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Abstract

Collaborative filtering aims to make use of users’ feedbacks

to improve the recommendation performance, which has

been deployed in various industry recommender systems.

Some recent works have switched from exploiting explicit

feedbacks of numerical ratings to implicit feedbacks like

browsing and shopping records, since such data are more

abundant and easier to collect. One fundamental challenge

of leveraging implicit feedbacks is the lack of negative

feedbacks, because there are only some observed relatively

“positive” feedbacks, making it difficult to learn a prediction

model. Previous works address this challenge via proposing

some pointwise or pairwise preference assumptions on items.

However, such assumptions with respect to items may not

always hold, for example, a user may dislike a bought item

or like an item not bought yet. In this paper, we propose

a new and relaxed assumption of pairwise preferences over

item-sets, which defines a user’s preference on a set of

items (item-set) instead of on a single item. The relaxed

assumption can give us more accurate pairwise preference

relationships. With this assumption, we further develop a

general algorithm called CoFiSet (collaborative filtering via

learning pairwise preferences over item-sets). Experimental

results show that CoFiSet performs better than several state-

of-the-art methods on various ranking-oriented evaluation

metrics on two real-world data sets. Furthermore, CoFiSet

is very efficient as shown by both the time complexity and

CPU time.

Keywords: Pairwise Preferences over Item-sets, Col-
laborative Filtering, Implicit Feedbacks

1 Introduction

Collaborative filtering [4] as a content free technique has
been widely adopted in commercial recommender sys-
tems [2, 11]. Various model-based methods have been
proposed to improve the prediction accuracy using user-
s’ explicit feedbacks such as numerical ratings [9, 13, 16]
or transferring knowledge from auxiliary data [10, 15].
However, in real applications, users’ explicit ratings are
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not easily obtained, so they are not sufficient for the
purpose of training an adequate prediction model, while
users’ implicit data like browsing and shopping records
can be more easily collected. Some recent works have
thus turned to improve the recommendation perfor-
mance via exploiting users’ implicit feedbacks, which in-
clude users’ logs of clicking social updates [5], watching
TV programs [6], assigning tags [14], purchasing prod-
ucts [17], browsing web pages [20], etc.

One fundamental challenge in collaborative filtering
with implicit feedbacks is the lack of negative feedback-
s. A learning algorithm can only make use of some ob-
served relatively “positive” feedbacks, instead of ordinal
ratings in explicit data. Some early works [6, 14] assume
that an observed feedback denotes “like” and an unob-
served feedback denotes “dislike”, and propose to re-
duce the problem to collaborative filtering with explicit
feedbacks via some weighting strategies. Recently, some
works [17, 19] assume that a user prefers an observed
item to an unobserved item, and reduce the problem to
a classification [17] or a regression [19] problem. Em-
pirically, the latter assumption of pairwise preferences
over two items results in better recommendation accu-
racy than the earlier like/dislike assumption.

However, the pairwise preferences with respect to
two items might not be always valid. For example, a
user bought some fruit but afterwards he finds that
he actually does not like it very much, or a user may
inherently like some fruit though he has not bought
it yet. In this paper, we propose a new and relaxed
assumption, which is that a user is likely to prefer a

set of observed items to a set of unobserved items. We
call our assumption pairwise preferences over item-sets,
which is illustrated in Figure 1. In Figure 1, we can
see that the pairwise preference relationship of “apple
≻ peach” does not hold for this user, since his true
preference score on apple is lower than that on peach.
On the contrary, the relaxed pairwise relationship of
“item-set of apple and grapes ≻ item-set of peach” is
more likely to be true, since he likes grapes a lot. Thus,
we can see that our assumption is more accurate and
the corresponding pairwise relationship is more likely
to be valid. With this assumption, we define a user’s
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preference to be on a set of items (item-set) rather than
on a single item, and then develop a general algorithm
called CoFiSet. Note that we use the term “item-set”
instead of “itemset” to make it different from that in
frequent pattern mining [8].

Figure 1: Illustration of pairwise preferences over item-

sets. The numbers under some fruit denote a user’s
true preference scores, r̂u,apple = 3.5, r̂u,grapes = 5
and r̂u,peach = 4. We thus have the relationships
r̂u,apple 6> r̂u,peach and (r̂u,apple+r̂u,grapes)/2 > r̂u,peach.

We summarize our main contributions as follows,
(1) we define a user’s preference on an item-set (a set
of items) instead of on a single item, since there is like-
ly high uncertainty of a user’s item-level preference in
implicit data; (2) we propose a new and relaxed assump-
tion, pairwise preferences over item-sets, to fully ex-
ploit users’ implicit data; (3) we develop a general algo-
rithm, CoFiSet, which absorbs some recent algorithms
as special cases; and (4) we conduct extensive empiri-
cal studies, and observe better recommendation perfor-
mance of CoFiSet than several state-of-the-art method-
s [17, 19, 20].

2 Learning Pairwise Preferences over Item-sets

2.1 Problem Definition Suppose we have some ob-
served feedbacks, Rtr = {(u, i)}, from n users and m
items. Our goal is then to recommend a personalized
ranking list of items for each user u. Our studied prob-
lem is usually called one-class collaborative filtering [14]
or collaborative filtering with implicit feedbacks [6, 17]
in general. We list some notations used in the paper in
Table 1.

