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Abstract. Collaborative filtering (CF) is an important recommenda-
tion problem focusing on predicting users’ future preferences by exploit-
ing their historical tastes. One typical training paradigm for this prob-
lem is called residual training (RT), which is usually built on two basic
components of factorization- and local neighborhood-based methods in
a sequential manner. RT has been well recognized with the ability of
achieving higher recommendation accuracy than either factorization- or
neighborhood-based method. In this paper, we design a new residual
training paradigm called residual-loop training (RLT), which aims to
fully exploit the complementarity of factorization, global neighborhood
and local neighborhood in one single algorithm. Experimental results on
three public datasets show the promising results of our RLT compared
with several state-of-the-art methods.
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1 Introduction

Collaborative filtering (CF) is an important recommendation problem, where
the main task is to exploit the historical (user, item, rating) triples and to pre-
dict the preferences w.r.t. (user, item) pairs not yet observed in the system.
For this task, various techniques have been proposed, including factorization-
based methods [7,9] and neighborhood-based methods [1]. There are also some
training paradigms that are built on more than one basic model such as hybrid
recommendation [5] and residual training [4]. Such training paradigms are usu-
ally reported with higher recommendation accuracy, especially in the context of
international contests [3].
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Residual training (RT) [4] has been well recognized as an effective prefer-
ence learning framework in collaborative filtering. One of the most well-known
paradigms in RT is “first factorization and then neighborhood” such as prob-
abilistic matrix factorization (PMF) [9] followed by item-oriented collaborative
filtering (ICF) [1]. The bridge between PMF and ICF is the residual, i.e., the
difference between the true ratings of the training data and the predictions
made by the factorization-based method, which is further exploited by the local
neighborhood-based method, i.e., ICF. Residual training is usually more accu-
rate than hybrid recommendation for preference prediction [4], which showcases
the merit of the residual-based strategy of combining factorization- and local
neighborhood-based methods as compared with the prediction-based ad-hoc
strategy in hybrid methods.

We find that the traditional pipelined residual training paradigm may not be
able to fully exploit the merits of factorization- and neighborhood-based meth-
ods. Firstly, there are two different types of neighborhood, i.e., global neigh-
borhood in FISM [6] and SVD++ [7], and local neighborhood in ICF [1], but
most residual training approaches ignore the global neighborhood. Secondly,
combining the factorization-based method and neighborhood-based method in
a pipelined residual chain may not be the best because the one-time interaction
between the two methods may not be sufficient, but little research has been
conducted on this issue.

In this paper, we propose a new residual training paradigm called residual-
loop training (RLT). In RLT, we aim to combine factorization- and global-local
neighborhood-based methods in a better way. Specifically, in our RLT, we adopt
a different residual training strategy, i.e., “first factorization and global neighbor-
hood, then local neighborhood, and finally factorization and global neighborhood
again”. More specifically, we put SVD++ [7] and ICF [1] in a loop instead of
in a chain for achieving richer interactions between them, which is illustrated in
Fig. 1.

We summarize our main contributions below: (i) we recognize the difference
between global neighborhood and local neighborhood in the context of residual
training; (ii) we propose to combine factorization-, global neighborhood-, and
local neighborhood-based methods by residual training; and (iii) we propose a
new residual training paradigm called residual-loop training (RLT). Extensive
empirical studies on three public datasets show that our RLT can predict users’
preferences more accurately.

Fig. 1. Illustration of Residual-Loop Training (RLT).
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2 Residual-Loop Training

2.1 Problem Definition

In our collaborative filtering problem, we have a set of (user, item, rating) triples
as training data denoted by R = {(u, i, rui)}, where rui is the numerical rating
assigned by user u to item i. Our goal is then to estimate the preference of user
u to item j, i.e., r̂uj , for each record in the test data Rte = {(u, i, ruj)}. Notice
that the error defined on the difference between the predicted preference r̂uj and
the true preference ruj , i.e., r̂uj − ruj , will be used in the evaluation metric.

We put some commonly used notations in Table 1.

