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Abstract—Context-aware recommender systems are able to
produce more accurate recommendations by harnessing contex-
tual information, such as consuming time and location. Further,
user reviews as an important information resource, providing
valuable information about users’ preferences, items’ aspects,
and implicit contextual features, could be used to enhance the
embeddings of users, items, and contexts. However, few works
attempt to incorporate these two types of information, i.e.,
contexts and reviews, into their models. Recent state-of-the-art
context-aware methods only characterize relations between two
types of entities among users, items and contexts, which may be
insufficient, as the final prediction is closely related to all the
three types of entities. In this paper, we propose a novel model,
named Context-aware Co-Attention Neural Network (CCANN),
to dynamically infer relations between contexts and users/items,
and subsequently to model the degree of matching between users’
contextual preferences and items’ context-aware aspects via co-
attention mechanism. To better leverage the information from
reviews, we propose an embedding method, named Entity2Vec,
to jointly learn embeddings of different entities (users, items and
contexts) with words in a textual review. Experimental results, on
three datasets composed of millions of review records crawled
from TripAdvisor, demonstrate that our CCANN significantly
outperforms state-of-the-art recommendation methods, and En-
tity2Vec can further boost the model’s performance.

Index Terms—recommender systems, context, co-attention,
neural network

I. INTRODUCTION

Nowadays recommender systems (RS) play a significant

role in many web applications, such as e-commerce and social

network. Recently, contextual information, such as time [1],

location [2] and companion, is incorporated into RS for provid-

ing better service recommendations. Context in context-aware

recommender systems generally refers to “any information
that can be used to characterize the situation of entities”

[3]. It is beneficial for RS to characterize a user’s contextual

preferences, especially in service recommendation scenarios

where customers’ behavior can be significantly affected by

contextual situations. Intuitively, a user may only care about

some specific aspects under a certain contextual situation. For

example, when traveling with kids (context), a user would

probably like to stay in a hotel that provides enough space

(aspect) for kids to run around; while a user may prefer a

quiet environment (aspect) if he wants to enjoy luxurious

time with his lover (context) (See review explanation in

Fig. 1. A hotel review example from TripAdvisor. Explicit contexts are
highlighted with solid lines, and implicit contexts with dash lines.

Fig. 1). Accordingly, the target item, e.g., a hotel, may be

more suitable to some contextual situations because of its

corresponding aspects, e.g., room space.

There are two types of contexts as illustrated in Fig. 1: ex-

plicit contexts that explicitly indicate the user’s situation (e.g.

August 2018), and implicit contexts mentioned in a textual

review and mixed with the user’s personal experiences (e.g.,

travel with kids). There are some recommendation algorithms

[4], [5] that take both contextual information and user reviews

into account when recommending items. However, they re-

quire either domain knowledge to extract implicit contexts

from user reviews [4], or manual efforts to design feature

representations for explicit contexts [5]. As a consequence,

the proposed models in [4], [5] can hardly be generalized to

other domains.

Recent works on implicit contexts, i.e., review-based mod-

els, mainly employ convolutional neural network (CNN) [6]–

[9] and recurrent neural network (RNN) [10] as feature ex-

tractors to extract feature representations from user reviews

for constructing embeddings of users and items (see [11]

for another type of feature extractor). However, these meth-

ods are computationally expensive, as CNN has hundreds

of convolving filters to update [12] and RNN is unable to

parallelize for computation. As to context-aware methods that

only consider explicit contexts, factorization machines (FM)-

based models [13], [14] as a class of general machine learning

algorithms perform context-aware recommendation task by

regarding context values as sparse features. Consequently,
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FM-based methods are unable to capture complex relations

among users, items and contexts, as these entities are treated

as feature IDs in the same way. To solve this problem, Mei et

al. [15] recently propose attentive interaction network (AIN) to

characterize user-context and item-context interactions, but the

user and item representations in AIN do not interact with each

other before being passed into the prediction layer, which may

be insufficient to model users’ preferences for items’ aspects.

