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ABSTRACT

Negative sampling is essential for implicit collaborative filtering

to generate negative samples from massive unlabeled data. Unlike

existing strategies that consider items as a whole when selecting

negative items, we argue that normally user interactions are mainly

driven by some relevant, but not all, factors of items, leading to

a new direction of negative sampling. In this paper, we introduce

a novel disentangled negative sampling (DENS) method. We first

disentangle the relevant and irrelevant factors of positive and neg-

ative items using a hierarchical gating module. Next, we design a

factor-aware sampling strategy to identify the best negative sam-

ples by contrasting the relevant factors while keeping irrelevant

factors similar. To ensure the credibility of the disentanglement, we

propose to adopt contrastive learning and introduce four pairwise

contrastive tasks, which enable to learn better disentangled repre-

sentations of the relevant and irrelevant factors and remove the

dependency on ground truth. Extensive experiments on five real-

world datasets demonstrate the superiority of DENS against several

state-of-the-art competitors, achieving over 7% improvement over

the strongest baseline in terms of 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝑁𝐷𝐶𝐺@20. Our

code is publically available at https://github.com/Riwei-HEU/DENS.
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1 INTRODUCTION

Recommender systems have been a promising solution to cure infor-

mation overload in various real-world applications, such as social

media [4, 25], e-commerce [27, 28], and online advertising [39, 40].

Collaborative filtering (CF), as a key recommendation technique,

focuses on learning user preferences from observed user-item in-

teractions [11, 12, 31]. In many cases, it is not always possible to

obtain high-quality explicit feedback, let alone a large amount of

data to train modern deep recommendation models. Thus, implicit

feedback (e.g., clicks or purchases) has become a default choice to

train a CF model [30]. In implicit feedback, each observed interac-

tion normally indicates a user’s interest in an item and leads to a

positive training sample. As for negative training samples, a widely

adopted approach is to randomly select some uninteracted items

for users. An implicit CF model is then optimized to give positive

samples higher scores than negative ones [24].

As in many supervised learning problems, there is no doubt that

negative samples play a decisive role in learning accurate CF mod-

els. More and more research results have shown that uniformly

selecting uninteracted items is difficult to guarantee the quality of

resulting negative samples and learn useful information about user

preferences. Consequently, without prior information describing

items, two lines of studies have been proposed. The first line con-

sists of static negative sampling methods, which replace the uniform

sampling distribution with other distributions (e.g., the popularity

distribution of items) to prioritize informative items as negative

samples [3, 33]. The other line is hard negative sampling methods,

which oversample hard negative items during the training pro-

cess [14, 29, 36]. Here the hard negative items refer to those with a

high probability of being positive according to the model [6], which

might bring more useful information for preference learning.

Although existing works on negative sampling have achieved

some promising results, we argue that they still suffer from a com-

mon drawback: all of them consider an item as an indivisible whole

and ignore the fact that a user is normally driven by some specific

factors of an item, but not all factors, to interact with it [19, 26, 32].

For example, a user maywatch amovie just because its actors match

his/her preferences, while other factors (e.g., producer) might be less

important in his/her decision making. Without taking into consid-

eration items’ fine-granular factors in negative sampling, existing

methods may fail to identify the most suitable negative samples to

precisely characterize user preferences for different items, leading

to suboptimal recommendations.
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To address this limitation, we propose a factor-aware sampling

idea that considers different factors of items to select the best nega-

tive samples. Specifically, we call the factors that dominate a user’s

decision making for better revealing the user’s preference relevant

factors and the remaining factors irrelevant factors. With this distinc-

tion, intuitively a high-quality negative sample could be selected

by contrasting the relevant factors while keeping irrelevant factors

similar. For example, in the aforementioned example, a good nega-

tive sample should be a movie starring an actor that the user is not

interested in, but made by the same producer. To fulfill this idea, we

need to disentangle items’ relevant and irrelevant factors and de-

sign a discriminative criterion to identify the best negative samples.

However, this is non-trivial due to the following challenges:

• How to disentangle the relevant and irrelevant factors of

items? An item’s relevant and irrelevant factors vary from user

to user. Thus, slicing the item embedding into fixed chunks, as

adopted by existing algorithms [20, 32], is insufficient to disen-

tangle the user-specific factors.

• How to reliably measure the quality of negative samples?

The quality of negative samples depends on both relevant and

irrelevant factors, whose respective impacts need to be carefully

measured and balanced.

• How to ensure the credibility of the disentanglement? Since

there is no ground truth to guide the learning, it is intrinsically

difficult to ensure the credibility of the disentanglement.

In this paper, we present a novelDisEntangledNegative Sampling

(DENS) method. To tackle the first challenge, we utilize a hierarchi-

cal gating module to disentangle the relevant and irrelevant factors

of interacted items via a positive gating layer equipped with a

user-specific gate, whose outputs further guide the disentangle-

ment of uninteracted items via a negative gating layer equipped

with a factor-specific gate. With the disentangled factors of items,

we further design a factor-aware sampling strategy to solve the

second challenge. The factor-aware sampling strategy aims to ef-

fectively and efficiently identify the best negative samples based

on both relevant and irrelevant factors, where the respective im-

pacts of relevant and irrelevant factors are balanced dynamically

throughout the training process. To overcome the last challenge

of lacking ground truth to guide the disentanglement, we propose

to use contrastive learning and introduce four pairwise contrastive

tasks taking the user as an anchor. For example, we encourage the

embedding of a user to be more similar to the relevant factors of

the interacted item than to its irrelevant factors. Such pairwise con-

trastive tasks guarantee the credibility of the disentanglement in

the absence of ground truth and enable to learn better disentangled

representations of relevant and irrelevant factors.