Table 1. Some notations.

u User ID

i, i′, j Item ID

rui Rating of user u to item i

R = {(u, i, rui)} Rating records of training data

Ui Users who rate item i

Iu Items rated by user u

Ni Nearest neighbors of item i

μ ∈ R Global average rating value

bu ∈ R User bias

bi ∈ R Item bias

d ∈ R Number of latent dimensions

Uu· ∈ R
1×d User-specific latent feature vector

Vi·, Wi· ∈ R
1×d Item-specific latent feature vector

Rte = {(u, j, ruj)} Rating records of test data

r̂ui Predicted rating of user u to item i

λ Tradeoff parameter

T Iteration number in the algorithm

2.2 Factorization-Based Method

Probabilistic matrix factorization (PMF) [9] is a seminal factorization-based
method for rating prediction in collaborative filtering. Specifically, the prediction
rule of the rating assigned by user u to item i is as follows,

r̂F
ui = μ + bu + bi + Uu·V T

i· , (1)

where μ, bu and bi are the global average, the user bias, and the item bias,
respectively, and Uu· ∈ R

1×d and Vi· ∈ R
1×d are the user-specific latent feature

vector and the item-specific latent feature vector, respectively.
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Input: Users’ rating records R = {(u, i, rui)}.
Output: Predicted preference of each record in the test data, i.e., r̂uj ,
(u, j) ∈ Rte.

Task 1. Conduct factorization- and global neighborhood-based pref-
erence learning (i.e., SVD++), and estimate the preference of each
record in the training data r̂

F-Ng

ui and the preference of each record in
the test data r̂

F-Ng

uj .

Task 2. Conduct local neighborhood-based preference learning (i.e.,
ICF) on the residual rui − r̂

F-Ng

ui , and estimate the preference of each
record in the training data r̂N

ui and the preference of each record in
test data r̂N

uj .

Task 3. Conduct factorization- and global neighborhood-based prefer-
ence learning again (i.e., SVD++) on the residual rui − r̂

F-Ng

ui − r̂N
ui ,

and estimate the preference of each record in the test data r̂
F-Ng

uj .
Finally, the prediction of each record in the test data is obtained
r̂uj = r̂

F-Ng

uj + r̂N
uj + r̂

F-Ng

uj .

Fig. 2. The algorithm of residual-loop training (RLT).

2.3 Local Neighborhood-Based Method

Item-oriented collaborative filtering (ICF) [1] is a classical neighborhood-based
method for preference estimation in recommendation. The estimated preference
of user u to item i can be written as follows,

r̂N�
ui =

∑

i′∈Iu∩Ni

s̄i′irui′ , (2)

where s̄i′i = si′i/
∑

i′∈Iu∩Ni
si′i is the normalized similarity with si′i = |Ui′ ∩

Ui|/|Ui′ ∪ Ui| as the Jaccard index between item i′ and item i. Notice that Ni

is a set of locally nearest neighboring items of item i, i.e., their similarities are
predefined via Jaccard index without global propagation among the users, and
for this reason, we call it a local neighborhood-based method.

2.4 Global Neighborhood-Based Method

The similarity in Eq. (2) may also be learned from the data instead of being
calculated from the training data. For example, in asymmetric factor model
(AFM) [4], the prediction rule of user u to item i is as follows,

r̂
Ng

ui =
∑

i′∈Iu\{i}
p̄i′i, (3)
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where p̄i′i = Wi′·Vi·/
√|Iu\{i}| is the normalized learned proximity between

item i′ and item i. Notice that Wi′· and Vi· are the item-specific latent feature
vectors of item i′ and item i, respectively. Considering the well-known merit of
transitivity of latent factor models, the learned proximity in Eq. (3) is a global
one because two items without common users may still be well connected via the
learned latent factors. Notice that the prediction rule in Eq. (3) does not restrict
to a local neighborhood set Ni as that in Eq. (2). We thus call AMF with the
prediction rule in Eq. (3) a global neighborhood-based method.