To address the issues mentioned above, we propose to

model interactions between contexts and users/items, and

subsequently to estimate the degree of matching between a

user’s preferences and an item’s aspects under each con-

textual situation via co-attention mechanism [16]. Since the

final representations of users and items are mutually learned

from users, items and contexts, our approach enables richer

modeling of users’ contextual preferences and items’ context-

aware aspects. We name our proposed model Context-aware

Co-Attention Neural Network (CCANN). As our model is

composed of multi-layer perceptron (MLP) with a few hidden

layers, it can be more efficient in terms of computation

compared with review-based methods. To leverage implicit

contexts in user reviews, we propose a novel embedding

method, named Entity2Vec, to jointly learn embeddings of

different entities (users, items and contexts) with words in a

review. After training Entity2Vec, relations between different

users/items/contexts can be captured by their embedding vec-

tors. We use them to initialize our recommendation model

CCANN, so that more accurate recommendations can be

generated.

The main contributions of our work are summarized as

follows:

• We propose a context-aware neural network that lever-

ages co-attention mechanism to characterize the degree

of matching between users’ contextual preferences and

items’ context-aware aspects.

• We also propose a novel entity embedding method to

jointly learn various entities’ embeddings from user gen-

erated reviews.

• We conduct extensive experiments on three large datasets

to demonstrate the effectiveness of our proposed recom-

mendation model and embedding method.

II. RELATED WORK

There are two lines of research closely related to our

work: the first is context-aware recommender systems, and the

second utilizes user reviews to enhance recommendations. We

present brief summary of the two branches of research work

in the following.

Context-aware recommendation algorithms can be broadly

classified into three categories according to the phase when

contextual information is incorporated: contextual pre-filtering,

contextual post-filtering and contextual modeling [17]. Contex-

tual pre-filtering approaches are able to make use of traditional

recommendation algorithms, for instance, matrix factorization

(MF) [18], where contexts play the role of data filtering, e.g.,

selecting ratings data for one certain context. However, this

approach suffers from severe data sparsity problem, as the data

may become sparse after filtering. Existing recommendation

algorithms can also be adopted to contextual post-filtering, in

which a given context is used to filter out irrelevant recom-

mendations or adjust the recommendation list. Recently, more

researchers start to investigate contextual modeling techniques.

Beutel et al. [19] incorporate contextual information, such as

watch time and device type, into RNN for video recommenda-

tion. Baral et al. [5] use manually constructed context features

combined with features extracted from user reviews to make

point-of-interest (POI) recommendations. To study context-

dependent and context-independent preferences of users for

service recommendations, Chen and Chen [4] define several

contextual variables and context values based on domain

knowledge, and design an automatic extraction rule to extract

contexts and opinions from user reviews. As it can be seen,

these contextual modeling methods are hard to generalize to

other problems because they require either domain knowledge

or feature engineering techniques. To reduce human efforts, we

propose a general context-aware recommendation framework

that does not involve manually constructed context features.

The second line of research related to our work is review-

based recommender systems. User generated reviews have

been widely investigated in recent years for improving recom-

mendation accuracy. Existing methods can be generally cate-

gorized into two groups: explicit methods and implicit meth-

ods. Explicit methods refer to those algorithms that employ

topic modeling or sentiment analysis tools to explicitly analyze

review contents [20], while implicit methods primarily extract

some latent features from user reviews without analyzing their

contents. The aforementioned context-aware method in [4] can

be regarded as an explicit method in terms of review modeling,

as it extracts opinions and contexts from user reviews for

recommendation task. There are many other explicit methods.