2.2 Preference Assumption Collaborative filter-
ing with implicit feedbacks is quite different from the
task of 5-star numerical rating estimation [9], since there
are only some observed relatively “positive” feedbacks,
making it difficult to learn a prediction model [6, 14, 17].
So far, there have been mainly two types of assumption-
s proposed to model the implicit feedbacks, pointwise

Table 1: Some notations used in the paper.

Notation Description

U tr = {u}nu=1 training user set
U tr
i training user set w.r.t. item i

U te ⊆ U tr test user set
Itr = {i}mi=1 training item set
Itr
u training item set w.r.t. user u

Ite
u test item set w.r.t. user u

P ⊆ Itr item set (presence of observation)
A ⊆ Itr item set (absence of observation)
u ∈ U tr user index
i, i′, j ∈ Itr item index
Rtr = {(u, i)} training data
Rte = {(u, i)} test data
r̂ui preference of user u on item i
r̂uP preference of user u on item-set P
r̂uA preference of user u on item-set A
r̂uij , r̂uiA, r̂uPA pairwise preferences of user u
Θ set of model parameters

Uu· ∈ R
1×d user u’s latent feature vector

Vi· ∈ R
1×d item i’s latent feature vector

bi ∈ R item i’s bias

preference on an item [6, 14], and pairwise preferences

over two items [17]. We first describe these two types
of assumptions formally, and then propose a new and
relaxed assumption.

The assumption of pointwise preference on an
item [6, 14] can be represented as follows,

r̂ui = 1, r̂uj = 0, i ∈ Itr
u , j ∈ Itr\Itr

u ,(2.1)

where 1 and 0 are used to denote “like” and “dislike”
for an observed (user, item) pair and an unobserved
(user, item) pair, respectively. With this assumption,
confidence-based weighting strategies are incorporated
into the objective function [6, 14]. However, finding a
good weighting strategy for each observed feedback is
still a very difficult task in real applications. Further-
more, treating all observed feedbacks as “likes” and un-
observed feedbacks as “dislikes” may mislead the learn-
ing process.

The assumption of pairwise preferences over two
items [17] relax the assumption of pointwise prefer-
ences [6, 14], which can be represented as follows,

r̂ui > r̂uj , i ∈ Itr
u , j ∈ Itr\Itr

u(2.2)

where the relationship r̂ui > r̂uj means that a user
u is likely to prefer an item i ∈ Itr

u to an item j ∈
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Itr\Itr
u . Empirically this assumption generates better

recommendation results than that of [6, 14].
However, as mentioned in the introduction, in real

situations, such pairwise assumption may not hold for
each item pair (i, j), i ∈ Itr

u , j ∈ Itr\Itr
u . Specifically,

there are two phenomena: first, there may exist some
item i ∈ Itr

u that user u does not like very much;
second, there may exist some item j ∈ Itr\Itr

u that
user u likes but has not found yet, which also motivates
a recommender system to help user explore the items.
The second case is more likely to occur since a user’s
preferences on items from Itr\Itr

u are usually not the
same, including both “likes” and “dislikes”. In either
of the above two cases, the relationship r̂ui > r̂uj
in Eq.(2.2) does not hold. Thus, the assumption of
pairwise preferences over items [17] may not be true
for all of item pairs.

Before we present a new type of assumption, we
first introduce two definitions, a user u’s preference on
an item-set and pairwise preferences over two item-sets.

Definition 2.1. A user u’s preference on an item-set
(a set of items) is defined as a function of user u’s pref-
erences on items in the item-set. For example, user u’s
preference on item-set P can be r̂uP =

∑

i∈P r̂ui/|P|,
or in other forms.

Definition 2.2. A user u’s pairwise preferences over
two item-sets is defined as the difference of user u’s
preferences on two item-sets. For example, user u’s
pairwise preferences over item-sets P and A can be
r̂uPA = r̂uP − r̂uA, or in other forms.

With the above two definitions, we further relax
the assumption of pairwise preferences over items made
in [17] and propose a new one called pairwise preferences

over item-sets,

r̂uP > r̂uA, P ⊆ Itr
u ,A ⊆ Itr\Itr

u(2.3)

where r̂uP and r̂uA are the user u’s overall preferences on
the items from item-set P and item-set A, respectively.
For a user u, P ⊆ Itr

u denotes a set of items with ob-
served feedbacks from user u (presence of observation),
and A ⊆ Itr\Itr

u denotes a set of items without ob-
served feedbacks from user u (absence of observation).
In our assumption, the granularity of pairwise prefer-
ence is the item-set instead of the item, which should
be closer to real situations. Our proposed assumption
is also more general and can embody the assumption of
pairwise preferences over items [17] as a special case.

