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Abstract

Negative sampling is essential for implicit collaborative fil-
tering to provide proper negative training signals so as to
achieve desirable performance. We experimentally unveil a
common limitation of all existing negative sampling methods
that they can only select negative samples of a fixed hardness
level, leading to the false positive problem (FPP) and false
negative problem (FNP). We then propose a new paradigm
called adaptive hardness negative sampling (AHNS) and dis-
cuss its three key criteria. By adaptively selecting negative
samples with appropriate hardnesses during the training pro-
cess, AHNS can well mitigate the impacts of FPP and FNP.
Next, we present a concrete instantiation of AHNS called
AHNSp<0, and theoretically demonstrate that AHNSp<0 can
fit the three criteria of AHNS well and achieve a larger lower
bound of normalized discounted cumulative gain. Besides,
we note that existing negative sampling methods can be re-
garded as more relaxed cases of AHNS. Finally, we con-
duct comprehensive experiments, and the results show that
AHNSp<0 can consistently and substantially outperform sev-
eral state-of-the-art competitors on multiple datasets.

Introduction
Collaborative filtering (CF), as the most representative tech-
nique for recommendation, focuses on modeling user inter-
ests from observed user-item interactions (Wang et al. 2019;
He et al. 2020). In many cases, it is not always possible
to obtain a large amount of high-quality explicit feedback.
As a result, implicit feedback, such as clicks or purchases,
has become a default choice to train a CF model (Lai et al.
2023). In implicit feedback, each observed interaction nor-
mally indicates a user’s interest in an item and corresponds
to a positive training sample. As for negative training sam-
ples, a widely adopted approach is to randomly select some
uninteracted items for users. An implicit CF model is then
optimized to give positive samples higher scores than nega-
tive ones (Rendle et al. 2009).

Similar to many semi-supervised learning problems, ex-
isting implicit CF models highly rely on mining negative
samples to provide proper negative training signals. With-
out auxiliary data describing items, two lines of works have
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Figure 1: Average hardness of selected negative items in
RNS, DNS, and DENS on two Amazon datasets.

been proposed. The first line consists of static negative
sampling, which assigns a static probability for each can-
didate to be sampled. For example, random negative sam-
pling (RNS) (Rendle et al. 2009) chooses uninteracted items
with equal probability, and popularity-biased negative sam-
pling (PNS) (Chen et al. 2017; Wu et al. 2019) adopts item-
popularity-biased distributions to favor popular items. The
other line is hard negative sampling, such as dynamic neg-
ative sampling (DNS) (Zhang et al. 2013) and disentangled
negative sampling (DENS) (Lai et al. 2023), which focuses
on selecting hard negative samples that are difficult to be
distinguished from the positive samples with dynamic dis-
tributions. Such hard negative samples can provide more in-
formative training signals so that user interests can be better
characterized (Xu et al. 2022).

Although the above two lines of works on negative sam-
pling have achieved some promising results, we point out
that all these methods can only select negative samples of
a certain “hardness” level, preventing them from achieving
better performance. Without loss of generality, assume that
positive samples’ predicted scores are always positive. We
can define the hardness of a negative sample as its rela-
tive predicted score, i.e., the ratio of its predicted score to
that of its corresponding positive sample, in order to smooth
the influence of the simultaneous increase in the predicted
scores of all items during the training process. As illustrated
in Fig. 1, throughout the training process, RNS can only se-
lect easy negative samples with hardness around 0, while
DNS and DENS can only choose hard negative samples with
hardness around 0.3 and 0.4, respectively.

Unavoidably, these fixed hardness negative sampling
methods may suffer from two significant problems: (1) false
positive problem (FPP): as shown in the upper part of Fig. 2,
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Figure 2: Issues of fixed hardness negative sampling.

when only easy negative samples can be selected during the
training process, items of no interest but with initially high
predicted scores may not be sufficiently updated and will
still be recommended to users, resulting in suboptimal rec-
ommendation results; (2) false negative problem (FNP): as
shown in the lower part of Fig. 2, if only hard negative sam-
ples with a fixed hardness level are selected during the train-
ing process, items of interests but not interacted yet may be
selected as negative and ranked lower in the recommenda-
tion list, which worsens recommendation results. We have
conducted extensive experiments to verify the existence of
FPP and FNP (see RQ2 of Experiments for more details).