It is worth noting that DENS can be seamlessly integrated with

various implicit CF models. Without loss of generality, we consider

LightGCN [11] as an example to illustrate the proposed DENS

method. Empirically, DENS is able to achieve better performance

than several state-of-the-art negative sampling methods such as

DNS [36], SRNS [6], and MixGCF [14] on five public benchmark

datasets. We summarize our main contributions as follows:

• To the best of our knowledge, we are the first to point out the

importance of disentangling item factors in negative sampling,

which leads to a new research direction for CF.

• We propose a simple yet effective DENS method, which disen-

tangles relevant and irrelevant factors of items with contrastive

learning and identifies the best negative samples by dynamically

measuring and balancing the impact of different factors.

• We conduct extensive experiments to demonstrate that DENS can

consistently and substantially outperform several state-of-the-art

competitors, achieving over 7% improvement over the strongest

competitor in terms of 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝑁𝐷𝐶𝐺@20.

2 RELATEDWORK

2.1 Static Negative Sampling

A line of existing research focuses on identifying good distribu-

tions from which negative samples can be drawn. The simplest

and also the most prevalent idea is to uniformly and randomly

select negative samples from uninteracted items. Bayesian person-

alized ranking (BPR) [24] is a well-known instantiation of this idea.

However, this idea is difficult to guarantee the quality of gener-

ated negative samples, and thus some studies [3, 33, 35] propose

to replace the uniform distribution with other distributions. Yang

et al. [35] derive a theory to quantify the impact of the negative

sampling distribution, and then propose to sample negative items

by approximating the distribution of positive items and accelerate

the process by the Metropolis-Hastings algorithm. Inspired by the

word-frequency-based and node-degree-based negative sampling

distributions for network embedding [8, 21], NNCF [3] and NCE-

PLRec [33] adopt an item-popularity-based sampling distribution.

Under this distribution, popular items are more likely to be sam-

pled as negative items, which helps to alleviate the widespread

popularity bias issue in recommender systems [2].

2.2 Hard Negative Sampling

As another line of research, hard negative sampling methods em-

phasize the importance of oversampling hard negative samples

because hard negative samples help to find tighter decision bound-

aries and allow more precise delineations of user preferences. More

specifically, it is achieved by either assigning higher sampling prob-

abilities to items with larger prediction scores [5, 6, 14, 23, 36, 41]

or leveraging adversarial learning techniques [1, 15, 22, 29]. For

instance, the dynamic negative sampling (DNS) strategy [36] is

proposed to adaptively select negative samples with the highest

prediction scores (e.g., the inner product of a user embedding and

an item embedding). SRNS [6] oversamples items with both high

prediction scores and high variances to tackle the false negative

problem. IRGAN [29] trains a generative adversarial network to

play a min-max game with the recommendation model. The sam-

pler performs as a generator and samples negative items to confuse

the model. Instead of directly selecting negative samples from unin-

teracted items, MixGCF [14] synthesizes hard negative samples by

mixing positive information into negative samples, which further

improves the performance. All the above negative sampling meth-

ods, however, neglect to consider items’ factor-level information to

select negative samples. Driven by this limitation, we propose a

disentangled negative sampling method, which identifies the best

negative samples based on relevant and irrelevant factors. We em-

pirically show that considering disentangled factors is critical to

achieve consistently better performance on different datasets.
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Figure 1: An illustration of DENS, where e𝑟 denotes the relevant factors of items. Best viewed in color.

3 PROBLEM FORMULATION

In this section, we formulate the problem of negative sampling in

implicit CF. LetU andV be the set of users and the set of items, re-

spectively. We denote the set of historical interactions (i.e., implicit

feedback) by O+ = {(𝑢, 𝑣+) | 𝑢 ∈ U, 𝑣+ ∈ V}, where each pair

(𝑢, 𝑣+) indicates an observed interaction between user 𝑢 and item

𝑣+. Implicit CF aims to characterize user preferences from their

historical interactions. Observed interactions are generally used

to form positive training samples, while uninteracted items are

considered candidates to generate negative training samples. More

specifically, given a positive training sample (𝑢, 𝑣+), a negative sam-

pling strategy 𝑓 identifies an item 𝑣− that has not been previously

interacted by 𝑢 as a negative sample in order to effectively learn 𝑢’s
preference. A negative sampling strategy 𝑓 is generally orthogonal

to different CF models, and thus our DENS method can be seam-

lessly integrated with different existing models to further improve

their performances. Without loss of generality, we consider Light-

GCN [11], a state-of-the-art graph neural network based CF model,

as an example to illustrate the idea of DENS.

4 METHODOLOGY

In this section, we present the proposed DENS method in detail,

whose workflow is illustrated in Figure 1. In the positive gating

layer, we develop a user-specific gating operation to disentangle the

relevant factors of interacted items. In the negative gating layer, we

first randomly select 𝑀 uninteracted items to form the candidate

negative set. Next, we develop a factor-specific gating operation to

disentangle the relevant factors of all candidate negative items by

taking as input the disentangled relevant factors of the interacted

item. These two components form a hierarchical structure, which

is coined as the hierarchical gating module. Finally, we design a

factor-aware sampling strategy to select the best negative sample

from the candidate negative set based on the disentangled factors.

4.1 Hierarchical Gating Module

Motivated by the observation that a user’s interaction with an item

is mainly driven by the relevant factors, rather than all factors,

our first task is to disentangle relevant and irrelevant factors of

items. To this end, we propose a hierarchical gating module, which

consists of a positive gating layer and a negative gating layer.

