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ABSTRACT

Personalized recommender systems are important to assist user
decision-making in the era of information overload. Meanwhile,
explanations of the recommendations further help users to better
understand the recommended items so as to make informed choices,
which gives rise to the importance of explainable recommendation
research. Textual sentence-based explanation has been an important
form of explanations for recommender systems due to its advantage
in communicating rich information to users. However, current ap-
proaches to generating sentence explanations are either limited to
predefined sentence templates, which restricts the sentence expres-
siveness, or opt for free-style sentence generation, which makes
it difficult for sentence quality control. In an attempt to benefit
both sentence expressiveness and quality, we propose a Neural
Template (NETE) explanation generation framework, which brings
the best of both worlds by learning sentence templates from data
and generating template-controlled sentences that comment about
specific features. Experimental results on real-world datasets show
that NETE consistently outperforms state-of-the-art explanation
generation approaches in terms of sentence quality and expressive-
ness. Further analysis on case study also shows the advantages of
NETE on generating diverse and controllable explanations.
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1 INTRODUCTION

Recommender systems tackle the information overload problem by
finding items that users may be interested in from a large collec-
tion of products. Over the years, many effective recommendation
algorithms, such as user/item-based collaborative filtering [33, 34],
matrix factorization [20, 21] and deep neural networks [15, 43, 48]
have been proposed to improve recommendation accuracy. Recently,
increasing attention has been paid to generating explanations for
recommendations [3-5, 7-9, 12, 39, 44, 45], because it has been
shown that providing explanations can help users to make better
and/or faster decisions, increase the system’s ease of use and en-
joyment, and gain user trust in the system [36, 44]. Among various
explanation styles (e.g., images [7, 18] and item neighbors [26, 32]),
text explanation [3, 5, 8, 9, 12, 39, 45] has been widely studied be-
cause of the abundant textual data that online marketplace websites,
such as TripAdvisor, Yelp and Amazon, could offer.

There are two major approaches to generating text explanations:
template-based and natural language generation. In template-based
approaches, a sentence template is usually predefined (e.g., “You
might be interested in [feature], on which this product performs well”)
[45], with the slot(s) to be filled by means of matrix/tensor factoriza-
tion [38, 45] or attention mechanism [12]. However, template-based
approaches require manually defined sentence templates, which
are expensive to create, and restrict the expressiveness of sentence
explanations. For example, all items features are described as “per-
forms well” in the above template, which cannot reflect the special
property of different item features.

Natural language generation approach, due to its flexibility in
sentence styles, has obtained research interests recently, with the
goal of automatically generating flexible free-text explanations
learned from user-generated contents such as user reviews. For
instance, Attribute-to-Sequence (Att2Seq) [11], a state-of-the-art
review generation method, produces a variety of expressions (see
the example sentences in Table 1). Another typical method, Neural
Rating and Tips generation (NRT) [25], aims to generate short and
concise sentences. However, there are two important issues yet to be
addressed in current natural language generation approaches. First,
since the models are trained on user generated contents, the topics
of the generated sentences may be irrelevant to the recommended
item (e.g., “I'm not sure if I need to go back™). Second, due to the lack
of variety in generative signals, a large proportion of the generated
sentences may be very similar or even identical, which makes the
explanations not personalized to the target users and items. These
problems amount to the importance of quality control in natural
language generation approaches to explainable recommendation,
since poor explanations may bring negative effects to the user
receptiveness of recommendations and the overall user experience
in recommender systems [36].
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In this work, we propose a Neural Template (NETE) approach to
explainable recommendation?, in order to generate both expressive
and high quality explanations by bridging the benefits of template
and generation approaches. Essentially, it is a neural generation
method, where the generated sentences are template-shaped for
quality control (e.g, “the rooftop/harbor is a great place to stay”),
because the generation process is implicitly guided by a “neural
template” that are adaptive to the given features, so that more tar-
geted and specific explanations can be generated. Table 1 shows two
example sentences generated by NETE, which are more relevant to
the ground truth among the comparative methods.

Technically, we propose a new recurrent neural network archi-
tecture named Gated Fusion Recurrent Unit (GFRU), which incorpo-
rates the neural templates into the explanation generation process.
Specifically, the GFRU in our NETE model consists of three compo-
nents: two Gated Recurrent Units (GRU) that are responsible for
generating the item feature word and the sentence context words
(i-e., the template), respectively, as well as a Gated Fusion Unit
(GFU) that decides which GRU’s word to be emitted at each time
step. After the generation process, the context words will constitute
the “neural template”. Furthermore, to increase the variety of the
generated sentence explanations, we explore a single-task learn-
ing approach instead of traditional multi-task learning approach
to model training. Basically, during the training phase, the recom-
mendation task and the explanation generation task are trained
separately in a sequential manner.

We not only evaluate the generated sentence explanations in
terms of traditional text quality measures (such as BLEU [31] and
ROUGE [27] scores), but also evaluate how well the sentences
really explain the recommendations, which is a contribution that
previous work mostly ignored. To achieve this goal, we design four
metrics to evaluate the generated sentences, including the ratio of
unique sentences, the ratio of matched features, the ratio of feature
coverage, as well as the feature diversity.

