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In the medical sector, there is a high demand for innovative
methods to ensure a vendor independent, safe, and reliable
communication between heterogeneous medical devices when
patients should be provided with the highest possible level
of care. Due to the increasing amount of medical devices
that should interact, the complexity of such systems grows
continuously. To accommodate this trend and ensure a correct
functionality, we aim at providing an automated and correct
composition of the involved components. The concepts in the
field of service composition developed for service-oriented
architectures (SOAs) are highly promising to reach such an
automation, while ensuring reliability and safety of the system.

The core idea of SOAs is to develop services with sophis-
ticated functionality by composing simpler services appropri-
ately. Services that are independently developed by different
providers often cannot communicate with each other directly
due to interface incompatibilities. To overcome these incom-
patibilities an adaption or unification of the interfaces becomes
necessary. But, the internal adaption of their interfaces is not
realizable due to the provision as closed-source services. To
enable their interaction nevertheless, it is necessary to develop
a connector that communicates with each service to be com-
posed and, by that, overcomes the arising incompatibilities.
This component, called controller, is responsible for the routing
and modification of messages as well as for the compliance of
behavioral requirements.

As medical devices have similar characteristics, they can
be understood as services. Thus, the problem of enabling the
interoperability of medical devices can be shifted to the more
general problem of service composition.

However, existing approaches dealing with automated ser-
vice composition, like [3], do not provide a formal data-
treatment nor consider data-dependent behavior. Thus, they are
insufficient or much manual effort is necessary to enable a safe
interoperability of medical devices using service composition.

In our work, we address the problem of providing a
controller synthesis process under consideration of a formal
data-treatment to enable its application in the medical area.
Our approach, allows to

1) express and ensure complex, data-dependent specifi-
cations the composed system has to fulfill,

2) detect and consider data-dependent behavior,
3) synthesize a controller automatically,
4) ensure correctness-by-construction w.r.t. data-

dependent, functional and safety-critical requirements
As base for our approach, we assume that a formal repre-

sentation as algebraic Petri net (APN) [5] of each service is

known. This is not a restrictive assumption, because ongoing
research in the field of data mining focuses on the extraction of
formal models out of textual descriptions. As medical devices
have to pass a certification process, they are always available.
Furthermore we assume that the interface matching as well
as the set of requirements are expressed by a subset of the
computation tree logic (CTL). These requirements specify the
interaction between the single devices and define the behavior
of the composed system, respectively. Our main target is to
synthesize a correct controller, so that the composed system
fulfills all given requirements. For this, we have developed a
three-step approach, which is shown in Figure 1.
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Fig. 1. Basic Idea of the Controller Synthesis Approach [1]

Based on the inputs, we firstly determine restrictions of the
data domains during the behavioral abstraction step. In this
step, the behavior of each service is reduced to the observable
behavior at the interface ports. The idea is shown in Figure 2.
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Fig. 2. Basic Idea of the Behavioral Abstraction

For each net the reduction process is done in two phases:
Starting from a net representing the behavior of a service, all
parts of the net that are not involved in the communication that
is realized by interface places (p1, p3, p5) are omitted. As result
of this elimination step, we get a reduced net (N ′), which is
the second net in Figure 2. Based on this net, the rest of the
behavior is automatically analyzed to determine restrictions of
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the data domains at the (output) interface ports. For this, we
summarize all internal states and transitions into one single
hierarchical transition [4]. Data-dependencies occurring along
this abstraction step must be extracted and stored. As result
we get a CTL-formula that must be conjunct with the CTL-
formulae which are representing the interface matching and the
requirements. For this purpose, we have defined and proven
transformation rules that describe the mapping of atomic and
more complex elements of the formulae to corresponding
elements of APNs. To enable this mapping, in the property
translation step, the second step of our approach, we have
extended the syntax and semantics of APNs by path operators
the CTL-formulae comprise. In Figure 3 the transformation of
a formula into an extended version of APN is exemplified.
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Fig. 3. Basic Idea of the Transformation from CTL-formulae into APNs

Atomic elements of the formulae are transformed into ele-
ments of APNs, e.g. p5.z is transformed into a place with label
p5 and an arc with inscription z. Propositions that comprise
relational operators on the left-hand side of the implication,
e.g. z ≤ Constlimit, are translated into guards. Variables, like
z, and constants, like err and Constlimit, become part of the
algebraic specification as variables (vars) and operations (op),
respectively. Additionally, CTL-specific operators, e.g. AX ,
are represented as label for the transition, which exemplifies
the extension of APN. In this way, the set of CTL-formulae is
transformed into a set of extended APNs.

Afterwards, in the composition step, we compose these nets
to an overall Petri net in which all properties are fulfilled. This
is due to the fact that the composition of the extended APNs
is equivalent to the conjunction of the CTL-formulae which
are represented by the corresponding nets. Figure 4 visualizes
the functionality of our composition algorithm.
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Fig. 4. Functionality of the Composition

Nevertheless, the composition is not always successful.
This can have two reasons: First, it is possible that formulae are
contradictory. In this case, the composition algorithm discloses
a counterexample to the user to clarify which requirement is
not compatible with the others. The user can decide whether

this requirement is negligible and whether the controller syn-
thesis process should be continued without this requirement.
Second, there might be an infinite run time of the composition
process. This is caused by undecidable problems that can occur
during the analysis of the reachability graphs of the nets to
be composed. To avoid this, we have defined a time interval
depending on the complexity of the system. If the composition
process does not terminate within this time limit, a timeout
notification is sent to the user, who can change the specification
and give it another try. If the composition succeeds, we get
an overall net that comprises all properties, i.e., all extended
APNs that represent the corresponding CTL-formulae.

In the last step of our synthesis process, the requested
controller can be extracted from the resulting overall net, which
includes the behavior of all services. As the purpose of the
controller is to ensure the correct communication between the
services, we have to extract all parts of the overall net that are
responsible for that. For this, we use the interface matching
to mark the interface places and separate the net structure
between these places. The extended APN that comprises the
separated net structures is the controller. After extracting the
controller, we substitute the extended transitions, i.e., that
are labeled with CTL-specific operators, by transitions an
original APN consists of. The main advantage of reverting
the extension is the usability of existing tools developed for
original APN. The resulting controller, which is represented
by an (original) APN, will be combined with the APNs that
represent the service behavior and that have been used as
input for our approach. Because it is correct-by-construction,
it ensures that the composed system, consisting of the services
and the synthesized controller, fulfills all requirements that
have been specified by the customer.

As each of these three steps is fully automatic and proven
as correct, we get an automated synthesis of service con-
trollers that are correct w.r.t. data-dependent, functional and
safety-critical requirements. Currently, we are evaluating this
approach using a case study which has been provided by Dr.
Oliver Blankenstein (Endocrinology, Charité Berlin). This case
study deals with the development of an artificial pancreas,
where a glucose sensor and an insulin pump have to interact.
A sketch of this can be found in [2]. In future work, we aim
to introduce a priority of the requirements so that a controller
can be synthesized that ensures at least the most important
properties. This means, properties that are absolutely necessary
are combined first. Thus, a first draft of the controller is
provided which can be extended by less important properties.
This may reduce the risk of a time-out.
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