4.1.1 Positive Gating Layer. The positive gating layer is used to

disentangle the relevant factors of interacted items (i.e., positive

items). However, directly applying the gating operation to disentan-

gle the relevant factors of positive items does not explicitly consider

the user’s specific preferences. Therefore, to capture the relevant

factors that are tailored to users’ preferences, we need to modify the

gating operation to be user-specific. Specifically, for a pair (𝑢, 𝑣+),

with e𝑢 ∈ R𝑑 and e𝑣+ ∈ R𝑑 denoting the embeddings of user 𝑢 and

positive item 𝑣+, respectively, the user-specific gating operation is

formulated as:

e
𝑟
𝑣+ = e𝑣+ ⊗ 𝜎 (W𝑝e𝑣+ +W𝑢e𝑢 + b𝑝 ), (1)

where e𝑟𝑣+ ∈ R𝑑 is the relevant factors of positive item 𝑣+,W𝑝 ,W𝑢 ∈

R
𝑑×𝑑 and b𝑝 ∈ R𝑑 are trainable parameters of the positive gating

layer, 𝜎 (·) is the sigmoid function, and ⊗ is the element-wise prod-

uct. By doing so, the learned relevant factors e𝑟𝑣+ can indicate user

𝑢’s specific preferences on positive item 𝑣+, and will be used as the

input to the downstream negative gating layer.

4.1.2 Negative Gating Layer. The negative gating layer is employed

to disentangle the corresponding relevant factors of uninteracted

items. Similar to the user-specific gating operation, we propose

to adopt a factor-specific gating operation that takes as input the

relevant factors e𝑟𝑣+ of positive item 𝑣+. Due to efficiency consider-

ations, we follow the conventional methods [14, 36] to randomly

select𝑀 uninteracted items of user 𝑢 to form the candidate nega-

tive embedding set E = {e𝑣0 , · · · , e𝑣𝑀−1 }, where𝑀 is usually much

smaller than the total number of items |V|, and e𝑣𝑚 is the embed-

ding of candidate negative item 𝑣𝑚 . For each embedding e𝑣𝑚 ∈ E,

the factor-specific gating operation is formulated as:

e
𝑟
𝑣𝑚 = e𝑣𝑚 ⊗ 𝜎 (W𝑛e𝑣𝑚 +W𝑟 e

𝑟
𝑣+ + b𝑛), (2)

where e𝑟𝑣𝑚 ∈ R𝑑 is the corresponding relevant factors of candidate

negative item 𝑣𝑚 , andW𝑛,W𝑟 ∈ R𝑑×𝑑 and b𝑛 ∈ R𝑑 are trainable

parameters of the negative gating layer.

As for the irrelevant factors of items, intuitively, factors other

than the relevant factors should be regarded as irrelevant factors.

Since the gating operation to disentangle the relevant factors can be

interpreted as assigning a weight to each factor of items, i.e., each

element of item embeddings, we can calculate the irrelevant factors

by the element-wise subtraction between original embeddings and

disentangled relevant factors. Specifically, the irrelevant factors of

positive item 𝑣+ and candidate negative item 𝑣𝑚 can be calculated

via:

e
𝑖
𝑣+ = e𝑣+ � e

𝑟
𝑣+ , e

𝑖
𝑣𝑚 = e𝑣𝑚 � e

𝑟
𝑣𝑚 , (3)

where e𝑖𝑣+ and e
𝑖
𝑣𝑚 ∈ R𝑑 are the irrelevant factors of positive item

𝑣+ and candidate negative item 𝑣𝑚 , respectively, and � denotes the

element-wise subtraction.

4.2 Factor-Aware Sampling Strategy

After obtaining the disentangled relevant and irrelevant factors

of the positive item 𝑣+ and all candidate negative items, next, we

design a factor-aware sampling strategy to identify the best neg-

ative sample from the candidate negative set. Intuitively, a high-

quality negative sample with respect to 𝑣+ could be selected by
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contrasting their relevant factors while keeping irrelevant factors

similar. To this end, we first need to measure the gaps between

positive item 𝑣+ and candidate negative item 𝑣𝑚 in terms of rel-

evant factors and irrelevant factors. Due to the considerations of

efficiency and applicability, we adopt the differences between pre-

diction scores (e.g., the inner product of a user embedding and an

item embedding [11]), rather than Kullback-Leibler divergence [34]

or Euclidean distance [13], via:

𝑠𝑟 = e
�
𝑢 e

𝑟
𝑣+ − e

�
𝑢 e

𝑟
𝑣𝑚 , 𝑠𝑖 = e

�
𝑢 e

𝑖
𝑣+ − e

�
𝑢 e

𝑖
𝑣𝑚 , (4)

where 𝑠𝑟 and 𝑠𝑖 are the scores that measure the gaps between

positive item 𝑣+ and candidate negative item 𝑣𝑚 in terms of the

relevant factors and the irrelevant factors, respectively.

Next, we measure the quality of negative samples bymaximizing

the gap in terms of relevant factors (i.e., 𝑠𝑟 ) and minimizing the gap

in terms of irrelevant factors (i.e., 𝑠𝑖 ). In order to explicitly balance

the different contributions of the two types of factors, we introduce

a trade-off parameter 𝛼 to weigh 𝑠𝑟 and 𝑠𝑖 :

𝑠 = 𝛼 ∗ 𝑠𝑟 − (1 − 𝛼) ∗ 𝑠𝑖 . (5)

A natural question here is why we do not use the absolute value

of each gap. This is because:

• If e�𝑢 e
𝑟
𝑣𝑚 is greater than e

�
𝑢 e

𝑟
𝑣+ (i.e., 𝑠𝑟 is negative), it means user

𝑢 prefers uninteracted item 𝑣𝑚 to interacted item 𝑣+ in terms of

relevant factors, which indicates that the uninteracted item 𝑣𝑚 is

more likely to be a false negative and should not be selected.

