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Abstract—KNN classification finds k nearest neighbors of a query 

in training data and then predicts the class of the query as the 

most frequent one occurring in the neighbors. This is a typical 

method based on the majority rule. Although majority-rule based 

methods have widely and successfully been used in real 

applications, they can be unsuitable to the learning setting of 

skewed class distribution. This paper incorporates certainty 

factor (CF) measure to kNN classification, called kNN-CF 

classification, so as to deal with the above issue. This CF-measure 

based strategy can be applied on the top of a kNN classification 

algorithm (or a hot-deck method) to meet the need of imbalanced 

learning. This leads to that an existing kNN classification 

algorithm can easily be extended to the setting of skewed class 

distribution. Some experiments are conducted for evaluating the 

efficiency, and demonstrate that the kNN-CF classification 

outperforms standard kNN classification in accuracy. 

 
Index Terms—Classification, kNN classification, imbalanced 

classification. 

I. INTRODUCTION 

IVEN its simplicity, easy-understanding and relatively 

high accuracy, the k-nearest neighbor (kNN) approach has 

successfully been used in diverse data analysis applications 

[4,10,31,35] such as information retrieval, database, pattern 

recognition, data mining and machine learning. In information 

retrieval application proposal, the kNN approach is used to, for 

instance, similarity searching [42], text categorization, ranking 

and indexing [2,61]. In database application proposal, the kNN 

approach is used to, such as, approximate query and high 

dimensional data query [11,49]. In pattern recognition 

application proposal, the kNN approach is used to, for example, 

segmentation and prediction [13,45]. In data mining and 

machine learning application proposal, the kNN approach is 

used to, for example, clustering and classification 

[14,22,23,26], manifold learning [50,57,58], and missing data 

imputation for data preparation [64,65]. Therefore, it has 

recently been recognized as one of top 10 algorithms in data 

mining [60]. 
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The kNN method provides k data points in a given dataset 

most relevant to a query in a data analysis application. Without 

other information, the k most relevant data are k nearest 

neighbors of the query in the dataset. And then predicts the 

class of the query as the most frequent one occurring in the 

neighbors. This is a typical method based on the majority rule. 

Majority-rule based methods have widely and successfully 

been used in real applications. They can, however, be 

unsuitable to the learning setting of skewed class distribution. 

This is illustrated with Example 1 as follows. 

Eample 1. Consider some data drawn from a dataset with 

skewed class distribution, as listed in Table I, or charted in Fig. 

1. In Table I, X1 and X2 are two attributes, C is the class 

attribute (or decision attribute), “+” and “–” stand for the two 

classes, “?” denotes the unlabeled class. 

  
TABLE I 

Data from the questionnaire survey 

X1 3 4 4 4 6 7 7 8 4 5 4 

X2 7 3 4 10 2 4 9 5 6 5 5 

C + + + + + + + + – – ? 
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Fig. 1. Plotting the data in Table 

 

Assume k = 5. For the query (4, 5, ?), we can obtain its 5 

nearest neighbors in Table I, (3, 7, +), (4, 3, +), (4, 4, +), (4, 6, 

–), (5, 5, –). According to the kNN classification, “+” is the 

most frequent one occurring in the neighbors. Consequently, 

the class of the query (4, 5, ?) is predicted as “+”. The first 
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feedback seems to be that the class of (4, 5, ?) should be 

predicted as “–”, although the majority rule predicts it as “+”. 

To attack the above actual and challenging issue, this paper 

incorporates certainty factor (CF) measure to kNN 

classification, denoted as kNN-CF classification. The main idea 

is as follows. We have p(C = +) = 0.8 and p(C = –) = 0.2 in the 

dataset in Table I. The selected 5 nearest neighbors can be 

taken as a new evidence, E, and p(C = +|E) = 0.3 and p(C = –|E) 

= 0.2. Clearly, compared with their prior probabilities, the 

conditional probability of “–” is lifted much more than that of 

“+”. Accordingly, it is reasonable to predict “–” as the class of 

(4, 5, ?). The CF measure can capture this ad hoc nature. And 

we will be incorporated to the a kNN classification in this 

paper, called kNN-CF classification. 