Key contributions of the paper are summarized as follows:

e We propose NETE, which can generate template-controlled
explanations for both expressiveness and quality. To the
best of our knowledge, this is the first work to bridge the
merits of template-based and neural generation approaches
to explainable recommendation.

e We explore a single-task training method instead of tradi-
tional multi-task learning methods, which helps to increase
the variety of sentence generation, since the joint optimal
solution may not always exist for different tasks.

e We evaluate the generated explanations in terms of both
traditional sentence quality measures and measures that
specifically care about the explainability of the sentences.

o Experiments on real-world datasets provide substantial evi-
dence that NETE is capable of producing more diverse, high-
quality, and controllable natural language explanations.

In the following, we will first review related work in section 2,
and then introduce our neural template generation model in section
3 and section 4. Section 5 introduces the experimental setup, while
interpretation of the results are provided in section 6. We conclude
the work with future directions in section 7.

1Codes and datasets are available at https://github.com/lileipisces/NETE
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Table 1: Examples of explanation sentences by state-of-the-
art neural generation methods (Att2Seq [11] and NRT [25])
and our NETE method. The reference sentence is the ground-
truth explanation extracted from user reviews.

Reference | They have a huge variety of things.

NRT The food is good.

Att2Seq I'm not sure if I need to go back.

NETE They have a variety of things to choose from.
Reference | The black garlic ramen was good as well.
NRT The food is good.

Att2Seq The food was great.

NETE The ramen was delicious.

2 RELATED WORK

There are two major directions on explainable recommendation
research, i.e., human-computer interaction approaches that investi-
gate human perception on different types of explanations [6, 13, 23],
and machine learning approaches, which design algorithms to pro-
vide recommendation explanations. We mostly focus on the second
approach, in particular, generating textual sentence explanations.
On one hand, template-based explanation methods [12, 38, 45] have
been widely used, which adopt a predefined template to create expla-
nations. However, since the templates are predefined and fixed, the
approach may hinder the diversity and flexibility of explanations.
On the other hand, some retrieval-based methods [3, 4] present to
users a few reviews selected from the target item’s review collection
as explanation. However, the selected reviews could be too long
and may contain information that are irrelevant to the item or the
user’s interests [44], which may confuse the user. Therefore, some
research works have shifted to retrieve sentences instead of the
whole review as explanations [8, 39], but they are still limited to
adopting existing sentences and cannot create new contents.

The above limitations motivate the development of neural gener-
ation methods. In natural language processing, the encoder-decoder
framework has been widely used in different tasks, such as machine
translation [10], conversational systems [30, 42], and text summa-
rization [2]. Despite its popularity, researchers have pointed out that
they tend to generate too general sentences, which lack concrete
meanings and therefore are less useful to users [30, 42, 47]. To ad-
dress this problem, researchers have introduced keywords [30, 42]
or a group of attributes [47] as input to the generation model, so as
to improve the expressiveness of the generated contents.

Besides sequence-to-sequence generation frameworks, we can
also adopt table-to-text generation frameworks [41], such as review
generation [11, 37, 40], tips generation [25], and explanation gener-
ation [5, 9], where the input data include users, items and ratings.
Although our model’s architecture is similar to these methods, its
generation settings on textual data are quite different from them.
Specifically, our method generates an explanation that discusses
about at least one concrete feature of the item, while previous meth-
ods usually adopt a textual review [11, 37, 40], its first sentence [9],
or the review title [25] for generation, which could be irrelevant to
the recommended item.

Moreover, because the outputs from neural generation methods
may not be easy to control [41], some works have leveraged atten-
tion mechanism [28] or copy mechanism [14] to force the models
to include some specific words. However, these techniques cannot
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guarantee which specific word to be included. In comparison, our
NETE approach is able to place a specific feature in the generated
sentence, maintaining the controllability of the explanations by
learning templates to guide the generation process.

3 THE NEURAL TEMPLATE (NETE) MODEL

Our proposed Neural Template (NETE) model consists of two
modules for recommendation and explanation, respectively. An
overview of the model is given in Figure 1. The goal of recommen-
dation module is to predict a rating 7, ;, given a user v and an
item i. Meanwhile, based on a feature f;, ; of the item that is of the
user’s interest, our model can generate a template-controlled sen-
tence, which is realized by our proposed gated fusion recurrent unit
(GFRU), as an explanation to the recommendation. The input fea-
ture f,,; could be an arbitrary feature that we want the generated
explanation to talk about. Depending on the application scenario, it
can be either manually set by the user u, or predicted by a feature
prediction model. In section 4, we will provide a simple point-wise
mutual information (PMI)-based approach for feature prediction.
In summary, the training data comprise of users, items, ratings,
features and explanation sentences, while during the testing stage,
only users, items and features are needed.

3.1 Personalized Recommendation

Traditionally, rating prediction task is achieved by the inner product
between the user and item latent factors [21], but its bi-linear nature
may make it difficult to model complex user-item interactions [15].
Therefore, we adopt non-linear transformations that have been
shown to have better representation ability in different fields, such
as computer vision [22] and natural language processing [29]. More
specifically, we employ multi-layer perceptron (MLP) with L hidden
layers to capture the interactions between users and items, as shown
in the left part of Figure 1. Formally, given the IDs of user u and
item i, we can obtain their latent vectors p, and q; (also called
representations or embeddings), and then the recommendation
module is defined as:

o(W1[pu, qi] + b1)
o (Wng + bz)

Z1
z2

and 7y,; = wrzp, + by

e (1)
z;, =o(Wpzp—1 +by)

where [-, -] denotes the concatenation of vectors, o(-) is the sigmoid
activation function, W, € R29%2d and b, € R%4 are weight ma-
trices and bias vectors in the hidden layers, while w, € R*? and
by € R correspond to the weight and bias parameters in the final
linear layer, respectively.

