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Zeroth-Order Optimization and Its Application to
Adversarial Machine Learning
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Abstract—Many big data problems deal with complex data
generating processes that cannot be described by analytical forms
but can provide function evaluations, such as measurements from
physical environments or predictions from deployed machine
learning models. These types of problems fall into zeroth-order
(gradient-free) optimization with respect to black-box models. In
this paper, we provide a comprehensive introduction to recent
advances in zeroth-order (ZO) optimization methods in both
theory and applications. On the theory side, we will elaborate
on ZO gradient estimation and the convergence rate of various
ZO algorithms. The existing studies suggest that ZO algorithms
typically agree with the iteration complexity of first-order al-
gorithms up to a small-degree polynomial of the problem size.
On the application side, we will delve into applications of ZO
algorithms on studying the robustness of deep neural networks
against adversarial perturbations. In particular, we will illustrate
how to formulate the design of black-box adversarial attacks as a
ZO optimization problem and how adversarial attacks can benefit
from advanced ZO optimization techniques, such as providing
query-efficient approaches to generating adversarial examples
from a black-box image classifier.

Index Terms—Zeroth-order optimization, adversarial machine
learning, black-box adversarial example, gradient estimation.

I. INTRODUCTION

ZEROTH-order (ZO) optimization is increasingly em-
braced for solving big data and machine learning prob-

lems when explicit expressions of the gradients are difficult or
infeasible to obtain. It achieves gradient-free optimization by
approximating the full gradient via efficient gradient estima-
tors. One recent application of particular interest is to generate
prediction-evasive adversarial examples using only the input-
output correspondence of the target machine learning model,
e.g., deep neural networks (DNNs) [1]–[4]. Additional classes
of applications include network control and management with
time-varying constraints and limited computation capacity [5],
[6], parameter inference of black-box systems [7]–[9], and
bandit optimization in which a player receives partial feedback
in terms of loss function values revealed by her adversary [10],
[11].

Spurred by application demands for ZO optimization, many
types of ZO algorithms were developed for convex and non-
convex optimization. In these algorithms, a full gradient is
typically approximated using either a one-point or a two-
point gradient estimator, where the former acquires a gradient
estimate by querying the (black-box) objective function f(x)
at a single random location close to x [10], [12], and the latter
computes a finite difference using two random function queries
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[13], [14]. Compared to the one-point gradient estimator, the
two-point gradient estimator has a lower variance and thus
improves the complexity bounds of ZO algorithms.

Despite the meteoric rise of two-point based ZO algorithms,
most of the work is restricted to convex problems [6], [11],
[15]–[18]. For example, a ZO mirror descent algorithm pro-
posed by [15] has an exact rate O(

√
d/
√
T ), where d is

the number of optimization variables, and T is the number
of iterations. The same rate is obtained by bandit convex
optimization [11] and ZO online alternating direction method
of multipliers [6].

In contrast to the convex setting, non-convex ZO optimiza-
tion introduces a large amount of recent attention [8], [14],
[19]–[21]. Different from convex optimization, the stationary
condition is used to measure the convergence of nonconvex
methods. In [14], the ZO gradient descent (ZO-GD) algo-
rithm was proposed for deterministic nonconvex programming,
which yields O(d/T ) convergence rate. A stochastic version
of ZO-GD (namely, ZO-SGD) studied in [19] achieves the rate
of O(

√
d/
√
T ). In [20], a ZO distributed algorithm was devel-

oped for multi-agent optimization, leading to O(1/T + d/q)
convergence rate. Here q is the number of random directions
used to construct a gradient estimate. In [8], an asynchronous
ZO stochastic coordinate descent (ZO-SCD) was derived for
parallel optimization and achieved the rate of O(

√
d/
√
T ). In

[9], [21], a stochastic variance reduced technique was used to
achieve the improved convergence rate of O(d/T ).

Current studies suggested that ZO algorithms typically agree
with the iteration complexity of first-order algorithms up to a
small-degree polynomial of the problem size. In this paper, we
will investigate how (two-point) random gradient estimate fits
into ZO optimization. We will also survey the convergence rate
of existing ZO optimization algorithms. Lastly, we will delve
into applications of ZO algorithms to study the robustness of
deep neural networks against adversarial perturbations.

II. RANDOM GRADIENT ESTIMATION VIA ZEROTH-ORDER
ORACLE

We consider a finite-sum optimization problem of the form

minimize
x∈C

f(x) := (1/n)
∑n
i=1 fi(x), (1)

where x ∈ Rd is the optimization variable, C ∈ Rd is a
convex constraint set, and {fi(x)} are n component functions
(not necessarily convex). In (1), if C = Rd, then we study an
unconstrained finite-sum problem.

