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ABSTRACT
Conversational recommender systems (CRSs) aim to capture user
preferences and provide personalized recommendations through
interactive natural language interaction. The recent advent of large
language models (LLMs) has revolutionized human engagement in
natural conversation, driven by their extensive world knowledge
and remarkable natural language understanding and generation
capabilities. However, introducing LLMs into CRSs presents new
technical challenges. Directly prompting LLMs for recommendation
generation requires understanding a large and evolving item corpus,
as well as grounding the generated recommendations in the real
item space. On the other hand, generating recommendations based
on external recommendation engines or directly integrating their
suggestions into responses may constrain the overall performance
of LLMs, since these engines generally have inferior representation
abilities compared to LLMs. To address these challenges, we pro-
pose an end-to-end large-scale CRS model, named as ReFICR, a
novel LLM-enhanced conversational recommender that empowers
a retrievable large language model to perform conversational rec-
ommendation by following retrieval and generation instructions
through lightweight tuning. By decomposing the complex CRS task
into multiple subtasks, we formulate these subtasks into two types
of instruction formats: retrieval and generation. The hidden states of
ReFICR are utilized for generating text embeddings for retrieval, and
simultaneously ReFICR is fine-tuned to handle generation subtasks.
We optimize the contrastive objective to enhance text embeddings
for retrieval and jointly fine-tune the large languagemodel objective
for generation. Our experimental results on public datasets demon-
strate that ReFICR significantly outperforms baselines in terms
of recommendation accuracy and response quality. Our code is
publicly available at the link: https://github.com/yt556677/ReFICR.
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1 INTRODUCTION
Traditional recommendation systems rely on users’ historical inter-
actions, such as clicks and purchases, to provide recommendations.
Considering the changes in user preferences over time, conversa-
tional recommender systems (CRSs) allow users to actively seek
recommendations, alter their intentions, and provide immediate
feedback through natural language conversation with the system.
Previous methods [6, 43, 45, 48, 51] have introduced external knowl-
edge to enhance the representation of users’ preferences for recom-
mendations and have utilized pre-trained language models (PLMs)
for dialogue generation. However, encoding external knowledge
may require additional modules, and smaller-scale PLMs may not
yield satisfactory generation performance.

Recently, large language models (LLMs) such as ChatGPT [32]
and GPT-4 [33] have significantly advanced the learning paradigm
for conversational tasks [28]. Because these models are pre-trained
on large-scale datasets and possess a considerable number of model
parameters, they have demonstrated remarkable capabilities in nat-
ural language understanding and response generation. For CRSs,
several studies have investigated generating recommendations di-
rectly by prompting LLMs to serve as zero-shot conversational
recommenders [16, 44]. However, due to the large number of items
and the emergence of new items in practical situations, training
LLMs to memorize the entire corpus within their parameters for
direct recommendation generation is time-consuming and costly.
Moreover, LLMs are likely to cause hallucination problems, which
refer to the generation of items that deviate from the factual rec-
ommendation space. Grounding the generated recommendations
in the real item space hence remains a challenge [12].

To address these challenges, some studies have attempted to
integrate LLMs with external recommendation engines (such as the
traditional CRS models or embedded retrieval models) to make rec-
ommendations [10–12, 14]. In such CRSs, the LLMs may function
as a controller, managing the dialogue workflow and performing
appropriate actions at each turn. Although this approach may avoid
hallucinated recommendations of zero-shot CRSs, the utilization
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Figure 1: Workflow of our proposed ReFICR.

of an external recommendation engine may lead to inferior recom-
mendation performance because it typically has smaller parameters
compared to LLMs and hence may result in inferior representations.

In this paper, we introduce an end-to-end LLM-based CRS model,
called ReFICR for Retrievable large language model Following
Instructions for Conversational Recommendation. ReFICR aims
to mitigate the limitations of existing LLM-based CRSs by lever-
aging the powerful representation and generation capabilities of
an LLM, without the need for an external recommendation engine.
In particular, we lightly tune a retrievable large language model to
execute CRS subtasks, such as retrieval and recommendation gener-
ation, by following retrieval and generation instructions. The text
inputs, along with retrieval instructions, are fed into ReFICR to ob-
tain representations. It is also fine-tuned to respond to generation
instructions by producing appropriate responses.

The workflow of ReFICR can be seen in Figure 1. At each turn,
ReFICR will predict the next dialogue action according to the user’s
intention. If the action is to provide recommendations, it will re-
trieve both a candidate set from the item corpus and collaborative
knowledge from similar users’ conversations for generating the
top-k recommendations, as well as a natural language response
aligned with the recommendation result. If the next action is not
to provide recommendations, the model will directly generate a
response to the user’s query.

Specifically, for the retrieval subtasks, the current user’s conver-
sation context, along with the task instructions, can be embedded
into query representation by utilizing ReFICR’s hidden states as text
embeddings.We perform candidate set retrieval and retrieval of sim-
ilar users’ conversations based on the similarity of text embeddings.
The generation subtasks, including recommendation and response
generation, can be formulated as language modeling tasks. ReFICR
can generate recommendations by ranking the retrieved candidate
set with augmented knowledge, and generate natural language
responses aligned with the conversation context. We concretely
freeze a backbone model, GRITLM [29], which is a large language
model fine-tuned from Mistrial-7B [21] on text embedding tasks
and generation tasks, and adopt QLoRA [9] for efficient finetuning.
By jointly tuning the model with a contrastive objective to enhance
text embeddings for retrieval and a language modeling objective for

generation, our ReFICR can achieve desired performance in terms
of both recommendation accuracy and response quality.

