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ABSTRACT
How to identify at-risk students in open online courses has
received increasing attention, since the dropout rate is unex-
pectedly high. Most prior studies have focused on using ma-
chine learning techniques to predict student dropout based
on features extracted from students’ learning activity logs.
However, little work has viewed the dropout prediction prob-
lem as a sequence classification problem in the consideration
that the dropout probability of a student at the current time
step can be likely dependent on her/his engagement at the
previous time step. Therefore, in this paper, we propose
a nonlinear state space model to solve this problem. We
show how students’ latent states at different time steps can
be learned via this model, and demonstrate its outperform-
ing prediction accuracy relative to related methods through
experiment.
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1. INTRODUCTION
With the advent of open online courses, such as MOOC web-
sites Edx, Coursera, Khan Academy, high quality education
can easily be accessed by students at low cost. However, al-
though many thousands of participants have enrolled on the
online courses, their dropout rate is extremely higher than
expected. As reported in [8], the average dropout rate of
current MOOCs is approximately 75%.

Identifying at-risk students by predicting their dropout prob-
ability thus becomes timely important, given that early pre-
diction can help instructors provide proper support to those
students to retain their learning interests. To address this
issue, some researchers focused on extract features from stu-
dents’ learning activities (such as watching videos, working
on assignments, and posting in or viewing discussion forums)
for building machine learning models (like support vector

machine (SVM) [9] and logistic regression (LG) [14]). How-
ever, they rarely considered that students’ learning activities
across different time steps (e.g., weeks) might be interrelated
and take different weights in making the prediction. For in-
stance, recent activities could be more important to reflect
students’ engagement degree. If a student actively engages
with a course in the current week, it is more likely that
s/he will continue to engage with this course in the coming
week. Otherwise, if s/he becomes inactive, it may infer that
her/his interest in the course is decreased. Recently, though
some approaches, such as the one based on Hidden Markov
Model (HMM) [2] and that based on Recurrent Neural Net-
work (RNN) [12], have been proposed to model students’
states over time, they still suffer from some issues: 1) the
estimation of next state depends only on the current state;
2) the estimated states are deterministic that would lead to
error propagation in the estimation procedure; 3) the pa-
rameters of their models are time-invariant.

In our work, we focus on predicting whether a student will
have activities in the coming week. We particularly for-
mulate this issue as sequential classification problem, and
develop Nonlinear State Space Model (NSSM) [1] to solve
it. Essentially, NSSM has several advantages. Firstly, it can
be used to discover a student’s latent state (i.g., engagement
pattern) to characterize the student’s intention to perform
certain activities. The student’s dropout probability is then
computed based on the state estimated for that time. Sec-
ondly, relative to HMM and RNN, NSSM takes into account
all of the current and previous states to estimate next state.
It can also accommodate uncertainty given that the state in
NSSM is a set of random variables with multivariate Gaus-
sian distribution. Thirdly, the parameters in NSSM are time
varying (i.e., being different at different time steps), which
makes it more flexible to model students’ dynamics.

In short, this paper has two main contributions: 1) we im-
plement Nonlinear State Space Model (NSSM) to address
the dropout prediction problem, which particularly models
students’ latent states varying over time; 2) we conduct ex-
periment to compare our method with related ones including
logistic regression (LG), simultaneously smoothed logistic
regression (LR-SIM), and RNN with long short-term mem-
ory cell (LSTM). It shows that our method is more accurate
in identifying at-risk students who tend to drop out.

In the remainder, we first describe related work in Section 2,
and then present our methodology in Section 3. In Section 4,
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we give experimental results. In Section 5, we conclude our
work and indicate its future directions.

2. RELATED WORK
High dropout rate that popularly exists in current MOOCs
has driven some researchers to investigate the issue of iden-
tifying at-risk students who are likely to quit. They have
considered different features to build the prediction model,
such as those extracted from clickstream data (e.g., watch-
ing a lecture video, posting to discuss forums, submitting an
assignment) [2, 5, 6, 9, 14], quiz performance [5, 6, 14], cen-
trality of students in discussion forums [15], and sentiments
of discussion forum posts [4].

As for prediction model, some studies have applied support
vector machines (SVM) [9], logistic regression (LG) [14],
survival analysis techniques like Cox proportional hazard
model [15], and probabilistic soft logic (PSL) [13]. However,
their common limitation is that they assume a student’s
dropout probabilities at different time steps are indepen-
dent, which limits the approach’s applicability in practice
as usually a student’s state at one time can be influenced by
her/his previous state.