To minimize the difference between ground truth ratings and
the predicted ones, we adopt the mean squared error loss as its
objective function:

1 .
Ly = m Z (ru,i - "u,i)2

u, i€l

@

where 7 is the training data set, and r,, ; denotes the ground truth
rating that user u assigned to item i. In this way, the randomly initial-
ized latent vectors p, and q; can be updated via back-propagation.

For personalized recommendation, we can predict ratings for
each user’s unobserved items, and recommend the top ranked items.
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3.2 Explanation Generation

The module for explanation generation (illustrated in the right part
of Figure 1) is compatible with any neural recommendation module,
since it only leverages the predicted ratings from the recommenda-
tion module to adjust the sentiment of the generated explanations.
In the following, we first introduce the encoder-decoder framework
for text generation, and then present our proposed gated fusion re-
current unit (GFRU), which is able to generate template-controlled
explanations.

3.2.1 Encoder-decoder. The explanation generation problem
can be formulated as a table-to-text generation task [41], where the
table contains a user, an item, and possibly other attributes, e.g., a
rating between the user and item. We use user u’s representation
pu € R? and item i’s representation q; € R? as the inputs of the
encoder, so that the decoded word sequence can be personalized to
different user-item pairs. Moreover, we also consider the predicted
rating 7y, ;, so as to enforce the sentiment control on the generated
explanation. Concretely, suppose the rating scale is 1 to 5, following
common practice in recommender systems and sentiment analysis,
we map 7y, ; to -1 if the rating is less than 3, otherwise +1. We then
represent this sentiment using the corresponding representation
Su,i € R (there are only two vectors, representing positive and
negative sentiment, respectively).

During the training phase, we use the sentiment associated with
the given feature in a sentence instead of the rating to create the
sentiment representation, because we find that the feature senti-
ment is more consistent with the user’s perception on the item
than the overall rating. We will introduce how to obtain the feature
sentiments in section 4. To encode the inputs into a vector, we
employ MLP with one hidden layer as the encoder,

hy = tanh(We[py,q;, Su,i] + be) 3

where W, € R34 and b, € R" are model parameters, and tanh(-)
denotes the hyperbolic tangent function.

The encoded vector hg is used as the initial hidden state of the
decoder. Hidden states of the other time steps can be computed by
recurrently feeding the word representation of the (¢ — 1)-th input
word X;—1 into the decoder,

©

where the hidden vector h;_1 encodes the information of previously
generated words, and the decoder g(-) can be recurrent neural
networks (RNN), long short-term memory (LSTM) networks [17],
or gated recurrent units (GRU) [10]. In this paper, we adopt GRU as
the decoder, because it shows competitive performance with much
better computational efficiency than LSTM [25].

During decoding, the decoder recurrently produces a word based
on previously generated words, which can be expressed as,

h; = g(Xt—l, h;—1)

©)

where softmax(-) denotes the softmax function, W, € RIVIXn and
by € RIV! are model parameters, y<; represents words produced
before time step ¢, and y; is the word predicted at the current time
step. At time step ¢, the decoder takes in the hidden vector h;
and maps it into a |'V|-sized vector, where V is the vocabulary of
words in the dataset. This vector can be regarded as the probability

Pely<e,ho) = softmaxy, (Wyh; +by)
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ramen was delicious <EOS>

delicious

ramen

Given feature

Explanation Generation

Figure 1: Overview of our proposed model NETE that consists of two basic modules for rating prediction (left) and explanation
generation (right), respectively. Given a feature, the GFRU component in our model is able to generate a template-controlled
explanation that contains the feature. The two modules are trained separately in a sequential manner. The gray dotted curves
show the relationship between variables in the multi-task learning situation.

distribution over the vocabulary, from which a word y; with the
largest probability is sampled.

3.2.2 Gated Fusion Recurrent Unit. Although vanilla decoder
can be adopted to generate explanations, its generation is uncon-
trollable (results and discussions can be found in Section 6). To
enforce controllability to the decoder, we propose to fuse a feature
into the decoding process at each time step, which is realized by
our proposed Gated Fusion Recurrent Unit (GFRU). Thus, Equation
(4) can be reformulated as,

(6)

where X is the representation of the feature f € #,and ¥ c V.

Specifically, our GFRU consists of three components: two GRUs
and a gated fusion unit (GFU) [1]. We treat the feature and the
neural template as two types of information, so we use two GRUs
to process them, respectively, which are finally merged by GFU.
During explanation generation process, the context GRU takes the
previously generated word as input, and the feature GRU takes the
given feature at each time step, as shown in Figure 2. The GFU then
combines the outputs from the two GRUs to emit a final hidden
state that is used to predict the next word.

Let h;—1 € R" be the last hidden state of our GFRU, x;_1 € R4
be the representation of the last generated word. The hidden state
of context GRU, h? = g%*(x¢-1,h-1), can be computed as follows,

hy = g(x¢-1,hy—1, %)

zf = o(WS[xs-1,hs—1] + bF)

ry = o(Wylx—1.he1] +by)

h¢ = tanh(W¢[x;_1,1¥ ©h;_1]+b%)
hY =28 O hyog + (1 -2%) O h¥

™

where W¢ € R™(4*M) and b¢ € R" are model parameters, z&
and r{ control how much of the past information to keep and
forget, respectively, and © denotes element-wise multiplication.
Accordingly, with the last hidden state of GFRU h;_; € R" and

the representation of the feature xy € R, the hidden state of the
feature GRU is defined as h‘f = gﬁ (Xf, hs_1). Notice that, the two

758

GRUs do not share parameters, so we use superscripts @ and f to
differentiate them.
Then, we integrate the two types of decoding information, i.e., h?

and h/tg , into the final hidden state h; via the GFU. The computing
equations are as follows,
l}?‘ = tanh(W 4h)
B - tanh(W ﬂpf )
k = o(wi[h%, 07))
hy=(1-k)oh% +koh?