Our contributions are summarized as follows:

• We present ReFICR, a novel LLM-enhanced conversational
recommender that empowers a retrievable large language
model to perform retrieval and generation for CRSs.

• We unify the subtasks of an CRS into two forms: retrieval
and generation, which can be seamlessly aligned by LLMs
through instruction tuning.

• The experiments on public datasets demonstrate the supe-
rior performance of our model against baseline methods,
validating the effectiveness of this work.

2 RELATEDWORK
2.1 Conversational Recommender Systems
Conversational recommender systems (CRSs) capture user pref-
erences through iterative conversations to provide personalized
recommendations [20]. Existing works regard the CRS as the com-
bination of a recommendation component and a conversation com-
ponent, for which separate modules are built to fulfill each task.
For instance, ReDial [24] utilizes an autoencoder-based recommen-
dation module along with a hierarchical recurrent encoder-decoder
network [36] to generate responses. For further improving recom-
mendation performance of CRSs, KBRD [6] and KGFS [51] introduce
structured knowledge (such as DBpedia [4] and ConceptNet [37])
to enhance the user’s preference representation. 𝐶2-CRS [52] and
RevCore [27] introduce unstructured knowledge like user reviews
through transformers.

To address the discrepancy between separate modules, unified
frameworks have been proposed to share useful features and knowl-
edge for the recommendation and conversation tasks within a single
model. UniCRS [45] uses knowledge-enhanced prompts to fine-
tune DialoGPT [50] to perform both recommendation and response
generation. BARCOR [43] is based on pre-trained BART [23] to
uniformly fine-tune recommendation and generation tasks, and
utilizes a specific knowledge graph for CRSs. MESE [48] uses the
items’ meta-information to enhance the representation using a pre-
trained GPT-2 [34] and an item representation encoder. Although
these models are able to unify both tasks in a single model, addi-
tional knowledge about the context or items is often required to
enhance the user’s preference representation. PECRS [35] directly
formulates an CRS as natural language processing tasks, applying a
parameter-efficient plug-in module based on the frozen pre-trained
model GPT-2 [34] to handle the generation and item recommenda-
tion tasks.

With the advance in large language models (LLMs), some studies
have recently been conducted to use LLMs for CRSs. [16] shows
that LLMs, especially closed-source models like ChatGPT [32] and
GPT-4 [33], can outperform fine-tuned CRS models in zero-shot
setting. LLMCRS [11] and RecLLM [12] employ LLMs to build end-
to-end CRSs. More concretely, LLMCRS uses existing CRS models,
such as KBRD [6] and KGFS [51], to perform user preference elicita-
tion and recommendation tasks. RecLLM utilizes external retrieval
models to obtain the candidate set and employs LLMs to perform
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Figure 2: Overview of our ReFICR. The example conversation is from INSPIRED dataset [15]. The prompts for retrieval subtasks
and generation subtasks are fed into the LLM. Contrastive learning is utilized to improve text embeddings for retrieval, and the
large language model objective is jointly trained for generation.

preference understanding and generate recommendation explana-
tions. MACRS [10] accomplishes CRS tasks through collaborating
with multiple LLM-based agents.

Different from previous LLM-enhanced CRS work, we employ a
retrievable large language model to perform retrieval and recom-
mendation generation by following instructions, without relying
on external recommendation engines.

2.2 Instruction Tuning
Retrieval with instructions is an emerging area for exploration.
Traditionally, models such as OpenAI’s embeddings [31] and E5
[41] are trained on unsupervised text pairs and subsequently fine-
tuned on small-scale annotated datasets to enhance the quality
of text embeddings. However, the performance of these models
deteriorates when being applied to new tasks or domains. There-
fore, INSTRUCTOR [38] proposes to fine-tune the retrieval model
with instructions, enabling the model to encode the text input into
different embeddings with varying tasks and goals. In addition,
retrieval with instructions can further improve the performance
of retrieval models compared to those that only have text [1]. This
is because instructions provide additional context and guidance
to the retrieval model, helping to clarify ambiguous user queries
and understand the specific requirements of the retrieval task. To
acquire high-quality instruction data, one related work [42] syn-
thesizes a dataset of diverse text embedding tasks by prompting

LLMs. Mistral-7B [21] is then fine-tuned on this dataset to learn
text embeddings. However, the generation performance of LLMs
may be compromised when being trained only for text embeddings.
Therefore, CRITLM [29] is proposed to perform embedding and
generation simultaneously by fine-tuning Mistral-7B [21].