Alternatively, [6] extended logistic regression model to smooth
the dropout probabilities across weeks with the aim to min-
imize the difference of successing predicted probabilities be-
tween weeks. [2] used Hidden Markov Model (HMM) to
model student’s actions over time, which encodes their be-
haviour features into a set of mutually exclusive discrete
states. [12] adopted Recurrent Neural Network (RNN) model
with long short-term memory (LSTM) cells, which is able
to encode features into continuous states. However, though
RNN may be advantageous against HMM, it inherently suf-
fers from error propagation phenomenon because the estima-
tion of current state depends only on the estimated previous
state.

In comparison, in our model, the uncertainty of estimated
states is considered by representing the state as random
variables drawing from a multivariate Gaussian distribu-
tion. What’s more, we adopt extended Kalman filter and
smoother for state estimation so as to take into account
all observed activities in sequence, which makes it different
from, and potentially more effective than, HMM and RNN
where only states at two consecutive time steps are related.

3. OUR METHODOLOGY
3.1 Problem Statement
As mentioned above, our goal is to estimate the probability
that a student stops engaging with a course in the coming
week, given her/his learning activities up to the current time
step.

The temporal prediction of dropout probability requires us
to assemble some features 1 for expressing time-varying be-
havior of students. Therefore, we extract 28 typical features
for each week t, denoted as N dimensional vector xi,t ∈ RN ,

1Prior to model training, these features are normalized to
have mean 0 and variance 1, and the normalization param-
eters (mean, standard deviation) are used for normalizing
the testing set.

by considering the seven types of activity 2. The summa-
rization of these temporal features is listed in Table 1.

Table 1: List of features derived from each student’s
learning activities by the week t

Features Description
x1 The average number of activities per week by the

week t.
x2 The total number of activities in week t.
x3 The average number of sessions per week by the

week t. 3

x4 The total number of sessions in week t.
x5 The average number of active days per week by

the week t. 4

x6 The total number of active days in week t.
x7 The average time consumption per week by the

week t.
x8 The total time consumption in week t.

x9 - x15 The average number of 7 different types of activ-
ity per week by the week t.

x16 - x22 The total number of 7 different types of activity
in week t.

x23 − x25 The average number of videos watched, wiki
viewed and problem attempted per session by the
week t respectively.

x26 − x28 The average number of videos watched, wiki
viewed and problem attempted per session in
week t respectively.

In consequence, we obtain a sequence (xi,1,xi,2, . . . ,xi,ni)
for each student i across ni weeks, as well as the correspond-
ing sequence of dropout labels (yi,1, yi,2 . . . , yi,ni). Here ni

represents the number of weeks during which student i has
engaged with the course. Formally, for current week t, if
there are activities associated to student i in the coming
week, her/his dropout label in the week t is assigned yi,t = 0,
otherwise yi,t = 1. We can then treat the dropout predic-
tion task as a sequential classification problem, for which the
student’s latent states evolving over time are not observable
directly. As illustrated in Figure 1, as the course progresses,
given the student i’s features xi,t for the current week t,
and his/her previous state si,t−1, we want to estimate the
student’s current state si,t and whether s/he will continue
engaging with the course in the coming week yi,t.

3.2 Nonlinear State Space Model (NSSM)
Specifically, we employ a nonlinear state space model (NSSM)
with continuous value states to summarize all the informa-
tion about a student’s past behavior. Formally, let the vec-
tor si,t ∈ RK (K � N) be the latent state of student i in
the t-th week, which depends on the observed explanatory
features xi,t and her/his previous state si,t−1, as follows:

si,t = Fsi,t−1 + Gxi,t + wi,t (1)

in which the matrix F ∈ RK×K transforms the previous
state into the current state, the matrix G ∈ RK×N trans-
forms the observed features to reflect the current state, and
2The seven types of activity consist of watching lecture
videos, working on course’s problems, accessing course’s
modules, accessing course’s wiki, posting or viewing course’s
forum, navigating through courses, and closing course page.
3The minimal elapsed time between two separate sessions is
set as 60 minutes.
4The day that has at leas one activity is treated as an active
day.
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Figure 1: The illustration of MOOCs dropout pre-
diction problem and the graphical state space model.
The dark blue signifies an observed variable and the
light blue signifies a latent variable.

wi,t represents a diffusion variable which follows a mul-
tivariate Gaussian with mean 0 and covariance Qi,t (i.e.,
wi,t ∼ N (0,Qi,t)). Note that the dimension of the state
vector K is usually smaller than the dimension of feature
vector N . This hyperparameter K controls the complexity
of the model, and requires manual tuning to determine its
optimal value.