®)

where W, € R, Wy € R™" and wy € R2" are parameters to
be learned. From Equation (8), we can see that the automatically
learned weight k controls the decoding information of the two
GRUs to the output of the whole unit. When k is small, the output
of the unit mainly comes from the context GRU for producing a
template-controlled word sequence. Conversely, when it is large, the
whole unit relies on feature GRU to fill the feature in the template.
By introducing the GFRU that can include a feature in the output
sequence, we can improve the controllability of the explanation
generation process.

3.2.3 Objective Function. To train the module of explanation
generation, we draw on the widely used cross-entropy loss as our
objective function, and compute the loss for each user-item pair in
the training set,

|Su, 1]
1
Le=— — —logp(y:) )
7 u,tZE‘JT |Su. 1] Z{

where Sy, ; is the ground-truth explanation for the user u and item
i pair, iSu,il is its length in number of words, and p(y;) denotes the
predicted probability of word y; from Equation (5).

3.3 Model Training

In general, our explainable recommendation framework (Figure 1)
involves two modules for two tasks — the recommendation task
and the explanation task. Previous works usually jointly train the
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Figure 2: The structure of our proposed GFRU decoder with
three components. The word at the current time step and the
feature are processed by the bottom two GRUs, respectively,
whose outputs are merged by the GFU component, which
produces a final hidden state for the current step.

two tasks by default in a multi-task learning framework. However,
little research is done on studying if and how the two tasks are
compatible in a joint learning framework.

To investigate the influence of different learning methods on the
recommendation and explanation tasks, we explore two different
training protocols: 1) a single-task learning framework, which trains
the two tasks separately in a sequential manner, and 2) a multi-task
learning framework, which integrates the two tasks into a joint
loss function.

For the single-task learning framework, we first optimize the
objective function of the recommendation task (Eq. (2)) based on
the user-item pairs in the training data. After that, we optimize the
objective function of the explanation task (Eq. (9)). Notice that, since
the two tasks are separated, the representations of users and items
(i.e., py for user u and q; for item i) in the two tasks are different
sets of latent vectors. During the testing stage, the predicted ratings
from the recommendation module are used as the input sentiment
of the explanation task.

For the multi-task learning framework, the final objective func-
tion of the two tasks becomes:

T = min(Ar Ly + 2o Le +Anll®l%) (10)

where O is the set of model parameters, and A,, 4, and A, are
regularization weights for different tasks. In this case, the represen-
tations of p, and q; of user u and item i in the two tasks are shared
(see the gray dotted curves in Figure 1).

4 FEATURE PREDICTION BASED ON PMI

As we discussed in the previous section, our NETE model can
generate an explanation for a given feature. The feature could be
determined in different ways according to the application scenario.
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For example, it can be manually specified if we require the expla-
nation to talk about the given feature, or it can be predicted from
data. In this section, we provide a simple method that can predict a
feature of an item that is of interest to the target user. It particularly
considers the relationship between features in the user’s historical
reviews and those in the target item’s reviews.

We first apply a sentiment analysis toolkit [46] to extract features
(i-e., aspects) and their associated sentiments from user reviews,
e.g., (rooms, spacious, +1) from the sentence “The rooms are spa-
cious”, where rooms is a feature word, spacious is an opinion word,
and +1 means that the feature-opinion pair expresses a positive
sentiment. We denote the collection of all extracted features as F.
As point-wise mutual information (PMI) [30, 42] has been widely
used in computational linguistics to find the association between
words/features, we utilize it to predict a user’s interest to a feature
by measuring its relationship with the user’s preferred features.

Formally, given a user’s feature f;, and an item’s feature f;, the
PMI is computed as:

PMI(fy, fi) = log pUu, fi) -1lo p(fulfi)

pCp(f) ~ %8 p(fu)

Then, from item i’s feature set F;, we select the feature fl with

the highest PMI score against all the features in user u’s feature set
Fu as the predicted one, i.e., f; = argmaxfe(ﬁPMI(ﬂ,f), where

(11)

o p@Flf) o Tper, (1)
D i S ey
p(f'1f) ,
= log == = PMI(f", f)
f’ez;’u P f/eZ;’u

The approximation in Eq. (12) is based on the independence as-
sumptions of the prior distribution p(f”’) and posterior distribution
p(f’|f). The two assumptions may not be true, but we use them in
a pragmatic way, so that feature-level PMI on user u’s feature set
is additive. PMI penalizes a frequently occurring feature by divid-
ing its prior probability, which helps us filter out less informative
features for producing better explanations.

By comparing predicted features with those in the testing re-
views in terms of Precision and Recall, we find that the PMI-based
method performs two times better than randomly selecting features
from the target item’s feature set. This is as expected, because the
former takes users’ preferences on features into consideration when
computing PMI values, while the latter arbitrarily selects features
of the target item without considering these information.