For recommender systems, there exists a gap between the train-
ing tasks of LLMs and recommendation task due to limited recom-
mendation data at the pretraining stage. TALLRec [3] converts the
recommendation task, i.e., whether an itemwould be liked by a user,
into an instruction format that includes the task instruction, the
task input, and the task output. They leverage the LLaMA-7B [40]
model with LoRA [18] for fine-tuning. InstructRec [49] formulates
the recommendation task into natural language instructions from
four aspects: preferences, intentions, tasks, and content. Then, the
backbone Flan-T5 [8] model is fine-tuned based on the constructed
instructions. BIGRec [2] fine-tunes a large language model using
the constructed sequential recommendation instructions data. It
then matches the generated item tokens with the corresponding
actual items by calculating the distance between their embeddings.
TransRec [26] proposes to represent item information based on mul-
tifaceted identifiers, namely item ID, item name, and item attributes.
Each user’s interaction sequence is then converted into different
aspects of instructions for bridging LLMs to recommendations.

In our work, we unify the CRS subtasks into retrieval and gener-
ation forms, and formulate them into instruction data formats. Our
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Table 1: Illustrative examples of instructions for CRS subtasks. <s> and </s> are the start and end tokens, <|user|>, <|embed|>,
<|assistant|> are special tokens related to the user, the embedding, and the system respectively.

Task Input Instruction Output

Conv2Item <s><|user|>{Query Instruction}: Retrieve relevant items based on user conversation
history<|Embed|>{Conversation Context} Text embeddings

<s><|user|>{Sample Instruction}: Represent the item for retrieval<|Embed|>{Item De-
scription}

Conv2Conv <s><|user|>{Query Instruction}: Given a user’s conversation history, retrieve conversa-
tions from other users with similar intents<|Embed|>{Conversation Context} Text embeddings

<s><|user|>{Sample Instruction}: Represent the conversation context for similar user
intention retrieval<|Embed|>{Conversation Context}

Ranking <s><|user|>Rank the candidate items, each identified by a unique number in square
brackets, based on their relevance score to the conversation context and referring
to the retrieved knowledge. - Candidate Items:{} - Conversation context:{} -Retrieved
Knowledge:{} Output the top {} results from most relevant to least relevant, listing the
identifiers on separate lines

<|assistant|>
{Ranked candidate
list}</s>

Dialogue Management <s><|user|>Analyze the conversation context: {}. Determine the user’s intention and
suggest a system dialogue action. Provide your explanation and suggested action,
enclosed in special tokens <a></a>

<|assistant|>{Next
system action}</s>

Response Generation <s><|user|>Act as an intelligent conversational recommender system. When respond-
ing, adhere to these guidelines: - Conversation Context:{} - Use this to inform your
dialogue. -Recommended Items:{} - When available, include these in your response. -
Response Rules: With Items: Seamlessly incorporate the recommended items within
<item></item> into the response. Without Items: Generate a contextually relevant
response that assists the user

<|assistant|>
{Response}</s>

model is then fine-tuned using the constructed instruction data in
order to effectively perform retrieval and generation tasks.

3 METHODOLOGY
3.1 Overview
In our approach, we choose GRITLM [29] as our base model due
to its exceptional performance on the massive text embedding
benchmark and a variety of generation tasks. For recommenda-
tion task, we adopt a two-stage pipeline. First, candidate items are
retrieved from a predefined item corpus. Next, recommendations
are generated by ranking these candidate items with reference to
the retrieved collaborative knowledge. For dialogue generation, we
introduce dialogue management task, which controls the dialogue
workflow and response generation. These tasks can be reshaped into
two forms: retrieval (i.e. candidate set retrieval and collaborative
knowledge retrieval) and generation (i.e., dialogue management,
ranking, and response generation).

The framework of our proposed ReFICR is depicted in Figure 2.
The prompts for the retrieval and generation tasks are embedded
and fed through the large language model into the last hidden states.
For the retrieval task, bidirectional attention is applied to the input,
and mean pooling is performed on the last hidden states to yield
text embeddings. For the generation task, the model employs causal
attention on the input and predicts the next tokens. The contrastive
objective is jointly optimized with the language model objective to
train the model for both retrieval and generation tasks.

3.2 Problem Statement
Conversational recommender systems are able to interactively elicit
the user’s preferences during multi-turn conversations and take

actions based on the user’s current intention. Formally, let𝐻 denote
the conversation history between all users and a conversational
recommender. 𝐶𝑖 =

{
𝑢 𝑗

}𝑛
𝑗=1 is a conversation context between

a user 𝑖 and the recommender, where 𝐶𝑖 ∈ 𝐻 and 𝑢 𝑗 is the 𝑗-th
utterance produced by either the user or the recommender. The item
corpus is denoted as 𝐼 = {𝑒𝑘 : 𝑑𝑘 }𝑚𝑘=1, where 𝑒𝑘 represents an item
and 𝑑𝑘 is its corresponding description that can be obtained from
its meta information. The goal of the conversational recommender
can be defined as follows: at the 𝑡-th conversation turn, given the
conversation history 𝐶𝑖 =

{
𝑢 𝑗

}𝑡−1
𝑗=1 and item corpus 𝐼 , the system

determines whether to recommend or not according to the user’s
intention. If it will recommend, the item set 𝐼𝑡 is selected from the
item corpus 𝐼 as the recommendation set, and a natural language
response 𝑢𝑡 containing 𝐼𝑡 is generated. Otherwise, the response 𝑢𝑡
is directly generated to respond to the user’s query.