In our work, we aim to infer the dropout probability πi,t

for student i in week t, which can be represented as logistic
regression

πi,t = σ(hT
t si,t + βT

t xi,t) (2)

=
1

1 + exp(−hT
t si,t − βT

t xi,t)
(3)

where ht ∈ RK×1 and βt ∈ RN×1 are two vectors of coef-
ficients for current state variable si,t and input feature xi,t

respectively. In this model, the non-stationary of student
dynamic is captured by time-evolving state variable si,t, and
time-varying parameters ht and βt.

3.3 Expectation Maximization
With the nonlinear state space model described in Eqn. 1
and Eqn. 2, we design an Expectation-Maximization (EM)
algorithm (see Algorithm 1) that iterates between state es-
timation (E-step) and parameter estimation (M-step) [11].
The E-step makes use of extended Kalman filter and smoother
to estimate states, and the M-step re-estimates the param-
eters by maximizing the likelihood of all observed data, in
which the state variables of student are replaced by their
posteriori values from the extended Kalman smoother.

3.3.1 Expectation Step
In the expectation step, the expected mean of student state
si,t and its covariance Pi,t are obtained using the extended
Kalman filter and smoother. Specifically, given student i’s

entire t−1 weeks’ observation sequenceD
(t−1)
i = {(xi,1, yi,1),

(xi,2, yi,2), . . . , (xi,t−1, yi,t−1)}, the posterior mean and co-
variance of student state si,t−1 are supposed be represented

by E(si,t−1|D(t−1)
i ) = s

(t−1)
i,t−1 and Cov(si,t−1|Di,t−1) = P

(t−1)
i,t−1

respectively. The predicted student state si,t and its covari-

ance P
(t−1)
i,t for t = 1, 2, . . . , ni − 1, ni can then be defined

Algorithm 1 EM algorithm for estimating latent student
state and model parameters.

1: Initialize each student’s starting state si,0 and model param-
eters Φ = {F,G,ht,βt}

2: repeat
3: procedure E-step:
4: Extended Kalman filter: For t = 1, 2, . . . , ni−1, ni,

correct the student state si,t and its covariance Pi,t by using
Eqn. 10 and Eqn. 11 respectively.

5: Extended Kalman smoother: For t = ni, ni −
1, . . . , 2, 1, smooth the predicted student state s

(t)
i,t and co-

variance P
(t)
i,t by using Eqn. 13 and Eqn. 14 respectively.

6: end procedure
7: procedure M-step:
8: Update parameters of the model Φ via equations from

Eqn. 17 to Eqn. 20.
9: end procedure

10: until converged

as:

s
(t−1)
i,t = Fs

(t−1)
i,t−1 + Gxi,t (4)

P
(t−1)
i,t = FP

(t−1)
i,t−1FT + Qi,t (5)

By following the extended Kalman filtering, the nonlinear
function σ(·) can be approximated by its Taylor series ex-
pansion as follows:

πi,t = σ(hT
t si,t + βT

t xi,t)

≈ σ(hts
(t−1)
i,t + βT

t xi,t) + AT
i,t(si,t − s

(t−1)
i,t−1 ) (6)

where

Ai,t , ∂σ(hT
i,tsi,t + βT

t xi,t)

∂si,t

= σ
(
hT
i,ts

(t−1)
i,t + βT

t xi,t

)

(
1− σ(hT

i,ts
(t−1)
i,t + βT

t xi,t)
)

hi,t (7)

The one-step ahead prediction π
(t−1)
i,t for the dropout prob-

ability is computed as:

π
(t−1)
i,t = σ(hT

t s
(t−1)
i,t + βT

t xi,t) (8)