This kNN-CF strategy can be applied on the top of a kNN 

classification algorithm (or a hot-deck method, or an 

instance-based algorithm) to meet the need of imbalanced 

learning. This leads to that an existing kNN classification 

algorithm can easily be extended to the learning setting of 

skewed class distribution. Some experiments are conducted for 

evaluating the efficiency, and demonstrate that the kNN-CF 

classification outperforms standard kNN classification in 

accuracy. 

The rest of this paper is organized as follows. Section II 

briefly recalls work mainly related to kNN classification, 

imbalanced classification and certainty factor measure. The 

kNN-CF classification is presented in Section III. We evaluate 

the kNN-CF classification with real datasets downloaded from 

UCI in Section IV. This paper is concluded in Section V. 

II. PRELIMINARY 

 

This section presents some basic concepts and briefly recalls 

related work in kNN classification, imbalanced classification 

and certainty factor measure. 

A. Research into kNN Approach 

KNN approach has recently been recognized as one of top 

10 algorithms in data mining [60], due to its high classification 

accuracy in problems with unknown and nonnormal 

distributions [16,26,31] and its wide applications [35,4]. While 

NN (nearest neighbor) classification suffers from the issue of 

overfitting, a more sophisticated approach, kNN classification 

[21],  finds a group of k objects in the training set that are 

closest to the test object, and bases the assignment of a label on 

the predominance of a particular class in this neighborhood 

[1,12]. There are three key elements of this approach: a set of 

labeled objects, e.g., a set of stored records, a distance or 

similarity metric to compute distance between objects, and the 

value of k, the number of nearest neighbors. To classify an 

unlabeled object, the distance of this object to the labeled 

objects is computed, its k-nearest neighbors are identified, and 

the class labels of these nearest neighbors are then used to 

determine the class label of the object [60].  

The kNN classification has the remarkable property that 

under very mild conditions, the error rate of a kNN classifier 

tends to the Bayes optimal as the sample size tends to infinity. 

However, there are several key issues that affect the 

performance of kNN, mainly including the choice of k, 

predicting the class labels of new data, distance measure 

selection, and lazy learning. For details, please read the paper 

[60].  

Therefore, many techniques have recently been developed 

for improving the kNN classification. Among them, distance 

measure selection is relatively hot research topic [16,24,27,36]. 

Currently a variety of measures such as Euclidean, Hamming, 

Minkowsky, Mahalanobis, Camberra, Chebychev, Quadratic, 

Correlation, Chi-square, hyperrectangle distance [41], Value 

Difference Metric [47], and Minimal Risk Metric [5] are 

available. However, no distance function is known to perform 

consistently well, even under some conditions [54]. This makes 

the use of kNN highly experience dependent. Various attempts 

have been made to remedy this situation. Among those, notably 

DANN carries out a local linear discriminant analysis to deform 

the distance metric based on say 50 nearest neighbors [24]. 

LFM-SVM also deforms the metric by feature weighting, 

where the weights are inferred from training an SVM on the 

entire data set [15]. HkNN applies the collection of 15-70 

nearest neighbors from each class to span a linear subspace for 

that class, and then classification is done based not on distance 

to prototypes but on distance to the linear subspaces [53]. There 

are other kinds of distance defined by the property of data. 

Examples are tangent distance on the USPS zip code data set 

[44], shape context based distance on the MNIST digit data set 

[3], distances between histograms of textons on the CUReT 

data set [52], and geometric blur based distances on 

Caltech-101 [70]. Furthermore these measures can be extended 

by kernel techniques such as to estimate a curved local 

neighborhood [37], which can make the space around the 

samples further or closer to the query, depending on their 

class-conditional probability distributions. More recently, a 

new measure named neighborhood counting is proposed to 

define the similarity between two data points by using the 

number of neighborhoods [54]. Because features of high 

dimensional data is often correlated so that measure easily 

becomes meaningless, some approaches are designed to deal 

with this issue such as an approach that applies variable 

aggregation to define the measure [16,26]. Besides all kinds of 

measures above, the other strategy can be also applied to select 

nearest neighbors. For example, an approach is proposed that 

considers the geometrical placement of neighbors more than 

actual distances to appropriately characterize a sample by its 

neighborhood [43]. This approach is effective in some case, but 

it is conflict with our intuition when data is on manifold. 