2.3 Model Formulation Assuming that a user u is
likely to prefer an item-set P to an item-set A, we

may introduce a constraint r̂uP > r̂uA when learning
the parameters of the prediction model. Specifically,
for a pair of item-sets P and A, we have the following
optimization problem,

min
Θ

R(u,P ,A), s.t. r̂uP > r̂uA

where the hard constraint r̂uP > r̂uA is based on a user’s
pairwise preferences over item-sets, and R(u,P ,A) is
a regularization term used to avoid overfitting. Since
the above optimization problem is difficult to solve due
to the hard constraint, we relax the constraint, and
introduce a loss term in the objective function,

min
Θ

L(u,P ,A) +R(u,P ,A),

where L(u,P ,A) is the loss term w.r.t. user u’s
preferences on item-sets P and A. Then, for each user
u, we have the following optimization problem,

min
Θ

∑

P⊆Itr
u

∑

A⊆Itr\Itr
u

L(u,P ,A) +R(u,P ,A),

where P is a subset of items randomly sampled from
Itr
u that denotes a set of items with observed feedbacks

from user u, and A is a subset of items randomly
sampled from Itr\Itr

u that denotes a set of items
without observed feedbacks from user u.

Finally, to encourage collaborations among the
users, we reach the following optimization problem for
all users in training data Rtr = {(u, i)},

(2.4)

min
Θ

∑

u∈Utr

∑

P⊆Itr
u

∑

A⊆Itr\Itr
u

L(u,P ,A) +R(u,P ,A),

where Θ = {Uu·, Vi·, bi, u ∈ U tr, i ∈ Itr} denotes the
parameters to be learned. The loss term L(u,P ,A) is
defined on the user u’s pairwise preferences over item-
sets, r̂uPA = r̂uP − r̂uA, where r̂uP =

∑

i∈P r̂ui/|P|
and r̂uA =

∑

j∈A r̂uj/|A|. The regularization term

R(u,L,A) = αu

2 ‖Uu·‖
2 +

∑

i∈P [
αv

2 ‖Vi·‖
2 + βv

2 ‖bi‖
2] +

∑

j∈A[
αv

2 ‖Vj·‖
2 + βv

2 ‖bj‖
2] is used to avoid overfitting

during parameter learning, and αu, αv, βv are hyper-
parameters.

Note again that the core concept in our preference
assumption and objective function is “item-set” (a set
of items), not “item” in [6, 14, 17]. For this reason, we
call our solution as CoFiSet (collaborative filtering via
learning pairwise preferences over item-sets). Another
notice is that the loss term in CCF(Hinge) [20] can be
equivalently written as pairwise preferences over an item
i and an item-set A, r̂uiA, which is a special case of
our CoFiSet. CCF(SoftMax) [20] can only be written
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as pairwise preferences, r̂uij , over items i and j ∈ A.
In both CCF(Hinge) [20] and CCF(SoftMax) [20], item
i is considered as a preferred or chosen one given a
candidate set i ∪ A, which is motivated from industry
recommender systems with impression data as users’
choice context.

2.4 Learning the CoFiSet We adopt the widely
used SGD (stochastic gradient descent) algorithmic
framework in collaborative filtering [9] to learn the
model parameters. We first derive the gradients and
update rules for each variable.

We have the gradients of the variables w.r.t. the

loss term L(u,P ,A): ∂L(u,P,A)
∂Uu·

= ∂L(u,P,A)
∂r̂uPA

(V̄P· −

V̄A·);
∂L(u,P,A)

∂Vi·
= ∂L(u,P,A)

∂r̂uPA

Uu·

|P| , i ∈ P ; ∂L(u,P,A)
∂Vj·

=
∂L(u,P,A)

∂r̂uPA

−Uu·

|A| , j ∈ A; ∂L(u,P,A)
∂bi

= ∂L(u,P,A)
∂r̂uPA

1
|P| , i ∈

P ; and ∂L(u,P,A)
∂bj

= ∂L(u,P,A)
∂r̂uPA

−1
|A| , j ∈ A, where

∂L(u,P,A)
∂r̂uPA

= −σ(−r̂uPA). V̄P· =
∑

i∈P Vj·/|P| and

V̄A· =
∑

j∈A Vj·/|A| are the average latent feature
representation of items in P and A, respectively.

We have the gradients of the variables w.r.t. the

regularization term R(u,P ,A): ∂R(u,P,A)
∂Uu·

= αuUu·;
∂R(u,P,A)

∂Vi·
= αvVi·, i ∈ P ; ∂R(u,P,A)

∂Vj·
= αvVj·, j ∈ A;

∂R(u,P,A)
∂bi

= βvbi, i ∈ P ; and ∂R(u,P,A)
∂bj

= βvbj, j ∈ A.

Combining the gradients w.r.t. the loss term and
the regularization term, we get the final gradients of
each variable, Uu·, Vi·, bi, i ∈ P and Vj·, bj , j ∈ A,

∇Uu· =
∂L(u,P ,A)

∂Uu·
+

∂R(u,P ,A)

∂Uu·
(2.5)

∇Vi· =
∂L(u,P ,A)

∂Vi·
+

∂R(u,P ,A)

∂Vi·
, i ∈ P(2.6)

∇Vj· =
∂L(u,P ,A)

∂Vj·
+

∂R(u,P ,A)

∂Vj·
, j ∈ A(2.7)

∇bi =
∂L(u,P ,A)

∂bi
+

∂R(u,P ,A)

∂bi
, i ∈ P(2.8)

∇bj =
∂L(u,P ,A)

∂bj
+

∂R(u,P ,A)

∂bj
, j ∈ A(2.9)

We thus have the update rules for each variable,

Uu· = Uu· − γ∇Uu·(2.10)

Vi· = Vi· − γ∇Vi·, i ∈ P(2.11)

Vj· = Vj· − γ∇Vj·, j ∈ A(2.12)

bi = bi − γ∇bi, i ∈ P(2.13)

bj = bj − γ∇bj, j ∈ A(2.14)

where γ > 0 is the learning rate.
In the SGD algorithmic framework, we approximate

the objective function in Eq.(2.4) via randomly sam-
pling one subset P ⊆ Itr

u and one subset A ⊆ Itr\Itr
u

Input: Training data Rtr = {(u, i)} of observed
feedbacks, the size of item-set P (presence of
observation), and the size of item-set A (absence of
observation).

