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Francesco Bonchi∗

Abstract—With the success of online social networks and mi-
croblogs such as Facebook, Flickr and Twitter, the phenomenon
of influence exerted by users of such platforms on other users,
and how it propagates in the network, has recently attracted the
interest of computer scientists, information technologists, and
marketing specialists. One of the key problems in this area is
the identification of influential users, by targeting whom certain
desirable marketing outcomes can be achieved. In this article we
take a data mining perspective and we discuss what (and how)
can be learned from the available traces of past propagations.
While doing this we provide a brief overview of some recent
progresses in this area and discuss some open problems.

By no means this article must be intended as an exhaustive
survey: it is instead (admittedly) a rather biased and personal
perspective of the author on the topic of influence propagation
in social networks.

Index Terms—Social Networks, Social Influence, Viral Mar-
keting, Influence Maximization.

I. ON SOCIAL INFLUENCE AND VIRAL MARKETING

THe study of the spread of influence through a social
network has a long history in the social sciences. The

first investigations focused on the adoption of medical [1] and
agricultural innovations [2]. Later marketing researchers have
investigated the “word-of-mouth” diffusion process for viral
marketing applications [3], [4], [5], [6].

The basic assumption is that when users see their social
contacts performing an action they may decide to perform the
action themselves. In truth, when users perform an action, they
may have any one of a number of reasons for doing so: they
may have heard of it outside of the online social network and
may have decided it is worthwhile; the action may be very
popular (e.g., buying an iPhone 4S may be such an action);
or they may be genuinely influenced by seeing their social
contacts perform that action [7]. The literature on these topics
in social sciences is wide, and reviewing it is beyond the scope
of this article.

The idea behind viral marketing is that by targeting the
most influential users in the network we can activate a chain-
reaction of influence driven by word-of-mouth, in such a way
that with a very small marketing cost we can actually reach a
very large portion of the network. Selecting these key users in
a wide graph is an interesting learning task that has received
a great deal of attention in the last years (for surveys see [8]
and Chapter 19 of [9]).
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Other applications include personalized recommenda-
tions [10], [11] and feed ranking in social networks [12], [13].
Besides, patterns of influence can be taken as a sign of user
trust and exploited for computing trust propagation [14], [15],
[16], [17] in large networks and in P2P systems. Analyzing
the spread of influence in social networks is also useful to
understand how information propagates, and more in general
it is related to the fields of epidemics and innovation adop-
tion. With the explosion of microblogging platforms, such as
Twitter, the analysis of influence and information propagation
in these social media is gaining further popularity [18], [19],
[20], [21].

Many of the applications mentioned above essentially as-
sume that social influence exists as a real phenomenon. How-
ever several authors have challenged the fact that, regardless
the existence of correlation between users behavior with their
social context [22], this can be really credited to social
influence. Even in the cases where some social influence can
be observed, it is not always clear whether this can really
propagate and drive viral cascades.

Watts challenges the very notion of influential users that are
often assumed in viral marketing papers [23], [24], [25], [19].
Other researchers have focussed on the important problem of
distinguishing real social influence from homophily and other
external factors [26], [27], [28], [29]. Homophily is a term
coined by sociologists in the 1950s to explain the tendency of
individuals to associate and bond with similar others. This is
usually expressed by the famous adage “birds of a feather flock
together”. Homophily assumes selection, i.e., the fact that it
is the similarity between users to breed connections [27].

Anagnostopoulos et al. [26] develop techniques (e.g., shuffle
test and edge-reversal test) to separate influence from corre-
lation, showing that in Flickr, while there is substantial social
correlation in tagging behavior, such correlation cannot be
attributed to influence.

However other researchers have instead found evidence of
social influence. Some popular (and somehow controversial
[30]) findings are due to Christakis and Fowler [31] that
report effects of social influence over the spread of obesity
(and smoking, alcohol consumption, and other unhealthy – yet
pleasant – habits). Crandall et al. [27] also propose a frame-
work to analyze the interactions between social influence and
homophily. Their empirical analysis over Wikipedia editors
social network and LiveJournal blogspace confirms that there
exists a feedback effect between users similarity and social
influence, and that combining features based on social ties
and similarity is more predictive of future behavior than either
social influence or similarity features alone, showing that both
social influence and one’s own interests are drivers of future
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behavior and that they operate in relatively independent ways.
Cha et al. [32] present a data analysis of how picture

popularity is distributed across the Flickr social network, and
characterize the role played by social links in information
propagation. Their analysis provides empirical evidence that
the social links are the dominant method of information
propagation, accounting for more than 50% of the spread of
favorite-marked pictures. Moreover, they show that informa-
tion spreading is limited to individuals who are within close
proximity of the uploaders, and that spreading takes a long
time at each hop, oppositely to the common expectations about
the quick and wide spread of word-of-mouth effect.