Other main improvements of kNN classification include, 

such as fuzzy set theory and evidential reasoning [68], 

measures for finding the better nearest neighbors [16,26,54], 

and local mean classifiers (LMC) [8,31,34,62]. 

B. Research into Imbalanced Classification 

The class imbalance (or skewed class distribution) is 

relatively a new issue in data mining and machine learning. 

While it was recognized that the imbalance can cause 

suboptimal classification performance, there are many research 

reported on imbalanced learning since two workshops 

“AAAI’2000 Workshop on Learning from Imbalanced Data 

Sets” and “ICML’2003 Workshop on Learning from 
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Imbalanced Data Sets”. The main efforts include, for example, 

the detection of software defects in large software systems [33], 

the identification of oil spills in satellite radar images [28], the 

detection of fraudulent calls [20], and the diagnoses of rare 

medical conditions such as the thyroid disease [40].  

In the setting of skewed class distribution, it is obvious that 

the rare instances in these applications are of critical 

importance. And classification learning should be able to 

achieve accurate classification for the rare classes. Typically 

the rare instances are much harder to identify than the majority 

instances. Different from traditional classification desired a 

high overall accuracy, the purpose of imbalanced learning is to 

achieve accurate classification for the rare class without 

sacrificing the performance for other classes.  

While existing classification algorithms work well on the 

majority classes, there have been several attempts to adjust the 

decision bias favourable to the minority class. Holte et al. [25] 

modified the bias of CN2 classifier, by using the maximum 

generality bias for large disjuncts and a selective specificity 

bias for small disjuncts. Another piece of work is by Ting [51], 

where a hybrid approach for addressing the imbalanced 

problem was proposed. This method adopted C4.5 as the base 

learner, then an instance-based classifier was used if small 

disjuncts were encountered. Similar approaches were proposed 

by [6,7], using a combination of the genetic algorithm and the 

C4.5 decision tree. However, their experimental results show 

no statistically significant difference from the base C4.5 

learner.  

Re-sampling techniques have been a popular strategy to 

tackle the imbalanced learning problem, including random 

over-sampling and under-sampling, as well as intelligent 

re-sampling. Chawla, et al. [9] proposed a synthetic minority 

over-sampling technique to over-sample the minority class. 

Kubat and Matwin [29] tried to under-sample the majority 

class. Another related work by Ling and Li [32] combined 

over-sampling of the minority class with undersampling of the 

majority class. However, no consistent conclusions have been 

drawn from these studies [55]. The effect of re-sampling 

techniques for active learning was analysed in [69]. They found 

over-sampling is a more appropriate choice than 

under-sampling which could cause negative effects on active 

learning. A bootstrap-based over-sampling approached was 

proposed, and it was shown to work better than ordinary 

over-sampling in active learning for word sense 

disambiguation. 

The second strategy tackling the imbalanced distribution 

problem is cost-sensitive learning [17,19,66]. Domingos [18] 

proposed a re-costing method called MetaCost, which can be 

applied to general classifiers. The approach made error-based 

classifiers cost-sensitive. His experimental results showed that 

MetaCost reduced costs compared to cost-blind classifier using 

C4.5Rules as the baseline. 

Ensemble learning has also been studied for imbalanced 

classification. Sun et al. [48] tried to use boosting technique for 

imbalanced learning, and three cost-sensitive boosting 

algorithms were introduced. These boosting algorithms were 

investigated with respect to their weighting strategies towards 

different types of samples. Their effectiveness in identifying 

rare cases on several real-world medical datasets with 

imbalanced class distribution were examined. An empirical 

study by Seiffert et al. [73] compared the performance between 

re-weighting and re-sampling boosting implementations in 

imbalanced datasets. They found that boosting by re-sampling 

outperforms boosting by re-weighting, which is often the 

default boosting implementation. 