• if e�𝑢 e
𝑖
𝑣𝑚 is greater than e

�
𝑢 e

𝑖
𝑣+ (i.e., 𝑠𝑖 is negative), it means user

𝑢 prefers uninteracted item 𝑣𝑚 to interacted item 𝑣+ in terms of

irrelevant factors, which indicates that the interaction between

𝑢 and 𝑣+ is largely due to the relevant factors of 𝑣+. Such unin-

teracted item 𝑣𝑚 contains more useful information and should be

selected, which enables to infer the user’s real preferences [38].

According to Equation (3), Equation (4), and the Distributive Law

of inner product, we can rewrite Equation (5) as:

𝑠 = 𝛼 ∗ (e�𝑢 e
𝑟
𝑣+ − e

�
𝑢 e

𝑟
𝑣𝑚 ) − (1 − 𝛼) ∗ (e�𝑢 e

𝑖
𝑣+ − e

�
𝑢 e

𝑖
𝑣𝑚 )

= 𝛼 ∗ (e�𝑢 e
𝑟
𝑣+ − e

�
𝑢 e

𝑟
𝑣𝑚 ) − (1 − 𝛼) ∗ [e�𝑢 (e𝑣+ � e

𝑟
𝑣+ )

− e
�
𝑢 (e𝑣𝑚 � e

𝑟
𝑣𝑚 )]

= 𝛼 ∗ (e�𝑢 e
𝑟
𝑣+ − e

�
𝑢 e

𝑟
𝑣𝑚 ) − (1 − 𝛼) ∗ (e�𝑢 e𝑣+ − e

�
𝑢 e

𝑟
𝑣+

− e
�
𝑢 e𝑣𝑚 + e

�
𝑢 e

𝑟
𝑣𝑚 )

= e
�
𝑢 e

𝑟
𝑣+ − (1 − 𝛼) ∗ e�𝑢 e𝑣+ − e

�
𝑢 e

𝑟
𝑣𝑚 + (1 − 𝛼) ∗ e�𝑢 e𝑣𝑚 .

(6)

Note that the first two terms of the RHS of the above equation,

e
�
𝑢 e

𝑟
𝑣+ and (1 − 𝛼) ∗ e�𝑢 e𝑣+ , are the same for all candidate negative

items, and have no impact on the ranking of the quality of negative

samples. Therefore, we can safely remove them and derive the final

factor-aware sampling strategy as follows:

e𝑣− = argmax
e𝑣𝑚 ∈E

e
�
𝑢 ((1 − 𝛼) ∗ e𝑣𝑚 � e

𝑟
𝑣𝑚 ). (7)

The final key question is how to choose 𝛼 . As presented in Equa-

tion (5), 𝛼 affects the contributions of the two types of factors in

measuring the quality of negative samples.Without the prior knowl-

edge of the importance of each type of factors to users’ decision

making, we treat the selection of 𝛼 as a data-driven problem and

deem that it should be carefully adjusted in different scenarios. Mo-

tivated by [9], instead of setting 𝛼 as a fixed parameter throughout

the training process, we propose to linearly increase the value as

the epoch number 𝑡 increases. Specifically, we use 𝛼 = min(𝑡/𝑇0, 1),
where 𝑇0 denotes the threshold of stopping increase.

4.3 Disentanglement with Contrastive Learning

As explained before, due to the lack of ground truth to guide the

learning process, it is inherently difficult to guarantee the credibility

of the disentanglement. Inspired by the superiority of contrastive

learning [16, 37] in unsupervised scenarios, whose key idea is to

encourage the representations of similar pairs to be close and those

of dissimilar pairs to be far apart, we propose to adopt contrastive

learning to supervise the disentanglement. With the user serving

as an anchor, we introduce four contrastive tasks as follows:

sim(e𝑢 , e
𝑟
𝑣+ ) > sim(e𝑢 , e

𝑖
𝑣+ ), (8)

sim(e𝑢 , e
𝑖
𝑣− ) > sim(e𝑢 , e

𝑟
𝑣− ), (9)

sim(e𝑢 , e
𝑟
𝑣+ ) > sim(e𝑢 , e

𝑟
𝑣− ), (10)

sim(e𝑢 , e
𝑖
𝑣− ) > sim(e𝑢 , e

𝑖
𝑣+ ), (11)

where Equation (8) and (9) supervise the disentanglement of positive

items and selected negative items, respectively, and Equation (10)

and (11) supervise the disentanglement of relevant factors and irrel-

evant factors, respectively. The sim(·, ·) is a function that measures

the similarity between embeddings.

It is worth discussing the design choices as follows:

• Intuitively, users prefer the relevant factors to the irrelevant

factors of positive items . Therefore, Equation (8) encourages the

embedding of user 𝑢 (i.e., e𝑢 ) to be more similar to the relevant

factors of positive item 𝑣+ (i.e., e𝑟𝑣+ ) than to its irrelevant factors

(i.e., e𝑖𝑣+ ).

• Since the negative item 𝑣− with respect to the positive item 𝑣+

is selected by contrasting their relevant factors while keeping

irrelevant factors similar, contrary to positive items, users should

prefer the irrelevant factors to the relevant factors of negative

items. As such, Equation (9) encourages e𝑢 to be more similar to

the irrelevant factors of negative item 𝑣− (i.e., e𝑖𝑣− ) than to its

relevant factors (i.e., e𝑟𝑣− ).