Leskovec et al. show patterns of influence by studying
person-to-person recommendation for purchasing books and
videos, finding conditions under which such recommendations
are successful [33], [34]. Hill et al. [35], analyze the adoption
of a new telecommunications service and show that it is pos-
sible to predict with a certain confidence whether customers
will sign up for a new calling plan once one of their phone
contacts does the same.

These are just few examples among many studies reporting
some evidence of social influence. In this article we do
not aim at providing an exhaustive survey, nor we dare
entering the debate on the existence of social influence at
the philosophical/sociological level. We do not even discuss
further how to distinguish between social influence, homophily
and other factors, although we agree that it is an interesting
research problem. Instead, we prefer to take an algorithmic and
data mining perspective, focussing on available data and on
developing learning frameworks for social influence analysis.

Once sociologists had to infer and reconstruct social net-
works by tracking people relations in the real world. This is
obviously a challenging and costly task, even to produce mod-
erately sized social networks. Fortunately nowadays, thanks to
the success of online social networks, we can collect very large
graphs of explicitly declared social relations. Moreover, and
maybe more importantly, we can collect information about the
users of these online social networks performing some actions
(e.g., post messages, pictures, or videos, buy, comment, link,
rate, share, like, retweet) and the time at which such actions
are performed. Therefore we can track real propagations in
social networks. If we observe in the data user v performing
an action a at time t, and user u, which is a “friend” of v,
performing the same action shortly after, say at time t + Δ,
then we can think that action a propagated from v to u. If we
observe this happening frequently enough, for many different
actions, then we can safely conclude that user v is indeed
exerting some influence on u.

In the rest of this article we will focus on this kind of
data, i.e., a database of past propagations in a social network.
We will emphasize that when analyzing social influence, it is
important to consider this data and not only the structure of the
social graph. Moreover, as this database of propagations might
be potentially huge, we will highlight the need for devising
clever algorithms that, by exploiting some incrementality
property, can perform the needed computation with as few
scans of the database as possible.

II. INFLUENCE MAXIMIZATION

Suppose we are given a social network, that is a graph
whose nodes are users and links represent social relations
among the users. Suppose we are also given the estimates
of reciprocal influence between individuals connected in the
network, and suppose that we want to push a new product in
the market. The mining problem of influence maximization is
the following: given such a network with influence estimates,
how should one select the set of initial users so that they
eventually influence the largest number of users in the social
network. This problem has received a good deal of attention
by the data mining research community in the last decade.

The first to consider the propagation of influence and the
problem of identification of influential users by a data mining
perspective are Domingos and Richardson [36], [37]. They
model the problem by means of Markov random fields and
provide heuristics for choosing the users to target. In particular,
the marketing objective function to maximize is the global
expected lift in profit, that is, intuitively, the difference be-
tween the expected profit obtained by employing a marketing
strategy and the expected profit obtained using no strategy at
all [38]. A Markov random field is an undirected graphical
model representing the joint distribution over a set of random
variables, where vertices are variables, and edges represent
dependencies between variables. It is adopted in the context
of influence propagation by modelling only the final state
of the network at convergence as one large global set of
interdependent random variables.

Kempe et al. [39] tackle roughly the same problem as a
problem in discrete optimization, obtaining provable approxi-
mation guarantees in several preexisting models coming from
mathematical sociology. In particular their work focuses on
two fundamental propagation models, named Linear Threshold
Model (LT) and Independent Cascade Model (IC). In both
these models, at a given timestamp, each node is either
active (an adopter of the innovation, or a customer which
already purchased the product) or inactive, and each node’s
tendency to become active increases monotonically as more
of its neighbors become active. An active node never becomes
inactive again. Time unfolds deterministically in discrete steps.
As time unfolds, more and more of neighbors of an inactive
node u become active, eventually making u become active, and
u’s decision may in turn trigger further decisions by nodes to
which u is connected.