2.5 Factorization- and Global Neighborhood-Based Method

Matrix factorization with implicit feedback (SVD++) [7] is a state-of-the-art
method integrating the prediction rules of a factorization-based method and a
global neighborhood-based method,

r̂
F-Ng

ui = μ + bu + bi + Uu·V T
i· +

∑

i′∈Iu\{i}
p̄i′i,

= r̂F
ui + r̂

Ng

ui , (4)

from which we can see that SVD++ is a generalized factorization model that
inherits the merits of both factorization- and global neighborhood-based meth-
ods.

2.6 Residual Training

Residual training (RT) [3,4] is an alternative approach to combining a
factorization-based method and a neighborhood-based method. In RT, there
are usually two steps with two different methods. Firstly, a factorization-based
model is built using the training data, and a predicted rating r̂F

ui for each
(u, i, rui) ∈ R can then be obtained. Secondly, a neighborhood-based method
is developed using

∑
i′∈Iu∩Ni

s̄i′ir
res
ui′ , where rresui′ = rui′ − r̂F

ui′ is the residual of
the preceding factorization-based method. Notice that the Jaccard index si′i is
calculated using the residual data in our experiments, though it does not matter
whether we use the residual data or the original training data because computing
the Jaccard index si′i only involves the IDs of the corresponding users.

We may represent the learning procedure as follows,

r̂F
ui → r̂N�

ui , (5)

where the bridge of the two preference learning methods is the “residual” as
can be seen from the name of the method. The final prediction rule is then the
summation of r̂F

ui and r̂N�
ui , i.e., r̂F

ui + r̂N�
ui .

We can see that the main difference between SVD++ and RT are two folds:
(i) SVD++ is an integrative method with one single prediction rule, while RT is
a two-step approach with two separate prediction rules; and (ii) SVD++ exploits
factorization and global neighborhood, while RT makes use of factorization and
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local neighborhood. The merit of SVD++ is its modeling power using a complex
prediction rule. As for RT, it is a flexible paradigm with two separate steps, which
are of low dependency.

The above discussion motivates us to combine the merits of SVD++ and RT,
and develop an improved algorithm accordingly, i.e., combining factorization,
global neighborhood and local neighborhood, in one single algorithm.

2.7 Residual-Loop Training

In this paper, we aim to go one step beyond SVD++ that combines factorization-
and global-neighborhood-based methods, and also residual training that com-
bines factorization- and local neighborhood-based methods. Specifically, we
would like to combine factorization, global neighborhood and local neighbor-
hood in one single algorithm. For example, the final predicted preference of user
u to item i should include r̂F

ui in Eq. (1), r̂N�
ui in Eq. (2), and r̂

Ng

ui in Eq. (3).
In order to fully exploit the complementarity of factorization, global neigh-

borhood and local neighborhood, we propose a new residual training paradigm
called residual-loop training (RLT), which is depicted as follows,

r̂
F-Ng

ui → r̂N�
ui → r̂

F-Ng

ui (6)

where r̂
F-Ng

ui is from Eq. (4) and r̂N�
ui is from Eq. (2). We can see that our RLT

in Eq. (6) is very different from RT in Eq. (5), which will be discussed in detail
below.

For the first component in our RLT, i.e., r̂
F-Ng

ui in Eq. (6), we aim to exploit
both factorization and global neighborhood. The reason we adopt SVD++
instead of “first PMF and then AFM” in two separate steps, i.e., r̂F

ui → r̂
Ng

ui ,
is the close relationship between the factorization-based method in Eq. (1) and
the global neighborhood-based method in Eq. (3). The interaction between the
factorization-based method and the global neighborhood-based method is richer
in such an integrative method than that in two separate steps of RT, i.e., r̂

F-Ng

ui

performs much better than r̂F
ui → r̂

Ng

ui , which is also observed in our preliminary
empirical studies.

For the second component in our RLT, i.e., r̂N�
ui in Eq. (6), we aim to boost the

performance via local neighborhood. Notice that although r̂
F-Ng

ui aims to integrate
factorization and global neighborhood in one single model, but does not make
a difference between global neighborhood and local neighborhood. Instead, we
explicitly combine factorization, global neighborhood and local neighborhood for
rating prediction in a residual-training manner. The performance is expected to
be improved due to the complementarity, and the effectiveness of the residual
training paradigm as verified in combining factorization and local neighborhood.