• Undoubtedly, users prefer positive items to negative items, espe-

cially in relevant factors. Thus Equation (10) encourages e𝑢 to be

more similar to the relevant factors of positive item 𝑣+ (i.e., e𝑟𝑣+ )

than to those of negative item 𝑣− (i.e., e𝑟𝑣− ).

• For the similar reason discussed in Equation (9), users should

prefer negative items to positive items in terms of irrelevant

factors. Therefore, Equation (11) encourages e𝑢 to be more similar

to the irrelevant factors of negative item 𝑣− (i.e., e𝑖𝑣− ) than to

those of positive item 𝑣+ (i.e., e𝑖𝑣+ ).

We refer to the Bayesian Personalized Ranking (BPR) loss func-

tion [24] to accomplish the contrastive tasks in Equation (8)-(11),

which is designed to make the anchor 𝑎 more similar to the positive

sample 𝑝 than to the negative sample 𝑞:

𝑙 (e𝑎, e𝑝 , e𝑞) = − ln𝜎 (e�𝑎 e𝑝 − e
�
𝑎 e𝑞). (12)

The inner product is used to measure the embedding similarity (i.e.,

sim(·, ·) ). Therefore, the contrastive loss for the disentanglement
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Algorithm 1: The training process with DENS

Input: Training set O+ = {(𝑢, 𝑣+) | 𝑢 ∈ U, 𝑣+ ∈ V},

implicit CF model 𝐹 , negative candidate size𝑀 .

Output: Final user embeddings {e𝑢 | 𝑢 ∈ U}, item

embeddings {e𝑣 | 𝑣 ∈ V}, positive gating layer

parameter 𝜃𝑝 , negative gating layer parameter 𝜃𝑛 .
Initialize {e𝑢 | 𝑢 ∈ U}, {e𝑣 | 𝑣 ∈ V}, 𝜃𝑝 , 𝜃𝑛 .

for 𝑡 = 1, 2, · · · ,𝑇 do
Get the embeddings of users and items by 𝐹 .
Sample a mini-batch O+

𝑏𝑎𝑡𝑐ℎ
∈ O+.

for 𝑒𝑎𝑐ℎ (𝑢, 𝑣+) ∈ O+
𝑏𝑎𝑡𝑐ℎ

do
// Negative Sampling via DENS.

Disentangle the relevant factor e𝑟𝑣+ of 𝑣+ by Eq. (1).

Get the set of candidate negative embeddings E.

for 𝑒𝑎𝑐ℎ e𝑣𝑚 ∈ E do
Disentangle the relevant factor e𝑟𝑣𝑚 of candidate

negative item 𝑣𝑚 by Eq. (2).

end

Select a negative embedding e𝑣− from E by Eq. (7).

end

Update embeddings {e𝑢 | 𝑢 ∈ U}, {e𝑣 | 𝑣 ∈ V} and

parameters 𝜃𝑝 , 𝜃𝑛 based on gradient𝑤.𝑟 .𝑡 L (Eq. (15)).

end

can be calculated as:

Lcon =
∑

(𝑢,𝑣+ ) ∈O+

mean(𝑙 (e𝑢 , e
𝑟
𝑣+ , e

𝑖
𝑣+ ) + 𝑙 (e𝑢 , e

𝑖
𝑣− , e

𝑟
𝑣− )

+ 𝑙 (e𝑢 , e
𝑟
𝑣+ , e

𝑟
𝑣− ) + 𝑙 (e𝑢 , e

𝑖
𝑣− , e

𝑖
𝑣+ )).

(13)

4.4 Model Optimization

Finally, we adopt the proposed DENS method as the negative sam-

pling strategy and calculate the recommendation loss (e.g., the BPR

loss [24]) to optimize the parameters Θ of an implicit CF model

(e.g., LightGCN [11]):

Lrec =
∑

(𝑢,𝑣+ ) ∈O+

𝑣−∼𝑓DENS

− ln𝜎 (e�𝑢 e𝑣+ − e
�
𝑢 e𝑣− ) + 𝜆 ∗ ‖Θ‖22, (14)

where 𝑣− ∼ 𝑓DENS means that the negative item 𝑣− is sampled by

the proposed DENS method, ‖Θ‖22 denotes the 𝐿2 regularization to

address overfitting, and 𝜆 is the coefficient controlling the strength.

We devise a multi-task learning scheme and use a hyperparame-

ter 𝛾 to weigh the contrastive loss. The final loss function is formu-

lated as:

L = Lrec + 𝛾 ∗ Lcon . (15)

5 COMPLEXITY ANALYSIS

In this section, we show that DENS does not significantly increase

the time and space complexity of training an implicit CF model.

The training process with DENS is presented in Algorithm 1.

Compared with DNS [36], the main additional time cost of DENS

comes from the hierarchical gating module, which disentangles the

relevant factors of positive item 𝑣+ and each item 𝑣𝑚 in a candi-

date negative set of size𝑀 . Thus the additional time complexity is

𝑂 (𝑇 (1 +𝑀)𝑁 ), where 𝑇 is the number of training iterations over

Table 1: The statistics of the datasets used in the experiments.

