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Abstract—Several disciplines, including artificial intelligence,
operations research and many others, study how to make good
decisions. In this overview article, we argue that the key to
making progress in our research area is to combine their ideas,
which often requires serious technical advances to reconcile
their different assumptions and methods in a way that results
in synergy among them. To illustrate this point, we give a
broad overview of our ongoing research on search and planning
(with a large number of students and colleagues, both at the
University of Southern California and elsewhere) to demonstrate
how to combine ideas from different decision making disciplines.
For example, we describe how to combine ideas from artificial
intelligence, operations research, and utility theory to create the
foundations for building decision support systems that fit the
risk preferences of human decision makers in high-stake one-shot
decision situations better than current systems. We also describe
how to combine ideas from artificial intelligence, economics,
theoretical computer science and operations research to build
teams of robots that use auctions to distribute tasks autonomously
among themselves, and give several more examples.

Index Terms—agents, ant robotics, artificial intelligence,
auction-based coordination, decision theory, dynamic program-
ming, economics, freespace assumption, goal-directed navigation,
greedy online planning, heuristic search, high-stake one-shot
decision making, incremental heuristic search, Markov decision
processes, multi-agent systems, nonlinear utility functions, opera-
tions research, planning, real-time heuristic search, reinforcement
learning, risk preferences, robotics, scarce resources, sequential-
single item auctions, terrain coverage, utility theory.

I. I NTRODUCTION

A RTIFICIAL INTELLIGENCE is rooted in building cog-
nitive systems (that is, systems that operate in a way

similar to the human mind) but today is more and more about
engineering intelligent systems (that is, systems that solve
tasks that require difficult decisions) even if these systems do
not operate in a way similar to the human mind. For exam-
ple, the popular textbook ”Artificial Intelligence: A Modern
Approach” [52] by Stuart Russell and Peter Norvig views
artificial intelligence as the science of creating rationalagents,
where agents are control systems that interact with an envi-
ronment. They can sense to gather information about the state
of the environment and execute actions to change it. Rational
agents, according to the textbook, should select actions that are
expected to maximize given performance measures. In general,
agents must be able to make good decisions in complex
situations that involve a substantial degree of uncertainty, yet
find solutions in a timely manner. Researchers from artificial
intelligence therefore create a strong foundation for building
such agents, typically focusing more on autonomous decision
making and optimization than modeling of complex decision
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problems or providing decision support for human decision
makers.

Artificial intelligence has developed tools for building
agents that perform well with respect to given performance
measures. Other decision making disciplines provide different
and potentially complementary tools. In general, the larger
one’s toolbox, the more decision problems one is able to
tackle. By combining ideas from different decision making
disciplines, one can expect to improve on existing tools and
build new tools that either perform better than existing ones
or solve decision problems that existing tools cannot solve.
This provides an incentive to study different decision making
disciplines, develop curricula that allow students to learn about
several decision making disciplines, and create a universal
science of intelligent decision making that combines ideas
from different decision making disciplines, including artificial
intelligence, operations research, economics, decision theory,
and control theory. One obstacle that needs to be overcome
is that different decision making disciplines typically study
different applications and thus make different assumptions,
resulting in different decision making methods. Combining
ideas from different decision making disciplines therefore
often requires serious technical advances to reconcile the
different assumptions and methods in a way that results in
synergy among them. A second obstacle is that that different
decision making disciplines focus on different aspects of deci-
sion problems and have different ideas about what constitutes
a good solution to a given decision problem, often due to
the disciplinary training of their researchers. For example,
statistics researchers often tend to focus on the uncertainty
in the data and how it can be resolved; optimization re-
searchers often tend to assume that the data is correct and
focus on finding optimal or close to optimal (rather than
timely) solutions (concentrating on ”planning” rather than
”operations”); and artificial intelligence researchers often tend
to focus on the ability of agents to make good decisions online,
taking into account the limitations of the agents (such as their
limited sensing, computational and communication capabilities
as well as their noisy actuation) in addition to their interaction
with the environment (such as information collection) and
each other (such as coordination), which explains the title
of this overview article. A third obstacle is that different
decision making disciplines often use different terminology
and notation. Multi-disciplinary training can overcome these
obstacles and transform the second obstacle into a strength.