In the IC model, when a node v first becomes active, say
at time t, it is considered contagious. It has one chance of
influencing each inactive neighbor u with probability pv,u,
independently of the history thus far. If the tentative succeeds,
u becomes active at time t + 1. The probability pv,u, that can
be considered as the strength of the influence of v over u.

In the LT model, each node u is influenced by each
neighbor v according to a weight pv,u, such that the sum
of incoming weights to u is no more than 1. Each node u
chooses a threshold θu uniformly at random from [0, 1]. At
any timestamp t, if the total weight from the active neighbors
of an inactive node u is at least θu, then u becomes active at
timestamp t + 1.

IEEE Intelligent Informatics Bulletin December 2011 Vol.12 No.1



10 Feature Article: Influence Propagation in Social Networks: A Data Mining Perspective

In both the models, the process repeats until no new node
becomes active. Given a propagation model m (e.g., IC or
LT) and an initial seed set S ⊆ V , the expected number
of active nodes at the end of the process is the expected
(influence) spread of S, denoted by σm(S). Then the influence
maximization problem is defined as follows: given a directed
and edge-weighted social graph G = (V, E, p), a propagation
model m, and a number k ≤ |V |, find a set S ⊆ V , |S| = k,
such that σm(S) is maximum.

Under both the IC and LT propagation models, this problem
is NP-hard [39]. Kempe et al., however, showed that the
function σm(S) is monotone and submodular. Monotonicity
says as the set of activated nodes grows, the likelihood
of a node getting activated should not decrease. In other
words, S ⊆ T implies σm(S) ≤ σm(T ). Submodularity
intuitively says that the probability for an active node to
activate some inactive node u does not increase if more
nodes have already attempted to activate u (u is, so to say,
more “marketing saturated”). This is also called “the law of
diminishing returns”. More precisely, σm(S∪{w})−σm(S) ≥
σm(T ∪ {w})− σm(T ) whenever S ⊆ T .

Thanks to these two properties we can have a simple greedy
algorithm (see Algorithm 1), which provides an approximation
guarantee. In fact, for any monotone submodular function f
with f(∅) = 0, the problem of finding a set S of size k such
that f(S) is maximum, can be approximated to within a factor
of (1 − 1/e) by the greedy algorithm, as shown in an old
result by Nemhauser et al. [40]. This result carries over to the
influence maximization problem [39], meaning that the seed
set we produce by means of Algorithm 1 is guaranteed to
have an expected spread > 63% of the expected spread of the
optimal seed set.

Although simple, Algorithm 1 is computationally pro-
hibitive. The complex step of the greedy algorithm is in
line 3, where we select the node that provides the largest
marginal gain σm(S ∪ {v}) − σm(S) with respect to the
expected spread of the current seed set S. Indeed, computing
the expected spread of given set of nodes is #P-hard under
both the IC model [41], [13] and the LT model [42]. In their
paper, Kempe et al. run Monte Carlo (MC) simulations of the
propagation model for sufficiently many times to obtain an
accurate estimate of the expected spread. In particular, they
show that for any φ > 0, there is a δ > 0 such that by using
(1 + δ)-approximate values of the expected spread, we obtain
a (1−1/e−φ)-approximation for the influence maximization
problem. However, running many propagation simulations
(Kempe et al. report 10, 000 trials for each estimation in their
experiments) is practically unfeasible on very large real-world
social networks. Therefore, following [39] many researchers
have focussed on developing methods for improving the effi-
ciency and scalability of influence maximization algorithms,
as discussed next.

Leskovec et al. [43] study the propagation problem by a
different perspective namely outbreak detection: how to select
nodes in a network in order to detect as quickly as possible the
spread of a virus? They present a general methodology for near
optimal sensor placement in these and related problems. They
also prove that the influence maximization problem of [39] is

Algorithm 1 Greedy alg. for influence maximization [39]
Require: G, k, σm

Ensure: seed set S
1: S ← ∅
2: while |S| < k do
3: u ← argmaxw∈V \S(σm(S ∪ {w})− σm(S));
4: S ← S ∪ {u}

a special case of their more general problem definition. By
exploiting submodularity they develop an efficient algorithm
based on a “lazy-forward” optimization in selecting new seeds,
achieving near optimal placements, while being 700 times
faster than the simple greedy algorithm.