For example, Zhang et al. [21] propose EFM for explainable

recommendation by aligning some typical aspects of items

with latent factors of MF. Wang el al. [22] construct a three-

way tensor over users, items and aspects using sentiments,

and decompose and reconstruct this tensor for achieving both

goals of recommendation and explanation. For these explicit

methods, one major limitation is that manual preprocessing is

usually required for sentiment analysis. Implicit methods, on

the other hand, employ a feature extractor to extract feature

representations from user reviews for modeling users and

items. Given that CNN is capable of extracting representative

features from user reviews, some CNN-based recommendation

models have been proposed, such as TransNets [6], NARRE

[7], ConvMF+ [8], and DeepCoNN [9]. As RNN is able to

process sequential data, Lu et al. [10] recently employ bi-

directional RNN to construct users’ and items’ profiles for

recommendation by extracting features from word sequences

of reviews. Although these methods achieve significant recom-

mendation accuracy improvement, one common limitation is

that they are more computationally expensive than traditional

recommendation algorithms. To reduce training time, our rec-

ommendation model CCANN is constructed with MLP with
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only a few hidden layers. Furthermore, we propose to learn

embeddings of different entities in an automatic way from

user reviews using our Entity2Vec, in order to reduce manual

efforts on preprocessing contexts, aspects and sentiments.

III. METHODOLOGY

In this section, we first present the detail of our recommen-

dation model, Context-aware Co-Attention Neural Network

(CCANN), where the co-attention mechanism enables rich

interactions between the user’s and the item’s context-aware

embeddings. Further, we introduce our embedding method

Entity2Vec that learns representations of different entities from

user generated reviews. Using these embedding vectors that

carry certain semantic meaning to initialize CCANN, we are

able to leverage the knowledge in user reviews to make better

recommendations.

A. Context-aware Co-Attention Neural Network (CCANN)

The objective of our recommendation model CCANN is to

predict a rating r̂u,i that a user u is likely to comment on

an item i when s/he is within certain contextual situations,

c1, c2, ..., cm, where m denotes the total number of contextual

variables and j ∈ {1, 2, ...,m} represents the j-th contextual

variable. Specifically, there could be multiple contextual vari-

ables, such as time, place and companion, and each contextual

variable consists of multiple context values, e.g., families and

friends for the context companion. With IDs of a user u, an

item i and context values c1, c2, ..., cm as input, we show

how to produce a rating score r̂u,i from our context-aware

recommendation framework, as shown in Fig. 2.

The user u’s low-dimensional representation can be com-

puted via:

pu = PT g(u) (1)

where P ∈ R
|U|×d denotes the user embedding matrix, |U| is

the total number of users in a dataset, d is the dimension of

embedding vectors, and g(u) ∈ {0, 1}|U| is a one-hot vector

representing which row in the user matrix P the user u corre-

sponds to. Accordingly, we can obtain the item i’s embedding

qi from the item embedding matrix Q ∈ R
|I|×d, where |I|

is the total number of items. Also, the vector of the j-th

contextual variable with the value of lj , k
lj
j , can be acquired

from the j-th context embedding matrix Kj ∈ R
|Cj |×d, where

lj ∈ Cj and |Cj | denotes the total count of values in context

j. Notice that, we can initialize embedding matrices P,Q and

Kj , where j ∈ {1, 2, ...,m}, with either random distribution

or pre-trained embeddings learned from our Entity2Vec (see

next subsection). During the training process, these initial

embedding matrices will be fine-tuned by back-propagation,

so as to better harmonize our recommendation task.

To characterize the user u’s preferences in context j, we

pass the user u’s embedding pu and the corresponding context

j’s embedding k
lj
j through multi-layer perceptron (MLP) with

one hidden layer

pu→j = σ(Wp
j [pu,k

lj
j ] + bp

j ) (2)

where [·, ·] denotes the concatenation of two vectors, σ(·)
is a nonlinear activation function, and Wp

j ∈ R
d×2d and

bp
j ∈ R

d are respectively parameter matrix and bias. Similarly,

we can compute the user’s preferences within other contextual

situations, i.e., the same operation is conducted on each

contextual variable j ∈ {1, 2, ...,m}. Assuming j represents

the context companion, (2) can be interpreted as that the user’s

preferences may vary when s/he is with different persons lj .

For instance, when s/he is having a family trip, s/he may prefer

a hotel with large bed, while s/he is likely to pay attention to

the availability of Wi-Fi when s/he is taking a business trip.

As to item i, we can also compute qi→j using qi and k
lj
j in a

similar way, which can be translated as the suitableness of an

item’s aspects for context j (e.g., whether a hotel is suitable

for the family trip).