Artificial intelligence often pursues general principles that
apply widely to decision making and problem solving (rather
than problem-specific methods), perhaps due to its roots in
building cognitive systems. It is therefore not surprisingthat
artificial intelligence, over time, has incorporated ideasfrom
other decision making disciplines. For example, the third
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edition of ”Artificial Intelligence: A Modern Approach” covers
local search in Chapter 4, including hill-climbing search,sim-
ulated annealing, local beam search, and genetic algorithms. It
covers utility theory in Chapter 16, including utility functions,
multi-attribute utility functions, and influence diagrams. It
covers sequential decision problems in Chapter 17, including
Markov decision processes and dynamic programming meth-
ods such as value and policy iteration. It covers game theory
in Chapter 17, including single-move, repeated, and sequential
games. It also covers mechanism design in the same chapter,
including auctions. All of these topics have also been stud-
ied in other decision making disciplines, such as operations
research and economics, and typically originated there. For
example, researchers from artificial intelligence discovered to-
tally and partially observable Markov decision processes from
operations research when working on foundations for decision
theoretic planning and reinforcement learning and then, for
example, developed new ways of representing and solving
them by incorporating insights from knowledge representa-
tion and planning (where states are typically represented as
collections of facts), resulting in both symbolic and structured
dynamic programming. Symbolic dynamic programming, for
example, is a generalization of dynamic programming for
solving Markov decision processes that exploits symbolic
structure in the solution of relational and first-order logical
Markov decision processes to avoid the full state and action
enumeration of classical dynamic programming methods [54].

Outsiders often do not know about these and other recent
achievements of artificial intelligence and, for this reason,
might not appreciate the ideas that it has to offer to them.
There exist some established but narrow interfaces between
artificial intelligence and other decision making disciplines.
An example of a step in the direction of an interface be-
tween artificial intelligence and control theory is [8]. An
example of a step in the direction of an interface between
artificial intelligence and operations research is the Interna-
tional Conference on Integration of Artificial Intelligence and
Operations Research Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR), which
is by now an established conference series with 9 conferences
since 2004, preceeded by 5 workshops. Similarly, ILOG
eventually integrated software for constraint programming and
linear optimization. In general, however, artificial intelligence
probably needs to reach out even more to other decision
making disciplines with the objective to inform them and
create a universal science of intelligent decision making.While
this might appear to be an obvious objective, progress in
this direction has been made mostly recently. For example,
an algorithmic decision theory community formed around
2000 and eventually created the International Conference on
Algorithmic Decision Theory (ADT). The First International
Conference on Algorithmic Decision Theory took place in
Venice, Italy, in 2009, and the Second International Con-
ference on Algorithmic Decision Theory took place in New
Brunswick, USA, in 2011. The conference series, according
to the conference announcement at www.adt2011.org, involves
researchers from such disparate fields as decision theory, dis-
crete mathematics, theoretical computer science, economics,

and artificial intelligence, aiming to improve decision support
in the presence of massive data bases, partial and/or uncertain
information, and distributed decision makers. Papers have
covered topics from computational social choice to preference
modeling, from uncertainty to preference learning, and from
multi-criteria decision making to game theory [51].

We sketch some of our own research in the remainder
of this overview article to illustrate why we believe that it
is important to combine ideas from different decision mak-
ing disciplines. Not surprisingly, our research centers around
methods for decision making (planning and learning) that
enable single agents and teams of agents to act intelligently in
their environments and exhibit goal-directed behavior in real-
time, even if they have only incomplete knowledge of their
environment, imperfect abilities to manipulate it, limited or
noisy perception or insufficient reasoning speed. Our research
group, the Intelligent Decision Making group, develops new
decision making methods, implements them and studies their
properties theoretically and experimentally. We demonstrated
around 1995 that it is possible to combine ideas from different
decision making disciplines by developing a robot navigation
architecture based on partially observable Markov decision
processes from operations research that allows robots to nav-
igate robustly despite a substantial amount of actuator and
sensor uncertainty, which prevents them from knowing their
precise location during navigation [27]. This research resulted
in a reliable robot architecture that overcomes the deficiencies
of purely topological or metric navigation methods [58]. Since
then, our research group has continued to combine ideas from
different decision making disciplines. In the following, we
describe some of these research directions in more detail.
While they might appear diverse, there is a common under-
lying thrust, namely to bring about advances that extend the
reach of search (in a broad sense, including heuristic search,
hill-climbing and dynamic programming), and to apply the
results to robot navigation.