A potential strategy is the instance-based learning that will 

be built in Section III. The ubiquitous instance-based learning 

paradigm is rooted in the kNN algorithm. Most research efforts 

in this area have been on trying to improve the classification 

efficiency of kNN [1,59]. Various strategies have been 

proposed to avoid an exhaustive search of all training instances 

and to achieve accurate classification. However, to the best of 

our knowledge, no work has been reported adjusting the 

induction bias of kNN for imbalanced classification. 

C. Research into Certainty Factor Measure  

The certainty-factor (CF) model is a method for managing 

uncertainty in rule-based systems. Shortliffe and Buchanan [46] 

developed the CF model in the mid-1970s for MYCIN, an 

expert system for the diagnosis and treatment of meningitis and 

infections of the blood. Since then, the CF model has become 

the standard approach to uncertainty management in rule-based 

systems. A certainty factor is used to express how accurate, 

truthful, or reliable you judge a predicate to be. Note that a 

certainty factor is neither a probability nor a truth value. 

Therefore, it is slightly dodgy theoretically, but in practice this 

tends not to matter too much. This is mainly because the error 

in dealing with certainties tends to lie as much in the certainty 

factors attached to the rules (or in conditional probabilities 

assigned to things) as in how they are manipulated. 

A certainty factor is a number between -1 and 1 (or in [-1, 

1]) that represents the change in our belief on some hypothesis. 

A positive number means an increase in the belief and a 

negative number the contrary. A value of 0 means that there is 

no change in our belief on the hypothesis.  

The CF measure has successfully been used to identify both 

positive and negative association rules in datasets [71,72]. This 

leads to the fact that a framework was built for complete 

association analysis (both positive and negative association 

rules). 

III. KNN-CF CLASSIFICATION 

For simplifying the description, we adopt the CF measure 

in [72] for building the framework of the kNN-CF 

classification. Before presenting the kNN-CF classification, a 

simple measure, called FR (frequency ratio), is introduced in 

Section III.A. 

A. KNN Classification Based on FR measure 

Let D be a training set, C = {c1, c2, …, cm} a set of labels, 

Q a query, N(Q, k) the set of k nearest neighbors, f(C= ci, D) 

the frequency of ci in D, and f(C= ci, N(Q,k)) the frequency of 

ci in N(Q, k). We define the FR measure as follows. 

FR(C= ci) = 
),(

)),(,(

DcCf

kQNcCf

i

i




 .      (1) 
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The FR strategy for kNN classification is defined as 

follows. We first obtain 

   )(maxarg
1

i
mi

FR cCFRS 


.        (2)

 Because there may be one more classes satisfy 

 )(maxarg
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, |
FRS | can be greater than 1. 

Accordingly, we can predict the class c of Q with Formula (3) 

as follows. 

 j
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cc
FRj

 maxarg   .                       (3) 

We illustrate the use of FR measure with the data in 

Example 1. From Table I and the 5 nearest neighbors of the 

query, the frequency of classes “+” and “–” can be computed as 

follows: 

f(C=+, D) = 8 

f(C=–, D) = 2 

f(C=+, N(Q,5)) = 3 

f(C=–, N(Q,5)) = 2. 

Consequently, we can obtain 

FR(C= +) = 
8

3
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FR(C= –) = 
2
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Therefore, we can predict the class c of the query Q as follows. 
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From the above, although class “+” is the most frequent 

one occurring in N(Q, 5), its frequency ratio, FR(C= +) = 0.375, 

is much low than that of class “–”, FR(C= –) = 1. Therefore, it is 

reasonable to predict “–” as the class of (4, 5, ?). 

The FR is a simple and efficient strategy. It is similar the 

“lift” measure in data mining and machine learning, which is a 

measure of the performance of a model at predicting or 

classifying cases, measuring against a random choice model 

(adopted from Wikipedia). 

Certainly, we can replace FR with the odds ratio. The use 

of odds ratio to kNN classification is similar to that of FR 

strategy. 