Regardless of this big improvement over the basic greedy
algorithm, their method still face serious scalability problems
as shown in [44]. In that paper, Chen et al. improve the
efficiency of the greedy algorithm and propose new degree
discount heuristics that produce influence spread close to that
of the greedy algorithm but much more efficiently.

In their following work Chen et al. [41] propose scalable
heuristics to estimate coverage of a set under the IC model
by considering Maximum Influence Paths (MIP). A MIP
between a pair of nodes (v, u) is the path with the maximum
propagation probability from v to u. The idea is to restrict the
influence propagation through the MIPs. Based on this, the
authors propose two models: maximum influence arborescence
(MIA) model and its extension, the prefix excluding MIA
(PMIA) model.

Very recently, Chen et al. [42] proposed a scalable heuristic
for the LT model. They observe that, while computing the
expected spread (or coverage) is #P-hard in general graphs,
it can be computed in linear time in DAGs (directed acyclic
graphs). They exploit this property by constructing local DAGs
(LDAG) for every node in the graph. A LDAG for user u
contains the nodes that have significant influence over u (more
than a given threshold θ). Based on this idea, they propose a
heuristic called LDAG which provides close approximation to
Algorithm 1 and is highly scalable.

III. PROPAGATION TRACES

In most of the literature on influence maximization (as
the set of papers discussed above), the directed link-weighted
social graph is assumed as input to the problem. Probably due
to the difficulties in finding real propagation traces, researchers
have simply given for granted that we can learn the links
probabilities (or weights) from some available past propaga-
tion data, without addressing how to actually do that (with
the exception of few articles described in the next section).
This way they have been able to just focus on developing
algorithms for the problem which takes the already-weighted
graph as input.

However, in order to run experiments, the edge influence
weights/probabilities are needed. Thus researches have often
assumed some trivial model of links probabilities for their
experiments. For instance, for the IC model often experiments
are conducted assuming uniform link probabilities (e.g., all
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Fig. 1. The standard influence maximization process.

links have probability p = 0.01), or the trivalency (TV) model
where link probabilities are selected uniformly at random from
the set {0.1, 0.01, 0.001}, or assuming the weighted cascade
(WC) model, that is p(u, v) = 1/dv where dv represent the
in-degree of v (see e.g., [39], [41]).

These experiments usually are aimed at showing that a
newly proposed heuristic select a seed set S much more
efficiently than Algorithm 1, without losing too much in terms
of expected spread achieved σm(S).

In a recent paper Goyal et al. [45] have compared the
different outcomes of the greedy Algorithm 1 under the IC
model, when adopting different ways of assigning probabil-
ities. In particular, they have compared the trivial models
discussed above with influence probabilities learned from past
propagation traces. This is done by means of two experiments
on real-world datasets.

In the first experiment the overlap of the seed sets extracted
under the different settings is measured. In the second ex-
periment, the log of past propagations is divided in training
and test set, where the training set is used for learning the
probabilities. Then for each propagation in the test set, the
set of users that are the first to participate in the propagation
among their friends, i.e., the set of “initiators” of the action, is
considered as the seed set, and the actual spread, i.e., the size
of the propagation in the test set, is what the various methods
have to predict.

The outcome of this experimentation is that: (i) the seed
sets extracted under different probabilities settings are very
different (with empty or very small intersection) , and (ii)
the method based on learned probabilities outperforms the
trivial methods of assigning probabilities in terms of accuracy
in predicting the spread. The conclusion is hence that it
is extremely important to exploit available past propagation
traces to learn the probabilities.

In Figure 1, we summarize the standard process followed in
influence maximization making explicit the phase of learning
the link probabilities. The process starts with the (unweighted)
social graph and a log of past action propagations that say
when each user performed an action. The log is used to esti-
mate influence probabilities among the nodes. This produces
the directed link-weighted graph which is then given as input

to the greedy algorithm to produce the seed set using MC
simulations.

We can consider the propagation log to be a relational table
with schema (user ID, action ID, time). We say that an
action propagates from node u to node v whenever u and v
are socially linked (have an edge in the social graph), and u
performs the action before v. In this case we can also assume
that u contributes in influencing v to perform that action. From
this perspective, an action propagation can be seen as a flow,
i.e., a directed subgraph, over the underlying social network. It
is worth noting, that such a flow is a DAG: it is directed, each
node can have zero or more parents, and cycles are impossible
due to the time constraint. Therefore, another way to consider
the propagation log is as a database (a set) of DAGs, where
each DAG is an instance of the social graph.