II. EXAMPLE : NONLINEAR UTILITY FUNCTIONS

Finding plans that maximize the expected utility for non-
linear utility functions is important in both high-stake one-
shot decision situations and decision situations with scarce
resources [7].

• In high-stake one-shot decision situations, huge gains or
losses of money or equipment are possible, and human
decision makers take risk aspects into account. Risk-
averse decision makers, for example, tolerate a smaller
expected plan-execution reward for a reduced variance
(although this explanation is a bit simplified). For ex-
ample, they try to avoid huge losses when fighting
forest fires, containing marine oil spills or controling
autonomous spacecraft (and other decision problems that
artificial intelligence researchers study) and thus add
more sensing operations than necessary to maximize
the expected reward [26]. Planning systems need to
reflect these risk preferences. Bernoulli and Von Neu-
mann/Morgenstern’s utility theory [60] [4] suggests that
rational human decision makers choose plans that max-
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imize the expected utility, where the utility is a mono-
tonically increasing function of the reward. For exam-
ple, exponential utility functions completely preserve the
structure of planning tasks because they are the only class
of nonlinear utility functions for which decisions do not
depend on the accumulated reward. However, one-switch
utility functions often model the risk attitudes of human
decision makers better than exponential utility functions
[2].

• In decision situations with scarce resources, there are
often limits to how much of a resource (such as time,
energy or memory) can be consumed before it runs
out. For example, a lunar rover that reaches a science
target with minimal expected energy consumption does
not necessarily maximize the probability of achieving it
within its battery limit. Resource limits can be modeled
with monotonically (but perhaps not strictly monotoni-
cally) increasing utility functions that map total rewards
(the negative of the total resource consumptions) to real
values. For example, a hard resource limit can be modeled
with a step function that is zero to the left of the negative
resource limit (where the total resource consumption is
greater than the resource limit) and one to the right of it
[15].

Decision-theoretic planning methods in artificial intelli-
gence are these days typically, either explicitly or implicitly,
based on Markov decision processes. One can use dynamic
programming methods, such as value iteration [3] or policy
iteration [21], to maximize the expected total (undiscounted
or discounted) reward. One can also use these methods to
maximize the expected utility for nonlinear utility functions
(studied in the context of risk-sensitive Markov decision
processes in operations research [22] and control theory [39])
but then, except for exponential utility functions, needs to
add the accumulated reward to the states, which increases
the number of states substantially. We and other artificial
intelligence researchers have therefore studied “functional”
versions of value and policy iteration that do not maintain
a value for each augmented state but rather a value function
for each original state (that maps the total reward to the value
of the state) and operate directly on these value functions [6]
[48] [12] [34] [43], which allows one to solve larger decision
problems than what would be possible otherwise due to the
following advantages: First, the value functions can sometimes
be represented exactly and compactly (that is, with a finite
number of parameters), as we have shown for one-switch
utility functions [36] [38] and piecewise linear utility func-
tions with optional exponential tails [37]. Second, the value
functions can also be approximated to a desired degree (for
example, with piecewise linear functions), sometimes resulting
in approximation guarantees, which allows one to trade off
between runtime and memory consumption on one hand and
solution quality on the other hand [37]. More complex decision
problems can be solved in a similar way. For example, a lunar
rover might have to maximize its science return within its
battery limit despite uncertainty about its energy consumption,
when scientists have designated several locations that the

rover can visit to perform science experiments and assigneda
science return value to each of them [40]. Other approaches
also exist [41], together with extensions to teams of robots
[42].

