊆ g ∪ g′ = g, i.e., (c\c′) ∪ g′ ⊆ g which
contradicts to (c\c′) ∪ g′ ⊃ g.
Therefore, the assumption is false, i.e., g ⇒ c\g is
non-redundant.

(2). In the case that g ∩ ((c\c′) ∪ g′) = ∅ is true,
g ∩ g′ = ∅, thus g ⊃ g′ is always false. Therefore,
g ⇒ c\g can’t be redundant to g′ ⇒ c′\g′.

(3). In the case that (g ∩ ((c\c′) ∪ g′) ⊂
((c\c′) ∪ g′)) ∧ (g ∩ ((c\c′) ∪ g′) ⊂ g) is true,
there must exist some x such that x ∈ c\c′ and
x 6∈ g or x ∈ g′ and x 6∈ g. The former will make
(c\g) ⊂ (c′\g′) false and the latter will make g ⊃ g′

false. Therefore, g ⇒ c\g will never be redundant to
g′ ⇒ c′\g′
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(ii) Assuming that conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′).
From Definition 3, we can directly conclude that g ⇒
c\g is not redundant.

The proposed Reliable Approximate Basis defines a more
concise set of approximate rules which are non-redundant,
sound and lossless. The algorithm to extract non-redundant
approximate rules based on the Reliable Approximate Basis
is given below:

Algorithm 1: ReliableApproxBasis(Closure)
Input: Closure: a set of frequent closed itemsets

Generator: a set of minimal generators

Output: A set of non-redundant approximate rules.
1. approxRules := ∅
2. for each c ∈ Closure
3. for each g ∈ Generator such that γ ◦ τ(g) ⊂ c
4. if ∀c′ ∈ Closure, ∀g′ ∈ G such that γ ◦ τ(g′) ⊂ c′

and g′ ⊆ g
5. we have ¬(g ⊇ ((c\c′) ∪ g′))

or conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′)
6. then approxRules := approxRules ∪ {g ⇒ (c\g)}
7. end-for
8. end-for
9. Return appproxRules

For the Mushroom example dataset, 21 non-redundant ap-
proximate rules are extracted based on the Reliable Approxi-
mate basis. Rules 22, 23, 24 and 25 in Table III extracted based
on the Minmax Approximate basis are considered redundant
under the Reliable Approximate basis, respectively, and thus
eliminated.

B. Deriving All Approximate Association Rules
Algorithms have been proposed to derive all association

rules from the Min-max bases [13] and the Reliable Exact
basis [17]. In this section, we provide an algorithm that can
derive all approximate rules from the Reliable Approximate
basis.

According to the definitions 4 and 5, the Min-max
Approximate basis can be described as:
MinMaxApprox = {g ⇒ (c\g)|c ∈ C, g ∈ G, γ ◦ τ(g) ⊂ c}
= {g ⇒ (c\g)|c ∈ C, g ∈ G,

(¬(g ⊇ ((c\c′) ∪ g′)) or conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′))
for all c′ ∈ C, g′ ∈ G, γ ◦ τ(g) ⊂ c

or (g ⊇ ((c\c′)∪ g′) and conf(g ⇒ c\g) ≤ conf(g′ ⇒ c′\g′))
for some c′ ∈ C, g′ ∈ G, γ ◦ τ(g′) ⊂ c′}

= {g ⇒ (c\g)|c ∈ C, g ∈ Gc,

¬(g ⊇ ((c\c′) ∪ g′)) or conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′)
for all c′ ∈ C, g′ ∈ G, γ ◦ τ(g) ⊂ c} ∪
{g ⇒ (c\g)|c ∈ C, g ∈ Gc,

g ⊇ ((c\c′) ∪ g′) and conf(g ⇒ c\g) ≤ conf(g′ ⇒ c′\g′)
for some c′ ∈ C, g′ ∈ G, γ ◦ τ(g′) ⊂ c′}

= ReliableApprox ∪NonReliableApprox

Where

NonReliableApprox = {g ⇒ (c\g)|c ∈ C, g ∈ Gc,
(6)

g ⊇ ((c\c′) ∪ g′) and conf(g ⇒ c\g) ≤ conf(g′ ⇒ c′\g′)
for some c′ ∈ C, g′ ∈ G, γ ◦ τ(g′) ⊂ c′}