For the sake of simplicity, we set the state noise covariance as
Qi,t = qi,tI, where the state noise variance qi,t is computed
via:

qi,t = max{µ(t)
i,t − µ

(t−1)
i,t , 0} (9)

in which µ
(·)
i,t = π

(·)
i,t(1 − π

(·)
i,t). After receiving a new obser-

vation (xi,t, yi,t), the predicted state s
(t−1)
i,t in Eqn. 4 and

covariance P
(t−1)
i,t in Eqn. 5 will be updated as:

s
(t)
i,t = s

(t−1)
i,t + Ki,t

(
yi,t − σ(hT

t s
(t−1)
i,t + βT

t xi,t)
)

(10)

P
(t)
i,t = (I−Ki,tAi,t)P

(t−1)
i,t (11)

in which Ki,t is the Kalman gain computed according to [3]:

Ki,t = P
(t−1)
i,t AT

i,t

(
Ai,tP

(t−1)
i,t AT

i,t + Qi,t

)−1

(12)

It is worth noting that the predicted state s
(t)
i,t and covari-

ance P
(t)
i,t in Kalman filter are estimated based on the ob-

servation D
(t)
i up to week t. We take advantage of extended
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Kalman smoother to smooth the estimated states by con-
sidering the entire sequence of the student’s observations

D
(ni)
i . The smoothed states could hence be more accurate

than the filtered ones. Specifically, the student state s
(ni)
i,t−1

and covariance P
(ni)
i,t−1 for t = ni, ni−1, . . . , 1 are recursively

smoothed as:

s
(ni)
i,t−1 = s

(t−1)
i,t−1 + Ji,t−1

(
s
(ni)
i,t − Fs

(t−1)
i,t−1 −Gxi,t−1

)
(13)

P
(ni)
i,t−1 = P

(t−1)
i,t−1 + Ji,t−1

(
P

(ni)
i,t −P

(t−1)
i,t

)
JT
i,t−1 (14)

where Ji,t−1 is the smoothing gain defined as:

Ji,t−1 = P
(t−1)
i,t−1FT

(
P

(t−1)
i,t

)−1

(15)

Note that the initial values s
(ni)
i,ni

and P
(ni)
i,ni

for the smoother
are the final estimates of the filter.

3.3.2 Maximization Step
At the maximization step, given the observed data D of N
students, the likelihood is defined as

(16)L(D|Φ) =

N∑

i=1

ni∑

t=1

yi,t log(σ(hT
i,ts

(ni)
i,t + βT

t xi,t))

+ (1− yi,t) log(1− σ(hT
i,ts

(ni)
i,t + βT

t xi,t))

− 1

2

N∑

i=1

ni∑

t=1

(s
(ni)
i,t − Fs

(ni)
i,t−1 −Gxi,t)

TQ−1
i,t (s

(ni)
i,t

− Fs
(ni)
i,t−1 −Gxi,t)− 1

2

N∑

i=1

ni∑

t=1

log|Qi,t|

By using the posterior hidden state variables s
(ni)
i,t from

Kalman smoother, the optimal parameters Φ = {G,F,ht,βt}
can be obtained by maximizing the likelihood defined in
Eqn. 16. We then apply the gradient based method L-
BFGS [10] to update model parameters by using the fol-
lowing derivation formulas respectively:

∂L
∂F

=−
N∑

i=1

ni∑

t=1

(
s
(ni)
i,t − Fs

(ni)
i,t−1 −Gxi,t

)
Q−1

i,t s
(ni)
i,t−1 (17)

∂L
∂G

=−
N∑

i=1

ni∑

t=1

(
s
(ni)
i,t − Fs

(ni)
i,t−1 −Gxi,t

)
Q−1

i,t xi,t (18)

∂L
∂ht

=

N∑

i=1

ni∑

t=1

(
yi,t − σ(hT

t s
(ni)
i,t + βT

t xi,t)
)

s
(ni)
i,t (19)

∂L
∂βt

=

N∑

i=1

ni∑

t=1

(
yi,t − σ(hT

t s
(ni)
i,t + βT

t xi,t)
)

xi,t (20)

Initialization of the EM Algorithm: The initial value
of parameters Φ should be chosen with care, otherwise the
EM algorithm may not converge. In our experiment, the
matrix G is initially set as the transform matrix resulted
from principle component analysis (PCA) algorithm [7], and
the matrix F is assigned to be an identity matrix.

4. EXPERIMENT
In order to evaluate the performance of our proposed model,
we conducted an experiment on a real-life dataset.