B. KNN Classification Based on CF measure 

With the assumption in Section III.A, we incorporate the 

CF measure to kNN classification as follows. Assume p(C= ci 

|D) is the ratio of ci in training set D, p(C= ci |N(Q,k)) is the 

ratio of ci in the set of k nearest neighbors, N(Q, k). If p(C= ci 

|N(Q,k)) ≥ p(C= ci |D), the CF is computed with (4) as follows. 

CF(C= ci, N(Q,k)) = 
)|(1

)|()),(|(

DcCp

DcCpkQNcCp

i

ii




 .                

                       (4) 

If  p(C= ci |N(Q,k)) < p(C= ci |D), the CF is computed with (5) 

as follows. 

CF(C= ci, N(Q,k)) = 
)|(

)|()),(|(

DcCp

DcCpkQNcCp

i

ii




.                   

                       (5) 

According to the explanation of CF, CF(C= ci, N(Q,k)) is 

valued in [-1, 1]. If CF(C= ci, N(Q,k)) > 0, our belief on that the 

class of the query should be predicted as C= ci is increased. 

CF(C= ci, N(Q,k)) < 0, our belief on that the class of the query 

should be predicted as C= ci is decreased. CF(C= ci, N(Q,k)) = 

0, our belief on that the class of the query should be predicted as 

C= ci is the same as that in the training set D.  

The CF strategy for kNN classification is defined as 

follows. We first obtain 

   )),(,(maxarg
1

kQNcCCFS i
mi

CF 


.                                                                                

                                                                              (6) 

Because there may be one more classes satisfy 

 )),(,(maxarg
1

kQNcCCF i
mi




, | CFS | can be greater 

than 1. Accordingly, we can predict the class c of Q with 

Formula (7) as follows. 

 j
Sc

cc
CFj

 maxarg  .                (7) 

Also, we illustrate the use of CF measure with the data in 

Example 1. Because f(C=+, D) = 8, f(C=–, |D) = 2, f(C=+, 

N(Q,5)) = 3 and f(C=–, N(Q,5)) = 2, we have p(C=+|D) = 0.8, 

p(C=–|D) = 0.2, p(C=+| N(Q,5)) = 0.6 and p(C=–| N(Q,5)) = 

0.4. Because p(C=+| N(Q,5)) < p(C=+|D), we should calculate 

the CF of “+” with (3) as follows  

CF(C= +, N(Q,5)) = 

8.0

8.06.0

)|(

)|())5,(|( 






DCp

DCpQNCp
 = –0.25 

Because p(C=–| N(Q,5)) > p(C=–|D), we should calculate the 

CF of “–” with (2) as follows 
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CF(C= –, N(Q,5)) = 

2.01

2.04.0
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Therefore, we can predict the class c of the query Q as follows. 
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From the above, although class “+” is the most frequent 

one occurring in N(Q, 5), its frequency ratio, FR(C= +) = 0.375, 

is much low than that of class “–”, FR(C= –) = 1. Therefore, it is 

reasonable to predict “–” as the class of (4, 5, ?). 

From CF(C= +, N(Q,5)) = –0.25 and CF(C= –, N(Q,5)) = 

0.25, it is reasonable to predict “–” as the class of (4, 5, ?). 

C. Analysis 

KNN classification is a lazy learning technique, or 

instance-based learning/reasoning method. Different from 

model-based algorithms (training models from a given dataset 

and then predicting a query with the models), it needs to store 

the training data (or cases) in memory and to compute the most 

relevant data to answer a given query. The answer to the query 

is the class represented by a majority of the k nearest neighbors. 

This is the majority rule. Although kNN classification with 

majority rule is simple and effective in general, there are still 

some limitations from an applied context, for example, 

cost-sensitive learning and imbalanced classification 

applications. Therefore, there are great many improvement 

efforts. We briefly discuss them from three directions as 

follows. 

The first direction is the distance weighted kNN rule. 