Output: The learned model parameters
Θ = {Uu·, Vi·, bi·, u ∈ U tr, i ∈ Itr}, where Uu·

is the user-specific latent feature vector of user u,
Vi· is the item-specific latent feature vector of item
i, and bi is the bias of item i.

For t1 = 1, . . . , T .
For t2 = 1, . . . , n.
Step 1. Randomly pick a user u ∈ U tr.
Step 2. Randomly pick an item-set P ⊆ Itr

u .
Step 3. Randomly pick an item-set A ⊆ Itr\Itr

u .

Step 4. Calculate ∂L(u,P,A)
∂r̂uPA

, V̄P , and V̄A.
Step 5. Update Uu· via Eq.(2.5, 2.10).
Step 6. Update Vi·, i ∈ P via Eq.(2.6, 2.11) and the
latest Uu·.
Step 7. Update Vj·, j ∈ A via Eq.(2.7, 2.12) and
the latest Uu·.
Step 8. Update bi, i ∈ P via Eq.(2.8, 2.13).
Step 9. Update bj, j ∈ A via Eq.(2.9, 2.14).
End

End

Figure 2: The algorithm of collaborative filtering via
learning pairwise preferences over item-sets (CoFiSet).

in each iteration, instead of enumerating all possible
subsets of P and A. The algorithm steps of CoFiSet
are depicted in Figure 2, which go through the whole
data with T outer loops and n inner loops (one for each
user on average) with t1 and t2 as their iteration vari-
ables, respectively. For each iteration, we first randomly
sample a user u, and then randomly sample an item-set
P ⊆ Itr

u and an item-set A ⊆ Itr\Itr
u . Once we have

updated Uu·, the latest Uu· is used to update Vi·, i ∈ P
and Vj·, j ∈ A. The time complexity of CoFiSet is
O(Tndmax(|P|, |A|)), where T is the number of iter-
ations, n is the number of users, d is the number of
latent features, |P| is the size of item-set P , and |A| is
the size of item-set A. Note that the time complexity of
BPRMF [17] is O(Tnd). Since |P| and |A| are usually
smaller than d, the time complexity of CoFiSet is com-
parable to that of BPRMF [17], which is also supported
by our empirical results of CPU time in Section 3.4.

2.5 Discussion For the loss term L(u,P ,A) in
Eq.(2.4), we can have various specific forms, e.g.
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− lnσ(r̂uPA),
1
2 (r̂uPA−1)2, and max(0, 1−r̂uPA), where

r̂uPA = r̂uP−r̂uA is the difference of user u’s preferences
on two item-sets P and A, and σ(z) = 1/(1 + exp(−z))
is the sigmoid function. The loss − lnσ(r̂uPA) absorbs
that of BPRMF [17] as a special case when P = {i} and
A = {j}, L(u,P ,A) = L(u, {i}, {j}) = − lnσ(r̂uij);
the loss 1

2 (r̂uPA − 1)2 absorbs that of RankALS [19]
as a special case when P = {i} and A = {j},
L(u,P ,A) = L(u, {i}, {j}) = 1

2 (r̂uij − 1)2; and the loss
max(0, 1− r̂uPA) absorbs that of CCF(Hinge) [20] as a
special case when P = {i}, L(u,P ,A) = L(u, {i},A) =
max(0, 1− r̂uiA).

We can thus see that our proposed optimization
framework in Eq.(2.4) is quite general and able to ab-
sorb BPRMF [17], RankALS [19] and CCF(Hinge) [20]
as special cases. For CoFiSet, we use the loss term
− lnσ(r̂uPA), since then we can more directly compare
our pairwise preferences over item-sets with pairwise

preferences over items made in BPRMF [17].

3 Experimental Results

3.1 Data Sets We use two real-world data sets,
MovieLens100K1 and Epinions-Trustlet2 [12], to empir-
ically study our assumption of pairwise preferences over

item-sets. For MovieLens100K, we keep ratings larger
than 3 as observed feedbacks [3]. For Epinions-Trustlet,
we keep users with at least 25 social connections [18].
Finally, we have 55375 observations from 942 users and
1447 items in MovieLens100K, and 346035 observations
from 4718 users and 36165 items in Epinions-Trustlet.
In our experiments, for each user, we randomly take
50% of the corresponding observed feedbacks as train-
ing data and the rest 50% as test data. We repeat this
for 5 times to generate 5 copies of training data and
test data, and report the average performance on those
5 copies of data.