4.1 Dataset
We use a data set collected from xuetangX 5, one of the
largest MOOC platforms in China. This dataset was re-
leased for KDD CUP 2015 6. The dataset, as shown in
Table 2, includes 79,186 students each of whom enrolled on
at least one course among the whole set of 39 courses. Each
enrollment is associated with a log of the student’s activi-
ties including watching lecture videos, working on course’s
problems, accessing course’s modules, and so on. Totally,
there are 8,157,277 activity logs and the longest lifetime of
enrollment is 5 weeks.

Table 2: Statistics of xuetangX dataset for the ex-
periment

Item Statistical description
# courses 39
# students 79,186
# enrollments 120,542
# activity logs 8,157,277
# longest lifetime of enrollment 5 weeks

Figure 2: The number of students, number of
dropouts, and the dropout rate in different weeks.

As shown in Figure 2, we observe that 76, 123 students
dropped out in the first week. Another observation is that
the longer the student has engaged with the course, the less
likely s/he quit the course. For example, the dropout rate
of students who have engaged with the courses for 5 weeks
is 10.05% vs. 63.15% for 1 week.

4.2 Evaluation Metrics
Due to the class imbalance phenomenon, we use Area Un-
der the Receiver Operating Characteristics Curve (AUC)
as the evaluation metric, as it is invariant to imbalance.
Concretely, AUC measures how likely a classifier can cor-
rectly discriminate between positive and negative samples.
An AUC of 1 indicates perfect discrimination whereas 0.5
corresponds to a classifier that guesses randomly.

5http://www.xuetangx.com
6http://www.kddcup2015.com
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4.3 Compared Methods
We compared our model with related methods:

• Logistic Regression (LG) [14]: In this method, a lo-
gistic regression classifier is trained to make dropout
prediction for each week. Specifically, for a student i in
week t, his/her dropout probability is computed as the
logistic function of the weighted sum of input features
xi,t:

p(yi,t|xi,t,wt) =
1

1 + exp(−yi,twT
t xi,t)

(21)

where wt = [wt1, wt2, . . . , wtN ]T is the weight vector
to be learned. The objective function for week t is

L(wt)=
∑

i∈Nt

log(1 + exp(−yi,twT
t xi,t)) +

λ1

2
||wt||2 (22)

where Nt is the set of students who engage with the
course in week t and λ1 > 0 is the regularization pa-
rameter for wt.

• Simultaneously Smoothed Logistic Regression (LR-SIM) [6]:
It extends the logistic regression by smoothing the pre-
dicted dropout probabilities across consecutive weeks.
In this model, a regularization term is added into the
objective function to minimize the difference of the
predicted probabilities between two adjacent weeks,
such as wT

t xi,t and wT
t−1xi,t−1. A new feature space

x′i,t is introduced, which has T × N dimensions (T is
the total number of weeks), with the t-th component
having N features corresponding to the features in the
original feature space xi,t for week t, and other T − 1
components corresponding to zeroes. Then, a single
weight vector w is introduced, which also has T × N
dimensions corresponding to x′i,t. The final objective
function is defined as:

L(w) =
∑

i∈Nt

ni∑

t=1

log
(

1+ exp(−yi,twTx′i,t)
)

+
λ1

2
||w||2

+ λ2

T∑

t=2

∑

i∈Nt,t−1

||wTx′i,t −wTx′i,t−1||2 (23)

where Nt,t−1 is the set of students who engage with
the course in both weeks t and t − 1, and λ2 > 0 is
the regularization parameter for the difference of the
resulted dropout probabilities between two adjacent
weeks.

• RNN with Long Short-Term Memory Cell (LSTM) [12]:
It uses a recurrent neural network (RNN) model with
long short-term memory (LSTM) architecture to train
a sequence classifier model that produces temporal pre-
diction. Similar to our proposed model, given the
student’s week-by-week features and dropout labels
{(xi,t, yi,t), 1 ≤ t ≤ ni}, the LSTM model is applied
to estimate the student state, which can then be used
to predict the student’s future actions.

Note that we did not compare with Hidden Markov Model
(HMM) based method [2] because it can be treated as a
special case of RNN by representing student state as discrete
variable. For all the compared models, we used the same set
of features as input (see Table 1).

4.4 Results and Discussion
The main hyperparameter to determine the NSSM model’s
performance is the dimensionality of student state K (see
Eqn. 1). We compared the performance of NSSM in terms of
AUC with varying dimension of latent state K, and observed
that the optimal value of K in most cases is 12. Therefore,
in our experiment, we set K as 12 to train the NSSM model.