Dataset Users Items Interactions
Cutting

Timestamp

Amazon-Baby 4,314 5,854 42,657 Apr. 1, 2014

Amazon-Beauty 7,670 10,887 82,297 Apr. 1, 2014

Amazon-Home 23,608 22,397 230,474 Apr. 1, 2014

Amazon-Toy 4,626 10,083 52,790 Apr. 1, 2014

Last.fm 640 4,165 120,975 Apr. 1, 2010

mini-batches and 𝑁 denotes the time cost of the gating operation.

In practical settings, such an overhead will not significantly slow

down the training of implicit CF models. As for the space cost,

DENS only requires extra space for 𝜃𝑝 (i.e., W𝑝 , W𝑢 , and b𝑝 ), 𝜃𝑛
(i.e., W𝑛 , W𝑟 , and b𝑛) and 𝑇0, thus the additional space complexity

is 𝑂 ((2 + 4𝑑)𝑑 + 1) = 𝑂 (𝑑2), where 𝑑 is the dimension of embed-

dings. Note that the essential parameters of an implicit CF model

are the embeddings of users and items, where the space complexity

is 𝑂 (( |U| + |V|)𝑑). Since 𝑑 is much smaller than ( |U| + |V|), the

space complexity of DENS remains in the same order.

Considering the performance improvements that DENS can

bring, which will be presented in the next section, we believe that

these additional costs are well justified.

6 EXPERIMENTS

In this section, we perform extensive experiments to evaluate our

proposed DENS and answer the following research questions:

• RQ1: How well does DENS perform compared to previous nega-

tive sampling methods?

• RQ2: How well does DENS improve negative sampling via dis-

entangling the relevant and irrelevant factors of items?

• RQ3: How well does DENS perform integrated with other im-

plicit CF models such as matrix factorization (MF)?

6.1 Experimental Setup

6.1.1 Datasets and Evaluation Metrics. We consider five public

benchmark datasets in the experiments. Amazon-Baby, Amazon-

Beauty, Amazon-Home and Amazon-Toy are adopted from the Ama-

zon review dataset1 [10] with different categories. We treat pur-

chases as implicit feedback. The Last.fm dataset2 contains users’

social networking, tagging, and music artist listening information

collected from the Last.fm online music system. We use the artist

listening information to construct implicit user-item interactions.

Note that the training set is constructed with only the interactions

on or before a cutting timestamp, and the remaining is used as the

test set. We build the validation set by randomly sampling 10% inter-

actions of the training set. Table 1 summarizes the statistics of the

five datasets. We report the recommendation performances in terms

of 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜@𝐾 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾 , with 𝐾 = {10, 15, 20},
where higher values indicate better performances [11, 31].

6.1.2 Baseline Algorithms. To demonstrate the effectiveness of the

proposed DENS method, we compare it with a wide range of repre-

sentative negative sampling methods, including two static negative

1https://jmcauley.ucsd.edu/data/amazon/
2https://grouplens.org/datasets/hetrec-2011/
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Table 2: The performance comparison with different baseline algorithms.