To address the above two problems and obtain better rec-
ommendation results, we propose to adaptively select nega-
tive samples with different hardness levels during the train-
ing process. A straightforward attempt is to introduce cur-
riculum learning (Chu et al. 2021) into negative sampling,
where a predefined pacing function is utilized to schedule
the hardness levels of negative samples in different training
epochs. However, such an implementation still selects neg-
ative samples with a fixed hardness level within the same
epoch, rather than adaptively select negative samples with
different hardness levels for different positive samples.

In this paper, we introduce a brand new negative sampling
paradigm called Adaptive Hardness Negative Sampling
(AHNS), and analyze its three key criteria. We then present
a concrete instantiation of AHNS called AHNSp<0, where
p is a predefined smoothing parameter we will explain later.
Comprehensive theoretical analyses are performed to con-
firm that AHNSp<0 satisfies the three criteria of AHNS and
prove that implicit CF models with AHNSp<0 can achieve
a larger lower bound on normalized discounted cumula-
tive gain (NDCG) than with a fixed hardness negative sam-
pling method. Furthermore, we discuss the relation between
AHNS and other negative sampling methods and note that
existing negative sampling methods can be considered as
more relaxed cases of AHNS.

Our main contributions are summarized as follows:

• We are the first to identify and address FPP and FNP in
existing negative sampling methods via adaptively select-
ing hardnesses of negative samples, which brings a new
perspective of negative sampling for implicit CF.

• We propose a new negative sampling paradigm AHNS
with three criteria, which generalizes existing negative
sampling methods. We present a concrete instantiation
AHNSp<0 and theoretically show that it can fit the three
criteria well and achieve a larger lower bound on NDCG.

• We conduct extensive experiments to demonstrate that
AHNSp<0 can achieve significant improvements over
several representative state-of-the-art negative sampling
methods.

Related Work
Static Negative Sampling
Static negative sampling focuses on identifying good distri-
butions to draw negative samples. For example, as the sim-
plest and most prevalent static negative sampling method,
Bayesian personalized ranking (BPR) (Rendle et al. 2009)
randomly selects uninteracted items as negative. However,
this method makes it hard to guarantee the quality of se-
lected negative samples, and thus some studies (Chen et al.
2017; Wu et al. 2019; Yang et al. 2020) propose to replace
the uniform distribution with other distributions. Inspired
by the word-frequency-based and node-degree-based nega-
tive sampling distributions for network embedding (Mikolov
et al. 2013), NNCF (Chen et al. 2017) and NCE-PLRec (Wu
et al. 2019) adopt an item-popularity-based sampling distri-
bution to select more popular items as negative, which helps
to alleviate the widespread popularity bias issue in recom-
mender systems (Chen et al. 2023).

Hard Negative Sampling
Hard negative sampling methods emphasize the importance
of oversampling hard negative samples to speed up the train-
ing process and find more precise delineations of user in-
terests. More specifically, it is achieved by either assign-
ing higher sampling probabilities to items with larger pre-
dicted scores (Zhang et al. 2013; Ding et al. 2020; Huang
et al. 2021; Zhu et al. 2022; Lai et al. 2023; Shi et al.
2023; Zhao et al. 2023) or leveraging adversarial learn-
ing techniques (Wang et al. 2017; Cai and Wang 2018;
Park and Chang 2019). For instance, dynamic negative sam-
pling (DNS) (Zhang et al. 2013) selects the item with the
highest predicted score in a candidate negative sample set.
SRNS (Ding et al. 2020) oversamples items with both high
predicted scores and high variances to tackle the false neg-
ative problem. DENS (Lai et al. 2023) disentangles relevant
and irrelevant factors of items and identifies the best negative
samples with a factor-aware sampling strategy. Instead of
directly selecting negative samples from uninteracted items,
MixGCF (Huang et al. 2021) synthesizes hard negative sam-
ples by mixing positive information into negative samples,
which further improves the performance.

However, we experimentally find that all the above neg-
ative sampling methods can only select negative samples of
a fixed hardness level during the training process, leading
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Figure 3: An illustration of adaptive hardness negative sam-
pling.

to the false positive problem and false negative problem.
Driven by this limitation, we propose an adaptive hardness
negative sampling paradigm, which adaptively selects nega-
tive samples with appropriate hardnesses and achieves better
recommendation results.