Methods from artificial intelligence exploit the structureof
decision-theoretic planning tasks [45]. For example, artificial
intelligence has investigated how to represent search spaces
implicitly and exploit the resulting decomposability to solve
Markov decision processes efficiently without having to enu-
merate their state spaces completely. For instance, structured
versions of value iteration represent the transition policies
in factored form, which allows them to represent policies
more compactly than with tables to speed up their compu-
tations and generalize policies across states [5]. An example
is SPUDD, that uses algebraic decision diagrams instead of
tables [20]. Artificial intelligence has also investigatedforward
search methods that, different from value and policy iteration,
consider only states that are reachable from the start state.
For instance, LAO* uses heuristic search to restrict the value
updates only to relevant states rather than all states [16]
[44]. We have generalized these methods to find plans that
maximize the expected utility for nonlinear utility functions
[35]. Other decision making disciplines have developed other
ways of exploiting the structure of decision-theoretic planning
tasks [49], meaning that there are opportunities for combining
different ideas. Overall, this research combines insightsfrom
artificial intelligence, operations research, and utilitytheory for
planning with nonlinear utility functions. Operations research
has studied the properties of Markov decision processes in
detail, artificial intelligence and operations research contribute
ideas for solving them, and utility theory provides a realistic
optimization criterion for high-stake one-shot decision situa-
tions.

III. E XAMPLE : AUCTION-BASED COORDINATION

Centralized control is often inefficient for teams of robots
in terms of the amount of communication and computation re-
quired since the central controller is the bottleneck of thesys-
tem. Researchers from artificial intelligence and roboticshave
therefore studied robot coordination with cooperative auctions
[9]. An auction is “a market institution with an explicit setof
rules determining resource allocation and prices on the basis
of bids from the market participants” [46]. Auctions have
been developed for the allocation of resources in situations
where agents have different utilities and private information.
Auctions are therefore promising decentralized methods for
teams of robots to allocate and re-allocate tasks in real-time
among themselves in dynamic, partially known and time-
constrained domains with positive or negative synergies among
tasks. Furthermore, the short length of a bid is helpful when
communication bandwidth is limited. Artificial intelligence
and later robotics have explored auction-based coordination
systems at least since the introduction of contract networks
[55], mostly from an experimental perspective. In auction-
based coordination systems, the bidders are robots, and the
items up for auction are tasks to be executed by the robots.
All robots bid their costs. Thus, the robot with the smallestbid
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cost is best suited for a task. All robots then execute the tasks
that they win. Auction-based coordination systems are easy
to understand, simple to implement and broadly applicable.
They promise to be efficient both in communication (since
robots communicate only essential summary information) and
in computation (since robots compute their bids in parallel).
A typical application is multi-robot routing [10], where a
team of robots has to visit given targets and repeatedly
reassigns targets among the robots as it learns more about
the initially unknown terrain, as robots fail or as additional
targets get introduced. Examples include environmental clean
up, mine clearing, space exploration, and search-and-rescue.
Multi-robot routing problems are NP-hard to solve optimally
even if the locations of obstacles, targets, and robots are
initially known and (except for the locations of the robots)
do not change [32]. Their similarity to traveling salesperson
problems [33] allows one to use insights from theoretical
computer science and operations research for their analysis.
Economics has an extensive auction literature but its agents
are rational and competitive, leading to long decision cycles,
strategic behavior, and possibly collusion. Such issues donot
arise in auction-based coordination systems because the robots
faithfully execute their programs. On the other hand, auction-
based coordination systems must operate in real-time. Still,
some insights from economics can be exploited for building
them, such as the concepts of synergy and different auction
mechanisms, including parallel, combinatorial, and sequential
single-item (SSI) auctions. For example, SSI auctions proceed
in several rounds, assigning one additional target per round
to some robot. We have exploited the fact that SSI auction-
based coordination systems with marginal-cost bidding [53]
perform a form of hill-climbing search to analyze the resulting
team performance [59]. We have used tools from theoretical
computer science to show that SSI auction-based coordination
systems can provide constant factor performance guarantees
even though they run in polynomial time and, more gener-
ally, that they combine advantageous properties of parallel
and combinatorial auctions [32], resulting in one of the few
existing performance analyses. Some intuition for this result
can be gained from interpreting the greedy construction of
minimum spanning trees as a cooperative auction [31]. We
have investigated several versions of SSI auctions to build
SSI auction-based coordination systems that increase the team
performance while still allocating targets to robots in real-time.
For example, we have generalized auction-based coordination
systems based on SSI auctions to assign more than one
additional target during each round (called the bundle size),
which increases their similarity with combinatorial auctions
by taking more synergies among targets into account and
making the resulting hill-climbing search less myopic. We
have shown that, for a given number of additional targets to be
assigned during each round, every robot needs to submit only
a constant number of bids per round and the runtime of winner
determination is linear in the number of robots [29]. Thus, the
communication and winner determination times do not depend
on the number of targets, which helps the resulting auction-
based coordination systems to scale up to a large number of
targets for small bundle sizes. Overall, this research combines