For the third component in our RLT, i.e., r̂
F-Ng

ui , we aim to further capture
the remaining effects related to users’ preferences that have not been modeled
by the previous two methods yet. In the perspective of coarse-grained similarity
calculation in neighborhood-based method and fine-grained parameter learning
in model-based method, we use the first component again in this task, which
results in a residual loop as shown in Fig. 1.
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We depict the whole algorithm in Fig. 2. In Fig. 2, we can see that our RLT
contains three tasks corresponding to the three components in the loop as shown
in Eq. (6).

3 Experimental Results

3.1 Datasets and Evaluation Metric

In our empirical studies, we use three public datasets, including MovieLens 100K
(ML100K), MovieLens 1M (ML1M) and MovieLens 10M (ML10M)1. We fol-
low [8] and use 80% of each dataset as training data and the remaining 20% as
test data, and repeat this for five times for five-fold cross validation.

We adopt the commonly used root mean square error (RMSE) in our perfor-
mance evaluation, and report the average result from five-time evaluation.

3.2 Baselines and Parameter Settings

Our RLT is built on factorization-, global neighborhood- and local-
neighborhood-based methods. We thus include the following closely related base-
line methods to be compared with our RLT.

– Item-oriented collaborative filtering (ICF) [1] with Jaccard index as the sim-
ilarity measurement.

– Probabilistic matrix factorization (PMF) [9].
– Hybrid collaborative filtering (HCF) [5] that averages the predictions of ICF

and PMF, i.e., r̂ui = (r̂ICF
ui + r̂PMF

ui )/2.
– Singular value decomposition with implicit feedback (SVD++) [7].
– Residual training (RT) [4] with PMF and ICF as two dependent components

in a sequential manner.

For all factorization-based methods, we fix the number of latent dimensions
as d = 20, the learning rate γ = 0.01, the iteration number as T = 50, and search
the value of tradeoff parameters from {0.001, 0.01, 0.1}. For neighborhood-based
methods, we take top-20 items from Iu ∩ Ni with highest Jaccard index as the
neighbors. Notice that when |Iu ∩ Ni| < 20, we use all items from Iu ∩ Ni.

3.3 Results

We report the main results in Table 2. We can have the following observations:

– Our RLT predicts the users’ preferences significantly more accurately than
all other baseline methods, which clearly shows the advantage of our residual-
loop training paradigm.

1 http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/


Residual-Loop Training in Collaborative Filtering 333

– For the performance of ICF, PMF and HCF, we can see that HCF improves
the performance on ML100K and ML1M by combining the tentatively pre-
dicted preference of ICF and PMF, but not on ML10M, which shows the
limitation of such a simple hybridization method.

– For the performance of ICF, PMF and SVD++, we can see that the per-
formance ordering is ICF < PMF < SVD++, which shows the advantage
of the factorization-based method (i.e., PMF) over the neighborhood-based
method (i.e., ICF), and the further performance improvement by integrating
factorization and neighborhood in one single method (i.e., SVD++).

– For the performance of ICF, PMF and RT, we can see that the performance
ordering is ICF < PMF < RT, which shows the effectiveness of the residual
training in exploiting the complementarity of the factorization-based method
and the neighborhood-based method [3,4].

– For the performance of SVD++ and RT, we can see that their performance
results are very close though the former exploits factorization and global
neighborhood in an integrative way, and the latter exploits the factorization
and local neighborhood in a pipelined manner, which also motivates us to
further exploit the complementarity of factorization, global neighborhood,
and local neighborhood.

Table 2. Recommendation performance of item-oriented collaborative filtering (ICF),
probabilistic matrix factorization (PMF), hybrid recommendation combining ICF and
PMF (HCF), SVD++, residual training (RT) and our residual-loop training (RLT).
The significantly best results are marked in bold (p < 0.01). The values of the tradeoff
parameter λ are also included for reproducibility.