Proposed Method
Problem Formulation
In this section, we formulate the problem of negative sam-
pling in implicit CF. Let U and I be the set of users and the
set of items, respectively. We denote the set of observed in-
teractions, i.e., implicit feedback, by O+ = {(u, i+) | u ∈
U , i+ ∈ I}, where each pair (u, i+) indicates an interaction
between user u and item i+. Implicit CF aims to character-
ize user interests from their observed interactions. Interacted
items are generally used to form positive pairs, while un-
interacted items are considered candidates to generate neg-
ative samples. Specifically, given a positive pair (u, i+), a
negative sampling strategy identifies an item i− that has not
been previously interacted by u as a negative sample. The
implicit CF model is then optimized to give positive pairs
higher scores than negative pairs by the Bayesian personal-
ized ranking (BPR) loss function (Rendle et al. 2009):

LBPR =
∑

(u,i+,i−)

− lnσ(e⊤u ei+ − e⊤u ei−), (1)

where eu, ei+ , and ei− are the embeddings of user u, pos-
itive sample i+, and negative sample i−, respectively, the
inner product is used to measure the score of positive and
negative pairs, and σ(·) is the sigmoid function.

Method Design
Paradigm. To achieve the adaptive selection in the hard-
nesses of negative samples and alleviate the false posi-
tive problem (FPP) and false negative problem (FNP), we
propose the adaptive hardness negative sampling (AHNS)
paradigm. As shown in Fig. 3, unlike fixed hardness nega-
tive sampling, AHNS simultaneously satisfies the following
three key criteria:
• C1: The hardness of a selected negative sample should

be positive-aware. Instead of setting a specific hardness

Algorithm 1: AHNSp<0

1: Input: Set of observed interactions O+ = {(u, i+) |
u ∈ U , i+ ∈ I}, number of candidate negatives M ,
predefined hyperparameters α, β and p

2: Output: Set of training triples T
3: T ← {} ▷ Initialize an empty set for training triples
4: for each positive pair (u, i+) in O+ do
5: C ← {} ▷ Initialize an empty set for candidate

negative samples
6: for m = 1 to M do
7: im ← Randomly sample an uninteracted item
8: Add im to C
9: end for

10: R ← {} ▷ Initialize an empty set for ratings of
candidate negative samples

11: for each candidate negative sample im in C do
12: rm ←

∣∣e⊤u eim − β · (e⊤u ei+ + α)p+1
∣∣

13: Add rm toR
14: end for
15: i− ← Select im with the smallest rm inR
16: Add (u, i+, i−) to T
17: end for
18: return T

level of negative samples for each training epoch like cur-
riculum learning (Chu et al. 2021), AHNS is expected to
identify the appropriate hardness of a negative sample ac-
cording to its corresponding positive sample.

• C2: The hardness of a selected negative sample should
be negatively correlated with the predicted score of
its corresponding positive sample. On the one hand,
for positive samples with higher predicted scores, AHNS
should select items with lower hardnesses as negative,
which can effectively avoid the FNP. On the other hand,
for positive samples with lower predicted scores, AHNS
should select items with higher hardnesses as negative,
which can accelerate the optimization of positives and
enable negatives with higher hardnesses to be sufficiently
updated, thus alleviating the FPP.

• C3: The hardness of selected negative samples should
be adjustable. To cover a variety of practical recom-
mendation scenarios, e.g., different datasets or evaluation
metrics (Shi et al. 2023), AHNS should be able to adjust
the hardness of selected negative samples.

Instantiation. Next, we give a concrete instantiation of
AHNS called AHNSp<0, whose entire procedure is detailed
in Algo. 1. Specifically, for a positive pair (u, i+), we follow
conventional methods (Chen et al. 2022; Lai et al. 2023) and
adapt the two-pass sampling idea, which first randomly sam-
ples a fixed size of uninteracted items to form a candidate
set, and then selects a negative sample from the candidate set
according to predefined rating functions and sampling rules.
For the first pass, the size M of the candidate set C is usu-
ally much smaller than the total number of items |I|, which
can boost the sampling efficiency. For the second pass, the
rating function and sampling rule play a critical role in iden-
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tifying the final negative sample and are the focus of all
negative sampling methods. Therefore, we introduce three
hyperparameters and carefully design the rating function in
AHNSp<0. For each candidate negative item im ∈ C, the
rating function is formulated as:

rm =
∣∣e⊤u eim − β · (e⊤u ei+ + α)p+1

∣∣ , (2)

where α > 0, β > 0 and p < 0 are predefined hyperparam-
eters, whose effects will be given in the subsequent Thm. 3.
After calculating the ratings of all candidate negative items,
we obtain a rating set R, and then the final negative sample
is identified by selecting im with the smallest rm inR:

i− = iargminm rm . (3)