Compared to first-order optimization, ZO optimization re-
quires to approximate the first-order gradient of f(x) only
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through function values. Given a component function fi, a
two-point based average random gradient estimator ∇̂fi(x) is
defined by [9], [11], [14], [16]

∇̂fi(x) =
d

q

q∑
j=1

[
fi(x + µuj)− fi(x)

2µ
uj

]
, (2)

where d is the number of optimization variables, µ > 0 is a
smoothing parameter, and {uj}qj=1 are i.i.d. random directions
drawn from a uniform distribution over a unit sphere [11],
[16]. Notably, the random direction vector uj can also be
drawn from the standard Gaussian distribution [14], [20], [22].
However, we argue that the uniform distribution could be more
useful in practice since it is defined in a bounded space rather
than the whole real space required for Gaussian. In (2), the
larger q is, the smaller the variance of ZO gradient estimate
is. Also, the gradient estimate (2) requires (q + 1) function
queries. Clearly, the parameter q plays a trade-off between
the variance of ZO gradient estimate and the function query
complexity.

We highlight that unlike the first-order stochastic gradient
estimate, the ZO gradient estimate (2) is a biased approxima-
tion to the true gradient of fi. Instead, it becomes unbiased to
the gradient of the randomized smoothing version of fi [15],
[16],

fi,µ(x) = Ev[fi(x + µv)], (3)

where fi,µ is called the randomized smoothing version of
fi with smoothing parameter µ, and the random variable v
follows a uniform distribution over the unit Euclidean ball.
Although there exists a gap between a ZO gradient estimate
and the true gradient of fi, such a gap can be measured through
its smoothing function.

In what follows, we derive the key statistical properties of
the ZO gradient estimate (2).

Lemma 1: The ZO gradient estimate (2) yields:
1) For any x ∈ Rd

E
[
∇̂fi(x)

]
= ∇fi,µ(x). (4)

2) Suppose that fi has L-Lipschitz continuous gradient, then
for any x ∈ Rd

E
[
‖∇̂fi(x)−∇fi,µ(x)‖22

]
≤2

(
1 +

d

q

)
‖∇fi(x)‖22 +

(
1 +

1

q

)
µ2L2d2

2
. (5)

Proof: see [9, Lemma 2]. �
Lemma 1 uncovers important properties of ZO gradient

estimation. First, the use of multiple (q > 1) random direction
vectors {uj} does not reduce the bias of ∇̂fi (with respect to
∇fi) since ∇̂f is unbiased only with respect to ∇fµ. Second,
the variance of the random gradient estimator is reduced as q
increases. In particular, a large q mitigates the dimension (d)
dependency on the second-order moment of (2). This is crucial
to improve the convergence performance of ZO optimization
algorithms.

III. CONVERGENCE ANALYSIS OF ZEROTH-ORDER
OPTIMIZATION ALGORITHMS

In this section, we review the existing ZO algorithms that
can be used to solve problem (1) and elaborate on their
convergence rates. We divide the studied algorithms into
two categories for unconstrained optimization and constrained
optimization, respectively. Moreover, if problem (1) is convex,
we use the optimality gap f(x)−f(x∗) to measure the conver-
gence rate, where x∗ is the globally optimal solution. When
problem (1) is nonconvex and unconstrained, we measure the
stationarity in terms of ‖∇f(x)‖22. For constrained non-convex
problems, a fitting alternative of ‖∇f(x)‖22, called gradient
mapping, is then used for convergence evaluation [22]–[24].

A. ZO algorithms for unconstrained optimization

1) ZO gradient descent (ZO-GD) [14]: At the kth iteration,
ZO-GD updates the solution as

xk+1 = xk − ηk∇̂f(xk), (6)

where ηk > 0 is learning rate, and ∇̂f(xk) =
1
n

∑n
i=1 ∇̂fi(xk).