3.2 Evaluation Metrics Once we have learned the
model parameters, we can calculate the prediction score
for user u on item i, r̂ui = Uu·V

T
i· + bi, and then

get a ranking list, i(1), . . . , i(ℓ), . . . , i(k), . . ., where i(ℓ)
represents the item located at position ℓ. For each item
i, we can also have its position 1 ≤ pui ≤ m.

We study the recommendation performance on vari-
ous commonly used ranking-oriented evaluation metrics,
Pre@k [18, 20], NDCG@k [20], MRR (mean reciprocal
rank) [18], ARP (average relative position) [19], and
AUC (area under the curve) [17].

1. Pre@k The precision of user u is defined as,
Preu@k = 1

k

∑k

ℓ=1 δ(i(ℓ) ∈ Ite
u ), where δ(x) = 1

1http://www.grouplens.org/
2http://www.trustlet.org/wiki/Downloaded Epinions dataset

if x is true and δ(x) = 0 otherwise.
∑k

ℓ=1 δ(i(ℓ) ∈
Ite
u ) thus denotes the number of items among

the top-k recommended items that have observed
feedbacks from user u. Then, we have Pre@k =
∑

u∈Ute Preu@k/|U te|.

2. NDCG@k The NDCG of user u is defined as,
NDCGu@k = 1

Zu
DCGu@k, withDCGu@k =

∑k

ℓ=1
2δ(i(ℓ)∈Ite

u )−1
log(ℓ+1) , where Zu is the best

DCGu@k score. Then, we have NDCG@k =
∑

u∈Ute NDCGu@k/|U te|.

3. MRR The reciprocal rank of user u is defined as,
RRu = 1

mini∈Ite
u

(pui)
, where mini∈Ite

u
(pui) is the

position of the first relevant item in the estimated
ranking list for user u. Then, we have MRR =
∑

u∈Ute RRu/|U
te|.

4. ARP The relative position of user u is defined
as, RPu = 1

|Ite
u |

∑

i∈Ite
u

pui

|Itr|−|Itr
u | , where

pui

|Itr|−|Itr
u |

is the relative position of item i. Then, we have
ARP =

∑

u∈Ute RPu/|U
te|.

5. AUC The AUC of user u is defined as, AUCu =
1

|Rte(u)|

∑

(i,j)∈Rte(u) δ(r̂ui > r̂uj), where Rte(u) =

{(i, j)|(u, i) ∈ Rte, (u, j) 6∈ Rtr ∪ Rte}. Then, we
have AUC =

∑

u∈Ute AUCu/|U
te|.

In the evaluation of Epinions-Trustlet, we ignore
the most popular three items (or trustees in the social
network) in the recommended list [18], in order to
alleviate the domination effect from those items.

3.3 Baselines and Parameter Settings We com-
pare CoFiSet with several state-of-the-art method-
s, including RankALS [19], CCF(Hinge) [20], C-
CF(SoftMax) [20], and BPRMF [17]. We also compare
to a commonly used baseline called PopRank (ranking
via popularity of the items) [18].

For fair comparison, we implement RankALS, C-
CF(Hinge), CCF(SoftMax), BPRMF and CoFiSet in
the same code framework written in Java, and use
the same initializations for the model variables, Uuk =
(r− 0.5)× 0.01, k = 1, . . . , d, Vik = (r− 0.5)× 0.01, k =
1, . . . , d, bi =

∑

u∈Utr
i
1/n−

∑

(u,i)∈Rtr 1/n/m, where r

(0 ≤ r < 1) is a random value. The order of updating
the variables in each iteration is also the same as that
shown in Figure 2. Note that we can use the initializa-
tion of item bias, bi, to rank the items, which is actually
PopRank.

For the iteration number T , we tried T ∈
{104, 105, 106} for all methods on MovieLens100K
(when d = 10), and found that the results using T ∈
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{105, 106} are similar and much better than that of us-
ing T = 104. We thus fix T = 105. For the num-
ber of latent features, we use d ∈ {10, 20} [3, 18]. For
the tradeoff parameters, we search the best values from
αu = αv = βv ∈ {0.001, 0.01, 0.1} using NDCG@5 per-
formance on the first copy of data, and then fix them in
the rest four copies of data [18]. We find that the best
values of the tradeoff parameters for different models on
different data sets can be different, which are reported
in Table 2 and Table 3. The learning rate is fixed as
γ = 0.01.

For CCF(Hinge), we use 1/(1+exp[−100(1−r̂uiA)])
as suggested by [20] to approximate δ(1− r̂uiA > 0) for
the non-smooth issue of Hinge loss. For CCF(Hinge)
and CCF(SoftMax), we use |A| = 2. Note that for
CCF(Hinge) and CCF(SoftMax), there is no item-set
P . For CoFiSet, we first fix |P| = 2 and |A| = 1
(to be fair with CCF), and then try different values of
|P| ∈ {1, 2, 3, 4, 5} and |A| ∈ {1, 2, 3, 4, 5}. In the case
that there are not enough observed feedbacks in Itr

u , we
use P = Itr

u .

3.4 Summary of Experimental Results The pre-
diction performance of CoFiSet and baselines are shown
in Table 2 and Table 3, from which we can have the fol-
lowing observations,

1. For both data sets, CoFiSet achieves better perfor-
mance than all baselines in most cases. The result
clearly demonstrates the superior prediction ability
of CoFiSet. More importantly, the improvements
on top-k related metrics are even more significant,
which have been known to be critical for a real rec-
ommender system, since users usually only check a
few items which are ranked in top positions [1].