The following theorem showes that, for r2 : g2 ⇒ c2\g2,
c2 ∈ C and g2 ∈ G (i.e., r2 is a rule in MinMaxApprox),
if for some c1 ∈ C and some g1 ∈ G, there is (g1 ⊇
(c1\c2)∪ g2) and conf(r1) ≤ conf(r2), then we can deduce:
r1 : g1 ⇒ c1\g1 is a rule in NonReliableApprox. This means
that, from a rule in MinMaxApprox, we could deduce a
NonReliableApprox rule.

Theorem 3: Let C be the set of frequent closed itemsets
and G be the set of minimal generators. For rules r1 : g1 ⇒
c1\g1 and r2 : g2 ⇒ c2\g2 where c1, c2 ∈ C, g1 , g2 ∈ G,
γ ◦ τ(g1) ⊂ c1, and γ ◦ τ(g2) ⊂ c2. r1 is a NonReliable
approximate rule iff (g1 ⊇ (c1\c2) ∪ g2) and conf(r1) ≤
conf(r2).

Proof:
1) =⇒

According to the definition of Min-max approximate
basis, both r1 : g1 ⇒ c1\g1 and r2 : g2 ⇒ c2\g2 are
Min-max approximate rules. If g1 ⊇ (c1\c2) ∪ g2 and
conf(r1) ≤ conf(r2), then ¬(g1 ⊇ (c1\c2) ∪ g2) must
be false. According to the definition of Reliable approx
basis, r1 6∈ ReliableApprox must be true. Therefore,
r1 ∈ NonReliableApprox is true.

2) ⇐=
Assuming that r1 : g1 ⇒ c1\g1 ∈
NonReliableApprox. From Equation (6), we
immediately get, g1 ⊇ ((c1\c2) ∪ g2) and
conf(r1) ≤ conf(r2) for some c2 ∈ C,, and
g2 ∈ G.

We designed the following algorithm
AllApproxFromReliable to derive all approximate
rules from the Reliable Approx basis. The algorithm
AllApproxFromReliable takes ReliableApprox as the
initial value for MinMaxApprox. Steps 4-8 generate
approximate rules from an approximate basis rule
in current MinMaxApprox. Steps 9 to 14 deduce
NonReliableApprox basis rules and add them into
the current MinMaxApprox. Therefore, during the
process of deriving approximate rules, we generates all
NonReliableApprox rules so that MinMaxApprox will be
completed progressively during the course. Theorem 3 ensures
that we can deduce all NonReliableApprox basis rules.
On completion of executing Algorithm 2, MinMaxApprox
will contains all ReliableApprox basis rules and also
all NonReliableApprox basis rules. Steps 17 to 21 in
Algorithm 2 derive all approximate rules from these basis
rules, which performs the same task as the steps 11 to 17 in
the approximate reconstruction algorithm proposed in [13].

Algorithm 2: AllApproxFromReliable(ReliableApprox)
Input: ReliableApprox: reliable approximate basis
Output: AllApprox: A set of all approximate association rules

1. AllExact := ∅, MinMaxApprox := ReliableApprox
2. for i = 2 to maximum size of closed itemsets
3. for rule (r1 : a1 ⇒ c1, r1.supp, r1.conf) ∈
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MinMaxApprox
and |c1| = i

4. for subset c2 ⊂ c1

5. if (r2 : a1 ⇒ c2, r2.supp, r2.conf) 6∈ AllApprox
6. and r2.conf 6= 1//r2 is not an exact rule
7. then AllApprox := AllApprox ∪

{(r2 : a1 ⇒ c2, r1.supp, r1.conf)}
8. end-for
9. for each closed itemset c3

10. for generator a such that a ⊇ a1 and a.closure ⊂ c3

11. if a ⊇ ((c3\(c1 ∪a1))∪a1) and r1.conf ≥ c3.supp
a.supp

12. then MinMaxApprox := MinMaxApprox ∪
{a ⇒ (c3\a), c3.supp, c3.supp

a.supp }
13. end-for
14. end-for
15. end-for
16. end-for
17. for rule (r1 : a1 ⇒ c1, r1.supp, r1.conf) ∈ AllApprox
18. for each subset c3 ⊆ c2 where c2 = a1.closure\a1,