Then we measure how much a user’s contextual preferences

match an item’s aspects in context j, by computing an at-
tention score between the two vectors, pu→j and qi→j . The

attention network is formally defined as

βu,i→j = hTσ(W1[pu→j ,qi→j ] + b1) (3)

in which W1 ∈ R
d×2d, b1 ∈ R

d and h ∈ R
d are model

parameters. We normalize each element in the attention vector

β through a softmax function as follows,

αu,i→j =
exp (βu,i→j)∑m

j′=1 exp (βu,i→j′)
(4)

and regard each element αu,i→j in the resulting vector α as

the degree of matching between a user’s contextual preferences

and an item’s associated aspects. Intuitively, the larger a

contextual score in attention score vector α is, the more the

corresponding context will contribute to the final prediction.

As a result, we can obtain an enhanced user vector p̂u, by

computing the weighted sum of the user u’s representations

over all contexts,

p̂u =
m∑
j=1

αu,i→jpu→j (5)

which can be interpreted as the contribution of the user

u’s preferences in each context to her/his final represen-

tation. Similarly, we compute the enhanced profile q̂i =∑m
j=1 αu,i→jqi→j for the item i. The attention score vector

α is mutually learned from the user’s contextual preferences

and the item’s context-aware aspects, and then be utilized to

enhance user and item representations. We therefore term such

an attention mechanism Co-Attention.

To make rating prediction, we adopt factorization machines

(FM) [13] as our prediction layer, following [9], [23]. To be

more specific, we feed the concatenation of the user and the

item enhanced representations, x = [p̂u, q̂i], into FM as input,

and perform a regression task to predict a rating score which

measures how much a user u likes an item i,

r̂u,i = w0 +wT
1 x+

1

2

k∑
f=1

[(vT
f x)

2 − (v2
f )

Tx2] (6)

203



···

···

···

··· FM ,
User

Item

Contexts

Embedding
Look up

Contextual
Preference

Co-Attention
Score

Enhanced
Embedding

Fig. 2. An overview of our recommendation model Context-aware Co-Attention Neural Network (CCANN).

where w0 ∈ R is the global bias, w1 ∈ R
2d is the weight

vector, vf ∈ R
2d is the f -th column of weight matrix

V ∈ R
2d×k, and k denotes the dimension of factorized

parameters. The first two terms in (6) can be regarded as

linear regression component, and the third term as the core

component of FM represents the second order interactions

between features in feature vector x. We employ FM in the

form of (6) for implementation because it is computationally

efficient, i.e., its time-complexity is O(kn) [13], where n = 2d
in our case.

Since rating prediction is essentially a regression problem,

we adopt the commonly used mean squared error loss as our

objective function,

Lr =
∑

u,i∈T
(ru,i − r̂u,i)

2 (7)

where T is the training set, ru,i denotes the ground truth rating

that user u assigned to item i, and r̂u,i is the predicted rating.

As an end-to-end neural network, our model can be easily

optimized by stochastic gradient descent (SGD). In our im-

plementation, we adopt an advanced optimizer Adam [24] to

minimize the objective function, as it is able to automatically

adjust the learning rate during the training phase, which helps

neural network to converge faster than vanilla SGD.

To summarize, our CCANN has several advantages. Firstly,

as the major contribution of our work, the co-attention mech-

anism is able to model the user’s contextual preferences and

the item’s context-aware aspects in a richer manner compared

with existing context-aware methods [13]–[15]. Secondly, for

a context value that a user never experienced before (e.g., a

user who used to dine alone now looks for a restaurant for

dating), our model can utilize the knowledge learned from

other users on this context value to make prediction. Thirdly,

since our model is composed of MLP with only a few hidden

layers, it can be more efficient in terms of computation than

existing review-based models [6]–[10]. Lastly, the co-attention

mechanism in our model allows us to identify the most

influential contextual factor to the prediction. With selected

contexts, we can also explain recommended items to users.