2. For baselines, we can see that all algorithms
beat PopRank, which shows the effectiveness of
the preference assumptions made in RankALS, C-
CF(Hinge), CCF(SoftMax) and BPRMF, though
their results are still worse than that of CoFiSet.

3. For the two closely related competitive baselines,
BPRMF performs better than CCF(SoftMax)
when d = 10 in MovieLens100K regarding ARP
and AUC, but worse in other cases. The perfor-
mance is similar in Epinions-Trustlet. On the con-
trary, CoFiSet performs stable on both data sets,
which again shows the effectiveness of our relaxed
assumption of pairwise preferences over item-sets in
CoFiSet, relative to pairwise preferences over items

in BPRMF [17].

We then study CoFiSet with different sizes of item-
sets P and A. For each combination of |P| and |A|,

1 2 3 4 5
0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

|A|

N
D

C
G

@
5

 

 

|P| = 1
|P| = 2
|P| = 3
|P| = 4
|P| = 5

1 2 3 4 5
0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

|A|

N
D

C
G

@
5

 

 

|P| = 1
|P| = 2
|P| = 3
|P| = 4
|P| = 5

MovieLens100K (d = 10) MovieLens100K (d = 20)

1 2 3 4 5
0.16

0.18

0.2

0.22

0.24

0.26

0.28

|A|

N
D

C
G

@
5

 

 

|P| = 1
|P| = 2
|P| = 3
|P| = 4
|P| = 5

1 2 3 4 5 6
0.16

0.18

0.2

0.22

0.24

0.26

0.28

|A|

N
D

C
G

@
5

 

 

|P| = 1
|P| = 2
|P| = 3
|P| = 4
|P| = 5

Epinions-Trustlet (d = 10) Epinions-Trustlet (d = 20)

Figure 3: Prediction performance of CoFiSet with
different sizes of item-set P and item-set A. We fix
T = 105. Note that when |P| = |A| = 1, CoFiSet
reduces to BPRMF [17].

the best values of tradeoff parameters, αu = αv = βv ∈
{0.001, 0.01, 0.1}, are searched in the same way. The
results of NDCG@5 on MovieLens100K and Epinions-
Trustlet are shown in Figure 3. The main findings are,

1. The best performance locates in the left-top cor-
ner in each sub-figure, which shows that CoFiSet
prefers a relatively large value of |P| and small val-
ue of |A|. This result is quite interesting and is
different from that of CCF [20], which uses a rela-
tively large item-set A instead. This phenomenon
can be explained by the fact that there is a high-
er chance to have inconsistent preferences on items
from item-set A than from item-set P . Hence, in
practice, we may use a relatively large item-set P
and a small item-set A in CoFiSet as a guideline.

2. When |P| = |A| = 1, CoFiSet reduces to BPRMF.
We can thus again see the advantages of our
assumption comparing to that in BPRMF [17].

We also study the efficiency of CoFiSet with differ-
ent values of |P| and |A|, which is shown in Figure 4. We
can see that (1) the time cost is almost linear w.r.t. the
value of |A| given |P|, and vise versa, and (2) CoFiSet
is very efficient since both CoFiSet and BPRMF are of
the same order of CPU time. This result is consistent to
the analysis of time complexity of CoFiSet and BPRMF
in Section 2.4.
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Table 2: Prediction performance on MovieLens100K of PopRank, RankALS [19] implemented in the SGD
framework, CCF(Hinge) [20], CCF(SoftMax) [20], BPRMF [17], and CoFiSet. We fix |P| = 2 and |A| = 1
for CoFiSet, and fix |A| = 2 for CCF(Hinge) and CCF(SoftMax). The up arrow ↑ means the larger the better of
the results on the corresponding metric, and the down arrow ↓ the smaller the better. Numbers in boldface (e.g.
0.4112) are the best results, and numbers in Italic (e.g. 0.3983) are the second best results. The best values of
tradeoff parameters (αu = αv = βv) for different models are also included for reference.

αu, αv, βv Pre@5 ↑ NDCG@5 ↑ MRR ↑ ARP ↓ AUC ↑

PopRank N/A 0.2687±0.0040 0.2900±0.0033 0.5079±0.0074 0.1532±0.0011 0.8544± 0.0012

d = 10 αu, αv, βv Pre@5 ↑ NDCG@5 ↑ MRR ↑ ARP ↓ AUC ↑

RankALS(SGD) 0.1 0.3836±0.0086 0.3975±0.0123 0.6019±0.0215 0.0925±0.0014 0.9161±0.0015

CCF(Hinge) 0.1 0.3806±0.0053 0.3947±0.0116 0.5984±0.0232 0.0903±0.0015 0.9183±0.0015

CCF(SoftMax) 0.1 0.3983±0.0028 0.4194±0.0017 0.6357±0.0056 0.0934±0.0014 0.9151±0.0014