ML100K ML1M ML10M

ICF 0.9537±0.0038 0.9093±0.0021 0.8683±0.0012

PMF
0.9441±0.0038 0.8838±0.0023 0.7911±0.0005

(λ = 0.01) (λ = 0.001) (λ = 0.01)

HCF
0.9242±0.0032 0.8739±0.0023 0.8052±0.0007

(λ = 0.01) (λ = 0.001) (λ = 0.01)

SVD++
0.9246±0.0031 0.8515±0.0018 0.7873±0.0007

(λ = 0.001) (λ = 0.001) (λ = 0.01)

RT
0.9145±0.0041 0.8567±0.0021 0.7847±0.0008

(λ = 0.001) (λ = 0.001) (λ = 0.01)

RLT
0.8968±0.0040 0.8385±0.0016 0.7812±0.0007

(λ = 0.001) (λ = 0.001) (λ = 0.01)
(λ = 0.001) (λ = 0.001) (λ = 0.01)

We further study the performance of each task in our RLT, which is shown
in Fig. 3. We can have the following observations:

– The performance improves in each subsequent task, e.g., “from SVD++ to
ICF” and “from ICF to SVD++”, in the residual loop of the algorithm shown
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in Fig. 2, which shows the effectiveness of our residual-training mechanism
that links factorization- and global-local neighborhood-based methods.

– The improvement “from SVD++ to ICF” is much larger than that “from
ICF to SVD++”, which implies that the second task is very useful while
the third task is only marginally useful. This can be interpreted by the fact
that the factorization and global-local neighborhood are somehow already well
exploited in “SVD++ → ICF”. Notice that although the further improvement
in the third task of “from ICF to SVD++” is small, the improvement is still
statistically significant.

ML100K ML1M ML10M0.75

0.8

0.85

0.9

0.95

Dataset

R
M

SE

RLT(task 1)
RLT(task 2)
RLT(task 3)

Fig. 3. Recommendation performance of three tasks in RLT, i.e., task 1 is SVD++,
task 2 is ICF, and task 3 is SVD++ again.

4 Related Work

In this section, we study three categories of closely related work on improving
one single collaborative filtering method, including hybridization, boosting and
residual training.

4.1 Hybridization

In hybrid recommendation, the main idea is to combine the recommendation
results of two or more different methods. The most popular hybridization strat-
egy is probably to average the predicted ratings of some methods via certain
weights [5]. For example, in our hybrid collaborative filtering (HCF), we com-
bine the predictions of PMF and ICF via average weighting. Hybridization is
simple and easy in real deployment, because the dependency among different
methods is loose. However, this may also become the limitation of such a strat-
egy, i.e., the complementarity of different methods may not be well exploited.
Our empirical studies verify this point.
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4.2 Boosting

In boosting-based recommendation, the main idea is to identify some difficult-
to-learn (user, item, rating) triples in training data and then assign them higher
weight and priority during the learning process [10]. Finally, a set of base mod-
els are learned with different weights on the triples. Those learned models are
then combined via some weight based on the performance of each single model.
Boosting has been well recognized as a very useful approach to boosting the
performance of a single method. However, the dependency and complexity are
much higher than those of the aforementioned hybridization and residual train-
ing framework studied in this paper.

4.3 Residual Training

In residual training [4], the main idea is to combine two different types of method
via the residual of the prediction, which shows a close collaboration in mak-
ing rating prediction and usually results in higher accuracy. Furthermore, the
residual-based dependency is loose as compared with that of boosting.

We can see that the dependency becomes stronger from hybridization, resid-
ual training to boosting. And residual training achieves a good balance between
the recommendation accuracy and the model dependency as compared with
hybridization- and boosting-based recommendation methods.

5 Conclusions and Future Work

In this paper, we study the rating prediction problem in collaborative filtering
by residual training. Specifically, we design a new residual training paradigm
called residual-loop training (RLT), which aims to combine factorization, global
neighborhood and local neighborhood in one single algorithm so as to fully
exploit their complementarity. Experimental results on three public datasets
show the significantly better performance of our RLT than several state-of-the-
art factorization- and neighborhood-based methods.

For future work, we are interested in generalizing our residual-loop training
to non-numerical ratings such as one-class feedback in E-commerce [2].
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