In the rest of this article we will always consider the same
input consisting of two pieces: (1) the social graph, and (2) the
log of past propagations. We will see how different problems
and approaches can be defined based on this input.

IV. LEARNING THE INFLUENCE PROBABILITIES

Saito et al. [46] were the first to study how to learn the
probabilities for the IC model from a set of past propagations.
They neatly formalize the likelihood maximization problem
and then apply Expectation Maximization (EM) to solve it.

However, their theoretical formulation has some limitations
when it comes to practice. One main issue is that they
assume as input propagations that have the same shape as
they were generated by the IC model itself. This means that
an input propagation trace is a sequence of sets of users
D0, . . . , Dn, corresponding to the sets of users activated in
the corresponding discrete time steps of the IC propagation.
Moreover for each node u ∈ Di it must exists a neighbor
v of u such that v ∈ Di−1. This is obviously not the case
in real-world propagation traces, and some pre-processing is
needed to close this gap between the model and the real data
(as discussed in [47], [45]).

Another practical limitation of the EM-based method is
discussed by Goyal et al. [45]. Empirically they found that the
seed nodes picked by the greedy algorithm – with the IC model
and probabilities learned with the EM-based method [46] –
are all nodes which perform a very small number of actions,
often just one action, and should not be considered as high
influential nodes. For instance, Goyal et al. [45] report that
in one experiment the first seed selected is a node that in the
propagation traces appears only once, i.e., it performs only one
action. But this action propagates to 20 of its neighbors. As a
result, the EM-based method ends up assigning probability 1.0
to the edges from that node to all its 20 neighbors, making it
a high influence node, so much influential that it results being
picked as the first seed by the greedy algorithm. Obviously, in
reality, such node cannot be considered as a highly influential
node since its influence is not statistically significant.

Finally, another practical limit of the EM-based method is
its scalability, as it needs to update the influence probability
associated to each edge in each iteration.

Goyal et al. also studied the problem of learning influence
probabilities [48], but under a different model, i.e., an instance

IEEE Intelligent Informatics Bulletin December 2011 Vol.12 No.1



12 Feature Article: Influence Propagation in Social Networks: A Data Mining Perspective

of the General Threshold Model (or the equivalent General
Cascade Model [39]). They extended this model by making
influence probabilities decay with time. Indeed it has been
observed by various researchers in various domains and on
real data, that the probability of influence propagation decays
exponentially on time. This means that if u is going to re-do
an action (e.g., re-tweet a post) of v, this is likely going to
happen shortly after v has performed the action, or never.

Goyal et al. [48] propose three classes of influence proba-
bilities models. The first class of models assumes the influence
probabilities are static and do not change with time. The
second class of models assumes they are continuous functions
of time. In the experiments it turns out that time-aware models
are by far more accurate, but they are very expensive to learn
on large data sets, because they are not incremental. Thus,
the authors propose an approximation, known as Discrete
Time models, where the joint influence probabilities can be
computed incrementally and thus efficiently.

Their results give evidence that Discrete Time models are
as accurate as continuous time ones, while being order of
magnitude faster to compute, thus representing a good trade-
off between accuracy and efficiency.

As the propagation log might be potentially huge, Goyal
et al. pay particular attention in minimizing the number of
scans of the propagations needed. In particular, they devise
algorithms that can learn all the models in no more than two
scans.

In that work, factors such as the influenceability of a specific
user, or how influence-driven is a certain action are also
investigated.

Finally, the authors show that their methods can also be used
to predict whether a user will perform an action and when with
high accuracy, and the precision is higher for user which have
an high influenceability score.

V. DIRECT MINING APPROACHES

So far we have followed the standard approach to the
influence maximization problem as depicted in Figure 1. First
use a log of past propagations to learn edge-wise influence
probability, then recombine these probabilities together by
means of a MC simulation, in order to estimate the expected
spread of a set of nodes.

Recently new approaches emerged trying to mine directly
the two pieces of input (the social graph and the propagation
log) in order to build a model of the influence spread of a set
of nodes, avoiding the approach based on influence probability
learning and MC simulation.