For example, we can say “this hotel is recommended to you

because it is suitable for family trip” to a user after we

recommend her/him a hotel. We leave it as the future work.

B. Learning Entity Embeddings from User Reviews

The aim of this component is to learn embedding vectors

of different entities from user generated reviews for our

recommendation task. We propose a novel embedding method

named Entity2Vec, which simultaneously learns embeddings

of a variety of entities, including users, items, contexts and

words. Intuitively, within a certain contextual situation, a user

is more likely to discuss her/his experiences related to this

context in the review. Thus, the content of the textual review

should also be relevant to the context, in addition to the user

and the target item. For example, in the second paragraph of

Fig. 1, John (user) says that the hotel (item) is not suitable

for couples or business (context). Therefore, it is reasonable

to put all of the entities in one model and jointly learn the

embeddings of them.

Following PV-DM [25], which learns word vectors and

paragraph vectors from a document simultaneously, we av-

erage vectors of a user, an item, associated context values,

and surrounding words in the review, and subsequently use

the resulting vector as features to predict the target word, as

shown in Fig. 3. It should be noted that in this subsection we

use the term surrounding words to denote the target word’s

nearby words in order to avoid the confusion with context.
To reduce training time, we employ CBOW [26] for learning

entity embeddings, as our task involves millions of reviews,

which could be time-consuming. Formally, given the word

sequence of a review, s1, s2, ..., sTu,i
, which a user u wrote

for an item i within contextual situations of c1, ..., cm, we are

able to obtain their corresponding embedding vectors from

randomly initialized embedding matrices by conducting the

same operation as (1). Next, we compute the average of these

vectors as follows,

êt = avg(pu,qi,k
l1
1 , ...,k

lm
m , et−z, ..., et+z) (8)

where pu and qi are the user and the item embeddings respec-

tively, kl1
1 , ...,k

lm
m are context embeddings, et−z, ..., et+z are

embeddings of surrounding words, t denotes the target word’s
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Fig. 3. Illustration of our embedding method Entity2Vec.

position in the review, and z is the size of sliding window on

the word sequence. Notice that the target word st’s embedding

et is excluded from input vectors for computing êt.

Then we treat the resulting vector êt as features to predict

the target word st by projecting this vector onto the space of

vocabulary,

y = Weêt + be (9)

where We ∈ R
|V|×d and be ∈ R

|V| are respectively parameter

matrix and bias, and V is the vocabulary containing all words

in a dataset. We normalize the vector y ∈ R
|V| through the

softmax function and estimate the probability of the predicted

target being the word st as follows:

pt =
exp (yt)∑
t′ exp (yt′)

(10)

where pt denotes the probability that the prediction is word

st.

Since this task is a multi-class classification problem, we

draw on the widely used cross-entropy loss as our objective

function and compute the loss for each input-target pair in the

training set,

Lc =
1

|T |
∑

u,i∈T

1

Tu,i

Tu,i−z∑
t=z

− log pt (11)

where Tu,i denotes the length of a review that the user u
wrote for the item i, z is the window size, and T consists

of reviews in the training set. Similar to our recommendation

task, we employ Adam [24] as the optimizer for minimizing

the loss function (11).

Obviously, one major advantage of our Entity2Vec is that

with the information about user preferences for item aspects

in reviews, the semantic meaning of different entities can

be well captured by their learned embeddings. For example,

the distance between users who share similar preferences is

likely to be smaller than those who have different tastes, when

computing distance scores for them.

IV. EXPERIMENTS

A. Dataset Description

To evaluate our proposed model, in September 2018 we

collected 10 million hotel reviews in total from three populous

cities in TripAdvisor1, i.e., Hong Kong, New York City and

London. We executed the following procedure to each city

for constructing three distinct datasets: we first crawled all

the review records of each hotel in one city, and subsequently

scraped all the historical reviews of users who wrote those re-

views from their homepages. We removed non-English reviews

because at this stage we are mainly interested in analyzing

English text. The statistics of our datasets is shown in Table

I, where the values given in brackets correspond to sizes of

the datasets without users’ past reviews. As it can be seen,

each user approximately wrote 1.3 reviews, and each item has

hundreds of reviews if historical records are not considered.