5 EXPERIMENTAL SETUP
5.1 Datasets

In our experiments, we use three real-world datasets from different
domains, i.e., hotel, restaurant and movie, to evaluate our proposed
model. For the hotel domain, we construct the dataset with reviews
crawled from a travel website TripAdvisor?. Specifically, we im-
plemented a crawler that collected all the user reviews from this
website on every hotel located in an international city Hong Kong.
To obtain users’ past interactions, the crawler subsequently col-
lected all the historical reviews of these users. We only keep English

Zhttps://www.tripadvisor.com
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reviews, which gives us 2,118,108 records in total. For restaurant
domain, we use the dataset from Yelp Challenge 2019°. This publicly
available dataset consists of 6,685,900 restaurant reviews written
by 1,637,138 users for 192,606 businesses located in 10 metropolitan
areas. The last dataset in the movie domain is from Amazon 5-core?
Movies & TV, which contains 1,697,533 reviews by 123,960 users
for 50,052 items.

Since the three datasets are very large, we further process them
by recursively removing users and items with less than 20 interac-
tions, which results in three subsets TA-HK, YELP19 and AZ-MT.
Each review record in our datasets comprises of user ID, item ID,
overall rating in the scale of 1 to 5, and textual review. After ex-
tracting features from user reviews, for each record we select one
sentence from the review that contains at least one feature as the
ground-truth explanation. The key characteristics of the three pro-
cessed datasets are presented in Table 2.

5.2 Evaluation Metrics

To measure the recommendation accuracy of different methods, we
adopt four widely used metrics: Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) for rating prediction, and Normal-
ized Discounted Cumulative Gain (NDCG) and Hit Ratio (HR) for
personalized ranking. For the former two metrics, a lower value
indicates a better performance, while larger values are better for
the latter two.

As to the explainability, we evaluate the generated explanations
from two perspectives: the relevance to ground-truth sentences and
the degree of personalization. For the first perspective, we adopt
two commonly used metrics, BLEU [31] in machine translation and
ROUGE [27] in text summarization, to evaluate the text similarity
between the generated explanation and the ground-truth. We report
results of BLEU-1 and BLEU-4, and use Precision, Recall and F1
of ROUGE-1 and ROUGE-2 to measure the generated sentences in
different granularities. The larger BLEU and ROUGE scores are, the
closer the generated text is to the ground-truth.

For the second perspective, i.e., degree of personalization, we
adopt four metrics for evaluation: the ratio of unique sentences, the
ratio that our explanation matches the given feature, the feature
coverage ratio in all of the generated sentences, and the feature
diversity across all explanations:

1. Unique Sentence Ratio (USR). As discussed before, we find
that the generated sentences in previous methods tend to be highly
repetitive, i.e., many user-item pairs have exactly the same explana-
tion. To examine how severe the problem is, we present this metric
to calculate how many distinct sentences are generated.

USR =|S|/N (13)

where S denotes the set of generated unique explanations, and N
is the number of total explanations. Notice that, only the exactly
matched sentences are considered being identical, so only one of
them is added to S.

2. Feature Matching Ratio (FMR). Apart from sentence-level
evaluation, we also evaluate the generated explanation at feature
level. Since a feature is given as input for each user-item pair in

3https://www.yelp.com/dataset/challenge
4http://jmcauley.ucsd.edu/data/amazon
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Table 2: Statistics of the datasets

TA-HK | YELP19 | AZ-MT
# of users 9,765 27,147 7,506
# of items 6,280 20,266 7,360
# of reviews 320,023 | 1,293,247 | 441,783
# of features 5,069 7,340 5,399
Avg. # of reviews / user 32.77 47.64 58.86
Avg. # of reviews / item 50.96 63.81 60.02
Avg. # of words / explanation 13.01 12.32 14.14

* TA and AZ denote TripAdvisor and Amazon, respectively.

our method, we are interested in whether it is really included in
the generated explanation, which can be formulated as follows:

1 A
FMR = — Z 8(fui € Sui) (14)

where SAu,,- is the generated sentence for a user-item pair, f;, ; is the
given feature, and §(x) = 1 if x is true and §(x) = 0 otherwise.

3. Feature Coverage Ratio (FCR). We adopt this metric to mea-
sure the features at corpus level, i.e., how many different features
are shown in the produced explanations:

FCR = Ny/|F| (15)

where ¥ is the collection of all features in the dataset, and Ny is the
number of distinct features shown in the generated explanations.
4. Feature Diversity (DIV). It is reasonable that the explana-
tions for different user-item pairs do not always discuss the same
feature, so we are motivated to measure feature diversity. Let ﬁ,i
and 5‘}“', i respectively represent two sets of features contained in
two generated explanations, we can compute their intersection. For
each pair of feature sets corresponding to two explanations in the
testing set, the averaged size of the intersection is calculated as:

Z |7:uz N Fur,v (16)

u,u, i, i’

DIv

_ 2
T Nx(N-1)

A lower DIV indicates a smaller overlap between feature sets, and
thus a higher diversity. For the others, i.e., USR, FMR and FCR, the
higher the scores are, the better the performance is.

Overall, the four proposed metrics measure explanations over
different perspectives, and they do not duplicate with each other.
Moreover, FMR can only be used to evaluate our method since it
involves the given features, while other metrics, i.e., USR, FCR and
DIV, can be applied to all the explanation generation methods.