Goyal et al. [45] take a different perspective on the defi-
nition of the expected spread σm(S), which is the objective
function of the influence maximization problem. Note that both
the IC and LT models discussed previously are probabilistic
in nature. In the IC model, coin flips decide whether an active
node will succeed in activating its peers. In the LT model it
is the node threshold chosen uniformly at random, together
with the influence weights of active neighbors, that decides
whether a node becomes active.

Under both models, we can think of a propagation trace as a
possible world, i.e., a possible outcome of a set of probabilistic

choices. Given a propagation model and a directed and edge-
weighted social graph G = (V, E, p), let G denote the set of
all possible worlds. Independently of the model m chosen, the
expected spread σm(S) can be written as:

σm(S) =
∑

X∈G

Pr[X ] · σX
m(S) (1)

where σX
m(S) is the number of nodes reachable from S in the

possible world X . The number of possible worlds is clearly
exponential, thus the standard approach (MC simulations) is to
sample a possible world X ∈ G, compute σX

m(S), and repeat
until the number of sampled worlds is large enough.

We now rewrite Eq. (1), obtaining a different perspective.
Let path(S, u) be an indicator random variable that is 1 if
there exists a directed path from the set S to u and 0 otherwise.
Moreover let pathX(S, u) denote the value of the random
variable in a possible world X ∈ G. Then we have:

σX
m(S) =

∑

u∈V

pathX(S, u) (2)

Substituting in (1) and rearranging the terms we have:

σm(S) =
∑

u∈V

∑

X∈G

Pr[X ] pathX(S, u) (3)

The value of a random variable averaged over all possible
worlds is, by definition, its expectation. Moreover the expecta-
tion of an indicator random variable is simply the probability
of the positive event.

σm(S) =
∑

u∈V

E[path(S, u)] =
∑

u∈V

Pr[path(S, u) = 1] (4)

That is, the expected spread of a set S is the sum over each
node u ∈ V , of the probability of the node u getting activated
given that S is the initial seed set.

While the standard approach samples possible worlds from
the perspective of Eq. (1), Goyal et al. [45] observe that real
propagation traces are similar to possible worlds, except they
are “real available worlds”. Thus they approach the compu-
tation of influence spread from the perspective of Eq. (4), i.e.,
estimate directly Pr[path(S, u) = 1] using the propagation
traces available in the propagation log.

In order to estimate Pr[path(S, u) = 1] using available
propagation traces, it is natural to interpret such quantity as
the fraction of the actions initiated by S that propagated to u,
given that S is the seed set. More precisely, we could estimate
this probability as

|{a ∈ A|initiate(a, S)& ∃t : (u, a, t) ∈ L}|

|{a ∈ A|initiate(a, S)}|

where L denotes the propagation log, and initiate(a, S) is true
iff S is precisely the set of initiators of action a. Unfortunately,
this approach suffers from a sparsity issue which is intrinsic
to the influence maximization problem.

Consider for instance a node x which is a very influential
user for half of the network, and another node y which is a
very influential user for the other half of the network. Their
union {x, y} is likely to be a very good seed set, but we
can not estimate its spread by using the fraction of the actions
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containing {x, y}, because we might not have any propagation
in the data with {x, y} as the actual seed set.

Summarizing, if we need to estimate Pr[path(S, u) = 1]
for any set S and node u, we will need an enormous number
of propagation traces corresponding to various combinations,
where each trace has as its initiator set precisely the required
node set S. It is clearly impractical to find a real-world action
log where this can be realized (unless somebody sets up a large
scale human-based experiment, where many propagations are
started with the desired seed sets). It should be noted that
this sparsity issue, is also the reason why it is impractical to
compare two different influence maximization methods on the
basis of a ground truth.

To overcome this obstacle, the authors propose a “u-centric”
perspective to the estimation of Pr[path(S, u) = 1]: they scan
the propagation log and each time they observe u performing
an action they distribute “credits” to the possible influencers of
a node u, retracing backwards the propagation network. This
model is named “credit distribution” model.

Another direct mining approach, although totally different
from the credit distribution model, and not aimed at solving
the influence maximization problem was proposed by Goyal et
al. few years ago in [49], [50]. In these papers they propose
a framework based on the discovery of frequent pattern of
influence, by mining the social graph and the propagation
log. The goal is to identify the “leaders” and their “tribes”
of followers in a social network.