Notably, we found a large proportion of review records in our

datasets are users’ historical reviews. For example, the review

count in HK dataset is 2,118,108, but only 176,840 reviews

(around 8.35%) were written for hotels located in Hong Kong.

Each review record in our datasets contains user ID, item

ID, overall star rating in the range of 1 to 5, textual review,

and the contexts in which a user was experiencing the item.

The contextual information consists of companion, time and

place, as depicted in Table II. For the context time, we adopt

12 months of a year when a user visited a hotel, instead of the

time when a user wrote a review. Similarly, we use the target

city, where a hotel locates, as the context value of place. As

it is impossible to list all values for the context place in Table

II, we select 10 cities with the largest review counts in HK

dataset as examples.

B. Evaluation Metric

To compare the recommendation performance of different

methods, we adopt root mean square error (RMSE) as the

evaluation metric. RMSE is calculated by estimating the

difference between ground-truth rating ru,i and the predicted

one r̂u,i in the test set,

RMSE =

√
1

N

∑
u,i

(ru,i − r̂u,i)2 (12)

where N indicates the number of instances in the test set.

C. Compared Methods

To evaluate the performance of our CCANN, we compare

it with the following state-of-the-art models:

• PMF: Probabilistic Matrix Factorization [18]. This is the

standard matrix factorization method that characterizes

users and items by latent factors inferred from observed

ratings. We use alternative least square (ALS) to optimize

its objective function for implementation.

• FM: Factorization Machines [13]. This is a general

machine learning algorithm that uses factorized param-

eters to model second order interactions between sparse

1https://www.tripadvisor.com
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TABLE I
OVERVIEW OF OUR TRIPADVISOR HOTEL REVIEW DATASETS.

# users # items # reviews # reviews per user # reviews per item
HK (Hong Kong) 137,145 247,889 (618)a 2,118,108 (176,840) 15.44 (1.29) 8.54 (286.15)
NYC (New York City) 471,243 297,270 (531) 4,572,716 (583,257) 9.70 (1.24) 15.38 (1098.41)
LDN (London) 639,710 354,841 (1,660) 6,382,831 (870,184) 9.98 (1.36) 17.99 (524.21)
aThe values given in brackets correspond to sizes of the datasets without users’ past reviews.

TABLE II
CONTEXTUAL VARIABLES AND CONTEXT VALUES.

Contextual Variables Context Values
Companion Families, Couples, Solo, Business, Friends
Time January, February, March, April, May, June, July, August, September, October, November, December
Placea Hong Kong, Bangkok, Singapore, London, New York City, Dubai, Kuala Lumpur, Shanghai, Paris, Sydney
aAs examples, we list 10 selected cities with the largest review counts in HK dataset.

features. We only use user and item IDs as inputs, and

perform experiments using LibFM2 with SGD learner.

• ConvMF+: Convolutional Matrix Factorization [8]. It

employs a CNN to exploit textual information from item

description for enhancing MF. Here we concatenate user

reviews of an item as item description.

• DeepCoNN: Deep Cooperative Neural Networks [9].

This model consists of two parallel CNNs for learning

feature representations from user reviews for users and

items respectively.

• NFM: Neural Factorization Machines [14]. It is a more

generalized FM built upon neural network for learning

high-order feature interactions in a non-linear way for

sparse data prediction. We conduct experiments using the

source code provided in the paper, and feed IDs of users,

items and contexts into this model as input features.

• AIN: Attentive Interaction Network [15]. This neural

network employs two pathways to model the effects of

contexts on users and items. To be fair, we remove the

fully connected layers in this model, so that we can focus

on the comparison of its attention mechanism with the

co-attention mechanism of our CCANN.

• CCANNrand: It is a variant of our CCANN where entity

embeddings are randomly initialized rather than obtained

from Entity2Vec.

PMF and FM both are interaction-based models, which

only take user and item IDs into account for rating predic-

tion. Therefore, we regard them as context-unaware baselines.