Theoretical Analysis
In this section, we conduct in-depth analyses on AHNSp<0.
We first show that AHNSp<0 satisfies the three criteria of
AHNS, and then establish that implicit CF models with
AHNSp<0 can achieve a larger lower bound on normalized
discounted cumulative gain than with a fixed hardness neg-
ative sampling method as training progresses.
Theorem 1. AHNSp<0 satisfies C2 of AHNS.

Proof. Consider a positive pair (u, i+). Let i−∗ be the ideal
negative sample selected by AHNSp<0. According to Eq. (2)
and Eq. (3), we have:

e⊤u ei−∗ = β · (e⊤u ei+ + α)p+1. (4)

To simplify the calculation process, we substitute e⊤u ei+
with (e⊤u ei+ + α) to calculate the hardness of i−∗ :

Hardness(i−∗ ) =
e⊤u ei−∗
e⊤u ei+

≈
e⊤u ei−∗

e⊤u ei+ + α

=
β · (e⊤u ei+ + α)p+1

e⊤u ei+ + α

= β · (e⊤u ei+ + α)p. (5)

Based on the chain rule, we have:

dHardness(i−∗ )

d(e⊤u ei+)
=

d(β · (e⊤u ei+ + α)p)

d(e⊤u ei+ + α)
· d(e

⊤
u ei+ + α)

d(e⊤u ei+)

= p · β · (e⊤u ei+ + α)p−1. (6)

Clearly, dHardness(i−∗ )/d(e
⊤
u ei+) < 0 always holds when

e⊤u ei+ > 0, α > 0, β > 0 and p < 0, which means that
the hardness of i−∗ is always negatively correlated with the
predicted score of i+ – the above completes the proof.

Theorem 2. AHNSp<0 satisfies C1 of AHNS.

Proof. Consider two different positive pairs (u, i+1 ) and
(u, i+2 ). Let i−1∗ and i−2∗ be the ideal negative samples se-
lected by AHNSp<0 for (u, i+1 ) and (u, i+2 ), respectively.
According to Eq. (5), we have:

Hardness(i−1∗) = β · (e⊤u ei+1 + α)p,

Hardness(i−2∗) = β · (e⊤u ei+2 + α)p. (7)
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Figure 4: Hardness of ideal negative sample i−∗ w.r.t. differ-
ent p.

It has been proved in Thm. 1 that Hardness(i−∗ ) monoton-
ically decreases as e⊤u ei+ increases. Thus when e⊤u ei+1

̸=
e⊤u ei+2

, Hardness(i−1∗) ̸= Hardness(i−2∗) – the above com-
pletes the proof.

Theorem 3. AHNSp<0 satisfies C3 of AHNS.

Proof. According to Eq. (5), we plot the curves of the hard-
ness of i−∗ under different values of the predicted score of
i+ in Fig. 4. It is clear that p affects the magnitude of the
curves, smaller p leads to larger magnitudes. In addition, all
curves pass through the point (1 − α, β), indicating the ef-
fect of α and β in adjusting the hardness of selected negative
samples–the above completes the proof.

Theorem 4. As training progresses, implicit CF models with
AHNSp<0 can achieve a larger lower bound on normalized
discounted cumulative gain (NDCG) than with a fixed hard-
ness negative sampling method.

Proof. Given a user u, let πfu be the ranking function in-
duced by recommender system f for user u, and πfu(i)
the rank of item i. Let y be a binary indicator: yi = 1
if item i has been interacted by u, otherwise yi = 0. Let
I(u) = {i | yi = 1} be the set of items interacted by u and
I be the indicator function.

First, we consider discounted cumulative gain (DCG).
With 1 + z ≤ 2z when z ≥ 1, we have the following:

DCG(u) =

|I|∑
i=1

2yi − 1

log2(1 + πfu(i))

=

|I(u)|∑
i=1

1

log2(1 + πfu(i))
≥

|I(u)|∑
i=1

1

πfu(i)

=

|I(u)|∑
i=1

1

1 +
∑

j∈|I|\{i} I(e⊤u ej − e⊤u ei > 0)

≥
|I(u)|∑
i=1

1

1 +
∑

j∈|I|\{i} exp(e
⊤
u ej − e⊤u ei)

.