3.3 Contrastive Learning for Retrieval
We formulate the retrieval task in our CRS in instruction format,
so that, for the same text input, we can customize it to different
embeddings based on specific instructions. We define two types of
retrieval subtask: Conv2Item, where candidate items are retrieved
from the item corpus 𝐼 given the current conversation context
𝐶𝑖 ; Conv2Conv, where conversations with similar intentions are
retrieved from all other users’ conversations 𝐻 . The Conv2Item
subtask aims to narrow down the candidate set for downstream
ranking, while the Conv2Conv subtask is intended to introduce
collaborative knowledge.

The prompt templates of Conv2Item and Conv2Conv can be seen
in Table 1. The model takes the text (e.g., conversation context,
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item description) along with the retrieval task instructions as in-
put and outputs the corresponding text embeddings, which are
tensors of numbers. To be specific, the conversation context 𝐶𝑖 , as
an input query, is encoded into a hidden representation accord-
ing to the instruction of the retrieval task. The documents can be
retrieved based on the similarity between the query and the docu-
ment embeddings. The documents are the items in Conv2Item and
the conversations of similar users in Conv2Conv. To learn the text
embeddings, our ReFICR is fine-tuned using a contrastive learning
objective, which involves bringing semantically similar text pairs
together and pushing apart irrelevant pairs.

We construct retrieval instruction instances for the two subtasks
using the ReDial [24] and INSPIRED [15] datasets. To identify posi-
tive and negative samples for Conv2Item, given the conversation
context 𝐶𝑖 as a query, 𝑆𝑖 can represent its corresponding positive
sample, which is the recommended item’s description 𝑑𝑖 in the
ground truth response. 𝐼𝑐 and 𝐼𝑠 represent the query instruction
and sample instruction, respectively, as shown in Table 1.

We then obtain hard negative samples through the following
two steps:

First, since our backbonemodel GRITLM [29] has been fine-tuned
on limited conversational retrieval tasks, it is difficult to acquire
high-quality hard negative samples directly using the GRITLM
embeddings. Therefore, we first derive our initial model, denoted as
ReFICR_INIT, based on GRITLM, to improve the text embeddings.
We achieve this by adopting the contrastive learning loss function
[13] for the positive pair (𝐶𝑖 , 𝑆𝑖 ) with a mini-batch of 𝑁 pairs,
defined as follows:

L𝑖𝑛𝑖𝑡 = − 1
𝑁

𝑁∑︁
𝑖=1

log
𝑒sim(Eg [𝐼𝑐⊕𝐶𝑖 ],Eg [𝐼𝑠⊕𝑆𝑖 ] )/𝜏∑𝑁
𝑗=1 𝑒

sim(Eg [𝐼𝑐⊕𝐶𝑖 ],Eg [𝐼𝑠⊕𝑆 𝑗 ] )/𝜏
(1)

where ⊕ represents the concatenation of the input text and its
corresponding instruction, 𝜏 is a temperature hyperparameter, Eg (·)
indicates that GRITLM [29] is used as the encoder to obtain the
text embeddings, and sim(·, ·) is the cosine similarity between the
text pairs.

Second, we construct hard negative samples using the embed-
dings of our initial model ReFICR_INIT, denoted as Er (·). We select
hard negative samples from the item corpus that are close to the
conversation context but are not the ground truth items. We calcu-
late the similarity between 𝐶𝑖 and each item description 𝑆 ′

𝑗
≠ 𝑑𝑖 in

the item corpus 𝐼 to select the 𝑘 items with the highest 𝑠𝑛𝑒𝑔 scores,
denoted as N = {𝑆 ′

𝑗
}𝑘
𝑗=1. The score 𝑠𝑛𝑒𝑔 is computed as follows:

𝑠𝑛𝑒𝑔 = sim(Er ( [𝐼𝑐 ⊕ 𝐶𝑖 ]), Er [𝐼𝑠 ⊕ 𝑆 ′𝑗 ]) (2)

For theConv2Conv subtask, the objective is to retrieve the conver-
sation context of other users with similar intentions to the current
user’s (i.e., 𝐶𝑖 ) from 𝐻 . Because there is no ground truth data avail-
able for this subtask, positive and negative samples can be obtained
as follows: Initially, a conversation history𝐶 𝑗 ∈ 𝐻 is selected as the
positive sample, denoted as 𝑆𝑖 , if it shares the same ground truth
recommendation item with 𝐶𝑖 . The positive pairs (𝐶𝑖 , 𝑆𝑖 ), along
with the text pairs at the first stage of Conv2Item, are optimized
with the contrastive objective in Equation (1) for the same purpose.
Next, instead of using in-batch negatives, we improve the quality of
negative samples. For𝐶𝑖 and ∀𝐶 𝑗 ∈ 𝐻 , the 𝑘 conversation histories

with the highest scores 𝑠𝑛𝑒𝑔 , denoted as N = {𝑆 ′
𝑗
}𝑘
𝑗=1, are chosen

as the hard negative samples if their ground truth items differ from
𝐶𝑖 . The score is calculated as follows:

𝑠𝑛𝑒𝑔 = sim(Er [𝐼𝑐 ⊕ 𝐶𝑖 ], Er [𝐼𝑠 ⊕ 𝐶 𝑗 ]) − sim(Er [𝑑𝑖 ], Er [𝑑 𝑗 ]) (3)

where 𝑑𝑖 and 𝑑 𝑗 are item descriptions of the ground truth recom-
mendation corresponding to 𝐶𝑖 and 𝐶 𝑗 , respectively.