5.3 Comparative Methods

We first introduce comparative methods to evaluate the explana-
tions, since this is our key focus in this work. Two state-of-the-art
neural generation methods, i.e., Neural Rating and Tips generation
(NRT) [25], as well as Attribute-to-Sequence (Att2Seq) [11], are
compared with our model. We omit other neural generation models
whose input sources are different from ours, which makes them
not directly comparable. For example, Visually Explainable Collab-
orative Filtering (VECF) [7] and Multimodal Review Generation
(MRG) [37] generate descriptions based on image features, while
the Neural Memory Model (NMM) [40] considers the neighborhood
relation between reviews for review generation. We also provide
four variants of our own model for ablation analysis.
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o NRT: Neural Rating and Tips generation [25]. This model
adopts multi-layer perceptron (MLP) to predict a rating based
on user ID and item ID, and formulates the explanation gen-
eration problem as a text (i.e., tip) summarization task. The
two tasks are integrated into a multi-task learning frame-
work. In our implementation, the explanation sentence is
used as the tip.

Att2Seq: Attribute-to-sequence [11] employs MLP to en-
code three attributes, i.e., user, item and rating, and adopts
two-layer LSTM to decode the encoded representations to
generate a textual review.

NETE-GRU: In this variant of our method NETE, the de-
coder is a standard GRU rather than our proposed GFRU. By
comparing with this variant, we are able to detect whether
GFRU benefits the model performance.

NETE-MUL: This variant integrates the two tasks of rating
prediction and text generation into a multi-task learning
framework (see Equation (10)), while all the other settings
are the same as our model NETE. It is to investigate whether
multi-task learning is the primary factor that causes gener-
ated texts to be highly repetitive.

NETE-GM: This variant differs from our model NETE in
two aspects, i.e., GFRU is replaced by GRU and the model
is trained in a multi-task learning framework. Its structure
is inherently similar to NRT, so it is devised to show the
common limitation of multi-task learning.

NETE-PMI: The only difference of this variant from NETE
is that the input features are predicted by the PMI method
introduced in Section 4, while the standard NETE model uses
the feature given by the ground-truth explanation to see if
our model can generate a similar sentence to comment about
the feature.

To evaluate the recommendation performance, in additon to
some of the above methods, i.e., NRT, NETE-GM and NETE-MUL
(NETE-GRU and NETE-PMI are excluded because their recommen-
dation module is the same as NETE’s), we compare with the follow-
ing three typical rating prediction methods:

e MF: Matrix Factorization [21]. This method characterizes
users and items by latent factors and bias terms, inferred
from observed interactions.

e SVD++: Singular Value Decomposition [20]. This method
extends MF by regarding items that a user interacted with as
implicit feedback, and integrates them into the latent factor
modeling.

e DeepCoNN: Deep Cooperative Neural Networks [48]. This
method models users and items by learning feature repre-
sentations from aggregated user reviews using two convolu-
tional neural networks (CNN).
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We randomly split each dataset into training (80%), validation (10%)
and testing (10%) sets, and ensure that there is at least one instance
in the training set for each user/item. We repeat the splitting process
for 5 times, and report the averaged performance on the testing set,
while the validation set is used for hyper-parameters tuning.

Implementation Details
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We implemented all the methods in Python. All the neural meth-
ods, i.e., DeepCoNN, Att2Seq, NRT and NETE, are implemented by
TensorFlow, and optimized by Adam [19] with f; = 0.9, f2 = 0.999
and € = 1078, For traditional models, i.e., MF and SVD++, we set
the number of latent factors to 20 (optimal choice on our datasets),
and search their regularization parameters and learning rates from
[0.1, 0.01, 0.001]. For DeepCoNN, we set the maximum document
length of aggregated reviews to 1,000 words. For all the models
that make use of text, we select top 20,000 distinct words with the
largest frequency on the training set to construct the vocabulary
V. For all of the neural generation models, i.e., Att2Seq, NRT and
NETE, we set the maximum length of generated text to 15, which is
reasonable as the average length of explanation sentences is around
13 (as shown in Table 2). Another reason of limiting the sentence
length is that presenting too much information may overwhelm the
users [16, 39]. We reuse the other hyper-parameters of the baselines
as reported in the original papers.

For our model NETE, the learning rate is set to 0.0001 and the
batch size 128. We set d (the dimension of user/item/sentiment/word
representations) as 200, n (the dimension of RNN hidden states) as
256, and L (the number of MLP layers for rating prediction) as 4.
For model regularization, the dropout ratio of RNN is set to 0.2 and
the regularization parameter is fixed to 0.0001.

6 RESULTS AND ANALYSIS

In this section, we first present quantitative evaluation on the gener-
ated explanations, followed by a qualitative analysis on explanation
case studies. Finally, we evaluate the recommendation performance.

6.1 Quantitative Analysis on Explanations

Evaluation results of the generated explanations on three datasets
are shown in Table 3. We first analyze the degree of personalization
for all of the neural generation methods in terms of the four metrics,
i.e., USR, FMR, FCR, and DIV.

The results show that our NETE model and its variant NETE-PMI
generally perform better on all metrics, especially on USR, which
measures the uniqueness of the generated sentences. When we
compare NRT, NETE-GM and NETE-MUL against Att2Seq, NETE-
GRU and NETE as two groups of methods, we find that the former
group generates less than 1% unique sentences on testing sets, while
the latter produces distinct sentences with much higher USR, be-
cause their text generation tasks are trained individually. Moreover,
NRT’s results on ROUGE and BLEU are as good as Att2Seq’s, which
evidences that ROUGE and BLEU could not properly evaluate the
uniqueness of sentences. Our NETE model increases the unique-
ness of generated explanations not only by changing the training
paradigm into single-task learning, but also by generating template-
controlled explanations via the proposed GFRU component. More
specifically, our NETE approach generates 55% unique sentences
on average on the three datasets, which shows the capability of our
model in generating diverse explanations.