insights from artificial intelligence, economics, theoretical
computer science and operations research for the development
of auction-based coordination systems and their analysis [23].

IV. EXAMPLE : FAST REPLANNING

Robots often operate in domains that are only incompletely
known or change over time. One way of dealing with incom-
plete information is to interleave search with action execution.
In this case, the robots need to replan repeatedly. To make
search fast, one can use heuristic search methods with limited
lookahead (agent-centered search, such as real-time heuristic
search [30]) or heuristic search methods that reuse information
from previous searches (incremental heuristic search). Con-
sider, for example, a robot that has to move from its current
location to given goal coordinates in initially unknown terrain.
The robot does not know the locations of obstacles initially
but observes them within its sensor radius and adds them to its
map. Planning in such non-deterministic domains is typically
time-consuming due to the large number of contingencies,
which provides incentive to speed up planning by sacrificing
the optimality of the resulting plans. Greedy online planning
methods interleave planning and plan execution to allow robots
to gather information early and then use the acquired informa-
tion right away for replanning, which reduces the amount of
planning performed for unencountered situations. For example,
goal-directed navigation with the freespace assumption isa
common-sense version of assumption-based planning that is
popular in robotics for moving a robot to a given goal location
in initially unknown terrain [47] and can be analyzed with
tools from theoretical computer science [28]. It finds a short
(unblocked) path from the current location of the robot to the
goal location given its current knowledge of the locations of
obstacles under the assumption that the terrain is otherwise
free of obstacles. If such a path does not exist, it stops
unsuccessfully. Otherwise, the robot follows the path until
it either reaches the goal location, in which case it stops
successfully, or observes the path to be blocked, in which
case it repeats the process using its revised knowledge of the
locations of obstacles. Incremental heuristic search methods
solve such series of similar path planning problems often
faster than searches from scratch [17] (by reusing information
from previous searches to speed up their current search), yet
differ from other replanning methods (such as planning by
analogy) in that their solution quality is as good as the solution
quality of searches from scratch [25]. The first incremental
heuristic search methods was published in artificial intelli-
gence and robotics [56]. It has been discovered since then that
incremental search had been studied much earlier already (for
example, in the context of dynamic shortest path problems in
algorithms), which allowed us to develop a new incremental
heuristic search method by combining ideas from different
disciplines. D* Lite [24] is now a popular incremental heuristic
search method for planning with the freespace assumption
that combines ideas from incremental search (namely, to
recalculate only those start distances that can have changed
or have not been calculated before) with ideas from heuristic
search (namely, to use approximations of the goal distances
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to recalculate only those start distances that are relevantfor
recalculating a shortest path). In particular, it combinesideas
behind DynamicSWSF-FP [50] from algorithms with ideas
behind A* from artificial intelligence. Overall, this research
combines insights from artificial intelligence, robotics,and
theoretical computer science for the development of fast
replanning methods and their analysis.