(8)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8648



Next, we consider the ideal DCG (IDCG). Let π∗
fu

be
the ideal ranking function, which can sort the items in the
ground truth order:

IDCG(u) =

|I|∑
i=1

2yi − 1

log2(1 + π∗
fu
(i))

=

|I(u)|∑
i=1

1

log2(1 + i)
≤

|I(u)|∑
i=1

1 = |I(u)| . (9)

Clearly, we have:
1

IDCG(u)
≥ 1

|I(u)|
. (10)

Finally, we consider NDCG:

NDCG(u) =
DCG(u)

IDCG(u)
≥ 1

|I(u)|
DCG(u)

≥ 1

|I(u)|

|I(u)|∑
i=1

1

1 +
∑

j∈|I|\{i} exp(e
⊤
u ej − e⊤u ei)

≈ 1

|I(u)|

|I(u)|∑
i=1

1

1 + exp(e⊤u ei− − e⊤u ei)
. (11)

As illustrated in Fig. 4, it is not difficult to derive that as
the predicted score of i+ increases, the hardness of i−∗ sam-
pled by AHNSp<0 (the solid lines) is lower compared to that
of a fixed hardness negative sampling method (the dotted
line), leading to a lower value of exp(e⊤u ei− − e⊤u ei). Thus
implicit CF models with AHNSp<0 can achieve a larger
lower bound of NDCG. This completes the proof.

Discussion
In this section, we first discuss the relation between AHNS
and other negative sampling methods. We point out that
existing negative sampling methods can be considered as
more relaxed cases that satisfy part of the three criteria of
AHNS. For example, DENS (Lai et al. 2023) proposes a
positive gating layer to disentangle items’ factors for neg-
ative sampling. Thus the hardness of selected negative sam-
ples becomes positive-aware and satisfies C1 of AHNS.
By using an anti-curriculum pacing function to schedule
the hardnesses of negative samples for different training
epochs, CuCo (Chu et al. 2021) partially satisfies C2 of
AHNS. To adapt to different datasets and top-K metrics,
DNS(M,N ) (Shi et al. 2023) adjusts the hardnesses of
selected negative samples via predefined hyperparameters,
which satisfies C3 of AHNS.

In addition, we note that the main idea of AHNS in neg-
ative sampling is consistent with that of focal loss (Lin
et al. 2017) in object detection, i.e., putting more focus
on lower-ranked positives and higher-ranked negatives
(hard, misclassified examples), which may bring some new
insights into negative sampling for implicit CF.

Experiments
In this section, we perform extensive experiments to evaluate
AHNSp<0 and answer the following research questions:

Dataset #user
(|U|)

#item
(|I|)

#inter.
(|R|)

avg. inter.
per user density

ML-1M 6.0k 3.7k 1000.2k 165.6 4.47%
Phones 27.9k 10.4k 194.4k 7.0 0.07%
Sports 35.6k 18.4k 296.3k 8.3 0.05%
Tools 16.6k 10.2k 134.5k 8.1 0.08%

Table 1: The statistics of four datasets.

• RQ1: How does AHNSp<0 perform compared with pre-
vious negative sampling methods?

• RQ2: Does AHNSp<0 achieve adaptive selection in
the hardnesses of negative samples and alleviate the
false positive problem (FPP) and false negative problem
(FNP)?

• RQ3: What are the impacts of the hyperparameters (e.g.,
α, β) on AHNSp<0?

• RQ4: Does AHNSp<0 have an advantage in terms of
sampling efficiency?

Experimental Setup
Datasets and Evaluation Metrics. We consider four
widely used public benchmark datasets in experiments:
MovieLens-1M1 (ML-1M), Amazon-Phones2 (Phones),
Amazon-Sports2 (Sports) and Amazon-Tools2 (Tools). Fol-
lowing (He et al. 2020; Shi et al. 2023), we randomly split
each user’s interactions into training/test sets with a ratio of
80%/20%, and build the validation set by randomly sam-
pling 10% interactions of the training set. Tab. 1 summarizes
the statistics of the four datasets. We report the recommen-
dation performances in terms of Recall@20 (R@20) and
NDCG@{20, 50} (N@{20, 50}), where higher values in-
dicate better performances.