Almost all improvement efforts belong to this direction. This 

direction is actually a selection of the k nearest neighbors for a 

given query. This is because different distance functions or 

weighting techniques (or both) can generate different k nearest 

neighbors only. Whatever the distance functions or weighting 

techniques are selected, the goal is to find a machine that 

highlights some attributes and decreases the impact of the rest 

on the query. This looks like a mapping that transforms the 

original space to a new space more suitable to a learning task. It 

is much clear when we apply the -cutting rule to such an 

algorithm. With the -cutting rule, the distance weighted kNN 

classification will be carried out on only those data points that 

the attributes are stretched out or drawn back, or a subspace 

consisting of attributes with the impact values equal to or 

greater than , or a combination among them. 

A lately selection of the nearest neighbors is the SN 

(Shelly Neighbors) method that uses only those neighbors that 

form a shell to encapsidate the query, drawn from the k nearest 

neighbors [64,65]. The SN approach is actually a quadratic 

selection of the k nearest neighbors. 

The second direction is the semi-lazy learning. This 

direction is actually a procedure of reducing time and space 

complexity. The kNN classification approach usually involves 

storing the training data in memory and completely search the 

training data for the k nearest neighbors. If we can properly 

divide the training set into n subsets and search for the k nearest 

neighbors from only the nearest subsets, its time and space 

complexity must be decreased to an acceptable computation 

level. 

Last direction is the prediction of the query (the decision 

phase with the the k nearest neighbors). The usually used 

methods include the majority rule, weighting machine, and the 

Bayesian rule. The kNN-CF classification is a new technique 

that is designed against the issue of imbalanced classification. 

From Section III.B, it is simple and understandable to 

incorporate the CF measure to kNN classification. It advocates 

to take into account the certainty factor of a classification 

decision when using kNN classification approach. 

For imbalanced classification, the uncertainty is often 

occurred in the junction between the majority class and 

minority class. In this setting, the majority class certainly wins 

minority class in general. The Example 1 has also illustrated 

this uncertainty. This may lead to high cost (or risk) in many 

real applications, such cancer detection. The main objective of 

introducing the CF measure to kNN classification is to 

distinguish those classes with increased certainty factor from 

the classes with decreased ones.  

 The kNN-CF classification is only an idea to improve the 

decision phase with the the k nearest neighbors. There are some 

challenging issues. For example, it should be a research topic to 

study a new method for addressing, such as Case-1 and 2 in 

Figs. 2 and  3 respectively.  
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Fig. 2. Case-1 faced by the kNN-CF classification 
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Fig. 3. Case-2 faced by the kNN-CF classification 

 

 

From Zhang [64,65], seems the SN approach is suitable to 

deal with the above issues. All the above issues are studied 

against the joint between a minority class across and a majority. 

While the joint is of uncertainty, the rest are of certainty. Let ci 

be a majority class, cj a minority class, and Q a query. We can 

easily prove the following corollaries. 

Corollary 1. The FR strategy is equivalent to the majority 

rule for kNN classification when FR(C= ci) ≥FR(C= cj). 

Corollary 2. The CF strategy is equivalent to the majority 

rule for kNN classification when CF(C= ci, N(Q,k)) ≥CF(C= 

cj, N(Q,k)). 

IV. Experiments 

In order to show the effectiveness of the FR and CF 

strategies, two sets of experiments were done on real datasets 

with the algorithm implemented in C++ and executed using a 

DELL Workstation PWS650 with 2G main memory, and 2.6G 

CPU. 

A. Settings of experiments 

The first set of experiments was conducted for examining 

the efficiency against data points with pure minority class, or 

with pure majority class. The second set of experiments was 

conducted on for examining the efficiency against data points 

randomly drew from a dataset. Because the FR strategy is 

equivalent to the CF strategy, we only compare the CF strategy 

with Standard kNN approach in the following experiments. In 

the two sets of experiments, for simplifying the description, we 

always compared the proposed approaches with standard kNN 

classification. We adopt the recall and precision to evaluate the 

efficiecy by taking into account four distributions of minority 

and majority classes: 10% : 90%; 20% : 80%; 30% : 70%; 40% : 

60%. For evaluating the recall and precision, all queries are 

randomly generated from those data points that their classes are 

known in a dataset. The datasets are summarized in Table II. 
 

 

 

 

 

 

TABLE II 

The summary of  Datasets 

Data set No. of 

instances 

Class dist. 