ConvMF+ and DeepCoNN are both review-based models that

extract features, including contextual information, from user

reviews. We hence call ConvMF+ and DeepCoNN as implicit

context-aware models. NFM, AIN and our CCANN explicitly

use the information of contexts for recommendation, for which

reason they are context-aware methods.

D. Experiment Setup

We randomly divide each dataset into training (80%), val-

idation (10%) and test (10%) sets. We also guarantee each

2http://www.libfm.org

user/item has at least one instance in the training set. We

repeat the splitting process for 5 times, and report the averaged

performance. The validation set is used for hyper-parameters

tuning. The early stopping strategy is performed for all models,

i.e., we report a model’s RMSE on the test set at the epoch

where it reaches the best performance on the validation set. We

implement ConvMF+, DeepCoNN, AIN and our CCANN3 in

Python using TensorFlow4. All neural network based methods,

i.e., ConvMF+, DeepCoNN, NFM, AIN, and CCANN, are

optimized by Adam [24]. Specifically, we fix the batch size

to 128 and conduct grid search for each model’s learning

rate from [10−5, 10−4, ..., 10−1]. The learning rate of FM

is also searched from this range. For MF-based models, i.e.,

PMF and ConvMF+, we set the dimension of the latent

factor to 20, and search tradeoff parameters from [0.1, 1, 10,

100]. For FM-based models, i.e., FM, DeepCoNN, NFM, and

CCANN, the dimension of factorized parameters k is set to

10, following [23]. For NFM, AIN and our CCANN, we set

the embedding size d to 50, and use ReLU(·) as the activation

function. In addition, to fairly compare the models’ capability

we disable the batch normalization technique in NFM, since

other models do not apply this trick for improving rating

prediction accuracy. For CNN-based models (ConvMF+ and

DeepCoNN), we initialize word embedding layer with pre-

trained word vectors on Google News from Word2Vec5 [26],

and the two models are regularized with dropout ratio of 0.2.

The maximum document length of concatenated reviews is

set to 1,000 words for ConvMF+ and DeepCoNN, following

the settings in [6]. We calculate tf-idf score for each word

in each dataset, and select top 20,000 distinct words with the

largest document frequency (df) from user reviews to construct

the vocabulary V . For Entity2Vec, we randomly sample 10%

input-target pairs from each user review, in order to reduce the

training time.

In our datasets, some users did not explicitly indicate their

contexts in their reviews, so we use a special token <UNK>

3Codes are available at https://github.com/Eli1995CS/CCANN-Entity2Vec
4https://www.tensorflow.org
5https://code.google.com/archive/p/word2vec
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TABLE III
PERFORMANCE COMPARISON IN TERMS OF RMSE.

Category Methods HK NYC LDN

context-unaware PMF 1.1185 1.1926 1.1923
FM 1.0140 1.0491 1.0437

implicit
context-aware

ConvMF+ 0.9001 0.9975 0.9832
DeepCoNN 0.8546 0.8815 0.8805

context-aware NFM 0.8481 0.8727 0.8661
AIN 0.8469 0.8664 0.8606

ours CCANNrand 0.8439 0.8658 0.8598
CCANN 0.8409∗ 0.8652∗ 0.8586∗

∗ denotes the statistical significance for p < 0.001 given by student’s
t-test, compared to NFM.

to denote the missing contexts. Moreover, for the context of

place, we also use this token to represent a city that contains

less than 100 reviews.

V. RESULTS AND DISCUSSIONS

A. Comparative Analysis on Overall Performances

The rating prediction results of our recommendation model

CCANN and baseline models on three datasets are given in

Table III. From the results, we have three observations.

Firstly, context-aware methods (NFM, AIN and CCANN)

generally perform better than the other models (PMF, FM,

ConvMF+ and DeepCoNN) that do not explicitly consider con-

texts. This is not surprising, as users’ decisions can be affected

by contextual factors, especially in service recommendation

scenarios. As such, context-aware models can better character-

ize users’ preferences over items’ aspects for recommendation.