Dataset Method
Top-10 Top-15 Top-20

Hit Ratio Recall NDCG Hit Ratio Recall NDCG Hit Ratio Recall NDCG

Baby

RNS 0.0531 0.0212 0.0115 0.0746 0.0291 0.0144 0.0919 0.0351 0.0164

NNCF 0.0467 0.0171 0.0111 0.0620 0.0232 0.0131 0.0796 0.0296 0.0152

DNS 0.0531 0.0205 0.0114 0.0739 0.0276 0.0139 0.0924 0.0346 0.0161

SRNS 0.0526 0.0202 0.0113 0.0739 0.0274 0.0139 0.0929 0.0350 0.0163

MixGCF 0.0512 0.0195 0.0111 0.0732 0.0272 0.0137 0.0937 0.0354 0.0164

DENS 0.0610 0.0231 0.0130 0.0850 0.0323 0.0163 0.1026 0.0390 0.0184

Beauty

RNS 0.0568 0.0242 0.0165 0.0698 0.0319 0.0189 0.0808 0.0385 0.0206

NNCF 0.0612 0.0267 0.0184 0.0757 0.0347 0.0209 0.0868 0.0411 0.0229

DNS 0.0609 0.0270 0.0180 0.0757 0.0361 0.0208 0.0872 0.0418 0.0227

SRNS 0.0614 0.0268 0.0179 0.0761 0.0355 0.0207 0.0887 0.0421 0.0228

MixGCF 0.0616 0.0274 0.0183 0.0750 0.0350 0.0206 0.0879 0.0420 0.0229

DENS 0.0633 0.0275 0.0184 0.0787 0.0369 0.0211 0.0934 0.0437 0.0234

Home

RNS 0.0272 0.0124 0.0074 0.0349 0.0162 0.0086 0.0434 0.0202 0.0098

NNCF 0.0257 0.0119 0.0074 0.0339 0.0156 0.0086 0.0400 0.0187 0.0094

DNS 0.0304 0.0143 0.0086 0.0395 0.0184 0.0100 0.0465 0.0217 0.0110

SRNS 0.0307 0.0145 0.0087 0.0396 0.0184 0.0100 0.0464 0.0219 0.0110

MixGCF 0.0298 0.0138 0.0085 0.0383 0.0177 0.0098 0.0462 0.0218 0.0108

DENS 0.0316 0.0145 0.0086 0.0420 0.0191 0.0101 0.0499 0.0230 0.0111

Toy

RNS 0.0551 0.0303 0.0184 0.0681 0.0376 0.0209 0.0788 0.0444 0.0229

NNCF 0.0548 0.0306 0.0189 0.0688 0.0388 0.0214 0.0788 0.0459 0.0234

DNS 0.0596 0.0324 0.0203 0.0726 0.0405 0.0226 0.0861 0.0477 0.0252

SRNS 0.0586 0.0315 0.0201 0.0723 0.0396 0.0225 0.0856 0.0473 0.0249

MixGCF 0.0578 0.0324 0.0202 0.0723 0.0411 0.0227 0.0831 0.0471 0.0247

DENS 0.0601 0.0328 0.0206 0.0756 0.0425 0.0237 0.0881 0.0500 0.0259

Last.fm

RNS 0.2765 0.0642 0.0873 0.3009 0.0817 0.0874 0.3235 0.0921 0.0870

NNCF 0.2835 0.0681 0.0936 0.3200 0.0861 0.0937 0.3496 0.1021 0.0948

DNS 0.3148 0.0768 0.1041 0.3443 0.0963 0.1040 0.3583 0.1084 0.1026

SRNS 0.3009 0.0724 0.1008 0.3409 0.0938 0.1019 0.3600 0.1084 0.1026

MixGCF 0.3096 0.0756 0.1035 0.3426 0.0959 0.1036 0.3548 0.1077 0.1020

DENS 0.3409 0.0931 0.1193 0.3809 0.1146 0.1195 0.4087 0.1335 0.1210

sampling methods (RNS and NNCF) and three hard negative sam-

pling methods (DNS, SRNS, and MixGCF).

• RNS [24] adopts the uniform distribution to sample negative

items.

• NNCF [3] replaces the uniform distributionwith a fixed popularity-

based distribution to sample more popular items as negatives.

• DNS [36] adaptively selects the items scored high by the recom-

mender as negatives.

• SRNS [6] leverages prior statistical information to oversample

high-variance items during the training process to tackle the

false negative problem.

• MixGCF [14] develops an interpolation mixing method to in-

ject information from positive samples to negative ones, and

synthesizes harder negative samples.

6.1.3 Implementation Details. For a fair comparison, all negative

sampling methods are applied to LightGCN [11] and we strictly

follow the original implementation. The embedding dimension is

fixed to 64, and the embedding parameters are initialized with the

Xavier method [7]. We optimize all parameters with Adam [17]

and use the default learning rate of 0.001 and default mini-batch

size of 2048. The 𝐿2 regularization coefficient 𝜆 is set to 0.0001,

and the default number of layers 𝐾 is set to 3. The above settings

are the same for all negative sampling methods. As for the hyper-

parameters of DENS, the candidate negative size 𝑀 is searched

in the range of {2, 4, 6, 8, 10}. The threshold of stopping increase

𝛼 , i.e., 𝑇0, is searched in the range of {50, 100, 150, · · · , 350}. The
multi-task weight 𝛾 of the contrastive loss Lcon is searched in the

range of {0.1, 0.2, 0.3, · · · , 1.0}. The hyperparameters of all baseline

algorithms are carefully tuned by grid search.

6.2 RQ1: Comparison with Baseline Algorithms

We report the performances of our proposed DENS method and all

baseline algorithms in Table 2, where the best results are boldfaced

and the second-best results are underlined. We can draw a few

interesting observations:

• DENS consistently yields the best performance on all datasets in

terms of almost all evaluation metrics. This demonstrates that

DENS is capable of identifying more suitable negative samples
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(a) Amazon-Beauty (b) Amazon-Home (c) Amazon-Toy (d) Last.fm

Figure 2: Impact of different weights 𝛾 of Lcon.

and thus helps to learn a better CF model that ranks items more

accurately. We attribute such improvements to disentangling the

relevant and irrelevant factors of items and adopting a factor-

aware sampling strategy for negative sampling.

• Among all baselines, hard negative sampling methods perform

competitively and static negative sampling methods perform

poorly. By considering the relevant and irrelevant factors of

items in negative sampling, DENS outperforms two state-of-the-

art hard negative sampling methods, i.e., MixGCF and SRNS,

which improve the quality of negative samples in different ways.

Specifically, compared with MixGCF that randomly interpolates

information from positive samples to synthesize more informa-

tive negative samples, DENS selects more informative negative

samples by keeping the irrelevant factors of positive and negative

samples similar, which is more effective. Compared with SRNS

that leverages prior statistical information to oversample high-

variance negatives during the training process to tackle the false

negative problem, DENS can well identify the false negative sam-

ples by contrasting the relevant factors of positive and negative

samples, which is more efficient.

• The performances of the baselines vary from dataset to dataset.

None of them can consistently achieve the second-best perfor-

mances on all the datasets. In particular, compared with the latest

baseline method MixGCF, it is surprising to see that the simple

RNS method can achieve comparable results on the Baby dataset.

We believe that this observation confirms the necessity of con-

sidering items’ fine-granular factors to generate more precise

negative samples to reveal users’ real preferences.

6.3 RQ2: Improvement of Negative Sampling via

Disentangling Factors

In this subsection, we discuss the impact of disentangling the rele-

vant and irrelevant factors in negative sampling on performances.

6.3.1 Impact of Contrastive Loss Lcon. We first study the impact

of the contrastive loss Lcon in supervising the disentanglement.

We carefully design three experiments from different perspectives:

• In the first experiment, we study the impact of the multi-task

weight𝛾 ofLcon. Figure 2 presents the varying values of𝑅𝑒𝑐𝑎𝑙𝑙@20

and 𝑁𝐷𝐶𝐺@20 as 𝛾 varies in the range of {0, 0.1, 0.2, · · · , 1.0}.
Among all four datasets, the worst 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝑁𝐷𝐶𝐺@20

are achieved when 𝛾 = 0, where the disentanglement is trained

without any supervision. Such results well verify the effective-

ness of our proposed contrastive loss Lcon. Furthermore, we

(a) With Lcon (b) Without Lcon

Figure 3: Visualization of the learned relevant and irrelevant

factors in DENS on Last.fm dataset with and without Lcon.

can observe that 𝛾 = 0.3 or 𝛾 = 0.4 is an optimal value and the

model obtains the best performance. Too small 𝛾 is not enough

to guarantee the credibility of disentanglement, and too large 𝛾
may contradict the main recommendation task, which will lead

to lower performances.