For both retrieval subtasks, we consider the positive pair (𝐶𝑖 , 𝑆𝑖 )
and the negative pairsN = {(𝐶𝑖 , 𝑆′𝑗 )}

𝑘
𝑗=1. To maximize the distance

in the positive pair and minimize the distance in the negative pairs,
we optimize the contrastive objective [47]:

L𝐶𝑖
=

𝑒sim(Eg [𝐼𝑐⊕𝐶𝑖 ],Eg [𝐼𝑠⊕𝑆𝑖 ] )/𝜏

𝑒sim(Eg [𝐼𝑐⊕𝐶𝑖 ],Eg [𝐼𝑠⊕𝑆𝑖 ] )/𝜏 + ∑
(𝐶𝑖 ,𝑆

′
𝑗
) ∈N

𝑒
sim(Eg [𝐼𝑐⊕𝐶𝑖 ],Eg [𝐼𝑠⊕𝑆 ′𝑗 ] )/𝜏

(4)
L𝑐𝑙 = − 1

𝐻

∑︁
𝐶𝑖 ∈𝐻

log(L𝐶𝑖
) (5)

3.4 Supervised Fine-tuning for Generation
In this subsection, we first introduce three generation subtasks, fol-
lowed by the instruction data construction and LLM optimization.

For recommendation generation, after retrieving the candidate
set by executing the Conv2Item task and collaborative knowledge
by executing the Conv2Conv task, we perform a ranking task. Be-
cause large language models demonstrate robust listwise ranking
capabilities [17, 39], we prompt the LLM to comprehend the users’
preferences and rank the candidate items based on their relevance.
By referring to the retrieved candidate items and collaborative
knowledge, our model can ground the generated recommendations
in factual item space, potentially mitigating hallucinated genera-
tion.

For conversation-related tasks, the control of the dialogue work-
flow is the core of an CRS. Executing the dialogue management task
allows for providing reasonable system action based on the user’s
intention at each turn. Considering simplicity and flexibility, we
model the dialogue management as a generation task. In each turn,
our model takes the conversation context as input and generates
a sequence of system actions expressed in natural language. The
response generation task is to generate fluent responses that align
with the conversation context and recommendation results.

Each instance of instruction data for generation tasks consists of
an instruction that describes the task and an anticipated output. The
prompt templates are shown in Table 1. The (instruction-output)
pairs are constructed by applying prompt templates to text-label
pairs from existing annotated CRS datasets [5, 15, 24]. To be more
specific, the dialogue management instruction data is constructed
based on the IARD dataset [5], where user intents and recommender
actions are annotated at each dialogue turn. The instruction is to
analyze the conversation context and predict the next system action
with an explanation. The specific conversation context and the
system’s output are obtained from data examples in the dataset.
For example, consider the following conversation context: “I don’t
really like horror movies. What about thrillers?” The annotated user
intent is “Give Feedback and Reject", and the corresponding labeled
system action is “Recommend". An anticipated output for the next
system action, along with an explanation, can be constructed as
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follows: “<a>Recommend</a>, since the user has expressed ‘dislike’
for the recommended item, the system should provide alternative
recommendations in the next interaction." Here, <a> and </a> are
special tokens to identify the system action.

For the ranking task, we prompt our ReFICR to rank based on
the conversation context, the retrieved candidate set, and the corre-
sponding retrieved collaborative knowledge. The model leverages
its intrinsic knowledge to comprehend the conversation context
and incorporates the external knowledge to generate a ranked list
of items, ordered from the most to the least relevant. To generate
coherent responses that correspond to users’ queries, the ground
truth response for each conversation context within the datasets
[15, 24] is considered as the anticipated output for the response
generation task.

With the constructed instruction data, we can optimize the large
language model through instruction tuning, which essentially is a
supervised fine-tuning approach. Given that both the instruction
and the target output can be expressed in natural language, we
can consolidate the training process into a unified sequence-to-
sequence framework. Specifically, we minimize the following loss
for model training:

L𝑔𝑒𝑛 = −
∑︁

(𝑥,𝑦) ∈D

|𝑦 |∑︁
𝑡=1

𝑙𝑜𝑔(𝑃𝜃 (𝑦𝑡 |𝑦<𝑡 , 𝑥)) (6)

where 𝑥 and 𝑦 represent instruction input and output respectively,
𝑦𝑡 is the predicted next word,𝑦<𝑡 is the sequence of all the previous
words, and 𝜃 is the model parameter.

Finally, we define the loss function of ReFICR to incorporate
both L𝑐𝑙 and L𝑔𝑒𝑛 as follows:

L = 𝜆𝑐𝑙L𝑐𝑙 + 𝜆𝑔𝑒𝑛L𝑔𝑒𝑛 (7)

We concretely employ the parameter-efficient fine-tuning approach
QLoRA [9], for reducing memory usage when fine-tuning large
language models while preserving task performance.

4 EXPERIMENTS
4.1 Datasets
We conducted experiments on two public English conversational
recommendation datasets, namely ReDial [22] and INSPIRED [15],
to evaluate the performance of our model. These datasets were
collected in the scenario of providing movie recommendations by
crowd-sourcing workers on Amazon Mechanical Turk. The ReDial
dataset comprises a training set of 10,006 dialogues and a test set of
1,342 dialogues. The movie set for ReDial was gathered from film
type entities of DBpedia [4]. The INSPIRED dataset consists of 1,001
dialogues, with 801 dialogues used for training, 99 for validation,
and the remaining 99 for testing. The dataset contains a total of
17,869 recommended movies, along with their meta information.