(N/P) 

No. of 

features 

No. of 

classes 

Breast-w 683 444/239 9 2 

Haberman 306 225/81 3 2 

Parkinsons 195 147/48 22 2 

Transfusion 748 570/178 4 2 

Magic 19020 12332/6688 11 2 

Ionosphere 351 225/126 33 2 

Pima 768 500/268 8 2 

Spambase 4601 2788/1813 57 2 

SPECTF 267 212/55 44 2 

wdbc 569 357/212 30 2 

 

B. The first group of experiments 

We examine the efficiency against data points with pure  

minority class, or with pure majority class. The results are 

showed in Tables III - VI as follows. 

TABLE III 

Standard kNN and kNN-CF classifications are used to predict 

the class of data points that are randomly generated from the 

known data points with the minority class for distributions: 

10% : 90% and 20% : 80% 

 

 10%:90% 20%:80% 

kNN kNN-CF  kNN kNN-CF 

Breast-w 80.3 93.2 92.5 96.5 

Haberman 0 25.4 13.1 36.2 

Parkinsons 55 73.8 79 89.5 

Transfusion 5.3 16.3 25.8 45.3 

Magic 38.9 53.4 53.3 68.7 

Ionosphere 3.4 23.3 36.8 57.4 

Pima 1.5 22.6 30 51.8 

Spambase 57.9 69.4 71.4 83.6 

SPECTF 6.6 38.3 23.7 75.8 

wdbc 86.3 92.4 93.2 93.8 

Average 33.52 50.81 51.88 69.86 
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TABLE IV 

Standard kNN and kNN-CF classifications are used to predict 

the class of data points that are randomly generated from the 

known data points with the minority class for distributions: 

30% : 70% and 40% : 60% 

 30%:70% 40%:60% 

kNN kNN-CF kNN kNN-CF 

Breast-w 95 98.1 97.8 98.9 

Haberman 22.9 51.3 38.2 65.3 

Parkinsons 85.5 94.8 87.2 95.4 

Transfusion 40.2 62.9 50.1 71.3 

Magic 64.1 77 70.1 81.4 

Ionosphere 56.9 69 64.9 71.5 

Pima 52.5 71.5 60 77.9 

Spambase 79.2 88.5 87.6 92.4 

SPECTF 59.6 89.6 73.9 100 

wdbc 90.8 93.2 93.9 96.4 

Average 64.67 79.59 72.37 85.05 

 

TABLE V 

Standard kNN and kNN-CF classifications are used to predict 

the class of data points that are randomly generated from the 

known data points with the majority class for distributions: 

10% : 90% and 20% : 80% 

 10%:90% 20%:80% 

kNN kNN-CF  kNN kNN-CF 

Breast-w 98.9 97.9 98.4 98.2 

Haberman 97.9 94.1 91.5 78.2 

Parkinsons 100 98 98.1 91.6 

Transfusion 97.9 90.6 93.9 82.5 

Magic 98.4 96 97 92.1 

Ionosphere 100 98.5 97.5 97.3 

Pima 98.6 92.2 93.7 82.9 

Spambase 98.6 96.9 97.4 94.2 

SPECTF 96.7 84 86.1 64.9 

wdbc 100 99.7 99.4 98.4 

Average 98.7 94.79 95.3 88.03 

 

TABLE VI 

Standard kNN and kNN-CF classifications are used to predict 

the class of data points that are randomly generated from the 

known data points with the majority class for distributions:   

30% : 70% and 40% : 60% 

 30%:70% 40%:60% 

kNN kNN-CF kNN kNN-CF 

Breast-w 97.6 96.3 97.8 97.6 

Haberman 87.3 70 75.8 51.7 

Parkinsons 96 88 89.2 80.6 

Transfusion 86.3 72.1 80.8 62.1 

Magic 93.6 86.3 92.3 82.2 

Ionosphere 98.2 97.1 97.9 97.3 

Pima 89.5 75.5 81.4 64.1 

Spambase 94.5 89.8 92.8 84.4 

SPECTF 68.9 46.5 62.8 46.1 

wdbc 99 96.2 98.2 95 

Average 91.09 81.78 86.9 76.11 

 

C. The second group of experiments 

We examine the efficiency with queries randomly generated 

from a dataset. The results are showed in Tables VII - XIV as 

follows. 