Inspired by frequent pattern mining and association rules
mining [51], Goyal et al., define the notion of leadership
based on how frequently a user exhibits influential behavior.
In particular a user u is considered leader w.r.t. an action a
provided u performed a and within a chosen time bound after
u performed a, a sufficient number of other users performed
a. Moreover these other users must be reachable from u thus
capturing the role social ties may have played. If a user is
found to act as a leader for sufficiently many actions, then it
is considered a leader.

A stronger notion of leadership might be based on requiring
that w.r.t. each of a class of actions of interest, the set of
influenced users are the same. To distinguish from the notion
of leader above, Goyal et al. refer to this notion as tribe leader,
meaning the user leads a fixed set of users (tribe) w.r.t. a set
of actions. Clearly, tribe leaders are leaders but not vice versa.

Other constraints are added to the framework. The influence
emanating from some leaders may be “subsumed” by others.
Therefore, in order to rule out such cases Goyal et al. introduce
the concept of genuineness. Finally, similarly to association
rules mining, also the constraint of confidence is included in
the framework.

As observed before, the propagation log might potentially
be very large, the algorithmic solution must always try to
minimize the number of scans of the propagation log needed.
This is fundamental to achieve efficiency. In both the “credit
distribution” model [45], and the “leaders and tribes” frame-
work [49], [50], Goyal et al. develops algorithms that scan the
propagation log only once.

VI. SPARSIFICATION OF INFLUENCE NETWORKS

In this section we review another interesting problem de-
fined over the same input: (1) the social graph, and (2) the log
of past propagations.

Given these two pieces of input, assuming the IC propaga-
tion model, and assuming to have learned the edge influence
probabilities, Mathioudakis et al. [47] study the problem of
selecting the k most important links in the model, i.e., the
set of k links that maximize the likelihood of the observed
propagations. Here k might be an input parameter specified by
the data analyst, or alternatively k might be set automatically
following common model-selection practice. Mathioudakis et
al. show that the problem is NP-hard to approximate within
any multiplicative factor. However, they show that the problem
can be decomposed into a number of subproblems equal to the
number of the nodes in the network, in particular by looking
for a sparsification for the in-degree of each node. Thanks to
this observation they obtain a dynamic programming algorithm
which delivers the optimal solution. Although exponential, the
search space of this algorithm is typically much smaller than
the brute force one, but still impracticable for graphs having
nodes with a large in-degree.

Therefore Mathioudakis et al. devise a greedy algorithm
named SPINE (Sparsification of influence networks), that
achieves efficiency with little loss in quality.

SPINE is structured in two phases. During the first phase
it selects a set of arcs D0 that yields a log-likelihood larger
than −∞. This is done by means of a greedy approximation
algorithm for the Hitting Set NP-hard problem. During
the second phase, it greedily seeks a solution of maximum
log-likelihood, i.e., at each step the arc that offers the largest
increase in log-likelihood is added to the solution set.

The second phase has an approximation guarantee. In fact,
while log-likelihood is negative, and not equal to zero for an
empty solution, if we consider the gain in log-likelihood w.r.t.
the base solution D0 as our objective function, and we seek a
solution of size k − |D0|, then we have a monotone, positive
and submodular function g, having g(∅) = 0, for which we
can apply again the result of Nemhauser et al. [40]. Therefore,
the solution returned by the SPINE algorithm is guaranteed to
be “close” to the optimal among the subnetworks that include
the set of arcs D0.

Sparsification is a fundamental operation that can have
countless applications. Its main feature is that by keeping
only the most important edges, it essentially highlights the
backbone of influence and information propagations in social
networks. Sparsifying separately different information topics
can help highlighting the different backbone of, e.g., sport or
politics. Sparsification can be used for feed ranking [13], i.e.,
ranking the most interesting feeds for a user. Using the back-
bone as representative of a group of propagations, can be used
for modeling and prototype-based clustering of propagations.
Finally, as shown by Mathioudakis et al. [47], sparsification
can be used as simple data-reduction pre-processing before
solving the influence maximization problem. In particular, in
their experiments Mathioudakis et al. show that by applying
SPINE as preprocessor, and keeping only half of the links,
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Algorithm 1 can achieve essentially the same influence spread
σm that it would achieve on the whole network, while being
an order of magnitude faster.

Another similar problem is tackled by Gomez-Rodriguez et
al. [52], [53], that assume that the propagations are known, but
the network is not. In particular, they assume that connections
between nodes cannot be observed, and they use observed
traces of activity to infer a sparse, “hidden” network of
information diffusion.