4.2 Baselines
We have considered the representative baseline models including
traditional CRS models and LLM-based models, to be compared
with our model ReFICR.

The traditional CRS baseline models include:

• ReDial [24]: This model leverages HRED [36] framework
for conversation module and autoencoder for recommenda-
tion.

• KBRD [6]: This model incorporates knowledge from DBpe-
dia [4], alongside the items mentioned in the conversation
history, to represent user preferences for recommendations.
The Transformer architecture is employed for performing
the conversation task.

• KGSF [51]: This model utilizes external knowledge graphs,
DBpedia [4], and ConceptNet [37], to introduce item-level
and word-level knowledge when recommending. The re-
sponse generationmodule is a knowledge-enhanced encoder-
decoder based on the Transformer architecture.

• BARCOR [43]: This model fine-tunes recommendation and
dialogue tasks within a single pre-trained language model
BART [23] and utilizes the constructed knowledge graph
CORG to enhance the representation of items.

• UniCRS [45]: This model is based on the pre-trained lan-
guage model DialoGPT [50]. The recommendation and dia-
logue subtasks are formulated into a prompt learning form.

• MESE [48]: This model includes an item encoder and a
pre-trained language model GPT-2 [34]. The item encoder
converts the meta-information of the item into embeddings.
The pre-trained model combines the item representation
and the conversation context to make recommendations and
generate responses.

• PECRS [35]: This model proposes a parameter-efficient
plugin module and employs the frozen pre-trained language
model GPT-2 [34] as a backbone to unify response generation
and item recommendation tasks.

The LLM-based baseline models include:
• GPT-3.5-turbo [32] andGPT-4 [33]: They are closed-source
large language models developed by OpenAI.

• Vicunna-13B [7]: This is a representative open-source large
language model.

• GRITLM [29]: This model is fine-tuned based on Mistrial-
7B [21] for handling both generation and embedding tasks
through generative and representational instruction tuning.

4.3 Evaluation Metrics
Following the previousworks onCRS [35, 51], we adopted𝑅𝑒𝑐𝑎𝑙𝑙@𝑘

as the evaluation metric for the recommendation task, where 𝑘 ∈
{1, 5, 10, 50}. For the response generation task, we utilized Perplexity
(PPL) to measure the negative log-likelihood of the correct sequence
output by the model, which is a common metric for language mod-
eling tasks. Additionally, we adopted 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡@𝑛, where 𝑛 ∈ {2, 4},
to measure the diversity of the generated responses.

4.4 Implementation
In our experiments, we initialized our ReFICR model with the large
languagemodel, GRITLM-7B [29], because of its outstanding perfor-
mance on the massive text embedding and generation benchmark.
ReFICR was fine-tuned for 2 epochs with a batch size of 2. We
adopted the AdamW optimizer with a learning rate of 2e-5 and a
warmup rate of 0.03. For retrieval tasks, the maximum token lengths
of the queries and samples were set to 512 and 1024 respectively.
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Table 2: Recommendation performance on the two datasets. The number in bold denotes the best result regarding that metric
and the second best is underlined. † means the results are quoted from their original papers.

Method ReDial INSPIRED
Recall@1 Recall@10 Recall@50 Recall@1 Recall@10 Recall@50

ReDial [24] 0.018 0.056 0.182 0.006 0.065 0.288
KBRD [6] 0.033 0.179 0.350 0.058 0.134 0.230
KGSF [51] 0.037 0.186 0.371 0.064 0.139 0.239
BARCOR [43] 0.024 0.138 0.329 0.036 0.136 0.297
UniCRS [45] 0.049 0.214 0.421 0.096 0.236 0.393
MESE† [48] 0.056 0.256 0.455 0.048 0.135 0.301
PECRS† [7] 0.058 0.225 0.416 0.057 0.179 0.337
Vicunna-13B [16] 0.031 0.164 - 0.067 0.104 -
GPT-3.5-turbo [32] 0.039 0.168 - 0.051 0.150 -
GPT-4 [33] 0.045 0.194 - 0.091 0.194 -
GRITLM [29] 0.030 0.169 0.302 0.064 0.183 0.263
ReFICR 0.061 0.305 0.532 0.135 0.274 0.396

Table 3: Response generation performance on the two
datasets.