V. EXAMPLE : ANT ROBOTS

Researchers from robotics are interested in simple robots
with limited sensing and computational capabilities as well
as noisy actuation. Such ant robots have the advantage that
they are easy to program and cheap to build. This makes it
feasible to deploy groups of ant robots and take advantage
of the resulting fault tolerance and parallelism. Researchers
from robotics had studied robots that can follow trails laid
by other robots but we studied robots that leave trails in the
terrain to cover closed terrain (that is, visit each location)
once or repeatedly, as required for surveillance, guarding
terrain, mine sweeping, and surface inspection. Ant robots
cannot use conventional planning methods due to their limited
sensing and computational capabilities. To overcome these
limitations, we developed navigation methods that leave mark-
ings in the terrain, similar to the pheromone trails of real
ants. These markings are shared among all ant robots and
allow them to cover terrain even if they do not have any
kind of memory, cannot maintain maps of the terrain, nor
plan complete paths. They can be used by single ant robots
as well as groups of ant robots and provide robustness in
situations where some ant robots fail, ant robots are moved
without realizing this, the trails are of uneven quality, and some
trails are destroyed. Robot architectures based on partially
observable Markov decision processes provide robots with the
best possible location estimate to overcome actuator and sensor
uncertainty, while ant robots achieve their goals without ever
worrying about where they are in the terrain. We built physical
ant robots that cover terrain and test their design both in
realistic simulation environments and on a Pebbles III robot.
We modeled the coverage strategy of such ant robots with
graph dynamic programming methods that are similar to real-
time heuristic search methods (such as Learning Real-Time
A*) [30] and reinforcement learning methods (such as Real-
Time Dynamic Programming) [1] from artificial intelligence
(except that the values are written on the floor rather than
stored in memory), which allowed us to use tools from
theoretical computer science to analyze their behavior [57].
Other researchers, such as Israel Wagner and his collaborators,
have similar interests and work on the intersection of robotics,
artificial intelligence, and theoretical computer science[61],
see also http://www.cs.technion.ac.il/˜wagner/. Overall, this re-
search combines insights from artificial intelligence, robotics,
biology, and theoretical computer science for the development
of navigation methods for ant robots and their analysis.

VI. EXAMPLE : TERRAIN COVERAGE

Robot coverage of known terrain can be sped up with
multiple robots that coordinate explicitly. Researchers from

robotics had investigated spanning tree-based coverage meth-
ods in unweighted terrain, where the travel times of robots
are the same everywhere in the terrain. Single-robot coverage
problems are solved with minimal cover times by Spanning
Tree Coverage (STC), a polynomial-time single-robot cover-
age method published in robotics and artificial intelligence
that decomposes terrain into cells, finds a spanning tree of
the resulting graph, and makes the robot circumnavigate it
[13] [14]. This method had been generalized to Multi-Robot
Spanning Tree Coverage (MSTC), a polynomial-time multi-
robot coverage method published in robotics [18] [19]. While
MSTC provably improves the cover times compared to STC, it
cannot guarantee its cover times to be small. We showed that
solving several versions of multi-robot coverage problemswith
minimal cover times is NP-hard, which provides motivation
for designing polynomial-time constant-factor approximation
methods. We generalized STC to Multi-Robot Forest Coverage
(MFC), a polynomial multi-robot coverage method based on
a method published in operations research [11] (in the context
of deciding where to place nurse stations in hospitals) for
finding tree covers with trees of balanced weights, one tree for
each robot. We also generalized MFC from unweighted terrain
to weighted terrain, where the travel times of robots are not
the same everywhere. The cover times of MFC in weighted
and unweighted terrain are at most about sixteen times larger
than minimal and experimentally close to minimal in all tested
scenarios [62]. Overall, this research combines insights from
artificial intelligence, robotics, and operations research for the
development of terrain coverage methods and their analysis.

VII. C ONCLUSIONS

In this overview article, we described some of our own
research to illustrate why we believe that it is important to
combine ideas from different decision making disciplines.We
are convinced that we have overlooked lots of developments
but encourage researchers from artificial intelligence to con-
tinue to reach out to other decision making disciplines with
the objective to inform them about our latest research and help
to make progress towards a universal science of intelligent
decision making.
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