Serrano et al. [54], as well as Foti et al. [55], focus on
weighted networks and select edges that represent statistically
significant deviations with respect to a null model.

VII. CONCLUDING REMARKS AND OPEN PROBLEMS

We have provided a brief, partial, and biased survey on
the topic of social influence and how it propagates in social
networks, mainly focussing on the problem of influence max-
imization for viral marketing. We have emphasized that while
most of the literature has been focussing only on the social
graph, it is very important to exploit available traces of past
propagations. Finally, we have highlighted the importance of
devising clever algorithms to minimize the number of scans
of the propagations log.

Although this topic has received a great deal of attention in
the last years, many problems remain more or less open.

Learning the strength of the influence exerted from a user
of a social network on another user, is a relevant task whose
importance goes beyond the mere influence maximization
process as depicted in Figure 1. Although some effort has been
devoted to investigating this problem (as partially reviewed in
Section IV), there is still plenty of room for improving the
models and the algorithms for such a learning task.

One important aspect, only touched in [48] is to consider the
different levels of user influenceability, as well as the different
level of action virality, in the theory of viral marketing and
influence propagation. Another extremely important factor is
the temporal dimension: nevertheless the role of time in viral
marketing is still largely (and surprisingly) unexplored.

We have seen that direct mining methods, as those ones
described in Section V, are promising both for what concerns
the accuracy and the efficiency in modeling the spread of social
influence. In the next years we expect to see more models of
this kind.

In a recent paper, Bakshy et al. [19] challenge the vision of
word-of-mouth propagations that are driven disproportionately
by a small number of key influencers. Instead they claim
that word-of-mouth diffusion can only be harnessed reliably
by targeting large numbers of potential influencers, thereby
capturing average effects. From this perspective the “leaders
and tribes” framework [49], [50] might be an appealing basic
brick to build more complex solutions (as it often happens
with frequent local patterns which are not very interesting
per se, but that are very useful to build global models). It
would be interesting to see how tribe leaders extracted with
the framework of [49], [50] perform when used as seed set in
the influence maximization process. Another appealing idea is

to use these small tribes as basic units to build larger com-
munities, thus moving towards community detection based on
influence/information propagation.

The influence maximization problem as defined by Kempe
et al. [39] assumes that there is only one player introducing
only a product in the market. However, in the real world, is
more likely the case where multiple players are competing
with comparable products over the same market. Just think
about consumers technologies such as videogame consoles
(X-Box Vs. Playstation) or reflex digital cameras (Canon Vs.
Nikon): as the adoption of these consumers technologies is not
free, it is very unlikely that the average consumer will adopt
both competing products. Thus is makes sense to formulate
the influence maximization problem in terms of mutually
exclusive and competitive products. While there are two papers
that have tackled this problem independently and concurrently
in 2007 [56], [57], their contribution is mostly theoretical and
leaves plenty of room for developing more concrete analysis
and methods.

One important aspect largely left uncovered in the current
literature is the fact that some people are more likely to buy
a product than others, e.g., teenagers are more likely to buy
videogames than seniors. Similarly, a user which is influential
w.r.t. classic rock music, is not very likely to be influential
for what concerns techno music too. These considerations
highlight the need of, (1) methods that can take benefit of
additional information associated to the nodes (the users) of
a social network (e.g., demographics, behavioral information),
and (2), methods to incorporate topic modeling in the influence
analysis. While some preliminary work in this direction exists
[58], [18], [59], we believe that the synergy of topic modeling
and influence analysis is still in its infancy, and we expect this
to become an hot research area in the next years.

Mining influence propagations data for applications such as
viral marketing has non-trivial privacy issues. Studying the pri-
vacy threats associated to these mining activities and devising
methods respectful of the privacy of the social networks users
are important problems.

Finally, the main open challenge in our opinion is that
the influence maximization problem, as defined by Kempe et
al. [39] and as reviewed in this article, is still an ideal problem:
how to make it actionable in the real world? Propagation
models, e.g., the IC and LT models reviewed in Section II (but
many more exist in the literature), make many assumptions:
which of these assumptions are more realistic and which are
less? Which propagation model does better describe the real-
world? We need to develop techniques and benchmarks for
comparing different propagation models and the associated
influence maximization methods on the basis of ground-truth.
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