Method ReDial INSPIRED
PPL ↓ Dist-2 ↑ Dist-4 ↑ PPL ↓ Dist-2 ↑ Dist-4 ↑

ReDial [24] 28.1 0.225 0.236 286.9 0.406 2.205
KBRD [6] 17.9 0.263 0.432 34.89 0.484 3.782
KGSF [51] 5.60 0.289 0.519 27.14 0.545 4.778
UniCRS [45] 11.6 0.413 0.745 17.11 3.680 5.036
MESE† [48] 12.9 0.822 1.313 - - -
PECRS† [7] 8.98 0.820 2.154 - - -
ReFICR 4.80 1.478 2.817 12.51 4.11 6.17

The maximum token length for the generation task was 2048. If
the sentence length exceeded the limit, it would be truncated. The
ratio of positive to hard negative samples used for contrastive learn-
ing was 1:9. We implemented parameter-efficient fine-tuning using
QLoRA with a rank of 64, an alpha value of 16, and a dropout rate
of 0.05, using the PEFT library. For experimental details regarding
LLM-based baselines, we adhered to the settings and prompts uti-
lized in the previous works [16] for GPT-3.5-turbo [32], GPT-4 [33],
and Vicuna-13B [7], as zero-shot conversational recommenders. We
employed GRITLM [29] to encode the conversation context and
item descriptions, predicting recommendations by calculating the
cosine similarity between the representations of the conversation
context and the items. The settings and implementations of base-
lines were based on their released open-source codes. The results
for MESE [48] and PECRS [35] were quoted from the original pa-
pers. Our experiments were conducted on a single NVIDIA A100
80G GPU.

4.5 Overall Performance
4.5.1 Recommendation. Table 2 presents the recommendation re-
sults from our proposed model, ReFICR, and the baselines on two
datasets: ReDial and INSPIRED. The results demonstrate that ReFICR
outperforms all the baselines on both datasets, especially in terms
of Recall@10 and Recall@50 for ReDial, and Recall@1 and Recall@10

Table 4: The results of the ablation study on the IN-
SPIRED dataset for the recommendation subtasks including
Conv2Item, Conv2Conv, and Ranking. The symbol ‘/’ denotes
“without”.

Method INSPIRED
Recall@1 Recall@5

Conv2Item+Random Ranking 0.018 0.128
Conv2Item/instruction 0.060 0.142
Conv2Item 0.073 0.205
Conv2Item+Ranking+Conv2Conv/FT 0.074 0.206
Conv2Item+Ranking 0.084 0.207
Conv2Item+Ranking+Conv2Conv 0.135 0.229

for INSPIRED. This indicates that the retrieval and ranking pro-
cesses in our model are effective for improving recommendation
accuracy. Moreover, ReFICR can enhance the text embeddings
through instruction tuning, resulting in its superior performance.
More specifically, ReFICR achieves better performance compared
to traditional CRS methods, including those that utilize external
knowledge graphs to enhance user preference representation such
as KGFS [51] and UniCRS [45], as well as models that leverage
item descriptions for recommendations such as MESE [48] and
PECRS [35]. ReFICR does not rely on additional modules, and it
can tailor the text embeddings to different specific tasks by using
instructions. The results verify that the text embeddings of large
language models are powerful for obtaining better user preference
representations.

In comparison to LLM-based models, directly prompting large
language models to elicit user preferences within a conversation
context can generate recommendations with comparable or even
superior performance to those produced by traditional CRS meth-
ods. ReFICR can further improve recommendation performance
through fine-tuning. In particular, compared to GRITLM [29] from
which ReFICR is initialized, the performance can be significantly
improved by constructing CRS subtask instructions and fine-tuning,
especially on the Redial dataset. This might be attributed to the fact
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Figure 3: Performance comparison between different nega-
tive samples using Recall@50 on the INSPIRED Dataset.

that GRITLM primarily focuses on the information retrieval bench-
mark during tuning, which creates a gap from the recommendation
task of CRSs.

4.5.2 Response Generation. The experimental results of response
generation are summarized in Table 3. The dialogue models em-
ployed in the compared baseline methods can be grouped into
three categories: Redial [24] based on recurrent neural networks
(RNNs); KBRD [6] and KGFS [51] utilizing Transformer architec-
ture; and UniCRS [45], MESE [48], and PECRS [7] with pre-trained
language models. As generative models have evolved from RNNs
to the Transformer architecture and, subsequently, to PLMs, the
results w.r.t. PPL have shown a decreasing trend, while those w.r.t.
𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡@𝑛 have shown an increasing trend. This indicates the
models’ improving performance in generating coherent and diverse
responses.

Notably, our proposed ReFICR model outperforms all baselines
in terms of Perplexity (PPL) and Distinct metrics, thereby verifying
that ReFICR can generate more diverse responses while maintaining
consistency with the ground truth. This may be attributed to the
fact that our model is pre-trained on vast datasets, which cover a
wide range of topics and contexts. Furthermore, fine-tuning the
model on the response generation task may improve its ability to
generate responses aligned with the ground truth.

4.6 Ablation Study and Analysis
Our ReFICR incorporates several components for improving the
quality of recommendations. To verify the effectiveness of each com-
ponent, we conducted the ablation study based on the INSPIRED
dataset. The results are shown in Table 4 in terms of Recall@1 and
Recall@5. For recommendation, ReFICR executes theConv2Item sub-
task that retrieves the top-50 candidate items, and the Conv2Conv
task that retrieves other user queries with similar intentions to the
current user’s and the corresponding system-recommended items.
Then, the candidate items are ranked according to the retrieved
collaborative knowledge.