4.4.1 Single Course
In this setting, we trained a separate model for each course.
To get sufficient data for training, we only consider the pop-
ular courses that include more than 5,000 students. After
filtering, 6 popular courses are used in this experiment. As
students may enroll in a course at different time steps, we
select 70% students who enrolled in the course in early pe-
riod as the training data, and remaining 30% students as
the testing data.

LR LR-SIM LSTM NSSM
Week 1 0.812 0.886 0.891 0.900
Week 2 0.819 0.876 0.887 0.891
Week 3 0.807 0.854 0.861 0.870
Week 4 0.768 0.778 0.786 0.796
Week 5 0.673 0.679 0.689 0.702

Table 3: Performance comparison of LR, LR-SIM,
LSTM and NSSM in terms of average AUC on 6
popular courses.

Table 3 presents the average AUC scores across weeks by
testing different models. The results indicate that the mod-
els that consider dependence between consecutive weeks,
such as LR-SIM, LSTM and NSSM, achieve higher AUC
score than the baseline LR model without this considera-
tion. For example, for the first week, the AUC score of
NSSM is 0.9, which is 10.8% improvement relative to that
of LR model. Furthermore, we can see that the methods
that model the student’s states over time (i.e., LSTM and
NSSM) achieve higher AUC than LR and LR-SIM in most
cases. More notably, our proposed model NSSM performs
consistently better than LSTM, suggesting that the student
states estimated by NSSM is more predictive than those by
LSTM. We can also observe that the accuracy during early
weeks is higher than that of later weeks by most of mod-
els. This implies that the dropout prediction task may be-
come harder with increasing lifetime of engagement, as there
might be various hidden reasons that cause a student to quit
the course.

4.4.2 Across Courses
In this setting, we are interested in evaluating whether the
proposed model trained on some courses can serve other
courses as well, for which we randomly select 70% courses for
training and remaining 30% for testing. In this experiment,
we use all of the student data from the training courses to
train the model.

Table 4 shows the performance comparison. Same conclu-
sions can be made as in the previous Section 4.4.1. Specif-
ically, from this table, we can observe that our proposed
model NSSM still outperforms the other models (e.g., LR,
LR-SIM and LSTM) across different weeks. For example,

Proceedings of the 9th International Conference on Educational Data Mining 531



LR LR-SIM LSTM NSSM
Week 1 0.835 0.933 0.936 0.936
Week 2 0.911 0.915 0.915 0.919
Week 3 0.868 0.872 0.867 0.871
Week 4 0.782 0.784 0.785 0.789
Week 5 0.655 0.662 0.673 0.686

Table 4: Performance comparison of LR, LR-SIM,
LSTM and NSSM in terms of AUC on new courses
across weeks.

for the first week, the AUC score of NSSM is 0.686, which
is 12% improvement relative to that of LR model. Further-
more, we can see that the improvement from NSSM with re-
gard to LSTM is slight, and the relative improvement during
later weeks is larger than that of early weeks (e.g., +5.1%
during week 4 vs +4.4% during week 2). This observation
implies that the NSSM has the potential to make better
dropout predictions for students who have longer lifetime
of engagement than LSTM. In addition, as these results are
predictions made for students from new courses, we can con-
clude that our proposed model is capable of making better
dropout prediction in new courses, in comparison with other
models.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have focused on identifying at-risk stu-
dents in online courses by making dropout prediction. We
particularly take advantage of nonlinear state space model
(NSSM) because it can discover a student’s latent state to
characterize the student’s intention to perform certain ac-
tivities. We conducted experiment on a real-world dataset,
which demonstrates that our proposed model achieves higher
prediction accuracy than related methods. We also showed
that the NSSM model trained on data from some courses
can make dropout prediction for students in new courses.

However, because the extended Kalman filter and smoother
we used in this paper may not be an optimal parameter es-
timator, the difference between NSSM and LSTM is slight.
Therefore, in the future, we will exploit other advanced al-
gorithms (e.g., Unscented Kalman filter) to estimate the pa-
rameters in our nonlinear state space model. For the second
future direction, as the experiment presented in this paper
is limited to xuetangX dataset, we plan to evaluate our pro-
posed model on datasets collected from other MOOC plat-
forms, such as Edx and Coursera.
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