BPRMF 0.01 0.3823±0.0052 0.3991±0.0060 0.6065±0.0068 0.0917±0.0013 0.9169±0.0013

CoFiSet 0.01 0.4112±0.0066 0.4314±0.0085 0.6399±0.0140 0.0884±0.0010 0.9203±0.0010

d = 20 αu, αv, βv Pre@5 ↑ NDCG@5 ↑ MRR ↑ ARP ↓ AUC ↑

RankALS(SGD) 0.1 0.3906±0.0035 0.4043±0.0090 0.6071±0.0203 0.0931±0.0017 0.9154±0.0017

CCF(Hinge) 0.1 0.3993±0.0066 0.4186±0.0074 0.6296±0.0094 0.0901±0.0014 0.9185±0.0015

CCF(SoftMax) 0.1 0.3955±0.0063 0.4185±0.0062 0.6389±0.0117 0.0934±0.0015 0.9151±0.0015

BPRMF 0.1 0.3772±0.0101 0.3984±0.0102 0.6165±0.0122 0.1032±0.0017 0.9050±0.0017

CoFiSet 0.01 0.4104±0.0083 0.4305±0.0098 0.6421±0.0137 0.0915±0.0019 0.9170±0.0019
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Figure 4: The CPU time on training CoFiSet with dif-
ferent values of |P| and |A| and baselines on MovieLen-
s100K. We fix T = 105 and d = 10. The experiments
are conducted on Linux research machines with Xeon
X5570 @ 2.93GHz(2-CPU/4-core) / 32GB RAM / 32G-
B SWAP, and Xeon X5650 @ 2.67GHz (2-CPU/6-core)
/ 32GB RAM / 32GB SWAP.

4 Related Work

In this section, we discuss some closely related algo-
rithms in collaborative filtering with implicit feedbacks.

CLiMF (collaborative less-is-more filter-
ing) [18] proposes to encourage self-competitions
among observed items only via maximizing
∑

i∈Itr
u

[

lnσ(r̂ui) +
∑

i′∈Itr
u \{i} lnσ(r̂ui − r̂ui′ )

]

for

each user u. The unobserved items from Itr\Itr
u are

ignored, which may miss some information during
model training.

iMF (implicit matrix factorization) [6] and OCCF
(one-class collaborative filtering) [14] propose to mini-
mize

∑

i∈Itr
u
cui(1− r̂ui)

2 +
∑

j∈Itr\Itr
u
cuj(0− r̂uj)

2 for
each user u, where cui and cuj are estimated confidence
values [6, 14]. We can see that this objective function
is based on pointwise preferences on items, which is
empirically to be less competitive than pairwise pref-
erences [17].

BPRMF (Bayesian personalized ranking based ma-
trix factorization) [17] proposes a relaxed assump-
tion of pairwise preferences over items, and mini-
mizes

∑

i∈Itr
u

∑

j∈Itr\Itr
u
− lnσ(r̂uij) for each user u.

The difference of user u’s preferences on items i and
j, r̂uij = r̂ui − r̂uj , is a special case of that in
CoFiSet. In some recommender system like LinkedIn3,
a user u may click more than one social updates

3http://www.linkedin.com/
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Table 3: Prediction performance on Epinions-Trustlet of PopRank, RankALS [19] implemented in the SGD
framework, CCF(Hinge) [20], CCF(SoftMax) [20], BPRMF [17], and CoFiSet. We fix |P| = 2 and |A| = 1 for
CoFiSet, and fix |A| = 2 for CCF(Hinge) and CCF(SoftMax). The up arrow ↑ means the larger the better of
the results on the corresponding metric, and the down arrow ↓ the smaller the better. Numbers in boldface (e.g.
0.2254) are the best results, and numbers in Italic (e.g. 0.2014) are the second best results. The best values of
tradeoff parameters (αu = αv = βv) for different models are also included for reference.

αu, αv, βv Pre@5 ↑ NDCG@5 ↑ MRR ↑ ARP ↓ AUC ↑

PopRank N/A 0.0837±0.0018 0.0848±0.0019 0.2022±0.0027 0.1270±.0004 0.8734±0.0004

d = 10 αu, αv, βv Pre@5 ↑ NDCG@5 ↑ MRR ↑ ARP ↓ AUC ↑

RankALS(SGD) 0.1 0.1283±0.0104 0.1305±0.0116 0.2754±0.0182 0.0962±0.0002 0.9042±0.0002

CCF(Hinge) 0.1 0.1499±0.0033 0.1532±0.0029 0.3073±0.0065 0.0956±0.0003 0.9048±0.0003

CCF(SoftMax) 0.1 0.2014±0.0059 0.2089±0.0065 0.3829±0.0087 0.0968±0.0002 0.9036±0.0002

BPRMF 0.01 0.1964±0.0033 0.2022±0.0042 0.3639±0.0061 0.0920±0.0003 0.9084±0.0003

CoFiSet 0.01 0.2254±0.0025 0.2355±0.0024 0.4166±0.0020 0.0913±0.0004 0.9091±0.0004

d = 20 αu, αv, βv Pre@5 ↑ NDCG@5 ↑ MRR ↑ ARP ↓ AUC ↑

RankALS(SGD) 0.1 0.1437±0.0040 0.1473±0.0052 0.3028±0.0096 0.0967±0.0002 0.9037±0.0002