We compared ReFICR with the following variants: (1) To ver-
ify the effectiveness of the retrieval instruction, we conducted an
experiment where we removed the instruction when retrieving
the candidate set, denoted as Con2Item/Instruction. Our observa-
tions indicate that the model’s performance drops dramatically

Figure 4: Ranking generation performance regarding dif-
ferent lengths of retrieved candidate set on the INSPIRED
dataset.

without instruction. (2) We evaluated the model’s performance
by removing the ranking task and only computing Recall using
the retrieved candidate set, denoted as Con2Item. The results in-
dicate that ranking the candidate item set can further improve
the recommendation performance. We also examined the effect
of random ranking by randomly permuting the candidate set, de-
noted as Conv2Item+Random Ranking. Our findings indicate that
the model ranks items according to the instructions rather than
yielding random results. (3) For the retrieved collaborative knowl-
edge, we removed the knowledge at the ranking stage, denoted
as Conv2Item+Ranking, and found that introducing collaborative
knowledge can enhance the ranking performance. However, if the
subtask of retrieving collaborative knowledge is not fine-tuned,
denoted as Conv2Item+Ranking+Conv2Cov/FT, the model may in-
troduce noise during ranking, resulting in inferior performance
compared to ranking directly without knowledge. Finally, with the
fine-tuned retrieved knowledge integrated into the ranking stage,
our ReFICR model outperform its variants.

4.7 Hyper-parameter Study
We analyze the impact of hyper-parameters related to negative
samples on the performance of recommendations during retrieval
instruction tuning. Figure 3 shows the Recall@50 results of our
model on the INSPIRED dataset. It indicates that introducing hard
negative samples can improve the model’s performance during
tuning when being compared to in-batch negative samples. Due
to limited computing resources, we restricted our evaluation to a
range of 1 to 9 negative samples. We selected 1 positive sample and
9 negative samples for retrieval instruction tuning. Additionally,
the impact of candidate length on model ranking performance
is illustrated in Figure 4. The experimental results indicate that
increasing the length of the candidate item set does not enhance the
ranking performance, but may compromise the model’s inference
speed. It is conjectured that this may arise from the increased
ranking difficulty of large language models, which is caused by
the growing number of candidate items. Hence, we chose 10 as the
length of the candidate set„ striking a balance between performance
and efficiency.
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Table 5: A case study of ReFICR

Conversation:
R: What type of movies do you like?
S: I like romance, sometimes SCI-Fi. But I don’t think I want to watch
anything scary. I’m looking for something that I can really escape
into.
Ground truth response: Have you watched Interstellar?
Dialogue Management:
Explanation: The seeker has specific preference for the type of
movie he wants to watch, which are romance and SCI-Fi, but he
does not want to watch anything scary.
Suggested Action: <a>Recommend</a>
Retrieved Top-10 Candidate Set:
[231]Zoe [1431]Her [1902]Seeking a Friend for the End of theWorld
[50]AdAstra [598]Arrival [1396]Gravity [1217]Interstellar [846]The
Martian [297]A Wrinkle in Time [4033]Star man
Retrieved Collaborative Knowledge:
The recommender suggested Interstellar (2014) to the user accord-
ing to preferences of similar users. The referred content is: Seeker:
Can you help me with finding a movie trailer? Recommender: Abso-
lutely! What genre of movies to you like? Seeker: Sci-fi and Action ...
Recommender: Awesome! I recommend one of my personal favorites,
Interstellar.
Ranked List:
[1217, 1902, 1396, 846, 297, 50, 598, 4033, 1431, 231]
Generated Response:
Have you seen <item>interstellar</item>? It’s a science fiction epic
that also weaves in elements of human drama and romance.

4.8 Case Study
As shown in the Table 5, we present an example of the recommen-
dations and response generated by our model. Firstly, ReFICR can
comprehend the user’s current intention and suggest a reasonable
system action with an explanation. If the suggested action is rec-
ommendation, the model can retrieve the top-10 candidate items
and relevant knowledge. Next, our model can rank the candidate
items by considering the relevance to the conversation context and
output the corresponding ranked items. Finally, given both the con-
versation context and the recommendation, our model is capable
of generating a coherent response that includes the recommended
item.

5 CONCLUSION
In this work, we propose ReFICR, a novel end-to-end instruction-
following conversational recommender model. We decompose the
complex CRS task into five subtasks: candidate set retrieval, collab-
orative knowledge retrieval, ranking, dialogue management, and
response generation. We transform these subtasks into their corre-
sponding retrieval and generation instructions by utilizing prompt
templates. Contrastive learning is employed to enhance text embed-
dings, which are customized for different retrieval subtasks through
specific retrieval instructions. Additionally, supervised fine-tuning
is applied to improve performance of generation subtasks. Experi-
mental results show that ReFICR outperforms the baseline methods,
demonstrating its promising recommendation performance and
ability to generate diverse and informative responses.

However, although we employ parameter-efficient fine-tuning
where only a limited number of parameters are tuned, LLMs may
still face catastrophic forgetting when being fine-tuned on the
specific tasks. In the future, we will validate the performance of our
model on tasks such as embedding tasks from the MTEB benchmark
[30] and open-ended generation tasks fromAlpacaEval [25].Wewill
also explore continual learning approaches, such as replay-based
methods [19, 46], to mitigate the catastrophic forgetting issue. On
the other hand, the computational cost and inference efficiency can
be critical to the use of LLMs in practical situations. To address this
challenge, acceleration and parallel computing techniques might be
utilized. We will also investigate knowledge distillation from large
language models to small models in our future work to potentially
enhance computational efficiency and facilitate the deployment of
these models in resource-constrained environments.
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