(a1.closure).supp
a1.supp = 1

19. AllApprox := AllApprox ∪
{a1 ∪ c3 ⇒ c1\c3, r1.supp, r1.conf}

20. end-for
21. end-for
22.return AllExact

IV. EXPERIMENTS

We have conducted experiments to evaluate the effectiveness
of the proposed Reliable approximate basis. This section
presents the experimental results.

A. Datasets

We used the following three datasets from UCI KDD
Archive (http://kdd.ics.uci.edu/). The Mushrooms dataset con-
tains 8,124 records each of which describes the characteristics
of one mushroom object. Each mushroom object has 23
attributes some of which are multiple value attributes. After
converting the multiple value attributes to binary ones, the
number of attributes of each object becomes 126. The Anneal-
ing dataset contains 898 annealing instances (objects), each
has 38 attributes. After converting multiple value attributes to
binary ones, each object has 276 attributes. The Flare2 dataset
contains 1,066 solar flare instances each of which represents
captured features for one active region on the sun. Each flare
instance has 50 attributes after the multiple value attributes are
converted to binary attributes. The experiment is to find the
associations among attributes for the three datasets.

B. Evaluation Results

In this experiment, firstly we confirm that both the MinMax
basis and the Reliable basis can deduce all approximate rules.
For example, when Minsupp is 0.3, both bases produce
21,377 approximate rules for the Mushroom dataset as
showed in Table IV. Secondly, we test the reduction ratio
between the size of the MinMaxApprox basis and the size
of the ReliableApprox basis for different Minsupp settings.

TABLE IV
NUMBER OF APPROXIMATE RULES (MUSHROOM DATASET, MINCONF=0.5)

Approx rules derived MinMax Reliable Reduction
Minsupp (MinMax,Reliable) Approx Basis Approx Basis Ratio

0.3 21,377 2,634 1,970 25%
0.4 2,528 465 361 22%
0.5 835 175 135 23%
0.6 228 59 52 12%
0.7 161 39 34 13%
0.8 71 25 21 16%

For all tests, the minconf was set to 0.5. Table IV, Table V,
and Table VI present the test results for the three datasets,
respectively.

The experiment results showed that the reduction is
considerable high. For instance, when Minsupp was set to
0.3, for the Annealing dataset, the MinMax basis contains
865 basis rules as showed in Table V, while the Reliable
basis contains 554 basis rules, the reduction ratio is 36%. In
this case, 5,052 approximate rules can be deduced either from
the MinMax basis or from the Reliable basis. For example,
the following 9 rules in the MinMax basis are redundant
to the reliable rule steel-A ⇒ product-type-C,strength-000
(0.4844, 0.9886), therefore they are excluded in the Reliable
basis:

steel-A,carbon-00 ⇒ product-type-C,strength-000, (0.47327, 0.9884)

steel-A,hardness-00 ⇒ product-type-C,strength-000, (0.30512,0.9821)

steel-A,bore-0000 ⇒ product-type-C,strength-000, (0.4655,0.9882)

steel-A,class-3 ⇒ product-type-C,strength-000, (0.3853,0.9858)

steel-A,carbon-00,bore-0000 ⇒ product-type-C,strength-000, (0.4543, 0.9879)

steel-A,carbon-00,class-3 ⇒ product-type-C,strength-000, (0.3775,0.9854)

steel-A,hardness-00,bore-0000 ⇒ product-type-C,strength-000, (0.3040, 0.9820)

steel-A,bore-0000,class-3 ⇒ product-type-C,strength-000, (0.3731,0.9853)

steel-A,carbon-00,bore-0000,class-3 ⇒ product-type-C,strength-000, (0.3653,0.9850)