Baseline Methods. We compare AHNSp<0 with a wide
range of representative negative sampling methods:

• RNS (Rendle et al. 2009) randomly selects uninteracted
items as negative.

• SSM (Wu et al. 2022) achieves better performances by
sampling more items as negative.

• DNS (Zhang et al. 2013) chooses the item with the high-
est predicted score in a candidate set as negative.

• MixGCF (Huang et al. 2021) synthesizes harder negative
samples by injecting information from positive samples.

• DENS (Lai et al. 2023) identifies better negative samples
by disentangling factors of items.

• DNS(M,N ) (Shi et al. 2023) controls the sampling hard-
ness via predefined hyperparameters.

• GuCo (Chu et al. 2021) proposes a negative sampling
method adopting curriculum learning in graph represen-
tation learning. We transfer this method to CF.
1https://grouplens.org/datasets/movielens/
2https://jmcauley.ucsd.edu/data/amazon/
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Method ML-1M Phones Sports Tools

R@20 N@20 N@50 R@20 N@20 N@50 R@20 N@20 N@50 R@20 N@20 N@50

RNS 22.86 35.46 37.41 11.06 5.98 7.35 6.73 3.60 4.68 5.53 2.99 3.75
SSM 24.87 37.74 39.71 11.37 6.13 7.48 7.08 3.80 4.87 5.72 3.10 3.88
DNS 24.66 36.64 38.31 12.08 6.64 7.99 7.74 4.25 5.32 6.66 3.78 4.52

MixGCF 24.75 37.54 38.95 12.20 6.73 8.13 7.68 4.32 5.36 6.82 3.88 4.59
DENS 25.07 37.67 39.11 12.16 6.68 8.13 7.90 4.35 5.50 6.66 3.76 4.55

DNS(M, N) 25.09 37.58 39.22 12.27 6.75 8.15 7.84 4.31 5.35 6.86 3.76 4.61
CuCo 25.12 37.53 39.20 12.19 6.68 8.11 7.68 4.25 5.36 6.76 3.82 4.59

AHNSp=−1 25.17 37.72 39.31 13.02 7.08 8.71 8.42 4.58 5.82 7.27 4.02 4.95
AHNSp=−2 25.51 38.77 40.57 13.03 7.14 8.74 8.52 4.61 5.81 7.42 4.05 4.92

Improv. 1.6% 2.7% 2.2% 6.2% 5.8% 7.2% 7.8% 6.0% 5.8% 8.2% 4.4% 7.4%

Table 2: Performances (%) of AHNSp=−1, AHNSp=−2, and baseline methods. The best results are in bold, and the second best
are underlined. Improvements are calculated over the best baseline method and statistically significant with p-value < 0.01.

Implementation Details. We strictly follow the experi-
mental setting in DENS (Lai et al. 2023). We utilize ma-
trix factorization (MF) as the implicit CF model. The em-
bedding dimension is fixed to 64, and the embedding pa-
rameters are initialized with the Xavier method. We opti-
mize all parameters with Adam (Kingma and Ba 2015) and
use the default learning rate of 0.001 and default mini-batch
size of 2,048. The number of training epochs is set to 100.
For AHNSp<0, the candidate negative size M is searched
in the range of {4, 8, 16, 32, 64}. The hyperparameters α
and β are tuned over {0.1, 0.2, · · · , 0.9, 1.0} independently.
The hyperparameters of all baseline methods are carefully
tuned by grid search. Our code is publically available at
https://github.com/Riwei-HEU/AHNS.

RQ1: Performance Comparison
Tab. 2 shows the performances of AHNSp=−1, AHNSp=−2,
and baseline methods. We can observe the following:

• Compared to randomly selecting uninteracted items as
negative (RNS), increasing the number (SSM) or the
hardness (DNS, MixGCF, DENS, etc.) of negative sam-
ples leads to a substantial performance improvement.

• By introducing curriculum learning into negative sam-
pling, CuCo draws negative samples with different hard-
nesses in different training epochs, achieving comparable
performances to hard negative sampling methods.

• Benefiting from positive-aware adaptive selection in
the hardnesses of negative samples, AHNSp=−1 and
AHNSp=−2 significantly outperform RNS by on average
20%. Meanwhile, the two methods also show a huge per-
formance boost over other hard negative sampling meth-
ods and the curriculum-learning-based method.