In terms of the other three metrics, all the models show a similar
trend with USR. Because of the infusion of features and the GFRU
design in our model, the feature coverage ratio (FCR) and feature
diversity (DIV) in generated sentences are largely improved. In
addition, in terms of feature matching ratio (FMR), approximately
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Table 3: Performance comparison of all neural generation methods in terms of Personalization, BLEU (%) and ROUGE (%)
on three datasets. For feature diversity (DIV), a lower value indicates a better performance, while for the other metrics, the
larger, the better. The best performing values are boldfaced. Improvements are made by NETE over the best baseline (** and
* respectively indicate the statistical significance for p < 0.01 and p < 0.05 via Student’s ¢-test). Note that BLEU, ROUGE and
improvement scores in the table are percentage values (i.e., 14.2 means 14.2%), while USR, FMR, FCR and DIV scores are absolute

values (i.e., 0.18 means 0.18).

Personalization BLEU (%) ROUGE-1 (%) ROUGE-2 (%)
USR FMR FCR DIV | BLEU-1 [ BLEU-4 | Precision Recall F1 Precision Recall F1
TA-HK dataset
NRT 0.00 - 0.00 13.61 14.26 0.80 17.57 16.52 16.56 2.45 2.64 2.48
Att2Seq 0.18 - 0.17 3.93 14.76 1.01 19.26 14.45 15.83 2.43 1.96 2.06
NETE-GM 0.00 - 0.00 14.40 14.01 0.83 17.55 16.19 16.42 2.50 2.60 2.50
NETE-GRU 0.27 - 0.15 3.00 13.84 0.92 18.55 13.64 15.02 2.23 1.76 1.86
NETE-MUL 0.02 0.66 0.07 3.92 22.09 3.33 32.59 23.96 26.30 8.87 6.51 7.00
NETE-PMI 0.79 0.38 0.30 2.92 14.55 0.82 17.84 13.96 14.90 2.01 1.70 1.74
NETE 0.57**  0.78 0.27** 2.22** | 22.39** | 3.66"" | 35.68 24.86* 27.71°* | 10.20"* 6.98" 7.66™"
Improvement (%) | +210.7 - +57.1  +77.1 +51.7 +261.3 +85.2 +50.5 +67.3 +317.0 +164.0 +209.1
YELP19 dataset
NRT 0.00 - 0.00 3.72 3.96 0.19 19.25 8.03 10.95 1.30 0.51 0.69
Att2Seq 0.14 - 0.12 2.19 10.41 0.59 18.20 11.38 13.21 1.81 1.16 1.31
NETE-GM 0.00 - 0.00 3.79 3.27 0.16 19.32 7.67 10.68 1.25 0.46 0.64
NETE-GRU 0.28 - 0.14 1.98 11.12 0.64 16.85 11.60 13.00 1.68 1.19 1.30
NETE-MUL 0.02 0.68 0.05 2.05 17.37 2.13 32.44 20.42 23.73 8.13 4.67 5.51
NETE-PMI 0.64 058 0.28 1.65 10.62 0.56 15.37 10.80 12.01 1.49 1.05 1.15
NETE 0.52**  0.80 0.27"* 1.48" | 19.31"" | 2.69™ 33.98" 22.51" 25.56* 8.93** 5.54™ 6.33""
Improvement (%) | +257.6 - +116.3 +48.0 | +85.5 +355.3 +76.5 +97.8 +93.4 +393.1  +377.6 +384.0
AZ-MT dataset
NRT 0.00 - 001 546 | 14.02 0.57 23.57 1424  16.87 253 170 1.92
Att2Seq 0.34 - 0.18 2.81 12.78 1.01 20.53 13.49 15.42 2.77 1.87 2.09
NETE-GM 0.00 - 0.01 4.12 12.31 0.50 22.77 13.43 16.18 2.40 1.51 1.76
NETE-GRU 0.38 - 0.11 2.34 12.10 0.95 20.16 12.93 14.93 2.63 1.75 1.97
NETE-MUL 0.05 0.61 0.03 2.63 17.20 1.94 33.79 20.01 24.17 7.50 4.32 5.16
NETE-PMI 0.72 0.50 0.19 3.06 13.02 0.82 20.93 12.76 14.99 2.36 1.63 1.81
NETE 0.57**  0.71 0.19* 1.93** | 18.76"* | 2.46"* 33.87*  21.43* 24.81* 7.58"* 4.77"*  5.46*
Improvement (%) | +69.1 - +5.6 +45.2 +33.8 +143.6 +43.7 +50.5 +47.1 +174.3 +154.9 +161.2

75% of the generated sentences from our model contain the given
features, which implies the good controllability of our model to
comment about the given features.

Notably, we observe that NETE-PMI performs better than NETE
in terms of USR and FCR. It might be because that NETE-PMI’s
input features are predicted ones that may not exactly match those
in the testing set, so the user-item-feature combination may not
be commonly seen in the training data. Therefore, the generated
explanations and their contained features may be more diverse,
resulting in higher USR and FCR. As for the other two metrics, i.e.,
FMR and DIV, NETE-PMTI’s performance is also competitive to the
baselines. This variant shows our model’s capability of dealing with
unseen features, which is quite common in real-world scenarios.