Secondly, review-based methods (ConvMF+ and Deep-

CoNN) outperform traditional context-unaware models (PMF

and FM), because user reviews contain a lot of information

about users and items, including contextual factors, which can

be implicitly extracted by feature extractors, such as CNN

and RNN, to enhance user and item representations. However,

since some users did not indicate their contextual situations

in the reviews, which may explain why review-based methods

underperform context-aware algorithms.

Thirdly, as shown in Table III, our CCANN consistently

outperforms all the baselines, including context-aware methods

NFM and AIN. Although NFM is a context-aware approach,

it treats all entities (i.e., users, items, and contexts) equally

and models their relations in the same way, which may be

insufficient for characterizing the effects of contexts on users

and items. On the other hand, AIN employs two pathways

equipped with attention mechanism to dynamically infer the

relations between contexts and users/items, so it can generate

better recommendations than NFM. However, the represen-

tations of users and items in this model are only interacted

in the final prediction layer, which may be not enough for

accommodating complex relations between users and items.

In comparison, our model leverages co-attention mechanism

to automatically adjust the weight of a contextual variable

that matches a user’s contextual preferences and the target

item’s related aspects, and uses this weight on the user and

Fig. 4. Performance of CCANN w.r.t different embedding dimensions.

item embeddings in turn. Compared with AIN, the co-attention

mechanism in our model enables richer interactions between

users and items, and thus leads to better performance. In

addition, with embeddings learned from user reviews via

Entity2Vec, our CCANN’s performance is further boosted

compared with the randomly initialized CCANNrand, which

validates the rationale of our embedding method Entity2Vec.

To verify the efficiency of our proposed CCANN, we

estimate and compare the computational runtime of different

neural network models (ConvMF+, DeepCoNN, NFM, AIN

and CCANN). We only show the runtime when these models

reach the best performance on HK dataset on an NVIDIA Tesla

K80 GPU, as the results are similar on three datasets. Let ρ
be the runtime of NFM, the runtime of AIN and our CCANN

is around ρ as well. To reach the performance shown in Table

III, ConvMF+ and DeepCoNN run approximately at 13ρ and

68ρ, respectively. In a degree, this proves the efficiency of our

CCANN.

B. Tuning Hyper-parameters

In this subsection, we show our exploration on how dif-

ferent settings of the hyper-parameters would influence the

performance of our proposed CCANN. We only show the

results on HK dataset, since they share similar patterns on

the other datasets. The examined hyper-parameters include the

dimension of embeddings and the initial learning rate. The

curves of RMSE for two hyper-parameters on validation set

are presented respectively in Fig. 4 and Fig. 5. Although the

curve in Fig. 4 fluctuates dramatically, we can see that the

model performs poor when the embedding dimension is too

large or too small. Therefore, we set the embedding dimension

to be 50, as the model performs the best with this value. Fig.

5 shows the similar trend, so we set the learning rate to be

0.001 for our CCANN.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a context-aware recommen-

dation method that models relations between contexts and

users/items, and subsequently estimates the degree of match-

ing between a user’s preferences and an item’s aspects for
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Fig. 5. Performance of CCANN w.r.t different learning rates.

each contextual situation via co-attention mechanism. This

mechanism enables rich interactions between users’ and items’

context-aware representations, since they are mutually learned

from users, items and contexts. To further boost the per-

formance, we propose an embedding method Entity2Vec to

jointly learn different entities’ embeddings from user reviews.

Experimental results on three large datasets show that our

CCANN not only achieves better performance but also takes

acceptable training time, compared with the state-of-the-art

recommendation methods.

In the future, we will test our model on other service

domains (e.g., restaurant). We also plan to verify the necessity

of each component in our neural network, and will revise the

architecture accordingly to improve its performance. As we

mainly focus on recommendation task, the investigation on

co-attention scores has been omitted in this paper. We will

conduct a live-user study to investigate the selected contexts

for explanation purposes. We are also interested in the tech-

niques of automatic text generation, e.g., review generation

[27], as it may allow us to produce customized explanations

in the form of human-readable text.
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