RQ2: Hardness Visualization
To justify the motivation of AHNS, i.e., adaptively select-
ing hardnesses of negative samples to alleviate FPP and
FNP, we plot the curves of average negative hardness and
NDCG@20 of RNS, DNS, DENS, and AHNSp=−2 in
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Figure 5: Average negative hardness and NDCG@20 of
RNS, DNS, DENS, and AHNSp=−2.

Fig. 5. Due to the space limitation, we only report the re-
sults on the three Amazon datasets. From these figures, we
have the following key findings:
• As shown in Fig. 5(a), 5(c) and 5(e), compared to fixed

hardness negative sampling methods RNS, DNS, and
DENS, AHNSp=−2 can adaptively adjust the hardnesses
of negative samples as training progresses. Specifically,
in the early stages of training, AHNSp=−2 favors neg-
ative samples with higher hardnesses, while in the later
stages of training, AHNSp=−2 prefers negative samples
with lower hardnesses.
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Figure 6: Performance of AHNSp=−2 w.r.t. different hyper-
parameters.

• As shown in Fig. 5(b), 5(d) and 5(f), the performance of
RNS peaks in the early stages of training and remains
stable thereafter, DNS and DENS present better perfor-
mance than RNS but suffer a significant performance
drop in the later stages of training, and AHNSp=−2

achieves the best performance while maintaining similar
stability as RNS.

• The average negative hardness and NDCG@20 of RNS
(the blue line) well verify the existence of FPP, i.e., when
only easy negative samples can be selected during the
training process, items of no interest but with initially
high predicted scores may not be sufficiently updated and
will still be recommended to users, leading to the subop-
timal performance of RNS.

• The average negative hardness and NDCG@20 of DNS
(the orange line) and DENS (the green line) well verify
the existence of FNP, i.e., when only hard negative sam-
ples can be selected during the training process, items of
interests may be selected as negative and ranked lower
in the recommendation list, resulting in the performance
drop of DNS and DENS.

• The average negative hardness and NDCG@20 of
AHNSp=−2 (the red line) well justify our motivation. For
positives with lower predicted scores, by selecting items
with higher hardnesses as negative, AHNSp=−2 well al-
leviates FPP and achieves a higher peak; for positives
with higher predicted scores, by selecting items with
lower hardnesses as negative, AHNSp=−2 well avoids
FNP and thus prevents the performance drop.
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Figure 7: Time (second) for training per epoch on ML-1M
w.r.t. different methods. Best viewed in color.

RQ3: Hyperparameter Study
As discussed in Thm. 3, hyperparameters α and β affect
the hardnesses of selected negative samples. Here we study
how these hyperparameters affect the recommendation per-
formance. Fig. 6 shows Recall@20 and NDCG@20 of
AHNSp=−2 under different α or β values with other hy-
perparameters unchanged on the three Amazon datasets. We
can see that it is intractable to identify the optimal values
of α and β since they are different across datasets and eval-
uation metrics. However, in practice, we can achieve desir-
able performance in a relatively wide range of α or β values,
which relieves the overhead of hyperparameter tuning.

RQ4: Efficiency Analysis
As presented in Algo. 1, AHNSp<0 does not introduce ad-
ditional time cost compared to the simplest hard negative
sampling method DNS. Here we empirically compare the
time for training each epoch of AHNSp=−2 and other base-
line methods on the ML-1M dataset. All the methods are
implemented under the same framework and with optimal
hyperparameters to ensure fairness. The results are shown in
Fig. 7. DNS(M,N ) takes the longest time as it requires an
extremely large candidate negative set to adjust the hardness
of negative samples. SSM costs the second longest time be-
cause multiple negative samples are selected to participate
in the training of the CF model. The time difference be-
tween AHNSp=−2 and other hard negative sampling meth-
ods is marginal, and RNS undoubtedly takes the least time.
Considering the performance improvements in Tab. 2 that
AHNSp=−2 can bring, we believe that AHNSp=−2 is the
best negative sampling method in terms of both efficiency
and performance.

Conclusion
In this paper, we propose a new negative sampling paradigm
AHNS with three key criteria, which enables adaptive selec-
tion of hardnesses of negative samples to alleviate FPP and
FNP. We devise a concrete instantiation AHNSp<0 and the-
oretically demonstrate that it can well fit the three criteria of
AHNS and achieve a larger lower bound of NDCG. Com-
prehensive experiments confirm that AHNSp<0 provides a
promising new research direction for negative sampling to
further boost implicit CF models’ performance.
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