2) ZO stochastic gradient descent (ZO-SGD) [19] :

xk+1 = xk − ηk

(
1

|B|
∑
i∈B
∇̂fi(xk)

)
, (7)

where B is a mini-batch of size |B|, and 1
|B|
∑
i∈B ∇̂fi(xk) is

an estimate of stochastic gradient under mini-batch B.
3) ZO stochastic coordinate descent (ZO-SCD) [8] :

xk+1 = xk − ηk∇̃fik(xk), (8)

where ik is a component function index randomly picked
from [n] := {1, 2, . . . , n}, and ∇̃fik(xk) is an esti-
mate of a block coordinate stochastic gradient given by
1
|S|
∑
j∈S

(
d
2µ (fik(xk + µej)− fik(xk − µej)) ej

)
. Here S

is a mini-batch of coordinates randomly selected from [d].
4) ZO sign-based stochastic gradient descent (ZO-

signSGD) [25] :

xk+1 = xk − ηksign

(
1

|B|
∑
i∈B
∇̂fi(xk)

)
, (9)

where sign(·) takes element-wise signs of x. It is shown in
[25] that the convergence of ZO-signSGD can be measured
via E[‖∇f(xT )‖2], a stricter criterion than E[‖∇f(xT )‖22].

For ease of comparison, we do not incorporate variance
reduced versions of ZO algorithms, e,g., ZO-SVRG and ZO-
SVRC, which are ZO stochastic variance reduced gradi-
ent/coordinate descent algorithms in [9], [21]. That is because
those algorithms require extra query complexity in order to
achieve better convergence rates.

B. Constrained optimization

1) ZO stochastic mirror descent (ZO-SMD) [15] :

xk+1 = arg min
x∈C

{
〈ĝk,x〉+

1

ηk
‖x− xk‖22

}
, (10)

where for east of notation, let ĝk = 1
|B|
∑
i∈B ∇̂fi(xk).
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TABLE I: Summary of convergence rate and query complexity of various ZO algorithms.

Method Problem
setting

Gradient
estimator

Smoothing
parameter µ Convergence rate Query complexity

(T iterations)

ZO-GD [14] nonconvex, unconstrained GauSGE∗ O
(

1√
dT

)
E[‖∇f(xT )‖22] = O

(
d
T

)
O (|B|qT )

ZO-SGD [19] nonconvex, unconstrained GauSGE O
(

1

d
√
T

)
E[‖∇f(xT )‖22] = O

( √
d√
T

)
O (|B|qT )

ZO-SCD [8] nonconvex, unconstrained CooGE O
(

1√
T

+min{ 1
(dT )−1/4 ,

1√
d
}
)

E[‖∇f(xT )‖22] = O
( √

d√
T

)
O (|B||S|T )

ZO-signSGD [25] nonconvex, unconstrained GauSGE O
(

1√
dT

)
E[‖∇f(xT )‖2] = O

( √
d√
T

+
√
d√
|B|

+ d√
q|B|

)
O (|B|qT )

ZO-SVRG [9] nonconvex, unconstrained UniSGE∗ O
(

1√
dT

)
E[‖∇f(xT )‖22] = O

(
d
T

+ 1√
|B|

)
O (qnS + q|B|Sm), T = Sm∗∗

ZO-SMD [15] convex, constrained GauSGE/UniSGE O
(

1
dt

)
E[f(xT )− f(x∗)] = O

( √
d√
T

)
O(T )

ZO-PSGD [26] nonconvex, constrained UniSGE O

(
1√

dq|B|

)
E[‖∇f(xT )‖22] = O

(
1√
T

+ d+q
bq

)
O (|B|qT )

ZO-FW [27] nonconvex, constrained GauSGE/UniSGE O
(

1
d1.5t1/3

)
E[‖∇f(xT )‖22] = O

(
(d/q)1/3

T1/4

)
O (qT )

ZO-ProxSGD [22] nonconvex, composite∗∗∗ GauSGE O
(

1√
dT

)
E[‖∇f(xT )‖22] = O

(
d

|B|qT + d2

|B|qT + d
|B|q

)
O (|B|qT )

ZO-OADMM [6] convex, composite GauSGE/UniSGE O
(

1
d1.5t

)
E[f(xT )− f(x∗)] = O

( √
d√

T |B|q

)
O (|B|qT )

* GauSGE and UniSGE represents the ZO gradient estimator using random direction vectors generated from the standard normal distribution and the uniform distribution over a unit
sphere, respectively.
** ZO-SVRG contains two iteration loops, where the number of outer iterations is S and the number of inner iterations is m.
*** Composite optimization can handle smooth + nonsmooth objective functions.