CCF(Hinge) 0.1 0.1735±0.0018 0.1765±0.0013 0.3361±0.0027 0.0962±0.0002 0.9042±0.0002

CCF(SoftMax) 0.01 0.2299±0.0027 0.2353±0.0031 0.4028±0.0051 0.0922±0.0004 0.9082±0.0004

BPRMF 0.01 0.2279±0.0033 0.2343±0.0031 0.4044±0.0043 0.0916±0.0004 0.9088±0.0004

CoFiSet 0.01 0.2438±0.0034 0.2525±0.0042 0.4332±0.0067 0.0912±0.0003 0.9092±0.0003

(or items) in one single impression (or session), and
PLMF (pairwise learning via matrix factorization) [5]
adopts a similar idea of BPRMF [17] and minimizes

1
|O+

us||O
−
us|

∑

i∈O+
us

∑

j∈O−
us

−σ(r̂uij), where O
+
us and O−

us

are sets of clicked and un-clicked items, respectively, by
user u in session s . We can see that the pairwise pref-
erence is also defined on clicked and un-clicked items
instead of item-sets as used in CoFiSet.

RankALS (ranking-based alternative least
square) [19] adopts a square loss and minimizes
∑

i∈Itr
u

∑

j∈Itr\Itr
u

1
2 (r̂uij − 1)2 for each user, where

r̂uij is again the user u’s pairwise preferences over
items i and j. Note that RankALS is motivated by
incorporating the preference difference on two items [7],
r̂ui− r̂uj = 1, into the ALS (alternative least square) [6]
algorithmic framework, and optimizes a slightly dif-
ferent objective function. In our experiments, for fair
comparison, we implement it in the SGD framework,
which is the same as for other baselines.

CCF(SoftMax) [20] assumes that there is a candi-
date set Oui for each observed pair (u, i), which can be
written as Oui = {i} ∪ A. CCF(SoftMax) models the
data as a competitive game and proposes to minmize

− ln exp(r̂ui)
exp(r̂ui)+

∑
j∈A

exp(r̂uj)
= ln[1+

∑

j∈A exp(−r̂uij)] for

each observed pair (u, i), where r̂uij = r̂ui− r̂uj . We can
see that CCF(SoftMax) defines the loss on pairwise pref-
erences over items instead of item-sets, which is thus d-
ifferent from our CoFiSet. Note that when A = {j}, the
loss term of CCF(SoftMax) reduces to that of BPRM-
F [17], which is a special case of CoFiSet.

CCF(Hinge) [20] adopts a Hinge loss over an item
i and an item-set Oui\{i} = A for each observed pair
(u, i), and minimizes max(0, 1 − r̂uiA), where r̂uiA =
r̂ui − r̂uA with r̂uA =

∑

j∈A r̂uj/|A|. We can see that
the loss term of CCF(Hinge) [20] can be considered as
a special case in our CoFiSet when P = {i}.

The above related works are summarized in Table 4.
From Table 4 and discussions above, we can see that
(1) CoFiSet is different from other algorithms, since it
is based on a new assumption of pairwise preferences

over item-sets, and (2) the most closely related work-
s are BPRMF [17], CCF(SoftMax) [20] and PLMF [5],
because they also adopt pairwise preference assumption-
s, exponential family functions in loss terms, and SGD
(stochastic gradient descent) style algorithms.

5 Conclusions and Future Work

In this paper, we propose a novel algorithm, CoFiSet, in
collaborative filtering with implicit feedbacks. Specifi-
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Table 4: Summary of CoFiSet and some related works
in collaborative filtering with implicit feedbacks. Note
that i, i′ ∈ Itr

u , j ∈ Itr\Itr
u , P ⊆ Itr

u , and A ⊆ Itr\Itr
u .

The relationship “x v.s. y” denotes encouragement of
competitions between x and y, “x− y = c” means that
the difference between a user’s preferences on x and y
is a constant, and “x ≻ y” means that a user prefers x
to y.

Preference type/assumption Algorithm

Self-competition i v.s. i′ CLiMF [18] Batch

Pointwise
i: like iMF [6] Batch
j: dislike OCCF [14] Batch

Pairwise

i− j = c
RankALS [19] Batch
SVD(ranking) [7] SGD

i ≻ j
BPRMF [17] SGD
PLMF [5] SGD

i ≻ j, j ∈ A CCF(SoftMax) [20] SGD
i ≻ A CCF(Hinge) [20] SGD
P ≻ A CoFiSet SGD

cally, we propose a new assumption, pairwise prefer-

ences over item-sets, which is more relaxed than pair-

wise preferences over items in previous works. With
this assumption, we develop a general algorithm, which
absorbs some recent algorithms as special cases. We
study CoFiSet on two real-world data sets using vari-
ous ranking-oriented evaluation metrics, and find that
CoFiSet generates better recommendations than several
state-of-the-art methods. CoFiSet works best especially
when it is associated with a small item-set A, because
there is a higher chance to have inconsistent preferences
on items from item-set A.

For future works, we are mainly interested in ex-
tending CoFiSet in three aspects, (1) studying item-set
selection strategies via incorporating the item’s taxon-
omy information, (2) modeling different preference as-
sumptions in a unified ranking-oriented framework, and
(3) applying the concept of item-set to other matrix or
tensor factorization algorithms.
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