Finally, we analyze results on BLEU and ROUGE. As we can see,
our NETE model consistently outperforms all the baselines/variants
on three datasets. We attribute this to the effectiveness of our GFRU
module in generating template-controlled explanations that are
more relevant to the ground-truth. By comparing NETE with the
best values of NRT and Att2Seq, we see that our model improves the
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baselines’ performance by a large margin, notably with over 100%
improvements regarding BLUE-4 and ROUGE-2, which measure the
similarity between generated texts and ground-truth by a sequence
of n words, i.e., n-gram. This shows that our model is able to produce
high-quality contents that are much closer to the ground-truth.
Furthermore, we see that NRT, Att2Seq, NETE-GM and NETE-GRU
generally obtain the same performance on three datasets, since
they all adopt GRU for text generation. In comparison, NETE and
NETE-MUL, which employ our proposed GFRU component, achieve
significant performance improvements, because they can make use
of the given features for explanation generation. On the other hand,
NETE-PMI, which takes the features predicted by the PMI method
as input, performs similar with the GRU-based methods, i.e., NRT,
Att2Seq, NETE-GM and NETE-GRU, because some of the predicted
features may not match the ones in the testing set, and thus the
generated contents may diverge from the ground-truth.

Besides automatic evaluation, we also conduct a small-scale user
survey [24], where explanations produced by our method are per-
ceived useful by participants to explaining the recommendations.



Full Paper Track

Table 4: Example explanations generated by our NETE
model on the TA-HK dataset. The first line of each group
shows the ground-truth rating and explanation, while other
lines show the predicted ratings, the given features, and the
generated explanations, where rating < 3 denotes negative
sentiment and > 3 for positive sentiment. We highlight the
mentioned feature in the generated text.

Rating[ Feature [Explanation

4 The rooms are spacious and the bath-
room has a large tub.
bathroom | The bathroom was large and had a sep-
3.90 arate shower.
tub The bathroom had a separate shower and
tub.
rooms | The rooms are large and comfortable.
4 The rooms are brilliant and ideal for
business travellers.
4.13 rooms | The rooms are very spacious and the
rooms are very comfortable.
2 The broken furniture and dirty sur-
faces are a dead giveaway.
2.96 | furniture | The furniture is worn.
4 Ideal for plane spotters and very close
to the airport.
2.76 airport | It is not close to the airport.

6.2 Qualitative Case Study on Explanations

Some explanations generated by different methods have already
been shown in Table 1. In this subsection, we present four groups
of generated explanations on the TA-HK dataset in Table 4 to show
the good controllability of our NETE model in terms of controlling
the explanation to talk about certain features. Results on the other
two datasets show similar patterns.

As we see from the first group, when feeding our model with
different features, i.e., bathroom, tub and rooms, the generated ex-
planations are not only different but also highly related to the given
feature, which shows that our model can generate targeted explana-
tions for specific features. By comparing the last generated sample
in the first group with that in the second group (both about feature
rooms but the user-item pairs are different), the model generates
explanations that describe the same feature in different expressions,
which shows that our model is able to produce different explana-
tions personalized for different user-item pairs. The last two groups
with predicted ratings lower than 3, which corresponds to negative
sentiment, show that our model is capable of taking into account
the sentiment of the predicted ratings for explanation generation.
These observations manifest the controllability of our model in
terms of generating explanations corresponding to the given user,
item, feature and sentiment.

Moreover, there exist common expressions in the generated
sentences, e.g., __ was large/comfortable, which constitute templates
learned from data instead of manually defined ones. This also shows
that our model generates template-controlled explanations that can
automatically adapt to the input features. Overall, the intuitive
linguistic quality of our generated explanations is satisfactory.
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6.3 Recommendation Performance

The recommendation performance of our model and baselines is
shown in Table 5. As it can be seen, the accuracy of all the methods
on rating prediction task in terms of both RMSE and MAE is close,
while the performance gap between them on the personalized rank-
ing (i.e., top-N recommendation) task with regard to NDCG and HR
widens, because the former task only evaluates a small proportion
of unobserved items, which may cause selection bias in the data
[35]. In the following, we focus on the results of the ranking task.

The observations on three datasets are consistent. Our NETE
model performs significantly better than all the baselines and its
variants. In particular, NRT and two variants of NETE, i.e., NETE-
GM and NETE-MUL, generally achieve the same performance, be-
cause they share similar architectures, i.e., training the rating pre-
diction and explanation generation tasks in a multi-task learning
framework. In comparison, NETE trains the two tasks separately
(i.e., single-task learning) for the sake of generating diverse ex-
planations as discussed before. It actually shows the advantage of
single-task learning, and that explanation generation may disturb
the recommendation performance in multi-task learning. We also
see that review-based methods (NETE, NRT and DeepCoNN) gen-
erally perform better than rating-only methods (MF and SVD++),
which shows the advantage of incorporating rich context informa-
tion to improve the recommendation performance.

7 CONCLUSIONS AND FUTURE WORK

In this work, we aim to improve both the expressiveness and the
quality of recommendation explanations. To achieve this goal, we
proposed NETE - a neural template explanation generation frame-
work that bridges the benefits of template-based approaches and
generation approaches. We not only evaluate the generated expla-
nations based on traditional text quality measures such as BLEU and
ROUGE, but also on innovative metrics that evaluate the unique-
ness, matched features, feature coverage, and feature diversity of
the explanations. Experimental results show that our approach is
highly controllable to generate explanations about the given user,
item, sentiment, and features. In the future, we will further consider
adjective words that modify the features to increase the expres-
siveness of the generated explanations. Moreover, since it would
be helpful for an explanation to discuss multiple features, we will
extend our framework to generate multi-feature explanations.
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