2) ZO projected stochastic gradient descent (ZO-PSGD)
[26] :

xk+1 = ΠC [xk − ηkĝk] , (11)

where ΠC denotes the projection operator with respect to C,
i.e., ΠC(a) = arg minz∈C ‖z − a‖2. We remark that ZO-
PSGD can be regarded as a special case of ZO proximal
stochastic gradient descent (ZO-ProxSGD), which is proposed
to solve constrained composite optimization problems [22].
However, the complexity of ZO-ProxSGD is dominated by
the computation of the proximal operation with respect to all
nonsmooth regularization functions. To overcome this issue,
reference [6] developed a ZO online alternating direction
method of multipliers (ZO-OADMM) algorithm, which can
split the original complex optimization problem into a se-
quence of easily-solved subproblems in a flexible manner.

3) ZO Frank-Wolfe (ZO-FW) [27] : The ZO Frank-Wolfe
algorithm calls the following linear minimization oracle
(LMO) at each iteration

vk = arg min
x∈C

〈ĝk,x〉 (12)

xk+1 = xk + ηk(vk − xk)

where the ZO gradient estimate ĝk has been defined in (10).
We note that the LMO is equivalent to the minimization of
the first-order Taylor expansion of f at point xk using the ZO
gradient estimate ĝk.

As a concluding remark, we summarize the settings, ZO
gradient estimators, and convergence rates of various ZO
algorithms in Table I.

IV. BLACK-BOX ADVERSARIAL ATTACKS: AN ZO
OPTIMIZATION PERSPECTIVE

In this section, we will illustrate how to formulate black-
box adversarial attacks as a ZO optimization problem and how
adversarial attacks can benefit from advanced ZO optimiza-
tion techniques, such as providing query-efficient approaches
to generating adversarial examples from a black-box image
classifier.

Generally speaking, given a natural input x0 to a machine
learning model, its adversarial example x refers to a modified
input which is (semantically) close to x0 but the model outputs
of x and x0 are drastically different, e.g., classifying x0 as
a label t0 but classifying x as another label t 6= t0. The
adversarial modification can be accomplished by considering
the additive perturbation model x = x0 + δ, and the level
of distortion is often measured by the `p norm (p ≥ 1) of
the perturbation δ, particularly the `1, `2 and `∞ norms [28]–
[30]. When the distortion is small, the adversarial perturbation
is visually imperceptible but can cause the target machine
learning model to misbehave, resulting in increasing concerns
in safety-critical and cost-sensitive applications, as well as new
challenges in training robust machine learning models.

Typically, the adversarial perturbations are crafted in the
“white-box” setting, where the adversary has full access to the
target model such as model parameters and neural network
structures. Take neural network classifiers as an example,
adversarial perturbations for misclassification can be found by
performing back-propagation through network layers from the
model output to the model input. With some designed attack
loss function (e.g., cross entropy), back-propagation provides
the direction of making the perturbed input adversarial and
can be applied successively to perturbed inputs.

While in the white-box setting crafting adversarial examples
are shown to be plausible in many machine learning tasks,
spanning from image classification [31], speech recognition
[32], machine translation [33], image captioning [34], text
sentiment analysis [35] to sparse regression [36], the need
for requiring back-propagation of the target model renders
white-box adversarial attacks less practical when attacking a
deployed machine learning service, such as Google Cloud Vi-
sion API1 and Clarifai.com2. In this case, one only has access
to the model output (e.g., class prediction scores) of a queried
input but is completely agnostic about the target model, which
is known as the black-box attack setting. The target model can
be a neural network, a support vector machine, a decision tree,

1https://cloud.google.com/vision
2https://clarifai.com
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or any other classifier. One question that naturally arises is:
How can we generate adversarial examples in the black-box
setting? Notably, this problem setup of black-box adversarial
attacks fits into the framework of ZO optimization. One can
formulate the process of finding an adversarial example of a
black-box model as a ZO optimization problem, where the
objective function is associated with the model output and
the gradient is infeasible to obtain (e.g., back-propagation is
inadmissible in the black-box setting).

Without lose of generality, we denote a target machine
learning model as a classification function F : [0, 1]d 7→ RK
that takes a d-dimensional scaled data sample as its input
and yields a vector of prediction scores of all K image
classes, such as the prediction probabilities for each class. We
further consider the case of applying an entry-wise monotonic
transformation M(F ) to the output of F for black-box attacks,
since monotonic transformation preserves the ranking of the
class predictions and can alleviate the problem of large score
variation in F (e.g., probability to log probability). As an
illustration, we use the black-box targeted attack loss func-
tion proposed in [3], which aims to minimize the following
objective function

minimizeδ:x0+δ∈[0,1]d ‖δ‖22 + λ · Loss(x,M(F (x)), t),
(13)

where ‖δ‖22 measures the distortion between x and
x0 in the squared `2 norm and Loss(·) is an attack
objective reflecting the likelihood of predicting t =
arg maxk∈{1,...,K}[M(F (x))]k, λ is a regularization coeffi-
cient, and the constraint x = x0 + δ ∈ [0, 1]d confines the
adversarial example x to the valid sample space. Specifically,
the Loss term is defined as