The 9 rules listed above have the same consequent but
a larger antecedent than that of the reliable rule steel-A ⇒
product-type-C,strength-000. Both the support and confidence
values , as indicated as (support, confidence) at the end of
each rule, of these 9 rules are smaller than that of the reliable
rule. Therefore, according to Theory 1, their CF value won’t
be greater than that of the reliable rule. In real world problem
solving, if we know that steel-A is true, by applying the rule
steel-A ⇒ product-type-C,strength-000, we can conclude that
product-type-C,strength-000 is true. We don’t have to know
hardness-00, class-3, or bore-0000, etc. in order to reach
this consequence. That means, all the 9 rules are useless
or redundant if we have the rule steel-A ⇒ product-type-
C,strength-000 at hand. Eliminating these redundant rules can
greatly reduce the size of the discovered rule set, but the
capacity of the rule base in solving problems remains the same.

V. RELATED WORK

Many approaches have been proposed aiming at reducing
the number of extracted rules and improving the“usefulness”
of the rules as well[1], [3], [7], [15]. Also some work has
been done on concisely representing and interpreting mul-
tidimensional association rules using granules and multi-tier
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TABLE V
NUMBER OF APPROXIMATE RULES (ANNEALING DATASET, MINCONF=0.5)

Approx rules derived MinMax Reliable Reduction
Minsup (MinMax,Reliable) Approx Basis Approx Basis Ratio

0.3 5,052 865 554 36%
0.4 1,835 435 296 32%
0.5 1,186 300 218 27%
0.6 416 137 102 26%

TABLE VI
NUMBER OF APPROXIMATE RULES (FLARE2 DATASET, MINCONF=0.5)

Approx rules derived MinMax Reliable Reduction
Minsupp (MinMax,Reliable) Approx Basis Approx Basis Ratio

0.3 7,604 1216 710 42%
0.4 2,420 644 479 27%
0.5 5,599 1081 730 32%
0.6 5,368 1203 687 43%

structures [10], [18]. But eliminating redundancy of rules is
not a focus of these approaches. The approaches proposed in
[13] and [19] focus on extracting non-redundant rules. Both
of them make use of the closure of the Galois connection [5]
to extract non-redundant rules from frequent closed itemsets
instead of from frequent itemsets. One difference between the
two approaches is the definition of redundancy. The approach
proposed in [19] extracts the rules with shorter antecedent and
shorter consequent as well among rules which have the same
confidence, while the method proposed in [13] defines that the
non-redundant rules are those which have minimal antecedents
and maximal consequents. Our definition to redundant rules is
similar to that of [13]. However, the requirement to redundancy
is relaxed, and the less requirement makes more rules to be
considered redundant and thus eliminated. Most importantly,
we prove that the elimination of such redundant rules does not
reduce the belief to the extracted rules and the capacity of the
extracted non-redundant rules for solving problems will also
not be reduced. The concept of non-derivable itemsets was
introduced in [4]. The basic idea is to find lower and upper
bounds on the support of an itemset based on the support
of its subsets. When these bounds are equal, the itemset
is considered derivable. The set of frequent non-derivable
itemsets allows for deriving the supports of all other frequent
itemsets and as such forms a concise representation from
which all other frequent itemsets can be derived. Goethals
proposed a method to derive non-derivable rules from the non-
derivable itemsets [6]. The amount of the non-derivable rules
is much smaller than the size of the entire rule set. However,
it was not discussed whether the non-derivable rule set has the
same capacity to solve problems as the entire rule set.

VI. CONCLUSION

One challenge problem with association rule mining is
the redundancy in the extracted rules. The work presented
in this paper aims at improving the quality of association
rules by eliminating redundancy. In this paper, we proposed a
relaxed definition of redundancy and a concise representation
of approximate association rules. We theoretically proved
that the proposed Reliable Approximate basis can eliminate
considerable amount of redundancy. Based on certainty factor
theory, we also proved that the elimination of the redundancy

using the proposed Reliable basis does not reduce the belief to
the extracted rules. Similar to the Min-max basis, the proposed
Reliable approximate basis is not only a concise but also a
lossless representation of approximate rules. From the Reliable
approximate basis, all approximate rules can be deduced.
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