 
TABLE VII 

For dataset Breastw, the efficiency of standard kNN and 

kNN-CF classifications when 10% : 90% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 0.882353 0.9375 0.882353 0.9375 

200 0.75 0.882353 0.772727 1 

500 0.923077 0.765957 0.851064 0.851064 

1000 0.869565 0.851064 0.847619 0.946809 

  

 
TABLE VII 

For dataset Breastw, the efficiency of standard kNN and 

kNN-CF classifications when 20% : 80% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 1 0.894737 0.947368 0.947368 

200 0.914286 0.820513 0.916667 0.846154 

500 0.954545 0.903226 0.936842 0.956989 

1000 0.926471 0.931034 0.908257 0.975369 
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TABLE IX 

. For dataset Breastw, the efficiency of standard kNN and 

kNN-CF classifications when 30% : 70% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 0.866667 0.962963 0.870968 1 

200 0.927536 0.955224 0.90411 0.985075 

500 0.95 0.956835 0.951049 0.978417 

1000 0.973244 0.960396 0.936909 0.980198 

 

 

TABLE X 

For dataset Breastw, the efficiency of standard kNN and 

kNN-CF classifications when 40% : 60% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 0.945946 1 0.945946 1 

200 0.952381 0.987654 0.931034 1 

500 0.95977 0.954286 0.935135 0.988571 

1000 0.944444 0.968912 0.918465 0.992228 
 

 

 

TABLE XI 

For dataset Ionosphere, the efficiency of standard kNN and 

kNN-CF classifications when 10% : 90% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 0.888889 0.615385 0.9 0.692308 

200 1 0.111111 0.9 0.5 

500 1 0.1 1 0.36 

1000 1 0.172414 0.782609 0.413793 

 

TABLE XII 

For dataset Ionosphere, the efficiency of standard kNN and 

kNN-CF classifications when 20% : 80% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 1 0.8 1 0.866667 

200 
0.88461

5 
0.469388 0.9 0.734694 

500 
0.93333

3 
0.482759 0.944444 0.586207 

1000 
0.66666

7 
0.134715 0.801802 0.46114 

 

 

 

 

 

TABLE XIII 

For dataset Ionosphere, the efficiency of standard kNN and 

kNN-CF classifications when 30% : 70% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 0.931034 0.72973 0.916667 0.891892 

200 0.939394 0.563636 0.944444 0.618182 

500 0.949367 0.517241 0.948454 0.634483 

1000 0.920455 0.514286 0.932039 0.609524 

 

 

 

TABLE XIV 

For dataset Ionosphere, the efficiency of standard kNN and 

kNN-CF classifications when 40% : 60% 

Running 

times 

kNN kNN-CF 

Precision Recall Precision Recall 

100 1 0.657895 1 0.684211 

200 0.959184 0.580247 0.967742 0.740741 

500 0.971429 0.676617 0.943396 0.746269 

1000 0.95082 0.659091 0.939481 0.740909 

 

From Tables III-XIV, the kNN-CF is much better than standard 

kNN classification at predicting the minority class. This 

indicates that the CF strategy is promising to reduce the 

misclassification cost for real applications, such as disease 

diagnosis and risk-sensitive learning. 

V. CONCLUSIONS AND OPEN PROBLEMS 

In this paper we have incorporated the certainty factor to 

kNN classification that clearly distinguishes whether the belief 

of the class of a query is increased, given its k nearest neighbors. 

We have experimentally illustrated the efficiency of the 

proposed approach, kNN-CF classification. For future study, 

we list some open problems in kNN-CF classification as 

follows.  

1. Improve the discernment of kNN-CF classification 

with a means, such as the SN approach in [64,65].  

2. Extending the kNN-CF classification to 

cost/risk-sensitive learning. 

3. kNN-CF classification with missing values. 

4. kNN-CF classification with cold-deck instances [38]. 

5. The evaluation of kNN-CF classification. 
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