Loss = max{max
j 6=t

log[F (x)]j − log[F (x)]t},−κ}, (14)

where the monotonic transformation M(·) = log(·) is ap-
plied to the model output F (·), the constant parameter
κ ≥ 0 controls the gap between the confidence of tar-
get class label log[F (x)]t and the second highest class la-
bel maxj 6=t log[F (x)]j , and the hinge-like term max{·,−κ}
ensures this term is a constant −κ once log[F (x)]t −
maxj 6=t log[F (x)]j ≥ κ. For untargeted attacks that aim at
classifying x as any label other than the original top-1 label
t0 of x0, the loss term can be defined as

Loss = max{log[F (x)]t0 −max
j 6=t

log[F (x)]j ,−κ}. (15)

The constraint x0 + δ ∈ [0, 1]d in (13) can be eliminated via
change-of-variable (e.g., using tanh transformation) such that
the black-box attack formulation becomes an unconstrained
zeroth-order optimization problem.

Here we discuss two ZO optimization based black-box
adversarial attacks on the Inception-v3 model [37] trained on
ImageNet: (i) the ZOO attack [3] and (ii) the AutoZOOM
attack [4]. The ZOO attack adopts random block coordinate
descent for solving (13), whereas AutoZOOM adopts the two-
point based average random gradient estimator as in (2) and
uses dimension reduction on the perturbation δ (either an off-
line trained autoencoder or a bilinear resizer) to improve the

Fig. 1: Targeted black-box adversarial example (original class: bagel;
targeted class: grand piano) using the ZOO attack [3] on the black-
box Inception-v3 model. Left: original image (x0). Middle: adversar-
ial perturbation (δ). Right: adversarial example (x = x0 + δ).

efficiency in model query. The parameter settings and the
displayed images are adopted from these two papers.

Fig. 1 shows an adversarial bagel image with a target label
“grand piano” using the ZOO attack. It can be observed that
the adversarial perturbation is indeed visually imperceptible
but will cause the resulting adversarial example to be mis-
classified as grand piano. Notably, it has been shown in [3]
that even without using back-propagation, the distortion level
of black-box adversarial attacks can be comparable to that
of white-box adversarial attacks, suggesting the effectiveness
of ZO optimization. Intuitively, in the context of black-
box adversarial attacks, the success of ZO optimization with
gradient estimates can be anticipated as it is performing a
“psuedo back-propagation” of the target model. Furthermore,
its reliable attack performance is assured by the convergence
analysis. Fig. 2 compares the performance of the ZOO attack
and the AutoZOOM attack on the same image and target label.
With the use of two point based average random gradient esti-
mator in AutoZOOM instead of the coordinate-wise gradient
estimator in ZOO, the AutoZOOM attack significantly reduces
the number of queries (about 83%) required to generate a
visually similar adversarial bagel image from the black-box
Inception-v3 model. The remarkable improvement in query
efficiency is consistent with the query complexity analysis
between ZO-SCD and ZO-SGD as discussed in the previous
sections and Table I. It is also worth noting that even in
the stringent attacking scenario where the target black-box
classifier only outputs the top-1 prediction label of a queried
input, ZO optimization with some additional objective function
smoothing techniques can still be used to craft adversarial
examples [38], [39].

V. CONCLUSION

This paper provides a systematic and comprehensive
overview of zeroth-order (ZO) optimization, which only re-
quires function evaluations to solve for a finite-sum mini-
mization problem with optionally convex set constraints. We
discuss several gradient estimation based ZO optimization
methods and compare their performance in terms of conver-
gence rate and query complexity. As a motivating example,
we highlight how ZO optimization can be used to craft
adversarial examples of a black-box machine learning model
in an efficient and principled manner.
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Fig. 2: Comparison of ZOO and AutoZOOM black-box adversarial attacks. With the use of the two point based average random gradient
estimator in AutoZOOM instead of the coordinate-wise gradient estimator in ZOO, AutoZOOM significantly reduces the number of queries
required to generate a visually similar adversarial bagel image from the black-box Inception-v3 model.
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