• In the second experiment, we investigate the effect of Lcon in

disentangling the relevant and irrelevant factors of items. Specifi-

cally, we randomly pick a user and map the disentangled relevant

and irrelevant factors of all positive and negative items into a

two-dimensional space. Figure 3 illustrates the learned relevant

and irrelevant factors with and without the contrastive loss. We

observe that with the contrastive loss, the learned relevant and

irrelevant factors are clearly separated. However, when we re-

move the contrastive loss, the distribution of factors becomes

messy, and the relevant and irrelevant factors tend to overlap

with each other.

• In the third experiment, we conduct an ablation study to verify

the benefits of different contrastive tasks in Lcon. In particular,

we individually use one of the contrastive tasks in Equation (8)-

(11) in turn to construct the contrastive loss and report the results

in terms of 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝑁𝐷𝐶𝐺@20 in Figure 4. The dotted

line represents the results of considering the four contrastive

tasks together. We can observe that "only N" (i.e., only using the

task in Eq. (9)) and "only I" (i.e., only using the task in Eq. (11))

outperform other variants in most cases, which demonstrates

the effectiveness of the two tasks in supervising the disentan-

glement. In addition, combining the four tasks together yields

further improvements in three of the reported datasets. Moreover,

combined with the results in Figure 2, all the variants achieve bet-

ter performances than training without any supervision, which

well justifies our design of the four contrastive tasks.
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(a) Amazon-Beauty (b) Amazon-Home (c) Amazon-Toy (d) Last.fm

Figure 4: Impact of different contrastive tasks in Lcon.

Table 3: Impact of different strategies for 𝛼 .

Dataset Beauty Home

Strategy
Top-20 Top-20

Recall NDCG Recall NDCG

Increasing 0.0437 0.0234 0.0230 0.0111

Decreasing 0.0398 0.0219 0.0220 0.0107

Fixed 0.0435 0.0233 0.0228 0.0111

(a) Amazon-Beauty (b) Amazon-Home

Figure 5: Training loss with different strategies for 𝛼 .

6.3.2 Impact of Strategies for 𝛼 . We next study the impact of differ-

ent strategies for𝛼 . In particular, we compare the linearly increasing

strategy (i.e., 𝛼 = min(𝑡/𝑇0, 1)) with other two strategies, the lin-

early decreasing strategy (i.e., 𝛼 = max(0, 1 − 𝑡/𝑇0)) and the fixed

strategy (e.g., 𝛼 = 0.4). Table 3 presents the results of the three

strategies in terms of 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝑁𝐷𝐶𝐺@20. Due to the space

limitation, we only report the results on Beauty and Home. We ob-

serve the pattern "Increasing > Fixed > Decreasing" across the two

datasets, which confirms the superiority of the linearly increasing

strategy over the other two strategies. We attribute these results

to the following two reasons: (1) In the early stage of the training

process, the linearly increasing strategy considers more irrelevant

factors in negative sampling, which accelerates the learning of user

preferences. (2) In the later stage of the training process, based on

the well-trained representations of users and items, the linearly

increasing strategy characterizes user preferences more precisely

by considering more relevant factors in negative sampling.

To verify our conjectures, we plot the curves of training loss of

the three strategies in Figure 5. We can observe that, compared with

the other two strategies, the linearly increasing strategy obtains

lower training loss in the later stage of training, which well justifies

the above reason (2). Moreover, the linearly increasing strategy

achieves better testing accuracy with fewer training epochs, which

validates the above reason (1).

Table 4: The performance comparison integrated with MF.

Dataset Beauty Home

Method
Top-20 Top-20

Recall NDCG Recall NDCG

RNS 0.0229 0.0122 0.0152 0.0078

NNCF 0.0243 0.0134 0.0124 0.0063

DNS 0.0262 0.0143 0.0157 0.0082

SRNS 0.0260 0.0142 0.0159 0.0081

DENS 0.0266 0.0146 0.0157 0.0083

6.4 RQ3: Collaboration with More CF Models

We finally study whether DENS can achieve better performances

when integratedwith other CFmodels, for example, the well-known

matrix factorization (MF) [18]. Table 4 presents the performance

comparison when integrated with MF. We omit MixGCF because

it is a graph-based negative sampling method and not compatible

with MF. As shown in Table 4, when integrated with MF, DENS can

also achieve better performances in most cases. However, compared

with integrating with the more advanced CF model LightGCN, the

relative improvements brought by DENS are limited. This observa-

tion suggests that the quality of CF models affects the effectiveness

of DENS. High-quality CF models enable learning more representa-

tive embeddings, which lays a more solid foundation for the idea

of disentangling item factors in negative sampling.

7 CONCLUSION

In this paper, we studied negative sampling in CF from a brand

new perspective that considers items’ factor-level information. We

devised a novel disentangled negative sampling (DENS) method,

which effectively extracts items’ relevant and irrelevant factors and

selects the best negatives by carefullymeasuring and balancing their

influence. We also introduced contrastive learning to ensure the

credibility of disentanglement. Comprehensive experiments show

that DENS provides a promising research direction for negative

sampling to further boost existing CF models’ performances.
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